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Auto Response Generation in Online Medical Chat Services

Hadi Jahanshahi, Syed Kazmi, Mucahit Cevik

• An auto-response mechanism for medical conversation is developed.

• A clustering algorithm is proposed to create a canned response set of

doctors’ messages.

• We tailor deep learning algorithms to address the problem in a dynamic

chat conversation.

• Medical word embeddings are incorporated to improve the accuracy of

the suggested replies.
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Abstract

Telehealth helps to facilitate access to medical professionals by enabling re-

mote medical services for the patients. These services have become gradually

popular over the years with the advent of necessary technological infrastruc-

ture. The benefits of telehealth have been even more apparent since the

beginning of the COVID-19 crisis, as people have become less inclined to

visit doctors in person during the pandemic. In this paper, we focus on facil-

itating the chat sessions between a doctor and a patient. We note that the

quality and efficiency of the chat experience can be critical as the demand for

telehealth services increases. Accordingly, we develop a smart auto-response

generation mechanism for medical conversations that helps doctors respond

to consultation requests efficiently, particularly during busy sessions. We

explore over 900,000 anonymous, historical online messages between doctors

and patients collected over nine months. We implement clustering algorithms

to identify the most frequent responses by doctors and manually label the

data accordingly. We then train machine learning algorithms using this pre-

processed data to generate the responses. The considered algorithm has two
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steps: a filtering (i.e., triggering) model to filter out infeasible patient mes-

sages and a response generator to suggest the top-3 doctor responses for the

ones that successfully pass the triggering phase. The method provides an

accuracy of 83.28% for precision@3 and shows robustness to its parameters.

Keywords: Natural language processing, AI and healthcare, Smart chat

reply, Medical services, Deep learning

1. Introduction

Online chat services have been used across various sectors for providing

customer service, tech support, consultancy/advisory, sales support, and ed-

ucation. Compared to in-person and over-the-phone encounters, live chat

provides the highest level of customer satisfaction [1]. As more people join

online chat platforms, and with the use of smartphones and smartwatches, as

well as an increase in on-the-go communication, smart response generation

has become an integral part of online chat platforms.

The smart response suggestions have made businesses more productive as

well. Since customer inquiries follow a predictable pattern, which is especially

true for domain-specific businesses, smart replies allow for quick and accu-

rate responses. The improved efficiency reduces customers’ wait times and

thereby results in service satisfaction. Smart response systems also enable

employees to handle multiple chats simultaneously, and as a result, businesses

can save on additional hiring costs as they grow.

As healthcare is moving towards online chat services, the smart response

system plays a prominent role in allowing smooth and effective doctor-patient

interactions. According to the Association of American Medical Colleges
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(AAMC), the demand for physicians will exceed supply in the U.S. by 2032,

leading to an approximate shortage of 46,900 to 121,900 full-time physi-

cians [2]. Hawkins [3] reports that the average wait time for a physician

appointment for 15 major metropolitan areas in the U.S. is 24.1 days, repre-

senting a 30% increase over 2014. Furthermore, Mehrotra et al. [4]’s findings

suggest a 60% decline in the number of visits to ambulatory care practices,

whereas there has been a rapid growth in telehealth usage during the COVID-

19 pandemic. Due to this high imbalance in the doctor-to-patient ratio and

the increase in peoples’ reluctance to visit doctors in-person for various rea-

sons (e.g., during the pandemic), telehealth has the potential to become an

essential component of our daily lives.

To facilitate the patient-doctor e-conversations, we develop a smart re-

sponse generation approach for an online doctor-patient chat service. We

use historical doctor-patient anonymous chats to develop a method applica-

ble to any online doctor consultation service and apps. There exist certain

challenges regarding these types of datasets. First, in many cases, patients

take multiple chat-turns to convey a message, and it needs to be manually

determined what part of the chat must be used to match the corresponding

doctor’s reply. In addition, extensive data preprocessing is required to correct

misspellings, punctuation misuses, and grammatical errors. In our response

generation mechanism for the medical chats, we consider various machine

learning and deep learning models. Specifically, our algorithm has two steps:

a triggering model to filter out infeasible patient messages and a response

generator to suggest the top-3 doctor responses for the ones that successfully

pass the triggering phase. We observe that response generation mechanisms
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benefit considerably from the high performance of the deep learning models

for the natural language processing tasks at both phases.

