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Abstract. With the invention of the COVID-19 vaccine, shipping and distributing are crucial
in controlling the pandemic. In this paper, we build a mean-field variational problem in a spatial
domain, which controls the propagation of pandemic by the optimal transportation strategy of vaccine
distribution. Here we integrate the vaccine distribution into the mean-field SIR model designed in
[25]. Numerical examples demonstrate that the proposed model provides practical strategies in
vaccine distribution on a spatial domain.
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1. Introduction. The COVID-19 pandemic has affected society significantly.
Various actions are taken to mitigate the spread of the infections, such as travel
ban, social distancing, and mask-wearing. The recent invention of the vaccine yields
breakthroughs in fighting against this infectious disease. According to the media,
different vaccines, including Pfizer, Moderna, and Janssen (J&J) report that their
vaccines show approximately 66%-95% efficacy at preventing both mild and severe
symptoms of COVID-19. Therefore, the deployment of COVID-19 vaccines is an
urgent and timely task. Many countries have implemented phased distribution plans
that give the elderly and healthcare workers priority to get vaccinated. Meanwhile,
the shipping and distribution of the vaccine are expensive due to the cold chain
transportation. An effective distribution strategy is necessary to eliminate infectious
disease and prevent more death.

In this work, we propose a novel mean-field control model based on [25]. In our
model, there are two types of approaches (controls) that can be used to control the
pandemic: movement of populations and vaccine distribution strategy. The first one
has been discussed thoroughly in [25], where we address the spatial effect in pandemic
modeling by introducing a mean-field control problem into the spatial SIR model. By
applying spatial velocity into the classical disease model, the different populations
(susceptible, infected, and recovered) are moved accordingly hence controlling the
epidemic’s propagation. We considered several aspects of the vaccine in our model as
for vaccine distribution, including manufacturing, delivery, and consumption. With
limited vaccine supply, we aim at finding an optimal vaccine distribution strategy:
when and where to deliver? Our goal is to find a strategy to move the population
and distribute vaccines to minimize the total number of infectious, the amount of
movement of the people, and the transportation cost of the vaccine with limited
vaccine supply. To tackle this question, we ensemble these two controls and propose
the following constrained optimization problem:

min P ((ρi, vi)i∈S, f) = Efinal
(
ρi(T, ·)i∈{S,I,R}

)
+ Erunning ((ρi, vi)i∈S, f)
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subject to

∂tρS +∇ · (ρSvS) = −βρSK ∗ ρI +
η2
S

2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ · (ρIvI) = βρSK ∗ ρI − γρI +
η2
I

2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ · (ρRvR) = γρI +
η2
R

2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ · (ρV vV ) = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

and 
0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory
ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

In our model, different populations are described using ρi, i ∈ {S, I,R}, repre-
senting the susceptible, infectious, and recovered. The term ρV (x, t) describes the
density distribution of the vaccine over the spatial domain at location x and time
t. The control variables vi, i ∈ {S, I,R} create a velocity field over time-space do-
main that move the corresponding populations. As for vaccines, the control variable
vV represents the vaccine’s transportation strategy, and the control variable f(t, x)
describes how many vaccines are produced at a specific time and location. In the
optimization objective function, Efinal represents the goal of our control to achieve
at the terminal time, such as minimizing the total number of infectious individuals
and maximizing the total number of recovered (immune) persons. Erunning represents
the running cost, including transportation of vaccines, movement of the different class
of the population, etc. We will discuss more details on the choice of the cost in the
modeling section. As for constraints of our optimization problem, the five partial dif-
ferential equations of ρi, i ∈ {S, I,R, V } describe the dynamics of the different class
of population and vaccines in terms of density. The inequalities of f(t, x) models the
limitation of vaccine manufacturing. The vaccine is only produced at some partic-
ular factory location x ∈ Ωfactory and a daily maximal rate of fmax. The dynamic
of the vaccine density ρV shares some similar aspects to the unnormalized optimal
transport[24]. Specifically, they both study the transportation of mass while there is
a source term that is creating mass.

Due to the multiplicative interaction terms : ρSK ∗ ρI ,ρIK ∗ ρS , ρV ρS , the con-
strained optimization problem is non-convex. Hence we introduce Lagrange multipli-
ers to formulate it as an unconstrained optimization problem. However, it also intro-
duces a major computational challenge due to the high dimensionality of the problem
brought by the Lagrange multipliers. We handle it efficiently via a first-order Primal-
Dual Hybrid Gradient (PDHG) method. Specifically, we apply its variant, generalized
proximal (G-prox) PDHG[18], with a suitable choice of variable norms to achieve a
convergence rate independent of the finite-difference mesh size.

Lots of mathematical models are invented to predict the future of COVID-19
epidemics. Recently proposed models take more real-world situations into considera-
tions and tend to be more effective in quantitative forecasting. Specifically, there have
been studies on the impact of actions such as locked down, social distancing, wearing
a mask [11, 10, 14]. Data-driven approach and machine learning techniques are also
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integrated to estimate the parameters for the epidemic better and boost the prediction
of the trend of the pandemic model [30, 28]. Meanwhile, optimal control serves as
an important tool in pandemic control. They seek the optimal strategy to minimize
the total number of infected people while keeping some form of costs at a minimum.
There are work focus on mitigating the epidemic with limited medical supply, such as
ICU capacity [8], face masks [27] and vaccines [33, 16, 21, 26, 19]. In [19], an optimal
vaccine distribution strategy is proposed with a limited total amount of vaccines and
maximal daily supply. [26] first uses inverse problem to determine the parameters of
the SIR model. Then it formulates two optimal control problems, with mono- and
multi-objective, and solve for the optimal strategy of vaccine administration. Other
non-pharmaceutical interventions are also considered in the scope of optimal control
of epidemics, including social distancing, closing schools, and lockdowns [15, 20, 31].
[20] computes the optimal non-pharmaceutical intervention strategy based on an ex-
tended SEIR model with the absence of the vaccine. The mean-field control problem
can be viewed as a particular type of optimal control, where the control is applied to
an individual in terms of population density.

Mean-field game (control), introduced by [17, 23], describes the deterministic
(stochastic) differential games as the number of players tends to infinity, where a
given player interacts through the distribution of all players in the state-space. It is a
thriving research direction with applications in economics, crowd motion, industrial
engineering, and more, including epidemics [12, 3, 22]. Numerical methods are also in-
vented to obtaining quantitative information of such mean-field game(control) models,
especially when the state-space is in high dimensions [1, 2, 5, 29]. Multi-population
mean-field game(control) problems have also draw lots of attention [13, 9, 4]. This
type of problem studies the interactions in two levels: between agents of the same
population and between populations. Our model is indeed a multi-population mean-
field control problem, with population dynamic is described using reaction-diffusion
equations adopted from the SIR model. Here, our optimization’s constraints come
from two perspectives: the dynamic of each population and the density evolution of
vaccine, which are all described as continuity equations; the limited supply of the
vaccine. Therefore, we obtain a novel mean-field control problem.

