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Abstract

To cope with the negative oil futures price caused by the COVID–19 recession, global commodity futures

exchanges switched the option model from Black–Scholes to Bachelier in April 2020. This study reviews

the literature on Bachelier’s pioneering option pricing model and summarizes the practical results on

volatility conversion, risk management, stochastic volatility, and barrier options pricing to facilitate

the model transition. In particular, using the displaced Black–Scholes model as a model family with

the Black–Scholes and Bachelier models as special cases, we not only connect the two models but also

present a continuous spectrum of model choices.
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1. Introduction

Louis Bachelier pioneered an option pricing model in his Ph.D. thesis (Bachelier, 1900), marking the

birth of mathematical finance. He offered the first analysis of the mathematical properties of Brownian

motion (BM) to model the stochastic change in stock prices, and this preceded the work of Einstein

(1905) by five years. His analysis also precursors what is now known as the efficient market hypothe-

sis (Schachermayer and Teichmann, 2008). See Sullivan and Weithers (1991) for Bachelier’s contribution

to financial economics and Courtault et al. (2000) for a review of his life and achievements.

Owing to the celebrated Black–Scholes (BS) model (Black and Scholes, 1973; Merton, 1973) and the

fact that the arithmetic BM allows negative asset prices, the Bachelier model has been forgotten as a part

of history until recently. Ironically, the model gained attention again in the twenty-first century because

it can deal with negative asset prices, which was considered its limitation. The negative interest rates

observed in some developed countries after the 2008 global financial crisis forced fixed-income trading

desks to reconsider their option pricing models. The spread of COVID–19 led to lockdowns worldwide
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and an extremely sharp drop in the global demand for oil. Consequently, in April 2020, the price of

oil futures contracts became sharply negative for the first time in history. In response, the Chicago

Mercantile Exchange (CME) and Intercontinental Exchange (ICE) changed their models for oil futures

options from the BS to the Bachelier model to handle the negative prices (CME Group, 2020; ICE, 2020).

In fact, the attention on the Bachelier model dates back to the pre-2008 crisis era, even when the

fear of negative prices was negligible. The Bachelier model has been widely used at least in the fixed

income markets—swaptions are quoted and risk-managed by Bachelier volatility.1 This is because the

proportionality between the daily changes in and the level of the interest rate—a key assumption of the

BSM model—is empirically weak. Consequently, the log-normal distribution cannot accurately describe

the interest rate dynamics (Levin, 2002, 2004; Ho and Goodman, 2003). The ICE’s MOVE index, also

referred to as “the VIX for bonds,” is the weighted Bachelier volatility from short-term US Treasury

Bond options.2 Other than in fixed income markets, the Bachelier model was naturally adopted when the

underlying price can assume negative values. For example, it has been used for spread options (i.e., the

option on the price difference of two assets) (Poitras, 1998) and year-on-year inflation (Kenyon, 2008).

Despite the recent surge of interest in the Bachelier model, it is still difficult to find comprehensive

references on the model.3 The academic literature on the Bachelier model is scarce, or at best, scat-

tered over different papers, each addressing only certain aspects of the model, and many of which are

unpublished preprints. We aim to fill this gap by reviewing the Bachelier model in a way that benefits

both researchers and practitioners. The attempt to review the Bachelier model is certainly not new, but

existing reviews focus on the historical perspectives of Bachelier and his model (Sullivan and Weithers,

1991; Courtault et al., 2000; Schachermayer and Teichmann, 2008).4 Instead, we review the Bachelier

model in a modern context as an alternative option pricing model to BS, as in the case with the recent

model change.

We briefly summarize the key aspects of this review. First, we aim to provide actionable assistance to

practitioners who are considering switching from (or using in parallel with) the BS model. For example,

we provide an analytic conversion formula between the different model volatilities (Section 4.2). We

explain the delta hedging under the Bachelier model in terms of the vega-rotated delta under the Black–

Scholes model (Section 5.2). Second, we review the Bachelier and BS models as two special cases of

more general model families such as the displaced Black–Scholes (DBS) or stochastic-alpha-beta-rho

1The Bachelier model is also called the normal model as it assumes a normal distribution of the asset price. As such, the
term “normal volatility” is more widely used than “Bachelier volatility.” However, we use the term “Bachelier volatility”
throughout the paper for consistency.

2The acronym MOVE originally stands for Merrill-Lynch Option Volatility Estimate.

3For example, the Wikipedia entry for “Bachelier model” (https://en.wikipedia.org/wiki/Bachelier_model) was
created on April 21, 2020, presumably after the CME announcement. Accessed as of April 5, 2021, the entry does not even
contain the option price formula, Eq. (1).

4Brooks and Brooks (2017) is an exception. While they review various strengths of the Bachelier model over the BS
model, they interpret the Bachelier negative price under the Bachelier model as the nonzero probability of equity price
hitting zero, which differs from our assumption that the price can go freely negative.
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(SABR) model. We show that one can easily obtain the results for the Bachelier model by continuously

transforming those of the BS model. This framework also offers a spectrum of model choices in terms

of the volatility skew, leverage effect, and allowance of negative prices rather than a binary choice

between the Bachelier and BS models. Lastly, this paper also offers a novel contribution to the literature,

although it is a review paper. We improve the accuracy of the analytical volatility conversion to the

Bachelier volatility (Eq. (17)) and present the barrier option pricing formulas under the Bachelier model

(Section 7.2). Our review of the DBS model is new in the literature, to the best of our knowledge,

although it is easily generalized from the BS model.

The remainder of this paper is organized as follows. Section 2 introduces the Bachelier model.

Section 3 reviews the DBS and SABR models. In Section 4, we focus on volatility-related topics such

as implied volatility inversion and conversion between the models. Section 5 discusses the Greeks and

hedging, and Section 6 reviews the stochastic Bachelier volatility model. Section 7 covers the pricing of

exotic claims under the Bachelier model, and we offer our conclusions in Section 8.