The rest of the paper is organized as follows. In Section 2, we present

the related literature and summarize our contributions with respect to the

previous studies. We define our problem and solution methodology for smart

response generation in Section 3. Afterwards, we summarize our numerical

results with the smart response generator using actual patient-doctor con-

versations in Section 4. The paper concludes with a summary, limitations,

and future research suggestions in Section 5.

2. Related work

The effectiveness of the smart response systems has made them popular

in industries where user communication is deemed significant. The speed

and convenience of simply selecting the most appropriate response make it

suitable for high volume and multitask settings, e.g., when an operator has to

chat with multiple customers simultaneously. A diverse set of suggested op-

tions presents users with perspectives they might otherwise have not consid-

ered. The correct grammar and vocabulary in machine-generated responses

enhance communication clarity and helps users avoid confusion over the con-

text of a message. These attributes can be crucial for businesses that rely on

the speed and accuracy of the information and, most importantly, users who

lack English proficiency. Additionally, smart reply systems mitigate risks

associated with messaging while driving and some health concerns such as

De Quervain’s tenosynovitis syndrome [5].

Google’s smart reply system for Gmail [6] serves as a means of convenience

for its users. With an ever-increasing volume of emails exchanged along with
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the rise in smartphone use, generating responses on-the-go with a single

tap of the screen can be very practical. One aspect of the end-user utility

discussed in this paper is the diversification of the suggested replies. To

maximize usability, Google employs rule-based approaches to ensure that the

responses contain diverse sentiments, i.e., covering both positive and negative

intents. The paper also suggests using a triggering mechanism to detect

whether a reply needs to be generated beforehand to save from unnecessary

computations and make the model scalable. Uber also devised a one-click-

chat model to address driver safety required for responding to customer texts

while driving [7]. Their proposed algorithm detects only the intention of the

user message, and, using historical conversations, it suggests the most likely

replies. The replies are kept short to reduce the time spent reading, and

thereby maximizing safety and utility. Galke et al. [8] analyzed a similar

problem of response suggestion where users of a digital library ask librarians

for support regarding their search. They used information retrieval methods

such as TF-IDF and word centroid distance instead of sequence-to-sequence

models, noting that such algorithms are more accurate when the training

data is limited.

While the models above are task-oriented and designed to accomplish

industry-specific goals, they do not address user engagement issues and the

motive to make conversations seem more natural. Microsoft XiaoIce used

an empathetic computing module designed to understand users’ emotions,

intents, and opinions on a topic [9]. It can learn the user’s preferences and

generate interpersonal responses. Yan [10] proposed social chatbot models

that serve the purpose of conversing with humans seamlessly and appropri-
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ately. Yan et al. [11] devised a conversation system in which there were

two tasks involved: response ranking and next utterance suggestion. The re-

sponse ranking aimed to rank responses from a set given a query, whereas the

next utterance suggestion was to proactively suggest new contents for a con-

versation about which users might not originally intend to talk. They used

a novel Dual-LSTM Chain Model based on recurrent neural networks, allow-

ing for simultaneous learning of the two tasks. Similarly, Yan and Zhao [12]

designed a coupled context modeling framework for human-computer con-

versations, where responses are generated after performing relevance ranking

using contextual information.

The studies mentioned above discuss the applicability of smart reply

and other AI-enabled conversational models in various settings and domains.