The rest of the paper is organized as follows. In Section 2, we propose a novel
multi-population mean-field control model and explain how the population movement
and vaccine distribution are integrated into a constrained optimization problem. We
discuss, in Section 3, the challenges in numerically solving this mean-field control
model and propose a first-order primal-dual algorithm to solve it. We present numer-
ical experiments with different model parameter choices and discuss their implications
on mean-field controls in Section 4. In Section 5, we present concluding remarks and
discuss potential directions.

2. Models. In this section, we review the classical SIR model. Based on it, we
formulate the spatial SIR dynamics with vaccine distribution, namely SIRV dynamics.
We then introduce a variational problem to control the SIRV dynamics.
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2.1. Classical SIR model. The SIR models an infectious disease epidemic via
an ordinary differential equation system

dS

dt
= −βIS

dI

dt
= βIS − γI

dR

dt
= γI.

The population is divided into three classes: susceptible, infected and recovered.
While assuming a closed population without births or deaths, the model uses S(t), I(t)
and R(t) to represent the number in each compartment at the time t. The SIR model
has two parameters: β is the effective contact rate of the susceptible individual gets
infected; γ is the recovery rate of the infected individual. The simplicity of this
model allows people to predict an infectious disease epidemic by only estimating a few
parameters. However, it has limitations by assuming the population is homogeneous-
mixing, which means that every individual has an equal probability of disease-causing
contacts. As a result, the predictions will lack spatial information and may not help
the (local) governments make policy or relocate medical resources. Therefore, we are
motivated to study the spatial SIR model. On the other hand, the SIR model does
not consider the latent period between when a person is exposed to a disease and
when he(she) becomes infected. This leads to the extension of the SIR model, such as
the SEIR model. Our proposed model has a flexible structure and can be generalized
to such pandemic models naturally.

2.2. Spatial SIR variational problem with vaccine distribution. In [25],
we add the spatial dimension to the S, I, R functions. Let Ω ⊂ Rd be a bounded
domain. Consider the following density functions

ρS , ρI , ρR : [0, T ]× Ω→ [0,∞).

Here, ρS , ρI , and ρR represent susceptible, infected, and recovered populations distri-
bution, respectively. We assume ρi for each i ∈ {S, I,R} moves over a spatial domain
Ω with velocity vi. Here vi, i ∈ {S, I,R} are our controls variables. With a change of
variable mi = ρivi, i ∈ {S, I,R}, we define momentum vector fields

mS ,mI ,mR : [0, T ]× Ω→ Rd

that govern the corresponding density flows. In the following, instead of using control
variable vi, we replaced it with mi

ρi
, i ∈ {S, I,R} and regard mi as the control variable.

We can describe the flows of the densities by the following continuity equations.

(2.1)



∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2
S

2
∆ρS

∂tρI +∇ ·mI = βρIK ∗ ρS − γρI +
η2
I

2
∆ρI

∂tρR +∇ ·mR = γρI +
η2
R

2
∆ρR

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

This system of continuity equations describes the flows of three groups of densities
while satisfying the SIR model. The nonnegative constants ηi (i ∈ {S, I,R}) are the
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coefficients for viscosity terms and K = Kx is a symmetric positive definite kernel
with (K ∗ ρ)(x, t) =

∫
Ω
Kxρ(y, t) dy. In this model we consider the Gaussian kernel

Kx =
1√

(2π)d

d∏
k=1

1

σk
exp

(
−|xk − yk|

2

2σ2
k

)
.

The kernel convolution describes the spreading rate of the infectious disease over the
spatial domain. In addition, we assume the Neumann boundary conditions on ∂Ω.
Since we don’t consider birth or death in our model, the total population is conserved,
which leads to the following equality

∂

∂t

∫
Ω

ρS(t, x) + ρI(t, x) + ρR(t, x)dx = 0, t ∈ [0, T ].

In this paper, we consider the optimization problem for the distribution of vac-
cines. We add an extra function ρV : [0, T ]×Ω→ [0,∞) which represents the vaccine
density in Ω at each time t ∈ [0, T ]. The PDE of the vaccine distribution will be
described as the following PDE:

(2.2)
∂tρV = f(t, x)− θ2ρV ρS t ∈ (0, T ′)

∂tρV +∇ ·mV = −θ2ρV ρS t ∈ [T ′, T ), 0 < T ′ < T.

where mV : [T ′, T )×Ω→ Rd is a momentum vector field, θ2 represents the utilization
rate of vaccines and f : (0, T ′)×Ω→ [0,∞) represents the production rate of vaccines
in x ∈ Ω at 0 < t < T ′. During 0 < t < T ′, the vaccines are produced with a
production rate of f and used at a rate of θ2ρV ρS . During T ′ ≤ t < T , the vaccines
are delivered to the area where the susceptible population is located, and they are
used at a rate of θ2ρV ρS . In summary, the first part of the PDE describes vaccines’
production, and the second part describes the delivery of vaccines. For all time
0 < t < T , the susceptible population are vaccinated if the vaccines are available in
the same area. Now we are ready to introduce the new system of equations for the
SIRV model.

(2.3)



∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2
S

2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI +
η2
I

2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2
R

2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρV (0, ·) are given.

In the first and third equation, we added the terms +θ1ρV ρS and −θ1ρV ρS , respec-
tively. The constant θ1 represents the vaccine efficiency and θ1ρV (t, x)ρS(t, x) repre-
sents the vaccinated population at (t, x) ∈ (0, T )×Ω. We denote a set S = {S, I,R, V }
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and define a nonlinear operator A as follows

A((ρi,mi)i∈S, f) := (∂tρS +∇ ·mS −
η2
S

2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

∂tρI +∇ ·mI −
η2
I

2
∆ρI − βρSK ∗ ρI + γρI ,

∂tρR +∇ ·mR −
η2
R

2
∆ρR − γρI − θ1ρSρV ,

∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ2ρSρV ),

(2.4)

where XC is a step function that equals 1 on C and 0 otherwise.
The cost functional we propose in this paper is the extension of our previous

paper [25]. We design the minimizers (ρi,mi), i ∈ S of the total cost functional,
which is to:

(i) minimize the transportation cost for moving each population;
(ii) minimize the total number of infected people and the total number of sus-

ceptible people by maximizing the usage of the vaccines at time T ;
(iii) maximize the total number of recovered people at time T ;
(iv) avoid high concentration of population and vaccines at each time t ∈ (0, T );
(v) minimize the amount of vaccines produced during t ∈ (0, T ′);

(vi) minimize the transportation cost for delivering vaccines during t ∈ (T ′, T ).