2. Bachelier model

2.1. Bachelier and BS models

The Bachelier model assumes that the T -forward price of an asset at time t, Ft, follows an arithmetic

BM with volatility σn,

dFt = σn dWt

where Wt is a standard BM under the T -forward measure. The undiscounted price of a call option with

strike price K and time-to-maturity T under the Bachelier model is 5

Cn(K) = (F0 −K)N(dn) + σn
√
T n(dn) for dn =

F0 −K
σn
√
T
, (1)

where n(z) and N(z) are the probability density function (PDF) and cumulative distribution function

(CDF), respectively, of the standard normal distribution. With the continuously compounded interest

rate, r, and convenience yield of the asset, q, we can express the option price by the spot price S0 =

e(q−r)T F0 instead of the forward price F0; the discounted option price is e−rTCn(K). As Bachelier

himself noted, the option price (both put and call) at the money (ATM), K = F0, is simplified and the

volatility is easily inverted as (Schachermayer and Teichmann, 2008, §2.1)

Cn(F0) = σn

√
T

2π
and σn = Cn(F0)

√
2π

T
. (2)

5The put option price under the Bachelier model is

Pn(K) = (K − F0)N(−dn) + σn
√
T n(dn)
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The Bachelier formula also holds under a weaker assumption. As long as the asset price at matu-

rity, FT , is normally distributed with mean µ(FT ) and standard deviation sd(FT ), we can derive the

undiscounted call option price with a minor modification:

Cn(K) = sd(FT ) (dnN(dn) + n(dn)) for dn =
µ(FT )−K
sd(FT )

. (3)

This generalized formula is helpful in pricing a basket options and Asian options, which we discuss further

in Section 7.

In contrast, the BS model (Black and Scholes, 1973; Black, 1976) assumes a geometric BM with

volatility σbs,
dFt
Ft

= σbs dWt.

The corresponding undiscounted call option price is well known as the Black (1976) formula6:

Cbs(K) = F0N(d1)−KN(d2) for d1,2 =
log(F0/K)

σbs
√
T
± σbs

√
T

2
. (4)

We can obtain the Black and Scholes (1973) formula easily by substituting F0 = e(r−q)T S0 and discount-

ing the premium by e−rT .

Volatility has different meanings in each model; while the BS volatility σbs measures the relative

change in Ft, the Bachelier volatility σn measures the absolute change in Ft. The relation, σn = σbsF0,

ensures that the dynamics between the two models behave similarly within a short time interval, and

that the two models yield a similar ATM option price,

Cbs(F0) ≈ Cn(F0) ≈ 0.4σbsF0

√
T .

Many Wall-Street options traders use this approximation as a back-of-the-envelope calculation for the

ATM BS option price.

2.2. Alternative specification of the Bachelier model

Other studies (Brooks and Brooks, 2017) apply the arithmetic BM to the spot price St instead of the

forward price Ft. In that case, the dynamics is given by an Ornstein–Uhlenbeck process:

dSt = (r − q)Stdt+ σ′n dWt.

6The put option price under the BS model is

Pbs(K) = KN(−d2)− F0N(−d1).
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It is worth noting the difference between this and Eq. (1). From Ft = e(T−t)(r−q) St, we can show that

the equivalent dynamics on Ft are

dFt = e(r−q)(T−t)σ′n dWt.

Therefore, the main difference in the alternative approach is that volatility is increasing or decreasing

exponentially. It can still take advantage of the Bachelier formula because FT is normally distributed.

By integrating the variance, the standard deviation of FT is

sd(FT ) = σ′n

√
e2(r−q)T − 1

2(r − q)

(
= σ′n

√
T if r = q

)
,

which we can plug into the generalized Bachelier formula in Eq. (3). Since Eq. (1) with σn = sd(FT )/
√
T

will produce the same option price, we view the two approaches as equivalent when pricing vanilla

options. Since we aim to cover options traded on futures exchanges, we choose to work with Eq. (1),

where the volatility of the forward price is constant. See Takehara et al. (2010) for a further discussions

of other specifications.

3. Models generalizing the Bachelier and BS models

In this section, we review the models that bridge the Bachelier and BS models as two special cases: the

DBS and SABR models. We will show that the Bachelier model is a limit case of the DBS model, making

it possible to continuously transform the DBS model into either the Bachelier or the BS model, and vice

versa. The analysis of the SABR model is useful for the convenient conversion of the volatilities between

different models.

3.1. Displaced BS model

The DBS model is a popular way to adjust the BS model to allow negative asset prices and negative

volatility skew without sacrificing the analytical tractability of the BS model (Rubinstein, 1983; Joshi

and Rebonato, 2003). While there are various specifications, we present the DBS model with volatility

σd as follows:7

dFt
D(Ft)

= σd dWt where D(Ft) = β Ft + (1− β)A. (5)

Under the DBS model, the displaced variable, D(Ft), rather than Ft, follows a geometric BM with

volatility σd, and the model can handle negative underlying prices with the lower bound Ft > −(1 −

7Our DBS model specification with two parameters, β and A, is general enough to include the two alternative specifi-
cations,

D(Ft) = Ft +A or D(Ft) = βFt + (1− β)F0.

Compared to the first, ours helps to clarify the Bachelier model in the β ↓ 0 limit. We also intentionally avoid the second
because the dependency on F0 in D(Ft) may causes unintended confusion in computing delta, the partial derivative with

respect to F0. The DBS model with D(Ft) = βFt + (1− β)F0 and σd = Fβ−1
0 σcev also serves as an approximation to the

constant-elasticity-of-variance (CEV) model (Svoboda-Greenwood, 2009).
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β)A/β. The final asset price, FT is accordingly

FT =

(
F0 +

1− β
β

A

)
exp

(
βσdWT −

β2σ2
dT

2

)
− 1− β

β
A,

and the call option price is

Cd(K) =
D(F0)N(d1d)−D(K)N(d2d)

β
for d1d,2d =

log (D(F0)/D(K))

βσd
√
T

± βσd
√
T

2
. (6)

In other words, we can re-use the Black formula in Eq. (4) by replacing F0, K, σbs, and Cbs with D(F0),

D(K), βσd, and βCd, respectively. We can extend other analytical results for the BS model to the DBS

model with little difficulty; see Section 5 for the Greeks.

From the model dynamics in Eq. (5), it is clear that the BS model is a special case of the DBS model

with β = 1 and σd = σbs, and that the Bachelier model is another with β = 0 and σd = σn/A. The

BS option price is trivially reduced from that of the DBS model. However, some effort is required to

obtain the Bachelier option price from the β ↓ 0 limit of the DBS option price. For small β, we have the

following approximations:

log

(
D(F0)

D(K)

)
=
β(F0 −K)

(1− β)A

(
1 +

β(F0 +K)

2(1− β)A

)
+O(β2),

d1d,2d =
F0 −K

(1− β)Aσd
√
T

(
1 +

β(F0 +K)

2(1− β)A

)
± βσd

√
T

2
+O(β).

Now, we show that the DBS price converges to the Bachelier price as β ↓ 0:

Cd(K) =
D(F0)−D(K)

β
N(d2d) +

D(F0)

β
(N(d1d)−N(d2d))

= (F0 −K)N(d2d) +
D(F0)

β
(d1d − d2d)n(d1d) +O(β)

→ (F0 −K)N(dn) + σn
√
T n(dn) = Cn(K) with σn = Aσd.