Smart reply models that are built specifically for online conversations have

to adhere to a distinct criterion. In online conversations, users may adopt

words and sentence structures differently. The very intention of a user is

often expressed and clarified in multiple chats-turns, and responses do not

always immediately follow questions or inquiries. To overcome these chal-

lenges, Li et al. [13] extracted common sub-sequences in the chat data by

pairwise dialogue comparisons, which allow the generative model to opti-

mize more on common chat flow in the conversation. They then applied a

hierarchical encoder to encode input information where the turn-level RNN

encodes the sequential word information while the session-level RNN encodes

the sequential interaction information.

Another challenge with regards to smart reply models built specifically

for online conversational chats is scalability. Large-scale deployment of online

6



smart reply models requires energy and resource efficiency. Kim et al. [14]

presented the idea of using sentiment analysis to determine the underlying

subject of a message, deciding between character vs. word vs. sentence level

tokenization, and whether to limit queries to only nouns without affecting the

quality of the model. Jain et al. [15] discussed the idea of using conversational

intelligence to reduce both the time and the number of messages exchanged

in an online conversation. It includes presenting intelligent suggestions that

would engage the user in a meaningful conversation and improve dialogue

efficiency. Lastly, Lee et al. [16] proposed using human factors to enable

smooth and accurate selection of the suggested replies.

Concerning doctor-patient conversation, there have been several studies

in recent years to help doctors with artificial intelligence-based diagnostics

and treatment recommendations [17, 18, 19, 20]. Nevertheless, to the best of

our knowledge, there is no specific example of a smart response mechanism

in the healthcare domain. Related studies focused on language models such

as chatbots and not on real-time chat conversations. Oh et al. [21] proposed

a chatbot for psychiatric counseling in mental healthcare service that uses

emotional intelligence techniques to understand user emotions by incorporat-

ing conversational, voice, and video/facial expression data. In another study,

Kowatsch et al. [22] analyzed the usage of a text-based healthcare chatbot

for the intervention of childhood obesity. Their observations revealed a good

attachment bond between the participants and the chatbot.

As more emphasis is being placed on the quality of patient-physician

communication [23], an AI-based communication model can facilitate direct

and meaningful conversations. However, it is essential to consider the ethical
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issues related to AI-enabled care [24, 25] as well as the acceptability of AI-led

chatbot services in the healthcare domain [26]. There is hesitancy to use this

technology due to accuracy in responses, cyber-security, privacy, and lack of

empathy.

Our study differs from the aforementioned works in the literature in var-

ious ways. For instance, messages exchanged on the Uber platform are typi-

cally short and average between 4-5 words. The average length of messages

exchanged on an online medical consultation service tends to be longer, e.g.,

10 to 11 words on average, and can be up to 100 words, due to the necessity

to clearly describe a certain medical condition. Similarly, the suggested re-

sponses created on Gmail are shorter. In terms of the corpus size, Uber and

Google’s general-purpose datasets might reach millions of instances, whereas

a typical training data is substantially smaller (e.g., in tens of thousands),

especially for a start-up company or local clinics. This challenge augments

the complexity of our model in that it should learn proper responses using a

smaller dataset. Galke et al. [8] work with a domain-specific dataset consist-

ing of 14k question-answer pairs and generate responses using retrieval-based

methods. On the other hand, their model does not consider diversity and

only generates one suggested response for every message. Our model prompts

multiple responses with different semantic intents, resulting in better utility

for the users. Zhou et al. [9], Yan [10] and Yan and Zhao [12] have developed

models that are successful in making natural and human-like conversations.

However, they are generic and not suitable for a domain-specific task such

as ours that should take into account the medical jargon.

In this study, we develop an algorithm for smart response generation in
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online doctor-patient chats. Our analysis is aimed at addressing the challenge

of generating smart responses in the medical domain with a limited and

constantly evolving (e.g. due to entry of new patients and diseases) dataset.

We summarize the contributions of our study as follows.

• To the best of our knowledge, this is the first study to propose an auto-

response suggestion in a medical chat service. As conversations include

medical jargon, we use medical word embeddings and retrain them on

our large conversational corpus.

• Our method involves employing a novel clustering approach to create

a canned response set for the doctors.