Item (i) can be described by∫ T

0

∫
Ω

Fi(ρi(t, x),mi(t, x))dx dt,

for i ∈ {S, I,R} where

(2.5) Fi(ρi,mi) =


αi|mi|2

2ρi
if ρi > 0

0 if ρi = 0 and |mi| = 0

∞ if ρi = 0 and |mi| > 0.

The parameter αi characterizes the cost of moving ρi with velocity mi

ρi
. Larger αi

means it is more expensive to move ρi. Note that this function comes from the
quadratic kinetic energy. To see this, we use the definition mi = ρivi and plug into
the formula,

F (ρi, vi) =
αi
2
ρi|vi|2.

Item (ii) and (iii) can be described by the terminal costs of the cost functionals

Ei(ρi(T, ·)) =

∫
Ω

ei(ρi(T, x)) dx (i = S, I, V ),

ER(ρR(T, ·)) =

∫
Ω

eR (1− ρR(T, x)) dx,

where a function e : [0,∞) → [0,∞) is a convex function. We also minimize the
terminal cost for ρV because maximizing the usage of vaccines is equivalent to min-
imizing the number of vaccines left at the terminal time T . The total number of
the recovered can be maximized by penalizing the density at the terminal time if the
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value of ρR(T, x) is far away from 1 for x ∈ Ω. In this paper, we use a quadratic cost
function

ei(t) =
ai
2
t2, (t ∈ [0,∞))

where ai is some constant.
Item (iii) can be described by the terminal costs of the cost functional

Ei(ρi(T, ·)) =

∫
Ω

ei(ρi(T, x)) dx (i = S, I, V ),

where a function e : [0,∞)→ [0,∞) is a convex function. We also minimize the termi-
nal cost for ρV because maximizing the usage of vaccines is equivalent to minimizing
the number of vaccines left at the terminal time T . In this paper, we use a quadratic
cost function

ei(t) =
ai
2
t2, (t ∈ [0,∞)),

where ai is some constant.
For Item (iv), the cost functional for the concentration of the total population

and vaccines can be represented by∫ T

0

GP (ρS(t, ·) + ρI(t, ·) + ρR(t, ·)) dt,
∫ T

0

GV (ρV (t, ·)) dt,

where

(2.6) GP (u) =

∫
Ω

gP (u(x)) dx, GV (u) =

∫
Ω

gV (u(x)) dx,

for u : Ω → [0,∞) and convex functions gP , gV : [0,∞) → [0,∞). Similar to ei from
Item (ii), we use quadratic functions for gP and gV .

Items (v) and (vi) are criteria specific to the vaccine distribution. From the
PDE (2.2), the vaccines are produced during 0 < t < T ′ by a function f . We use the
similar functional (2.6) to minimize the amount of vaccines produced by f . We will
discuss this functional in detail. Thus, we set the functional∫ T ′

0

G0(f(t, ·)) dt =

∫ T ′

0

∫
Ω

g0(f(t, x)) dx dt

where g0 : [0,∞)→ [0,∞) is a convex function.
The vaccines are delivered during T ′ < t < T . Similar to the Item (i), we set∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt,

where FV has the same definition as (2.5).
The total cost functional we consider is then

P((ρi,mi)i∈S, f) =
∑
i∈S
Ei(ρi(T, ·))

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

GP ((ρS + ρI + ρR)(t, ·)) + GV (ρV (t, ·)) dt

+

∫ T ′

0

G0(f(t, ·)) dt.

(2.7)
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In the perspective of a control problem, the first line in2.7 is the final cost, while the
rest accounts for the running cost.

In addition to the constraint from (2.3), we adapt the following constraints to
reflect the limited vaccination coverage:

(2.8)

0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory
ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced and fmax is
a nonnegative constant that represents the maximum rate of production of vaccines.
In the third inequality, a nonnegative constant Cfactory limits the total number of
vaccines produced during 0 < T < T ′.∫ T ′

0

∫
Ω

ρV (t, x) dx dt ≤ CfactoryT ′|Ωfactory|.

The constraints (2.8) can be imposed by having the following functionals for GV and
G0.

(2.9)

GV (ρV (t, ·)) =

∫
Ω

gV (ρV (t, x)) dx+ i{ρV (t,·)≤Cfactory}(ρV (t, ·))

G0(f(t, ·)) =

∫
Ω

g0(f(t, x)) + iΩfactory
(x)f(t, x) dx+ i{f(t,·)≤fmax}(f(t, ·))

where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced. The
functionals i{ρV ≤Cfactory} and i{f≤fmax} are defined as

i{u≤c}(u) =

{
0, u(x) ≤ c for all x ∈ Ω

∞, otherwise

where c is a constant and u : Ω→ R is a function. The function iΩfactory
(x) is defined

as

iΩfactory
(x) =

{
0, x ∈ Ωfactory

∞, x ∈ Ω\Ωfactory.

This function forces f(t, x) = 0 if (t, x) ∈ (0, T ′) × (Ω\Ωfactory), thus vaccines are
produced only in Ωfactory.

Remark 2.1. The formulation is not limited to SIR epidemic model. For example,
we can describe the SIRD (Susceptible-Infected-Recovered-Deceased) epidemic model
by adding an extra population ρD for the deceased population with a mortality rate
µ. 

∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2S
2 ∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI − µρI +
η2I
2 ∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2R
2 ∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρD = µρI +
η2D
2 ∆ρD (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρD(0, ·), ρV (0, ·) are given.
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2.3. Properties. From the definition of the cost functional and the constraint (2.3),
we have the following minimization problem:

inf
(ρi,mi)i∈S,f

{
P((ρi,mi)i∈S, f) : subject to (2.3)

}
.

We first define the inner product of vectors of functions in L2. Given vectors of
functions u = (u1(t, x), u2(t, x), · · · , uk(t, x)) and v = (v1(t, x), v2(t, x), · · · , vk(t, x))
with ui, vi : [0, T ]× Ω→ R, the L2 inner product of vectors u and v is defined by

(2.10) 〈u, v〉L2 =

k∑
i=0

(ui, vi)L2

where (·, ·)L2 is a L2 inner product such that

(u, v)L2 =

∫ T

0

∫
Ω

u(t, x)v(t, x) dx dt.

We introduce dual variables (φi)i∈S for each continuity equation from (2.4). Using the
dual variables and the definitions of the inner products, we convert the minimization
problem into a saddle point problem.