Understanding the Bachelier model as the β ↓ 0 limit of the DBS model is very helpful throughout this

paper, as we can use this method to verify many results. See Section 5 for a discussion of the Greeks

and Section 7.2 for details on Barrier option pricing.

We next discuss the leverage effect and negative skew of the DBS and Bachelier models. In the DBS

model, we find similar dynamics (and option price) to the BS model in a small time horizon when

σbs F0 ≈ σd(βF0 + (1− β)A).

For a fixed σd, the equivalent σbs increases when F0 decreases, achieving the leverage effect. In particular,

the degree of the leverage effect strengthens as β decreases, reaching the maximum at β = 0 (i.e., the

6



Figure 1: The BS volatility skew of the Bachelier, DBS (β = 1/3 and 2/3 with A = F0), and BS models. We use F0 = 1,
T = 1, and σn = σd = σbs = 0.5.
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Bachelier model).8 To illustrate the effect, we show the BS volatility skew implied from the DBS models

with a fixed σd but varying β values in Figure 1. As expected, the skew becomes more negative as β

decreases from 1 (BS) to 0 (Bachelier). Therefore, the DBS model is a simple alternative to the BS

model for modeling the negative skew observed in the market, where β is used to fit the slope.

3.2. SABR (and CEV) model

The SABR model (Hagan et al., 2002) is a stochastic volatility (SV) model given by

dFt

F βt
= σt dWt,

dσt
σt

= ν dZt, and dWt dZt = ρ dt, (7)

where Ft and σt are the processes for the forward price and volatility, respectively. ν is the volatility of

volatility, β is the elasticity parameter, and Wt and Zt are the standard BMs correlated by ρ. Thanks

to the intuitive dynamics and parsimonious parametrization, the SABR model gained popularity among

practitioners, and the approximate BS volatility formula (Hagan et al., 2002, Eq. (A.59)) used to price

options has become an industry standard. See Antonov and Spector (2012) for an extensive review.

Although SV models are not our primary focus here, we leverage the rich academic results for the SABR

model to extend the Bachelier model.

The SABR model is understood as an SV extension of the CEV model, whose dynamics are given by

dFt

F βt
= σcev dWt. (8)

8Although we consider β ∈ [0, 1] in this paper, practitioners sometimes use β < 0 or β > 1 to achieve super-normal
or super-log-normal skewness, respectively. In the case of β < 0, A can also be negative to ensure the inequality Ft >
−(1− β)A/β.
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We can write the call option price under the CEV model analytically as9

Ccev(K) = F0 F̄χ2

(
K2β∗

β2
∗σ

2
cevT

; 2 +
1

β∗
,

F 2β∗
0

β2
∗σ

2
cevT

)
−K Fχ2

(
F 2β∗
0

β2
∗σ

2
cevT

;
1

β∗
,
K2β∗

β2
∗σ

2
cevT

)
, (9)

where Fχ2( · ; r, x0) and F̄χ2( · ; r, x0) are respectively the left- and right-tail CDFs of the non-central

chi-squared distribution with degrees of freedom r and non-centrality parameter x0, and β∗ = 1− β for

notational simplicity.10 At first glance, the CEV model might seem to be another connection between

the Bachelier (β = 0) and BS (β = 1) models, with β serving the same role as in the DBS model.

Unfortunately, this is not the case because the CEV model does not allow for negative prices at all when

β > 0, unlike the DBS model. In fact, one must impose an absorbing boundary explicitly at the origin

for Ft to be a martingale and remain arbitrage-free. The CEV option price in Eq. (9) indeed imposes

the probability mass absorbed at K = 0. As such, in the β ↓ 0 limit, Eq. (9) converges to the price

of the Bachelier model with the absorbing boundary at K = 0, not to the price in Eq. (1) without the

absorbing boundary.

The SABR model also exhibits a similar mass at zero, since the SABR model generalizes the CEV

model to include SV.11 Interestingly, the asymptotic analysis used to derive the equivalent volatility of

the SABR model does not feel the boundary as it only concerns the neighborhood of F0 in a short time.

Therefore, the equivalent volatility in the β ↓ 0 limit fortuitously assumes the Bachelier model without

boundary, which is our focus. Specifically, we will depend on the equivalent Bachelier volatility of the

SABR model (Hagan et al., 2014, Eq. (14)):

σn(K) ≈ σ0F β0 H(z)
k − 1

q

(
1 +

(
log

(
q kβ/2

k − 1

)
α2

q2
+
ρ

4

kβ − 1

k − 1
αν +

2− 3ρ2

24
ν2
)
T

)
, (10)

where the intermediate variables are

k =
K

F0
, α =

σ0

F β∗
0

, q =

∫ k

1

k−βdk =


kβ∗ − 1

β∗
if 0 ≤ β < 1

log k if β = 1

, z =
ν

α
q,

and H(z) = z
/

log

(√
1 + 2ρz + z2 + z + ρ

1 + ρ

)
(H(0) = 1).

This approximation serves our purpose as the outcome is the Bachelier volatility, and exhibits the desired

9The put option price under the CEV model is

Pcev(K) = K F̄χ2

(
F 2β∗
0

β2
∗σ

2
cevT

;
1

β∗
,
K2β∗

β2
∗σ

2
cevT

)
− F0 Fχ2

(
K2β∗

β2
∗σ

2
cevT

; 2 +
1

β∗
,

F 2β∗
0

β2
∗σ

2
cevT

)
.

10See Larguinho et al. (2013) for the Greeks and a fast numerical approximation of the analytic price of the CEV model.

11See Yang and Wan (2018), Gulisashvili et al. (2018), and Choi and Wu (2021) for a discussion of the mass at zero
under the CEV and SABR models.
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property that σn(K) = σ0 for all (even negative) K when β = 0 and ν ↓ 0. Moreover, Eq. (10) is a more

accurate approximation of the SABR model than the original HKLW formula (Hagan et al., 2002) that

uses the equivalent BS volatility. If necessary, one can convert the Bachelier volatility obtained above

the BS volatility readily via the option price. We will rely on Eq. (10) for our discussion in Sections 4.2

and 6.

4. Volatility

4.1. Volatility inversion

Efficient computation of the implied volatility for a given option premium is important. Due to the lack

of analytical form, the implied volatility must be computed iteratively through a root search algorithm.

Given how routine and extensive these computations are performed across the global option markets,

even a minor improvement in computational efficiency can result in significant advantage in practice.

Therefore, efficient volatility inversion methods has been a research topic of interest in computational

finance. For the progress made in implied volatility computation under the BS model, see Li (2008);

Jäckel (2015); Stefanica and Radoičić (2017); Pötz (2019).