• Our detailed numerical study shows the effectiveness of the proposed

methodology on a medical chat dataset. Moreover, our method demon-

strates robustness to its parameters. Accordingly, our study provides

an empirical analysis of smart auto-response generation mechanisms.

• The proposed method can be used to generate fast smart responses and

can be easily integrated into the chat software.

3. Smart Response Suggestion

AI-assisted tools have become increasingly prevalent in the medical do-

main over the years. As services such as appointment scheduling and doctor

consultations move online, there is an increasing need for auto-reply genera-

tion methods to increase the overall system efficiency. However, as is the case

in any domain-specific application, there are certain challenges in developing

smart response mechanisms for online medical chat services. While particu-

lar challenges such as scalability and response quality have been addressed in
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previous works [6, 7], there has not been much focus on the speed of response

generation and disorderly chat flows. We summarize these two issues within

the context of a medical chat service as follows.

• Speed: As online chats between doctors and patients follow a rapid

pace, the model must generate a response instantaneously (i.e., within

a second) to be of practical use. This issue does not persist for systems

that generate a reply in an offline setting.

• Disorderly chat flows: In a chat platform, a message may or may not

be followed by an immediate response. There are instances where mes-

sages are exchanged in various turns with their orders being completely

random. A message may be replied to immediately or at a later turn.

This issue does not apply to the works that deal with email exchanges,

as most of the emails are a direct response to the previous email, or

they have a reply-to option to circumvent this challenge. However, the

impact of disorderly chat flows might be magnified in doctor-patient

chats as the doctors, who might be overwhelmed by conversations, are

typically slower than the patients.

We address both of these challenges through our comprehensive analysis.

According to the challenges and the available data, we consider the below-

described steps to construct our suggested response mechanism.

3.1. Data preparation

In this study, we use a dataset obtained from Your Doctors Online1, which

is an online application that connects patients with doctors. The dataset

1https://yourdoctors.online
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includes a collection of anonymized doctor-patient chats between October 6,

2019, and July 15, 2020. We extracted 38,135 patient-doctor conversations,

consisting of 901,939 messages exchanged between them. Note that the in-

depth data exploratory analysis, e.g., n-gram analysis, is excluded due to

information sensitivity.

Each chat between a patient and a doctor has two characteristics: the

number of messages and the number of turns, i.e., the back and forth mes-

sages between them. The violin plot in Figure 1 shows the distribution of the

number of turns and messages per chat. The number of turns in each chat

has a distribution with a mean of 15.5 and a standard deviation of 11.5. On

the other hand, each chat includes on average 23.8 messages with a standard

deviation of 19.3.
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Figure 1: The distribution of the number of turns and messages per chat.

In the next step, we divide the chat into pairs of patient-doctor mes-

sages. Each paired message is manually labeled as “feasible” or “infeasible”,

indicating whether a paired message should trigger a smart reply or not.

Figure 2 shows the distribution of feasible and infeasible patient-doctor mes-

sages’ lengths. We note that the average length of infeasible messages is 20.3

(and σ = 46.3), whereas the average length of feasible messages is 11.2 (and

σ = 7.9), indicating a significantly higher length for the infeasible ones.
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Figure 2: The distribution of the number of words in each message

3.1.1. Data cleaning

We define the following filtering conditions to maintain high-quality mes-

sages.

• We remove any patient/doctor message that is longer than 200 words.

That is, we choose not to trigger any responses for those long messages.

• As we face a chat environment, there is a plethora of idioms, abbre-

viations, and mispronounced vocabularies. Therefore, we create a dic-

tionary of abbreviations and replace each abbreviated word with its

long-form, e.g., “by the way” as a substitute for “BTW” or “do not

know” in place of “dunno”. Moreover, using the “pyspellchecker” pack-

age in Python, we generate a comprehensive dictionary of typos in the

medical domain. This misspelling dictionary includes 30,295 words ex-

tracted from the chats and is used to clean the dataset. Nevertheless,

not all the misspelled words are retrievable. We are unable to suggest

the proper replacement for some typos that are not similar to any words

in the package’s corpus.