(2.11) inf
(ρi,mi)i∈S,f

sup
(φi)i∈S

L((ρi,mi, φi)i∈S, f),

where L is the Lagrangian functional defined as

L((ρi,mi, φi)i∈S, f)

= P((ρi,mi)i∈S, f)− 〈A((ρi,mi)i∈S, f), (φi)i∈S〉L2

= P((ρi,mi)i∈S, f)

−
∫ T

0

∫
Ω

φS

(
∂tρS +∇ ·mS + βρSK ∗ ρI + θ1ρSρV −

η2
S

2
∆ρS

)
dx dt

−
∫ T

0

∫
Ω

φI

(
∂tρI +∇ ·mI − βρSK ∗ ρI + γρI −

η2
I

2
∆ρI

)
dx dt

−
∫ T

0

∫
Ω

φR

(
∂tρR +∇ ·mR − γρI − θ1ρSρV −

η2
R

2
∆ρR

)
dx dt

−
∫ T

0

∫
Ω

φV
(
∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ2ρSρV

)
dx dt.

For brevity, we denote

u = ((ρi,mi)i∈S, f), p = (φi)i∈S.

We can rewrite the Lagrangian as

(2.12) L(u, p) = P(u)− 〈A(u), p〉L2 .

As noted in [25], the dual gap, the difference between the primal solution and dual
solution, may not be zero because the nonconvex functions (ρS , ρI) 7→ ρSK ∗ ρI and
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(ρS , ρV ) 7→ ρSρV make the feasible set nonconvex. We circumvent the problem by
linearizing the nonlinear operator at a base point ū

A(u) ≈ Āū(u) = A(ū) + [∇A(ū)](u− ū).

We define a linearized Lagrangian as

(2.13) L̄ū(u, p) = P(u)− 〈Āū(u), p〉L2 .

In the paper [32], the author developed a primal-dual algorithm using the linearized
Lagrangian (Algorithm (3.5)) and proves that the sequence (u(k), p(k))∞k=1 from the al-
gorithm converges to the saddle point (u∗, p∗). By the first-order optimality conditions
(also known as Karush-Kuhn-Tucker (KKT) conditions), the saddle point satisfies

(2.14)
∂P(u∗)− [∇A(u∗)]

T p∗ 3 0

A(u∗) = 0.

In the Proposition 2.3, we present the properties satisfied by the saddle point, de-
rived from the KKT conditions (2.14). We first recall the definition of the functional
derivatives.

Definition 2.2. Let F : H → R be a smooth functional where H is a separable
Hilbert space and ρ : Ω→ R be a function in H. We say a map δF

δρ is the functional
derivative of F with respect to ρ if it satisfies

lim
ε→0

F (ρ+ εh)− F (ρ)

ε
=

∫
Ω

δF

δρ
(ρ(x))h(x) dx,

for any arbitrary function h : Ω→ R.

Now, we show the properties satisfied by the SIRV variational problem.

Proposition 2.3 (Mean-field control SIRV system). By KKT conditions, the
saddle point ((ρi,mi, φi)i∈S, f) of (2.11) satisfies the following equations.

∂tφS −
αS
2
|∇φS |2 +

η2
S

2
∆φS +

δGP
δρ

(ρS + ρI + ρR) + β(φI − φS)K ∗ ρI

+ ρV
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (0, T )× Ω

∂tφI −
αI
2
|∇φI |2 +

η2
I

2
∆φI +

δGP
δρ

(ρS + ρI + ρR)

+ βK ∗ (ρS(φI − φS)) + γ(φR − φI) = 0 (t, x) ∈ (0, T )× Ω

∂tφR −
αR
2
|∇φR|2 +

η2
R

2
∆φR +

δGP
δρ

(ρS + ρI + ρR) = 0 (t, x) ∈ (0, T )× Ω

∂tφV +
δGV
δρ

(ρV ) + ρS
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (0, T ′)× Ω

∂tφV −
αV
2
|∇φV |2 +

δGV
δρ

(ρV ) + ρS
(
θ1(φR − φS)− θ2φV )

)
= 0 (t, x) ∈ (T ′, T )× Ω

∂tρS −
1

αS
∇ · (ρS∇φS) + βρSK ∗ ρI + θ1ρSρV −

η2
S

2
∆ρS = 0 (t, x) ∈ (0, T )× Ω

∂tρI −
1

αI
∇ · (ρI∇φI)− βρSK ∗ ρI + γρI −

η2
I

2
∆ρI = 0 (t, x) ∈ (0, T )× Ω
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∂tρR −
1

αR
∇ · (ρR∇φR)− γρI − θ1ρSρV −

η2
R

2
∆ρR = 0 (t, x) ∈ (0, T )× Ω

∂tρV − f + θ2ρSρV = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV −
1

αV
∇ · (ρV∇φV ) + θ2ρSρV = 0 (t, x) ∈ (T ′, T )× Ω

δG0

δf
(f) + φV = 0 (t, x) ∈ (0, T ′)× Ω

φi(T, ·) =
δEi

δρ(T, ·)
(ρi(T, ·)), i ∈ S.

The dynamical system models the optimal vector field strategies for S, I, R populations
and the vaccine distribution. It combines both strategies from mean field controls and
SIRV models. For this reason, we call it Mean-field control SIRV system.

The proof of Proposition 2.3 can be found in the Appendix.

3. Algorithms. In this section, we propose an algorithm to solve the proposed
SIRV variational problem. We use the primal-dual hybrid gradient (PDHG) algo-
rithm [6, 7]. The PDHG can solve the following convex optimization problem.

min
u

f(Au) + g(u)

subject to Au = 0

where f and g are convex functions and A is a continuous linear operator. The
algorithm solves the problem by converting the problem into a saddle point problem
by introducing a dual variable p.

min
u

max
p

g(u) + 〈Au, p〉 − f∗(p)

where

f∗(p) = sup
u
〈u, p〉 − f(u)

is the Legendre transform of f . The method solves the saddle point problem by
iterating

(3.1)

u(k+ 1
2 ) = arg min

u
g(u) + 〈u,AT p(k)〉+

1

2τ
‖u− u(k)‖2L2

u(k+1) = 2u(k+ 1
2 ) − u(k)

p(k+1) = arg max
p
〈Au(k+1), p〉 − f∗(p)− 1

2σ
‖p− p(k)‖2L2 .

The scheme converges if the step sizes τ and σ satisfy

(3.2) τσ‖ATA‖L2 < 1,

where ‖ · ‖ is an operator norm in L2. However, the SIRV variational problem has a
nonlinear function A for the constraint. Thus, we use the extension of the algorithm
from [32] which solves the nonlinear constrained optimization problem.

(3.3) min
u

max
p

g(u) + 〈A(u), p〉 − f∗(p),
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where A is a nonlinear constraint. The scheme iterates the algorithm (3.1) with a
linear approximation of A at a base point ū

A(u) ≈ A(ū) + [∇A(ū)](u− ū).