Similar to the BS model, computing the implied Bachelier volatility for a given option price is an

important task in practice. In the Bachelier model, the volatility inversion can be reduced to finding the

inverse of a univariate function on dn, which makes the problem easier than in the BS model. Taking

advantage of this fact, Choi et al. (2009) first express the implied volatility as

σn =

√
π

2T
(2C − θ(F0 −K)) h(η) for η =

v

atanh (v)
and v =

|F0 −K|
2C − θ(F0 −K)

, (11)

where C is the undiscounted price of either a call (θ = 1) or put (θ = −1) option. On the one hand,

2C − θ(F0−K) in the denominator of v indicates the straddle price; that is, the sum of the call and put

option prices at the same strike from the put-call parity.12 On the other hand, |F0 −K| is the intrinsic

value of the straddle option. Therefore, the variable v is the intrinsic-to-option value ratio of straddle

option, which is also a measure of the moneyness ranging from v = 0 (F0 = K) to v = 1 (|F0−K| → ∞).

Using the rational Chebyshev approximation, they obtain a very accurate approximation for h(η):

h(η) ≈ √η
∑7
k=0 akη

k

1 +
∑9
k=1 bkη

k
,

12The price of a straddle option, if directly quoted in the market, can replace 2C − θ(F0 −K) in the formula.
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with the coefficients,

a0 = 3.99496 16873 45134 e-1

a1 = 2.10096 07950 68497 e+1

a2 = 4.98034 02178 55084 e+1

a3 = 5.98876 11026 90991 e+2

a4 = 1.84848 96954 37094 e+3

a5 = 6.10632 24078 67059 e+3

a6 = 2.49341 52853 49361 e+4

a7 = 1.26645 80513 48246 e+4

b1 = 4.99053 41535 89422 e+1

b2 = 3.09357 39367 43112 e+1

b3 = 1.49510 50083 10999 e+3

b4 = 1.32361 45378 99738 e+3

b5 = 1.59891 96976 79745 e+4

b6 = 2.39200 88917 20782 e+4

b7 = 3.60881 71083 75034 e+3

b8 = -2.06771 94864 00926 e+2

b9 = 1.17424 05993 06013 e+1.

(12)

The approximation is accurate for virtually all practical purposes, and can be used without further

refinement. Choi et al. (2009) report that the error of h(η) from the true value is in the order of 10−10

for |dn| ≤ 7.7. In the near-the-money region (|dn| ≤ 1.46), where most options lie, the error decreases

further to the order of 10−13. This approximation almost exactly preserves the ATM inversion in Eq. (2)

as h(1) ≈ 1 − 7 × 10−16. Note that η has a removable singularity at v = 0. Although not explicitly

mentioned in Choi et al. (2009), when v is close to zero, η should be evaluated using the Taylor’s

expansion,

η =
1

1 + v2/3 + v4/5 + · · ·
.

Jäckel (2017) and Le Floc’h (2016) also provide alternative approximation methods for the Bachelier

volatility inversion.

4.2. Volatility conversion between the BS and Bachelier models

Here, we introduce the formulas to convert between the Bachelier, BS, and DBS models. Although

conversions can be performed through numerical computation via the option price, the conversion formula

in this section serves as a quick approximation and provides insights on the relations between the models.

We begin with the ATM case where analytical conversion is obvious and precise. Similar to the

Bachelier model, the volatility inversion under the BS and DBS models is also analytically possible ATM

because the pricing formulas simplify, respectively, to (Dimitroff et al., 2016, Proposition 3.2)

Cbs(F0) = F0

[
2N

(
σbs
√
T

2

)
− 1

]
and Cd(F0) =

D(F0)

β

[
2N

(
βσd
√
T

2

)
− 1

]
. (13)

By equating the ATM prices in Eqs. (2) and (13), we can convert the DBS volatility σd to σn and σbs,

10



respectively, as

σn(F0) =
D(F0)

β

√
2π

T

(
2N

(
βσd
√
T

2

)
− 1

)
, (14)

σbs(F0) =
2√
T
N−1

(
D(F0)

βF0
N

(
βσd
√
T

2

)
− D(F0)

2βF0
+

1

2

)
. (15)

For the general case of K 6= F0, we first work on the conversion from σbs to σn(K), which will be

helpful for the transition from the BS to the Bachelier model in the oil futures case. To this end, we

take advantage of the implied Bachelier volatility of the SABR model in Eq. (10). Because the SABR

model with β = 1 converges to the BS model under the zero vol-of-vol limit (i.e., ν ↓ 0), Eq. (10) with

β = 1 and ν = 0 gives a conversion from the BS to Bachelier model volatility:

σn(K) ≈ σbsF0
k − 1

log k

(
1− log

(
k − 1√
k log k

)
σ2
bsT

log2 k

)
for k =

K

F0
. (16)

Grunspan (2011, Corollary 2) obtain the same result. However, we make two improvements to this

formula. First, we simplify the two occurrences of (k − 1)/ log k to remove the singularity at k = 1.

Using the expansions near k = 1,

k − 1√
k

= 2 sinh
(

log
√
k
)

= log k

(
1 +

log2 k

24
+

log4 k

1920
+ · · ·

)
,

we make the following two approximations:

k − 1

log k
≈
√
k

(
1 +

log2 k

24

)
and log

(
k − 1√
k log k

)
1

log2 k
≈ 1

24
.

Second, we replace the O(T ) correction term in the form of (1 − aT ) with 1/(1 + aT ). Although they

are the same at the small T limit, we find empirically that the latter is more accurate. With the two

changes, we finally obtain the conversion formula:

σn(K) ≈ σbsF0

√
k

(
1 +

log2 k

24

)/(
1 +

σ2
bs

24
T

)
for k =

K

F0
. (17)

Figure 2 demonstrates the accuracy of the volatility conversions formulas Eqs. (16) and (17). Even in

the extreme test case of σbs = 200%, they still closely approximate the true Bachelier volatility. In

particular, our approximation in Eq. (17) is at the exact values, while Eq. (16) shows a slight deviation.

We convert from σn to σbs(K) by approximately inverting Eq. (17),

σbs(K) ≈ σn

F0

√
k

(
1 +

σ2
n

24 k F 2
0

T

)/(
1 +

log2 k

24

)
for k =

K

F0
. (18)

This is also consistent with a special case of the HKLW formula (Hagan et al., 2002) with β = 0 and

11



Figure 2: The equivalent Bachelier volatility σn(K) implied from the BS model with σbs = 2, F0 = 1, and T = 1. Among
the two approximations, our approximation in Eq. (17) is closer to the exact values than that of Grunspan (2011) and
Hagan et al. (2014) in Eq. (16).