• We decide to keep stopwords in the dataset as the final response needs

to be grammatically correct. Therefore, we examined our method
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with and without stopwords and found that keeping them enhances

the replies’ quality. Similarly, we do not apply lemmatization because

it is detrimental to syntactic comprehension.

• Other preprocessing steps include removing extra white spaces, deleting

punctuation and URLs, converting all characters to lower case, and,

finally, removing non-Unicode characters and line-breaks.

3.1.2. Creating canned response set

As the response generation task requires labeled data, and considering

that pairing patient and doctor messages is a tedious task, we select a portion

of the data that captures the most significant characteristic of the desired

output. Hence, we divide the work into two folds. First, we explore the

similarity between doctors’ messages and cluster them, and second, we find

the patient pair for each doctor message in only dense, frequent clusters.

After data cleaning, we pinpoint the most frequent responses by doctors.

However, we cannot make it by solely exploring response occurrence since

many responses deliver the same message. For instance, “you’re welcome”,

“happy to help”, “no problem” and “my pleasure” are different possible

answers to the same patient message. Therefore, we create a semantic cluster

of the responses and examine the total frequency of responses in each cluster.

In other words, the model should only learn the messages most commonly

sent to the patients. Figure 3 demonstrates the steps in the manual labeling

process.

As shown in Figure 3, we convert each textual message to numeric vec-

tors through the weighted average word embedding. TF-IDF value for each

word generates its weight, and its word embedding is treated as its value.
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Figure 3: A flowchart for the manual labeling process

As there are many medical terms in messages exchanged, we use Wikipedia

PubMed word embedding2. This word2vec dataset is induced on a combi-

nation of PubMed and PMC corpus, together with the texts extracted from

an English Wikipedia dump. Therefore, it is suitable for both medical terms

and daily language. We compared the performance of this word embedding

with the Glove embedding [27] and found that many vocabularies that the

Glove embedding does not support do exist in Wikipedia PubMed embed-

ding. Moreover, the manual exploration of the generated responses points

to a better performance of the Wikipedia PubMed embedding (i.e., it is im-

proved by 3.4% in our case). After finding the proper embedding, we use

the weighted average word embedding for doctor’s messages and apply ag-

glomerative clustering on the responses through the cosine similarity. Next,

2https://bio.nlplab.org/
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using average silhouette width, we found the optimal number of clusters as

158. Among them, we chose the clusters whose densities are more than 80%.

Unlike dense clusters that include distinct message types, sparse ones contain

a high volume of irrelevant messages with little or no similarity, and hence,

we exclude the non-dense clusters.

3.1.3. Pairing responses and manual labeling

After obtaining the possible clusters for doctor messages, we pair each

doctor message to its related patient message. During the manual labeling

process, we encounter some challenges in the chat context. First, not all

messages are a response to their previous message. For instance, a doctor may

give some information regarding possible drugs without being asked to, or in

some cases, a response is too generic or too specific and cannot be considered

feasible. In such cases, instead of finding the paired patient message, we

mark them as “infeasible”. Second, message flow is not always in order. For

instance, a patient may ask a question, and then in the following messages,

give some additional information. Then, the doctor starts responding by

asking something about the patient’s first message. As the dataset does not

include the “reply-to” option, we need to manually trace chats back to find a

relevant patient message given each doctor’s reply. It is a cumbersome task

in the labeling process, which does not exist in previous works. Figure 4a

and Figure 4b show examples of disorderly and correct flow, respectively. In

some cases, a doctor’s response may be relevant to something asked much

earlier. For instance, in Figure 4c, the question of “how dark is the urine”

is related to a message sent earlier. Also, the doctor’s response is related to

only parts of the text sent by the patient, and not all of it. In such cases,
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we check only the last message’s by a patient and trim the irrelevant part

of a text. Wherever we are unable to find the desired match, we label it

as “infeasible”. Note that the entire manual labeling process is repeated by

multiple experts to ensure reaching a consistent canned response set.