Thus, we have a linearized saddle point problem

(3.4) min
u

max
p

g(u) + 〈A(ū) + [∇A(ū)](x− ū), p〉 − f∗(p)

and the scheme iterates

(3.5)

u(k+ 1
2 ) = arg min

u
g(u) + 〈u, [∇A(u(k))]T p(k)〉+

1

2τ (k)
‖u− u(k)‖2L2

u(k+1) = 2u(k+ 1
2 ) − u(k)

p(k+1) = arg max
p
〈A(u(k+1)), p〉 − f∗(p)− 1

2σ(k)
‖p− p(k)‖2L2 .

The paper proves that the sequence {u(k), p(k)}∞k=0 of the algorithm converges to some
saddle point (u∗, p∗) that satisfies (2.14). However, the scheme converges if the step
sizes satisfy

σ(k)τ (k)‖∇A(u(k))‖2L2 < 1, k = 1, 2, · · · .
Suppose we use an unbounded operator that depends on the grid size, for example
A = ∇. Then the scheme can result in a very slow convergence if we use a fine grid
resolution. To circumvent the problem, we use the G-proximal Primal Dual Hybrid
Gradient (G-prox PDHG) method from [18] which is another variation of Chambolle-
Pock primal dual algorithm. This variant provides an appropriate choice of norms
for the algorithm and the authors prove that choosing the proper norms allows the
algorithm to have larger step sizes than Chambolle-Pock primal dual algorithm. The
G-prox PDHG iterates

(3.6)

u(k+ 1
2 ) = arg min

u
g(u) + 〈u, [∇A(u(k))]T p(k)〉+

1

2τ (k)
‖u− u(k)‖2L2

u(k+1) = 2u(k+ 1
2 ) − u(k)

p(k+1) = arg max
p
〈A(u(k+1)), p〉 − f∗(p)− 1

2σ(k)
‖p− p(k)‖2H(k) .

where the norm ‖ · ‖H(k) is defined as

‖u‖2H(k) = ‖[∇A(u(k))]Tu‖2L2 .

By choosing the proper norms, the step sizes only need to satisfy

σ(k)τ (k) < 1, k = 1, 2, · · ·

which are clearly independent of the grid size.

3.1. Implementation of the algorithm. To implement the algorithm to the
minimization problem (2.7), we set

u = ((ρi,mi)i∈S, f)

p = (φi)i∈S

g(u) = P(u)

f(A(u)) =

{
0 if A(u) = 0

∞ otherwise

f∗(p) = 0.
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We use (2.4) for the definition of the operator A.

A(u) = (AS(u), AI(u), AR(u), AV (u))

AS(u) = ∂tρS +∇ ·mS −
η2
S

2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

AI(u) = ∂tρI +∇ ·mI −
η2
I

2
∆ρI − βρIK ∗ ρS + γρI ,

AR(u) = ∂tρR +∇ ·mR −
η2
R

2
∆ρR,

AV (u) = ∂tρV − fX[0,T ′)(t) +∇ ·mV X[T ′,T ](t) + θ1ρSρV .

Define the Lagrangian functional as

Lx := P(x)− 〈A(u), p〉L2

where 〈·, ·〉L2 is defined in (2.10). We summarize the algorithm as follows.

Algorithm 1: G-prox PDHG for mean-field control SIRV system
Input: ρi(0, ·) (i ∈ S)
Output: ρi,mi, φi (i ∈ S), f

While relative error > tolerance for i ∈ S

ρ
(k+1)
i = arg minρ L((ρ,m(k), f (k)), φ(k)) + 1

2τ ‖ρ− ρ
(k)
i ‖2L2

m
(k+1)
i = arg minm L((ρ(k+1),m, f (k)), φ

(k)
i ) + 1

2τ ‖m−m
(k)
i ‖2L2

f (k+1) = arg minf L((ρ(k+1),m(k+1), f), φ(k)) + 1
2τ ‖f − f

(k)‖2L2

φ
(k+ 1

2 )
i = arg maxφ L((ρ(k+1),m(k+1), f (k+1)), φ)− 1

2σ‖φ− φ
(k)
i ‖2H(k)

i

φ
(k+1)
i = 2φ

(k+ 1
2 )

i − φ(k)
i

Here, L2 and H
(k)
i norms are defined as

‖u‖2L2 = (u, u)L2 =

∫ T

0

∫
Ω

u2dx dt, ‖u‖2
H

(k)
i

= ‖[∇Ai(u(k))]Tu‖2L2 , i ∈ S

for any u : [0, T ]× Ω→ [0,∞). Moreover, the relative error is defined as

relative error =
|P(ρ

(k+1)
i ,m

(k+1)
i )− P(ρ

(k)
i ,m

(k)
i )|

|P(ρ
(k)
i ,m

(k)
i )|

.
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In the section 4, We use quadratic functions for Ei (i ∈ {S, I, V }), GP , GV , G0. With
the definitions (2.9), we use

Ei(ρi(T, ·)) =

∫
Ω

ai
2
ρi(T, x)2 dx, i = S, I, V

GP (ρ(t, ·)) =

∫
Ω

dP
2
ρ(t, x)2 dx

GV (ρ(t, ·)) =

∫
Ω

dV
2
ρ(t, x)2 dx+ i{ρ(t,·)≤Cfactory}(ρ(t, ·))

G0(f(t, ·)) =

∫
Ω

d0

2
f(t, x)2 + iΩfactory

(x)f(t, x) dx+ i{f(t,·)≤fmax}(f(t, ·))

Thus, we can write the cost functional as follows

P((ρi,mi)i∈S, f) =

∫
Ω

∑
i=S,I,V

ai
2
ρi(T, ·)2 dx

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

∫
Ω

dP
2

(ρS + ρI + ρR)2 +
dV
2
ρ2
V dx dt

+

∫ T ′

0

∫
Ω

d0

2
f2 + iΩfactory

f dx dt

+

∫ T

0

i{ρ(t,·)≤Cfactory}(ρ(t, ·)) + i{f(t,·)≤fmax}(f(t, ·)) dt

(3.7)

where ai, dP , dV , d0 are nonnegative constants. With this cost functional, we find

explicit formula for each variable ρ
(k+1)
i ,m

(k+1)
i , φ

(k+1)
i (i ∈ S), f (k+1).