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized strike price ( k = K/F0 )

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Im
pl

ie
d 

Ba
ch

el
ie

r v
ol

at
ilit

y 
( 

N
 ) Exact

Approx: Eq. (16)
Approx: Eq. (17)

ν = 0. However, one should use Eq. (18) with caution because the equivalent σbs(K) in fact does not exist

for small K. Under the Bachelier model, the K = 0 option has a nonzero time value, whereas the time

value under the BS model should be zero regardless of σbs because FT ≥ 0. Therefore, σbs(K) should

not exist for sufficiently small K, and the availability of σbs(K) in Eq. (18) is potentially misleading.

Along the same line or argument, note that Eq. (18) violates Lee (2004)’s model-free BS volatility bound,√
2| log k|/T as k ↓ 0. Conversely, the equivalent σn(K) always exists for σbs at all K ≥ 0, and Eq. (17)

does not have a similar issue.

With the results above, we can convert the DBS volatility to the Bachelier and BS volatilities,

respectively:

σn(K) ≈ σdD(F0)
√
kd

(
1 +

log2 kd
24

)/(
1 +

β2σ2
d

24
T

)
for kd =

D(K)

D(F0)
, (19)

σbs(K) ≈ σd
D(F0)

F0

√
kd
k

1 + (log2 kd)/24

1 + (log2 k)/24

1 + σ2
d(D(F0)/F0)2(kd/k)T/24

1 + β2σ2
dT/24

. (20)

Eq. (19) is an extension of Eq. (17), and we obtain Eq. (20) by plugging Eq. (19) into Eq. (18). Eqs. (17)

and (18) are the special cases of the above two formulas for β = 1 and 0, respectively. Both approxima-

tions are highly accurate. In fact, we compute the BS volatility skew in Figure 1 with Eq. (20) for DBS

and Eq. (18) for the Bachelier model. It is visually indistinguishable from the plot generated with the

exact BS skew for the parameter set we tested.

5. Greeks and hedging

This section discusses the Greeks and delta hedging under the Bachelier and DBS models. We first

explain the difference in Greeks between the Bachelier and BS models in Section 5.1. Then, we reconcile

12



the difference with backbone and vega-rotated delta in Section 5.2.

5.1. Greeks

As in the BS model, the Greeks of the Bachelier model are analytically tractable. Below, we list them

without derivation:

• Delta (the price sensitivity to the forward asset price):

Dn =
∂Cn

∂F0
= N(dn) and Dn =

∂Pn

∂F0
= N(dn)− 1

• Gamma (the delta sensitivity to the forward asset price):

Gn =
∂2Cn

∂F 2
0

=
n(dn)

σn
√
T

(same for the put option)

• Vega (the price sensitivity to volatility)

Vn =
∂Cn

∂σn
=
√
T n(dn) (same for the put option)

• Theta (the price sensitivity to the time-to-maturity):

Θn =
∂Cn

∂(−T )
= −σnn(dn)

2
√
T

(same for the put option)

The above Greeks are based on the undiscounted option price in Eq. (1).13 Delta and gamma are with

respect to the forward price F0, but we can obtain those with respect to the spot price S0 easily using

the relationship ∂/∂S0 = e(r−q)T∂/∂F0.

Table 1: The option price and Greeks under the Bachelier and DBS models. For the DBS model, D(FT ) = βFt+(1−β)A.

Model Bachelier Displaced BS

Stochastic Arithmetic BM Geometric BM
differential equation dFt = σn dWt dFt/D(Ft) = σd dWt

Normalized moneyness dn =
F0 −K
σn
√
T

d1d,2d =
log(D(F0)/D(K))

βσd
√
T

± 1

2
βσd
√
T

Call option price (F0 −K)N(dn) + σn
√
T n(dn) (D(F0)N(d1d)−D(K)N(d2d))/β

Delta (∂/∂F0) N(dn) N(d1d)

Vega (∂/∂σ) n(dn)
√
T D(F0)n(d1)

√
T

Gamma (∂2/∂F 2
0 ) n(dn) / σn

√
T n(d1d) / D(F0)σd

√
T

Theta (−∂/∂T ) −σn n(dn) / 2
√
T −σdD(F0)n(d1d) / 2

√
T

13The theta for the discounted price differs between call and put options.
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Figure 3: The option delta as a function of the normalized strike price from various models: Bachelier, DBS (β = 1/3, 2/3
and A = F0), and BS. We use F0 = 1 and T = 1. For a fair comparison, σn and σd at each K are calibrated to the BS
option price with σbs = 0.5. The delta difference between the BS and Bachelier models can be as large as 10%.
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In Table 1, we show the Greeks under the Bachelier and DBS models side by side for comparison.

We adapted the DBS Greeks from the well-known BS Greeks. The notion that the Bachelier model is

the β ↓ 0 limit of the DBS model also applies to the Greeks. We can reduce the Bachelier Greeks easily

from the DBS Greeks from the limit,

D(F0)→ A, d1d and d2d → dn, σdA→ σn

(
∂

∂σd
→ ∂

A∂σn

)
as β → 0.

The Greeks are the partial derivatives with respect to a particular model parameter with the others held

constant. Therefore, the Greeks under different models will not be same, even though they measure the

sensitivity with respect to the same parameter. Delta is a good example. Figure 3 shows the difference

in delta across strike prices as the model changes from the Bachelier to DBS (β = 1/3 and 2/3) and to

the BS model. The delta difference can be as large as 10% between the BS and Bachelier models within

the parameter set, resulting in different amounts of hedge.

5.2. Volatility backbone

In this section, we explain the source of the delta difference using a concept called the volatility backbone.

The volatility backbone refers to the observed pattern of the change in the ATM implied volatility as

F0 varies. In essence, the leverage effect and the backbone are the same phenomenon; the former is

the negative association between the price and volatility observed in the equity market, while the latter

is a term coined by fixed-income traders to describe the same association in interest rate dynamics.

The backbone also refers to the baseline model under which traders execute their delta hedges. If the

interest rate closely follows the Bachelier model (i.e., daily changes are independent of the rate levels),

then the market is said to follow a normal backbone, and it is optimal for the traders to delta hedge

14



Figure 4: The change in the BS volatility skew implied from the Bachelier model with σn = 0.5 when the forward F0

decreases from 1 to 0.9. The dash-dot (blue) line indicates the change of the ATM BS volatility.
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with the Bachelier delta rather than the BS delta. The SABR model gained popularity among traders

because they can adjust the volatility backbone by choosing the appropriate β parameter. The volatility

backbone also has important implications in the risk management of an options portfolio, since efficient

delta hedging is critically linked to an accurate measure of the implied volatility dynamics. Furthermore,

the calculation of important risk management metrics, such as the value-at-risk (VaR) and the expected

shortfall, involve a simulation of the underlying process, and the backbone will determine how the

volatility of the underlying process evolve over time. See Neo and Tee (2019) for a further discussion of

the backbone.