08:47 ...
When did these symptoms start?

I'm about a week ago I'd say

Have you had tonsil stones in the
past?

Or had frequent throat infections
before?

Are you still there Ma'am?

Sorry, no to both tho

Do you have pain in your throat?

Yes it's on the left side and it's like 
all the way down my neck 

(a) Example 1 - disorderly flow

13:28 ...
I just wanna confirm, but is what I 
am experiencing an anxiety attack

Exacerbated by my lack of sleep?

Yes you are having an anxiety 
attack 

Then follow the tips that I sent you
for good sleep.

Thank you very much for your 
help.

Welcome , take care

Byee :)

(b) Example 2 - correct flow

No fever, no back pain, but just 
pain in the back of my thighs but 
from a 1-10 a 5.

22:10 ...
Is there nay blood?

No pain. No blood. I did test 
positive for COVID. For that I have
recently gotten leg pain & the dark 
urine. 

are you hydrating yourself

Since I’ve been home, I’ve been
drinking 4 bottles of water. 16 oz

Do you have back pain

how dark is the urine

do you have fever?

(c) Example 3 - disorderly flow

Figure 4: Examples of patient-doctor chats; the gray boxes indicate patient messages, and
the white ones belong to doctors.

Ultimately, the manual labeling process leads to a set of paired patient-

doctor chats and some infeasible cases. In total, we obtain 31,407 paired

messages, 23.1% of which are “infeasible”.

3.2. Response diversification

After finding the appropriate responses and associating them with patient

messages, we consider strategies for diversifying the generated responses.

Based on the comprehensive rules that we identified, we generate a set of

diverse canned messages. Note that determining such rules for response di-

versification requires domain expertise and interaction with the stakeholders

(e.g., physicians and end-users). Table 1 shows an example of our rule-based

response diversification. We diversify the response “You are welcome” based
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on some predefined rules. For instance, if the patient message implies the

end of the conversation, we use “You are welcome. Take care. Bye.” instead.

As we consider a platform that suggests the top-3 responses to the doctors,

our algorithm can benefit considerably from a more diverse set, including all

possible situations. Otherwise, many irrelevant messages might pop-up on

the platform, all pointing to the semantically identical response.

Table 1: An example of rule-based response diversification for the message “You are
welcome.”

Diversified response Adopted rules for the response diversification

You are welcome. A general answer to thanks, thank you, etc.

You are welcome. Take care. Bye.
Answer to thanks at the end of conversations.

The patient message should imply the end of the chat.

You are welcome. Have a great day. When a patient ends the chat by wishing a nice day.

You are welcome. Have a great night. When a patient ends the chat by wishing a good night.

Take care, Happy to help! If you liked

our service, please leave us a Google review :)
When a patient ends the chat implying a satisfactory service.

3.3. Smart response generation approach

In real-time chat conversations, it is typically not required to generate a

response for all the received messages, which is unlike a chat-bot. Therefore,

after preprocessing the messages, we define a triggering model that decides

whether or not to trigger a reply for a given patient message. Triggering is a

binary classification task based on the “feasible”/“infeasible” manual labeling

explained in Section 3.1.3. If a patient message passes the triggering model

with a prediction probability greater than a predetermined value p, then it

enters the smart response generator phase; otherwise, we do not generate a

reply for it.

Figure 5 illustrates the processes of triggering and response generation.

The reply suggestion phase integrates different models to generate a proper
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suggested response. Since a typical usage in practice involves recommending

top-k responses (e.g., k = 3), our main aim is to propose the most appropriate

response within the first k suggestions.