Proposition 3.1. The variables ρ
(k+1)
i ,m

(k+1)
i , φ

(k+1)
i (i ∈ S), and f (k+1) from

the Algorithm 1 satisfy the following explicit formulas:

ρ
(k+1)
S = root+

(
τ

1 + τdP

(
∂tφ

(k)
S +

η2
S

2
∆φ

(k)
S −

1

τ
ρ

(k)
S + β

(
φ

(k)
I − φ

(k)
S

)
K ∗ ρ(k)

I

+ ρ
(k)
V

(
θ1(φ

(k)
R − φ

(k)
S )− θ2φ

(k)
V

)
+ dP (ρ

(k)
I + ρ

(k)
R )

)
, 0,−

ταS |m(k)
S |2

2(1 + τdP )

)

ρ
(k+1)
I = root+

(
τ

1 + τdP

(
∂tφ

(k)
I +

η2
I

2
∆φ

(k)
I −

1

τ
ρ

(k)
I + βK ∗

(
ρ

(k)
S (φ

(k)
I − φ

(k)
S )
)

+ γ(φ
(k)
R − φ

(k)
I ) + dP (ρ

(k)
S + ρ

(k)
R )

)
, 0,−

ταI |m(k)
I |2

2(1 + τdP )

))

ρ
(k+1)
R = root+

(
τ

1 + τdP

(
∂tφ

(k)
R +

η2
R

2
∆φ

(k)
R −

1

τ
ρ

(k)
R + dP (ρ

(k)
S + ρ

(k)
I )

)
, 0,−

ταR|m(k)
R |2

2(1 + τdP )

)

ρ
(k+1)
V = min

(
Cfactory,

τ

1 + τdV

(
−∂tφ(k)

V − ρ
(k)
S (θ1(φ

(k)
R − φ

(k)
S )− θ2φ

(k)
V ) +

1

τ
ρ

(k)
V

))
,

(t, x) ∈ [0, T ′]× Ω
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ρ
(k+1)
V = root+

(
τ

1 + τdV

(
∂tφ

(k)
V + ρS(θ1(φR − φS)− θ2φV )− 1

τ
ρ

(k)
V

)
, 0,−

ταV |m(k)
V |2

2(1 + τdV )

)
,

(t, x) ∈ (T ′, T ]× Ω

m
(k+1)
i =

ρ
(k+1)
i

ταi + ρ
(k+1)
i

(
m

(k)
i − τ∇φ

(k)
i

)
, (i ∈ S)

f (k+1) = min

(
fmax,

τ

1 + τd0

(
1

τ
f (k) − φ(k)

V

))
XΩfactory

(x)

φ
(k+ 1

2 )

S = φ
(k)
S + σ(ASA

T
S )−1

(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I − θ1ρ

(k+1)
S ρ

(k+1)
V +

η2
S

2
∆ρ

(k+1)
S

)
φ

(k+ 1
2 )

I = φ
(k)
I + σ(AIA

T
I )−1

(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
S K ∗ ρ(k+1)

I − γρ(k+1)
I +

η2
I

2
∆ρ

(k+1)
I

)
φ

(k+ 1
2 )

R = φ
(k)
R + σ(ARA

T
R)−1

(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I + θ1ρ

(k+1)
S ρ

(k+1)
V +

η2
R

2
∆ρ

(k+1)
R

)
φ

(k+ 1
2 )

V = φ
(k)
V + σ(AVA

T
V )−1

(
−∂tρ(k+1)

V + f (k+1)X[0,T ′)(t)−∇ ·m
(k+1)
V X[T ′,T ](t)− θ1ρ

(k+1)
S ρ

(k+1)
V

)

where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx+ c = 0 and
we approximate the AiA

T
i as follows

ASA
T
S = −∂tt +

η4
S

4
∆2 − (1 + (β + θ1)η2

S)∆ + (β + θ1)2

AIA
T
I = −∂tt +

η4
I

4
∆2 − (1 + (γ + β)η2

I )∆ + (γ + β)2

ARA
T
R = −∂tt +

η4
R

4
∆2 −∆

AVA
T
V = −∂tt −∆ + θ2

2.

We use FFTW library to compute (AiA
T
i )−1 (i ∈ S) and convolution terms by Fast

Fourier Transform (FFT), which is O(n log n) operations per iteration with n being the
number of points. Thus, the algorithm takes just O(n log n) operations per iteration.

4. Experiments. In this section, we present several sets of numerical experi-
ments using the algorithm 1 with various parameters. We wrote C++ codes to run
the numerical experiments. Let Ω = [0, 1]2 be a unit square in R2 and the terminal
time T = 1. The domain [0, T ] × Ω is discretized with the regular Cartesian grid
below.

∆x1 =
1

Nx1

, ∆x2 =
1

Nx2

, ∆t =
1

Nt − 1

xkl = ((k + 0.5)∆x1, (l + 0.5)∆x2) , k = 0, · · · , Nx1 − 1, l = 0, · · · , Nx2 − 1

tn = n∆t, n = 0, · · · , Nt − 1

where Nx, Ny are the number of discretized points in space and Nt is the number of
discretized points in time. For all the experiments, we use the same set of parameters,

Nx1
= 128, Nx2

= 128, Nt = 32

αS = 10, αI = 30, αR = 20, αV = 0.005
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S I R

βρSρI γρI

θ1ρSρV

Fig. 1: Visualization of the flow of three populations. The susceptible transforms to
the infected with a rate β and the recovered with a rate θ1. The infected transforms
to the recovered with a rate γ.

aS = 2, aI = 2, aR = 0.001, aV = 0.1

T ′ = 0.5, σ = 0.01, dP = 0.4, dV = 0.4, d0 = 0.01

θ2 = 0.9 ηi = 0.01 (i ∈ S).

By setting a higher value for αI , we penalize the infected population’s movement
more than other populations. Considering the immobility of the infected individuals,
this is a reasonable choice in terms of real-world applications. By setting T ′ = 1/2,
the solution will produce the vaccines during 0 ≤ t < 1/2 and deliver them during
1/2 ≤ t ≤ 1. Furthermore, we fix the parameters for the infection rate and recovery
rate

β = 0.8, γ = 0.1.

The paper [25] describes how the parameters β and γ affect the propagation of the
populations. In this paper, we focus on the vaccine distributions. Recall that from
the formulation (3.7), we have terminal functionals

Ei(ρi(T, ·)) =

∫
Ω

ai
2
ρi(T, x)2 dx, i ∈ {S, I, V }.

Thus, the solution to the problem has to minimize the total number of susceptible,
infected, and vaccines at the terminal time T . The solution reduces the total number of
infected by recovering them with a rate γ and decreases the total number of susceptible
by transforming the susceptible to the infected with a rate β or to the recovered with
a rate θ1 (Figure 1). If the β is large and γ is small, there are more inflows from
susceptible to the infected than the outflow to the recovered from the infected. To
minimize the total number of the infected, the solution has to vaccinate the susceptible
as much as possible to avoid the susceptible becoming infected. Thus, the vaccines
need to be produced and delivered to the susceptible efficiently while satisfying the
constraint conditions (2.8).

We present two experiments that demonstrate how the various factors in the
formulation affect the production and the distribution of vaccines.