We adjust the delta under the existence of a backbone to

∂C

∂F0
= D +

∂σbs
∂F0
V,

where the second term is the price change from the induced volatility change and vega (i.e., vega-rotated

delta). We use this framework to explain the delta difference between the Bachelier and BS models.

Although the Bachelier volatility σn is constant, the Bachelier model exhibits a normal backbone when

converted to the BS volatility σbs(K). From the leading order term of Eq. (18), σbs(K) ≈ σn/
√
KF0, we

can approximate the changes in the BS volatilities ATM and at a fixed K as follows:

∂σbs(F0)

∂F0
≈ −σbs

F0
and

∂σbs(K)

∂F0
≈ − σbs

2F0
.

Note that as F0 decreases, the ATM volatility increases twice as fast as the volatility at K does. Figure 4

illustrates this point. It shows the implied BS skew of the Bachelier model when F0 moves from 1 to 0.9.
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We can now express the Bachelier delta by the BS delta with a backbone:

∂Cn

∂F0
= Dn = Dbs +

∂σbs
∂F0
Vbs ≈ Dbs −

σbs
2F0
Vbs. (21)

Therefore, we can understand the delta difference as the vega-rotated delta due to the volatility backbone.

We can also obtain the delta difference directly:

Dn −Dbs = N(dn)−N(d1) ≈ (dn − d1)n(d1) ≈ −σbs
√
T

2
n(d1) = − σbs

2F0
Vbs,

where we use the approximation

dn − d1d =
(F0 −K)

σn
√
T
− log(F0/K)

σbs
√
T
− 1

2
σbs
√
T ≈ −1

2
σbs
√
T .

The first two terms cancel each other out from the leading-order term of Eq. (16).

Under the DBS model, we can generalize the induced BS volatility change to

σbs(K) ≈ σd
√
D(F0)D(K)√

F0K
,

∂σbs(K)

∂F0
≈ −

(
1− βF0

D(F0)

)
σbs(K)

2F0
,

where β controls the degree of the backbone. Therefore, the DBS model offers a flexible model choice to

fit the market-observed backbone. With a single degree of freedom, however, the DBS model cannot fit

both the BS volatility skew and the backbone at the same time.

6. Bachelier SV model

SV models (Hull and White, 1987; Heston, 1993) have been proposed to explain the volatility smile

under the BS model. Similarly, we can extend the Bachelier model to include SV. While research on the

Bachelier model with SV is scarce compared to its BS counterpart, we introduce two such models below.

The first model is the SABR model in Eq. (7), which provides a Bachelier SV model when β = 0.

The equivalent Bachelier volatility is given as a special case of Eq. (10):

σn(K) ≈ σ0H(z)

(
1 +

2− 3ρ2

24
ν2T

)
for z =

ν

σ0
(K − F0). (22)

From this volatility, we can compute the option price with the Bachelier price formula. As we discussed

in Section 3.2, this analytical approximation is not restricted by any boundary condition, as σn(K) is

well defined for negative K. This model has been a popular choice in fixed income modeling to handle

negative interest rates (Antonov et al., 2015). Although this approximation is quite accurate, it has some

limitations as an analytical approximation. Most importantly, the approximation accuracy deteriorates

as ν
√
T increases. Moreover, the distribution implied from Eq. (22) is not guaranteed to be arbitrage-free.
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The second model is the hyperbolic normal SV (NSVh) model (Choi et al., 2019). The NSVh model

dynamics are modified from the SABR model to improve analytical tractability:

dFt = σt

(
ρ dZ

[ν/2]
t + ρ∗ dXt

)
and

dσt
σt

= ν dZ
[ν/2]
t , (23)

where Zt and Xt are independent standard BMs, Z
[µ]
t = Zt + µ t denotes BM with drift µ, and ρ∗ =√

1− ρ2. Choi et al. (2019) shows that the terminal price FT is distributed as

FT
d
= µ(FT ) +

σ0
ν

(
ρ∗ sinh (νWT + atanh ρ)− ρ eν

2T/2
)

= µ(FT ) +
σ0
ν

(
sinh(νWT ) + ρ

(
cosh(νWT )− eν

2T/2
))

,
(24)

where
d
= denotes the distributional equality and Wt is an independent standard BM. The first equation

indicates that the NSVh process follows Johnson (1949)’s SU distribution. We can express the vanilla

call option price in a closed-form formula14:

Csv(K) = (F0 −K)N(dsv) +
σ0
2ν
eν

2T/2
(

(1 + ρ)N(dsv + ν
√
T )− (1− ρ)N(dsv − ν

√
T )− 2ρN(dsv)

)
for dsv =

1

ν
√
T

(
atanh ρ+ asinh

(
ν(F0 −K)

ρ∗σ0
− ρ

ρ∗
eν

2T/2

))
.

(25)

Thanks to its analytical tractability, the option prices under the NSVh model are arbitrage-free. Eq. (25)

also converges to Eq. (1) as ν ↓ 0.

As the SABR (β = 0) and NSVh models share the same root, the parameters σ0, ν, and ρ have similar

effects on the volatility smile a in the two models: σ0 controls the level of the smile, ν the convexity,

and ρ the slope. With three degrees of freedom, we can calibrate the models to the observed volatility

smile. If we observe the ATM volatility, σn(F0), from the market, then the calibration becomes simpler

because we can solve for σ0 that yields σn(F0). We can adjust Eqs. (22) and (25), respectively, to

σn(K) = σn(F0)H(z) (26)

14In the formula, we replace µ(FT ) in Eq. (24) with F0 to maintain consistency with the price formulas in the other

models, where µ(FT ) = F0 holds. Under the NSVh model, Ft is not a martingale and µ(FT ) = F0eν
2T/2 to be exact. The

put option price under the NSVh model is

Psv(K) = (K − F0)N(−dsv) +
σ0

2ν
eν

2T/2
(

(1 + ρ)N(dsv + ν
√
T )− (1− ρ)N(dsv − ν

√
T )− 2ρN(dsv)

)
.
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Figure 5: The Bachelier volatility smile generated by the NSVh (Choi et al., 2019) (left column) and SABR models with
β = 0 (right column). From the base parameters, F0 = 100, σn(F0) = 20, ν = 0.2, ρ = 0.1, we vary ν (top row) and ρ
(bottom row) to illustrate that the vol-of-vol, ν, and the correlation, ρ, control the convexity and slope of the volatility
smile.
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and

Csv(K) = (F0 −K)N(dsv) + σn(F0)

√
T

2π

(1 + ρ)N(dsv + ν
√
T )− (1− ρ)N(dsv − ν

√
T )− 2ρN(dsv)

(1 + ρ)N(d0sv + ν
√
T )− (1− ρ)N(d0sv − ν

√
T )− 2ρN(d0sv)

for d0sv = dsv
∣∣
K=F0

=
1

ν
√
T

(
atanh ρ− asinh

(
ρ

ρ∗
eν

2T/2

))
.