Figure 5: Triggering filter and response generation

3.4. Machine learning models for triggering and response generation

In the triggering phase, we aim to find the feasibility of the response gen-

eration. If a patient’s message is too specific, (i.e., not applicable to other

people), too generic (e.g., “OK” or “done”), or not seen in the training set

(i.e., the chance of irrelevant suggestion is high), then there is no need to

trigger any smart response. Furthermore, the triggering model ignores mes-

sages that are too complex or lengthy. On the other hand, the system should

facilitate a doctor’s job since they might be busy with multiple chats. The

triggering should pass a message to response generation only if a proper re-

sponse suggestion is likely. We experiment with different binary classification
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methods to identify the most suitable model for the triggering phase. Ac-

cordingly, the value 0 for the dependent binary variable represents patient

messages for which it is not ideal to generate a reply, and the value 1 indi-

cates feasible patient messages. We use the preprocessed patient messages

along with their length as the independent variables. The textual feature is

converted to numeric values in different ways for each algorithm; therefore,

we discuss the data conversion process within each model’s explanation.

Unlike the triggering phase that deals with a binary output, the response

generation decides on the proper reply only if it passes the first phase. Hence,

the diversity of responses is higher, reducing the accuracy of the multi-class

classification task. In this phase, we used all possible replies that are man-

ually labeled as the dependent feature. However, we only used patients’

messages as the dependent variables. We did not find any significant correla-

tion between the length of a message and the generated response; therefore,

we did not include patients’ message length as a feature.

Although there are many machine learning (ML) algorithms for text clas-

sification, we chose to experiment with those commonly used in different do-

mains. Moreover, in our preliminary analysis, we experimented with other

ML methods (e.g., Random Forest and Naive Bayes); however, we did not

find those to outperform the methods we summarized below.

XGBoost enhanced with weighted embedding. XGBoost, as a scalable tree

boosting system [28], builds an ensemble of weak trees by incrementally

adding new instances that contribute the most to the learning objectives.

To accommodate the distributed text representation in numeric format, we

average the embedding of each word per message as proposed by Stein et al.
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[29] with some modifications. First, as we deal with medical conversations,

we use Wikipedia PubMed as our word embedding representation. Second,

since simple averaging does not reflect the importance of each word, we use

a weighted average where TF-IDF values of the words are the weights. By

these slight adaptations, we ensure that unimportant words do not have an

impact on the averaged output for a given message [30]. Finally, we append

the length of the patient message as a new independent feature. Hence,

the text representation along with its length contributes to 201 independent

attributes for each patient message. For XGBoost, while we include the mes-

sage length in the triggering phase, we exclude it in the response generation

phase. It is also important to note that we compared this approach with both

simple TF-IDF representation [31] and unweighted word embedding average

and found it to perform better.

SVM enhanced with weighted embedding. Support Vector Machine (SVM)

has been widely used for text categorization and classification in different

domains [32, 33, 34]. It identifies support vectors – i.e., data points closer

to the hyperplane – to position a hyperplane that maximizes the classifier’s

margin. SVM learns independently the dimensionality of the feature space,

which eliminates the need for feature selection. It typically performs well for

text classification tasks with less computational effort and hyperparameter

tuning while also being less prone to overfitting [35]. Hence, we consider

SVM as a baseline and compare it with other classification approaches.

Bi-directional LSTM enhanced with Wikipedia PubMed embedding. Long short-

term memory (LSTM) units, as the name suggests, capture both the long-

term and the short-term information through the input, forget, and output
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gate. Therefore, it has the ability to forget uncorrelated information while

passing the relevant ones [36]. Since the patient messages consist of long

sentences, such gates are ideal to have the least information loss. They can

detect message contents stored as the long-term memory inside the cell while

keeping invaluable information provided towards the end of a sentence. In

our algorithm, we use Bi-directional LSTM (BiLSTM) units that learn in-

formation from both directions, enabling them to access both the preceding

and succeeding contexts [37]. This way, equal weight is provided towards

the beginning and the end of a sentence. BiLSTM units are an appropriate

remedy for our problem since a patient message may contain useful informa-

tion either at the beginning of a sentence or at the end. Using the attention

mechanism, BiLSTM disregards generic comments and concentrates on more

pertinent information [38].