4.1. Experiment 1. In this experiment, we show how the parameters related
to ρV affect the solution. We set the initial densities for the ρi (i ∈ S) and the factory
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location Ωfactory as

(4.1)

ρS(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.5

)
+

ρI(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.1(0.3, 0.3)

where (x)+ = max(x, 0) and Brx is a ball of a radius r centered at x.

Fig. 2: Experiment 1: Initial densities of ρS and ρI . The green circle indicates
Ωfactory.

With the initial densities (4.1), we run two simulations with different values for
θ1, θ2, and fmax.

Parameters Sim 1 Sim 2 Description
θ1 0.5 0.9 Vaccine efficiency
fmax 0.5 10 Maximum production rate of vaccines

Cfactory 0.5 2 Maximum amount of vaccines that can
be produced at x ∈ Ω during 0 ≤ t ≤ T ′

The Figure 3 shows the comparison between the results from the simulation 1 and the
simulation 2. The first three plots (Figure 3a) show the total mass of ρi (i = S, I,R),
i.e. ∫

Ω

ρi(t, x) dx, i = S, I,R, t ∈ [0, T ].

and the last plot (Figure 3b) shows the total mass of ρV during 0 ≤ t ≤ T ′∫
Ω

ρV (t, x) dx, t ∈ [0, T ′].

The total number of vaccines produced from the simulation 1 is smaller than that
from the simulation 2 because the solution cannot produce a large amount of vaccines
due to the low production rate fmax. Furthermore, the solution from the simulation 1
cannot vaccinate a large number of susceptible due to a small θ1. Thus, there are
more susceptible and less recovered at the terminal time in the simulation 1.

4.2. Experiment 2. In this experiment, we show how the obstacles in the spa-
tial domain affects the production and distribution of the vaccines. Denote a set
Ωobs ⊂ Ω as obstacles. We use the following functionals in the experiment.

Gi(ρ(t, ·)) =

∫
Ω

di
2
ρ2(t, x) + iΩobs

(x)ρ(t, x) dx, i ∈ {P, V }
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(a) The total population of ρS , ρI , ρR.

(b) The total mass of vaccines produced during 0 ≤ t ≤ T ′.

Fig. 3: Experiment 1: The comparison between the results from the simulation 1 and
the simulation 2. The first three plots (A) show the total mass of ρi (i = S, I,R) and
the fourth plot (B) demonstrates the total mass of ρV produced at the factory area
during the production time 0 ≤ t < T ′.

Ei(ρ(T, ·)) =

∫
Ω

ai
2
ρ2(T, x) + iΩobs

(x)ρ(T, x) dx, i ∈ {S, I, V }

ER(ρ(T, ·)) =

∫
Ω

aR
2

(ρ(T, x)− 1)2 + iΩobs
(x)ρ(T, x) dx.

The densities ρi (i ∈ S) cannot be positive on Ωobs due to iΩobs
. Thus, the densities

transport while avoiding the obstacle Ωobs. We set the initial densities and Ωfactory
as follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.5)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.5)

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 4.
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Fig. 4: Experiment 2: The initial densities ρS and ρI , and the location of the factory
(indicated as a green circle).

ρS

ρI

ρR

ρV

Fig. 5: Experiment 2: The evolution of densities ρi (i ∈ S) without the obstacle over
time 0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the
infected density ρI . The third row: the recovered density ρR. The fourth row: the
vaccine density ρV .

The Figure 5 and Figure 6 show the evolution of densities with and without ob-
stacles, respectively. In both simulations, the density of vaccines ρV (the fourth row)
transports to the areas where the susceptible people are present. In Figure 6, ρV
transports while avoiding the obstacle at the right. Figure 7 shows the comparison
between these two solutions and how the presence of the obstacle affects the produc-
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ρS

ρI

ρR

ρV

Fig. 6: Experiment 2: The evolution of densities ρi (i ∈ S) with the obstacle (indicated
as a yellow block) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS . The
second row: the infected density ρI . The third row: the recovered density ρR. The
fourth row: the vaccine density ρV .

tion and delivery of vaccines quantitatively. Figure 7a shows the total mass of the
vaccines in the factory area Ωfactory during the production time∫

Ωfactory

ρV (t, x) dx, t ∈ [0, T ′).

Figure 7b shows the total mass of the vaccines during the delivery time at the left
side and the right side of the domain∫

Ω∩{x1<0.5}
ρV (t, x) dx, Left∫

Ω∩{x1≥0.5}
ρV (t, x) dx, Right

during t ∈ [T ′, T ]. When there is no obstacle, the vaccines are delivered more to
the right than to the left (Figure 7b). The number of susceptible people at the left
decreases very fast because there are infected people with a high infection rate. When
ρV starts to transport at time t = T ′, the number of susceptible is lower at the left.
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Thus, the solution distributes fewer vaccines to the left with less susceptible people.
When there is an obstacle, ρV has to bypass the obstacle to reach the susceptible
areas. Thus, the kinetic energy cost during the delivery time t ∈ [T ′, T ] increases
at the right. The solution cannot deliver the vaccines as much as the case without
the obstacle. It results in a fewer number of vaccines produced during t ∈ [0, T ′)
(Figure 7a) and delivered to the right during t ∈ [T ′, T ] when there is an obstacle
(Figure 7b).
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Fig. 7: Experiment 3: The left plot shows the total mass of vaccine density ρV during
the production time t ∈ [0, T ′). The right plot shows the total mass of ρV at the left
side of the domain Ω∩{x1 < 0.5} and at the right side of the domain Ω∩{x1 ≥ 0.5}.

4.3. Experiment 3. Similar to Experiment 2, we show how the obstacles in
the spatial domain affect the production and distribution of the vaccines. We use
more complex initial densities, an obstacle set Ωobs, and three factory locations in
this experiment. We set the initial densities and Ωfactory as follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.8)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.3)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.8

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.2) ∪ B0.075(0.5, 0.5) ∪ B0.075(0.5, 0.8)

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 4.
The Figure 9 and Figure 10 show the evolution of densities with and without

obstacles, respectively. The experiment demonstrates that even with the complex
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Fig. 8: Experiment 3: The initial densities ρS and ρI , and the location of the factory
(indicated as green circles).

ρS

ρI

ρR

ρV

Fig. 9: Experiment 3: The evolution of densities ρi (i ∈ S) without the obstacle over
time 0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the
infected density ρI . The third row: the recovered density ρR. The fourth row: the
vaccine density ρV .

initial densities, the algorithm successfully converges to the reasonable solution that
coincides with the previous experiments. The density of vaccines ρV (the fourth row)
transports to the areas where the susceptible people are present while avoiding the
obstacles.
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ρS

ρI

ρR

ρV

Fig. 10: Experiment 3: The evolution of densities ρi (i ∈ S) with the obstacle (indi-
cated as yellow blocks) over time 0 ≤ t ≤ 1. The first row: the susceptible density
ρS . The second row: the infected density ρI . The third row: the recovered density
ρR. The fourth row: the vaccine density ρV .