(27)

This is possible under the NSVh model because the ATM option price is proportional to σ0.

In Figure 5, we show the Bachelier volatility smile generated by the NSVh and SABR (β = 0)

models for varying ν and ρ but with a fixed σn(F0). When the models have the same ATM volatility,

the volatility smiles are very close to each other. See Choi et al. (2019) for further numerical evidence

supporting the equivalence between the two models.

Besides the two models we introduced above, Sun et al. (2016) also explores the stochastic Bachelier

volatility model by presenting parameterized forms of the volatility smile. Perederiy (2018) extends

the Vanna-Volga method (Castagna and Mercurio, 2007) from the original BS volatility context to the

Bachelier model, which is helpful for the arbitrage-free interpolation of the volatility smile. Finally, while

not strictly speaking an SV model, Karami and Shiraya (2018) provide an asymptotic expansion method

to obtain the equivalent Bachelier volatility of the general local volatility models.

7. Pricing other derivatives

In this section, we derive pricing formulas for two types of exotic claims under the Bachelier models.

7.1. Basket, spread, and Asian options

Basket options, spread options, and Asian options are options with payouts that depend on the linear

combination of multiple correlated asset prices. Under the BS model, it is very difficult to derive the

exact pricing of these claims because the linear combination of log-normal random variables is no longer

log-normally distributed. Therefore, pricing such claims under the BS model requires either a simplifying

approximation or numerical schemes. See Choi (2018) and the references therein for a review of such

methods. Under the Bachelier model, however, the pricing becomes trivial because the weighted sum of

the correlated arithmetic BMs remains normally distributed.

We first consider basket and spread options. Let N assets follow the correlated Bachelier model:

dFt,k = σn,k dWk, dWidWj = ρijdt (ρii = 1).

Let us define Σ as the covariance matrix of the terminal asset prices, FT,k (k = 1 . . . N), whose (i, j)

element is given by Σij = ρijσn,iσn,j T . Suppose that the basket portfolio consists of N assets with

weight vector w; that is,

Bt =

n∑
k=1

wkFt,k,
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and that the call option payout is max(BT −K, 0) for the strike price K. Then, the mean and standard

deviation of the portfolio value BT are, respectively,

µ(BT ) = B0 and sd(BT ) =
√
w>Σw.

We can then calculate the price of the basket option using the generalized Bachelier formula in Eq. (3).

The spread option is a special case of the basket option with N = 2 and w> = (1,−1):

µ(BT ) = F0,1 − F0,2 and sd(BT ) =
√

(σ2
n,1 − ρ12σn,1σn,2 + σ2

n,2)T .

The Bachelier price of the spread option with σn,k ≈ F0,kσbs,k serves as an approximation of the BS

price (Poitras, 1998).

Asian options use the average asset price over time for the payout. We can also consider Asian options

as a type of basket option where the payout is a linear combination of the prices of a single asset at

different times. In the case of discretely monitored Asian options, the average price is

AT =
1

N

N∑
k=1

Ftk for 0 ≤ t1 < · · · < tN = T.

Since the covariance between the two observations, Fti and Ftj is

Σij = σ2
n min(ti, tj),

we can the express the Asian options prices within the same pricing framework as the basket options

formulated above.

In the case of the continuously monitored Asian option, the price is continuously averaged between

time S and T :

AT =
1

T − S

∫ T

t=S

Ft dt =
σn

T − S

∫ T

t=S

Wt dt (S < T ).

From the property of BM, it is not difficult to show that the variance of AT is

Var(AT ) = σ2
n

(
2S + T

3

)
.

Therefore, we can derive the price of an Asian option under the Bachelier model using the generalized

Bachelier formula in Eq. (3) with

µ(AT ) = F0 and sd(AT ) = σn

√
2S + T

3
.
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7.2. Barrier options

Next, we derive the barrier options pricing formulas under the Bachelier model. Although the derivation

does not entail mathematical difficulty, we offer the first derivation of the pricing formulas to the best of

our knowledge. The barrier option price under the BS model is analytically available (Haug, 2007). We

will again show that the BS barrier price converges to the Bachelier price in the β ↓ 0 limit of the DBS

model.

We consider the following four types of knock-out barrier options:

• Down-and-out call option with strike price K and knock-out barrier L whose price is denoted

by Cdo
n (K,F0;L).

• Up-and-out call option with strike price K and knock-out barrier H (> K) whose price is

denoted by Cuo
n (K,F0;H).

• Down-and-out put option with strike price K and knock-out barrier L (< K) whose price is

denoted by P do
n (K,F0;L).

• Up-and-out put option with strike price K and knock-out barrier H whose price is denoted by

P uo
n (K,F0;H).

By the nature of the knock-out option, we assume that L < F0 < H; otherwise, the option is already

knocked out and the t = 0 price should be zero. The second (up-and-out call) and third (down-and-out

put) options have extra restrictions on the barrier, K < H and L < K, respectively. Without these

conditions, the option is worthless because the path of Ft always triggers the barrier before it reaches

the in-the-money payout region. Note that the list of barrier options above is exhaustive because we can

compute the corresponding knock-in options price through the so-called in-and-out parity.

We define the running maximum and minimum of Ft during the period [0, t] as FMT = max
0≤t≤T

Ft and

FmT = min
0≤t≤T

Ft, respectively. We can find the PDF of FT conditional on FMT and FmT , respectively, using

the reflection principle (Harrison, 1985, § 1.8):

P(FT − F0 ∈ dx, FMT − F0 < y) = f(x, y) dx (x ≤ y, 0 ≤ y),

P(FT − F0 ∈ dx, FmT − F0 > y) = f(x, y) dx (x ≤ y, y ≤ 0),

where

f(x, y) =
1

σn
√
T

(
n

(
x

σn
√
T

)
− n

(
x− 2y

σn
√
T

))
.