Figure 11a shows the total mass of the vaccines produced during the production
time at each factory location. Without the obstacles, the total mass of ρV at the
middle is the lowest at time T ′ because the factory at the middle is the farthest away
from the susceptible people. It is more efficient to produce the vaccines at the facto-
ries closer to the susceptible (the top and the bottom factories) to reduce the kinetic
energy cost during the delivery time T ∈ [T ′, T ]. However, with the obstacles, the
vaccines are produced the most at the middle factory. Since the obstacles are block-
ing the paths between the top and the bottom factories and the susceptible people,
ρV has to bypass them to reach to the target area. The pathways from the middle
factory to the susceptible people are not blocked as much as from the top and the bot-
tom factories. Thus, it is more efficient to produce more vaccines at the middle factory.

Figure 11b shows the total mass of the vaccines during the delivery time at dif-
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ferent locations. The lines in the plot represent the following quantities:∫
Ω∩{x1<0.5}∩{x2≥0.5}

ρV (t, x) dx, Top Left

∫
Ω∩{x1≥0.5}∩{x2≥0.5}

ρV (t, x) dx, Top Right∫
Ω∩{x1<0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Left

∫
Ω∩{x1≥0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Right

over t ∈ [T ′, T ]. With the obstacles, the kinetic energy cost increases since ρV has
to bypass to reach to the targets when it transports from the top and the bottom
factories. As a result, the vaccines are not produced as much as the simulation
without the obstacles, and there are less vaccines reached to the targets.
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(a) The total mass of ρV during t ∈ [0, 0.5)

(b) The total mass of ρV during t ∈ [0.5, 1]

Fig. 11: Experiment 3: The top plot shows the total mass of vaccine density ρV at
three factory locations during the production time t ∈ [0, T ′). The bottom plot shows
the total mass of ρV at the top left area of the domain Ω ∩ {x1 < 0.5} ∩ {x2 ≥ 0.5},
at the bottom left area Ω ∩ {x1 < 0.5} ∩ {x2 < 0.5}, at the top right area Ω ∩ {x1 ≥
0.5} ∩ {x2 ≥ 0.5}, and at the bottom right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 < 0.5} during
the distribution time t ∈ [T ′, T ].

5. Discussion. In this paper, we formulate a class of mean-field control prob-
lems for distributing vaccines in a spatial domain. We build a macroscopic variational
model with a vaccine distribution parameter to control the number of suspected, in-
fected, and recovered populations. This model forms a constrained optimal control
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problem in unnormalized density spaces. Numerically, we demonstrate that the pro-
posed model helps distribute the vaccine efficiently. Here the efficiency is built by
the mean-field cost functional, which models both the transportation cost and the
vaccine’s effectiveness.

6. Appendix.

Proof of Proposition 2.3. From the saddle point problem (2.11), we can rewrite
the problem as

inf
(ρi,mi)i∈S,f

sup
φ
P((ρi,mi)i∈S, f)−

∫ T

0

∫
Ω

∑
i∈{S,I,R}

φi

(
∂tρi +∇ ·mi −

η2
i

2
∆ρi

)
dx dt

+

∫ T

0

Q((ρi, φi)i∈S) dt−
∫ T

0

∫
Ω

φV ∂tρV dx dt+

∫ T ′

0

∫
Ω

fφV dx dt−
∫ T

T ′

∫
Ω

φV∇ ·mV dx dt

(6.1)

where a function Q : (0, T )× Ω→ R is defined as

Q((ρi, φi)i∈S) =

∫
Ω

βρS(φI−φS)K∗ρI+γρI(φR−φI)+ρSρV
(
θ1(φR−φS)−θ2φV )

)
dx.

If ((ρi,mi, φi)i∈S, f) is the saddle point of the problem, the differential of Lagrangian
with respect to ρi, mi, φi (i ∈ S), f and ρi(T, ·) (i ∈ {S, I, V }) equal to zero. Thus,
from δL

δφi
= 0 we have

∂tρi +∇ ·mi −
η2
i

2
∆ρi +

δQ
δφi

((ρi, φi)i∈S) = 0 (t, x) ∈ (0, T )× Ω, i = S, I,R

∂tρV − f +
δQ
δφV

((ρi, φi)i∈S) = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV +
δQ
δφV

((ρi, φi)i∈S) = 0 (t, x) ∈ (T ′, T )× Ω.

Using integration by parts, we reformulate the Lagrangian function (6.1) as follows.

L((ρi,mi, φi)i∈S, f)

=
∑
i∈S
Ei(ρi(T, ·)) +

∫ T

0

GP (ρS + ρI + ρR) + GV (ρV ) dt+

∫ T ′

0

G0(f(t, ·)) dt

+
∑

i=S,I,R

∫ T

0

∫
Ω

αi|mi|2

2ρi
+mi · ∇φi +

η2
i

2
ρi∆φi dx dt+

∑
i∈S

∫ T

0

∫
Ω

ρi∂tφi dx dt

+

∫ T

T ′

∫
Ω

αV |mV |2

2ρV
+mV · ∇φV dx dt+

∫ T ′

0

∫
Ω

fφV dx dt+

∫ T

0

Q((ρi, φi)i∈S) dt

+
∑

i=S,I,R,V

∫
Ω

ρi(0, x)φi(0, x)− ρi(T, x)φi(T, x)dx

From δL
δρi

= 0 (i ∈ {S, I,R}),

δGP
δρi

(ρS + ρI + ρR) +
δQ
δρi

((ρi, φi)i∈S)− αi|mi|2

2ρ2
i

+
η2
i

2
∆φi + ∂tφi = 0 = 0 (t, x) ∈ (0, T )× Ω
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From δL
δρV

= 0,

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, φi)i∈S) + ∂tφV = 0 (t, x) ∈ (0, T ′)× Ω

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, φi)i∈S)− αV |mV |2

2ρ2
V

+ ∂tφV = 0 (t, x) ∈ (T ′, T )× Ω.

From δL
δρi(T,·) = 0 (i ∈ S),

δE
δρi(T, ·)

(ρi(T, ·)) = φi(T, ·).

From δL
δf = 0,

δG0

δf
(f) + φV = 0, (t, x) ∈ (0, T ′)× Ω.

From δL
δmi

= 0 (i ∈ S),

αimi

ρi
= −∇φi (t, x) ∈ (0, T )× Ω, i ∈ {S, I,R}

αVmV

ρV
= −∇φV (t, x) ∈ (0, T ′)× Ω.

By replacing αimi

ρi
= −∇ρi in δL

δρi
= 0 and δL

δφi
= 0, we derive the result.
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