Based on these conditional PDFs, we can express the barrier option prices as

Cdo
n =

∫ ∞
K

(x−K)f(x− F0, L− F0) dx, Cuo
n =

∫ H

K

(x−K)f(x− F0, H − F0) dx

P do
n =

∫ K

L

(K − x)f(x− F0, L− F0) dx, P uo
n =

∫ K

−∞
(K − x)f(x− F0, H − F0) dx.
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Figure 6: Price of the knock-out option as a function of the barrier price for various models: Bachelier, DBS (β = 1/3, 2/3
with A = F0), and BS. We use F0 = K = 1, T = 1, and calibrate the implied volatility to the ATM option price of 0.2
(σn ≈ σd ≈ σbs ≈ 0.5). We display the price of a down-and-out put option for L < 1 and up-and-out call option for H > 1.
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We express the outcome succinctly by taking advantage of the vanilla option price with suboptimal

exercise policy. For a call (put) option struck at K, suppose that the option holder exercises it when

FT > K∗ (FT < K∗) for some K∗. The call option value under the suboptimal exercise, Cn(K,F0;K∗),

is 15

Cn(K,F0;K∗) = (F0 −K)N(d∗n) + σn
√
T n(d∗n) for d∗n =

F0 −K∗

σn
√
T

. (28)

This value is always less than the regular price, Cn(K,F0) if K∗ 6= K and is equal to C(K,F0) only if

K∗ = K. Using the suboptimal price expressions, the barrier option prices under the Bachelier model

are conveniently given by

Cdo
n (K,F0;L) = Cn(K,F0)− Cn(K, 2L− F0) (29)

Cuo
n (K,F0;H) = Cn(K,F0)− Cn(K,F0;H)− Cn(K, 2H − F0) + Cn(K, 2H − F0;H) (30)

P do
n (K,F0;L) = Pn(K,F0)− Pn(K,F0;L)− Pn(K, 2L− F0) + Pn(K, 2L− F0;L) (31)

P uo
n (K,F0;H) = Pn(K,F0)− Pn(K, 2H − F0). (32)

In Appendix A, we also present the corresponding barrier option prices under the BS and DBS models.

In Figure 6, we depict the price of the knock-out option with K = F0 as a function of the barrier

price, L or H, for different models. As expected, the prices from the Bachelier and BS models are the two

end points of the price spectrum. We also observe the impact of the volatility skew on the barrier option

15The suboptimal put option price is

Pn(K,F0;K∗) = (K − F0)N(−d∗n) + σn
√
T n(d∗n)
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price in Figure 6. Figure 1 illustrates the BS volatility skew generated by the same set of models. The

barrier option price depends on the volatilities at the barrier and the strike price. When the volatility

at the strike (and consequently the vanilla option price at the strike) is the same, the knock-out option

price decreases as the volatility at the barrier increases because the knock-out probability increases. The

down-and-out put price (L < 1 in Figure 6) indeed decreases as β ↓ 0 due to the increase in the implied

BS volatility at low strikes, as Figure 1 shows. Conversely, the up-and-out call option price (H > 1)

increases as β ↓ 0 because the BS volatility at high strikes moves in the opposite direction. Therefore,

to price the barrier option correctly, one should use the DBS model with the right β parameter that fits

the market volatility skew. Following this line of argument, we note that the Bachelier and BS models

are just two possible model choices within the DBS model family.

8. Conclusion

The Bachelier proposed the very first option pricing model that predates the BS model by more than

70 years. Over time, however, it was eclipsed by the BS model, as academics and practitioners alike

expected that asset prices would be strictly positive. The negative prices of the oil futures contracts at

the CME, and the subsequent urgent model switch, put the Bachelier model back under spotlight. In

fact, prior to this, the fixed income market already switched to quoting implied Bachelier volatilities as

Euro and CHF rates became negative in the mid-2010s.

Interest in the Bachelier model has hitherto been historical in nature. Some review papers cover the

life of Louis Bachelier, and some studies compare the Bachelier and BS models in terms of vanilla option

pricing formulas. Unlike the BS model counterpart, which has a rich literature covering the pricing of

various liquid exotic options, the Bachelier model lacks a similar exposition in the literature. As the

CME and ICE changed their models for oil futures derivatives to the Bachelier model, the model drew

more attention and will be adopted for a broader range of financial products. In line with this change,

we provide a comprehensive review of various topics related to the Bachelier model for both researchers

and practitioners. Specifically, we cover topics such as implied volatility inversion, volatility conversion

between related models, Greeks and hedging for risk management, SV models, and the pricing of exotic

options such as basket, spread, Asian, and barrier options. We also connect the Bachelier and BS models

by introducing the DBS model, and thus offer a continuous spectrum of model choices between the two

models. We place the Bachelier model in the option pricing literature by showing its connection to the

other mainstream pricing models, notably the CEV and SABR models. With this paper, we hope to see

the Bachelier model receive more attention in both research and application, and this paper is intended

as a one-stop reference for academics and practitioners already familiar with the BS model and exploring

the use of the Bachelier model.
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Appendix A. Barrier option prices under the (Displaced) BS model

For the barrier option prices under the BS model, we refer to Zhang (2001) and Haug (2007). Similar

to Eq. (28), we define the suboptimal value of the call option where the holder incorrectly exercises the

option when FT ≥ K∗:

Cbs(K,F0;K∗) = F0N(d∗1)−KN(d∗2) for d∗1,2 =
log(F0/K

∗)

σbs
√
T

± σbs
√
T

2
. (A.1)

This value is equal to the regular option value, Cbs(K,F0), only when K = K∗. With the suboptimal

option prices, we can express the BS barrier option as (Haug, 2007):

Cdo
bs (K,F0;L) = Cbs(K,F0)− F0

L
Cbs

(
K,

L2

F0

)
(A.2)

Cuo
bs (K,F0;H) = Cbs(K,F0)− Cbs(K,F0;H)− F0

H

(
Cbs

(
K,

H2

F0

)
− Cbs

(
K,

H2

F0
;H

))
(A.3)

P do
bs (K,F0;L) = Pbs(K,F0)− Pbs(K,F0;L)− F0

L

(
Pbs

(
K,

L2

F0

)
− Pbs

(
K,

L2

F0
;L

))
(A.4)

P uo
bs (K,F0;H) = Pbs(K,F0)− F0

H
Pbs

(
K,

H2

F0

)
, (A.5)

where we assume that L < F0 < H.

We can obtain the barrier option price under the DBS model by making the following substitutions:

σbs → βσd, K → D(K), F0 → D(F0), L→ D(L), H → D(H)

and dividing the final result by β. For example, the down-and-out call option price is

Cdo
d (K,F0;L) =

Cbs(D(K), D(F0))

β
− D(F0)

β D(L)
Cbs

(
D(K),

D(L)2

D(F0)

)
.
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