Seq2Seq enhanced with Wikipedia PubMed embedding. Sequence-to-sequence

models turn one sequence into another. It is used primarily in text trans-

lation, caption generation, and conversational models. Therefore, we only

apply it to the reply suggestion phase as it is not generalizable to the trig-

gering phase. Our Seq2Seq model consists of an encoder, decoder, and an

attention layer [39]. The encoder encodes the complete information of a pa-

tient message into a context vector, which is then passed on to the decoder

to produce an output sequence of a doctor’s reply. Since our data consists

of long sentences, we use an attention mechanism to assign more weight to

relevant parts of the context vector to improve computational efficiency as

well as accuracy [40].

To prepare our data for the Seq2Seq model, we tokenize both doctors’
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and patients’ messages and pad them to match the length of the longest

sentence in our data. Start and end tokens are added to each sequence.

Furthermore, we use a pre-trained Wikipedia PubMed embedding layer to

capture the text semantics. The encoder additionally uses a Bi-directional

LSTM layer for enhanced learning of encoded patient messages. We train it

using the Adamax optimizer and sparse categorical cross-entropy to calculate

the losses.

We employ beam search [41] to retrieve the predicted outcomes of the

model using a beamwidth of three and apply length normalization to avoid

biases against lengthier doctor replies. We rank replies according to their

beam scores and choose the top-k responses. As the model generates re-

sponses word by word, there is a tendency for the model to suggest inappro-

priate or grammatically incorrect sentences. To overcome this issue, we apply

cosine similarity to match the generated responses with our canned response

set and select the ones with the highest cosine similarity score. Hence, we

ensure that the proposed options will have proper word choice and grammar.

Nevertheless, when the final top-k suggested replies overlap, we iteratively

cycle through their cosine scores and pick the next best response until we

reach k unique suggestions.

3.5. Experimental setup

We use 5-fold nested cross-validation and tune the most important pa-

rameters of the models by dividing the training dataset into validation and

training sets. In each grid search procedure of the hyperparameters, we iden-

tify the best models for text classification. In the testing phase, we use the

models that perform best on the validation set. We provide the final model
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configurations as follows.

• We obtain the learning rate as 0.3 and the number of trees as 200 for

XGBoost, whereas the other parameters are set to the default values

of the XGBoost library in Python.

• Our SVM model uses a linear kernel with a degree of 3 and is imple-

mented using the scikit-learn package in Python.

• We use TensorFlow to create our sequential LSTM model, which has

an embedding layer powered by Wikipedia Pubmed. The model has a

bidirectional layer of size 200, a dense layer of size 100 with the Relu

activation, and a dense output layer with sigmoid and softmax activa-

tion functions for triggering and response generation, respectively. We

train the model for 20 epochs using the Adam optimizer.

• For our Seq2Seq model, we initiate our encoder with the Wikipedia

Pubmed embedding layer, followed by a bidirectional LSTM layer of

size 1024. Next, we use an LSTM layer for our decoder, along with the

Luong Attention Mechanism. We calculate sparse categorical cross-

entropy loss, and the model is trained for 15 epochs using the Adamax

optimizer.

4. Results

In this section, we first briefly define the performance metrics used to

evaluate different algorithms. Then, we report the performance of the smart

response suggestion together with sample generated responses.

To investigate the performance of two different phases of the algorithm,

we relied on two different sets of metrics. For the triggering phase, we used
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“accuracy”, the ratio of correct predictions to the number of instances, “pre-

cision”, how many instances predicted as class c belongs to the same class,

“recall”, how many data points that belong to class c are found correctly, and

“F1-score”, which is the harmonic mean of precision and recall. These four

performance metrics are threshold-dependent (i.e., model predictions consti-

tute a probability distribution over class labels, and binary predictions are

determined based on a probability threshold, e.g., 0.5). Therefore, we also

utilize the area under the ROC curve (AUC-ROC) as a threshold-independent

approach to mitigate the problems with threshold settings [42].

We employ different metrics to assess the performance of response gen-

eration models. We mainly rely on the “precision@k” metric to report the

accuracy of the suggestions [6]. If the suggested response is among the top

k responses, we call it a correct suggestion; otherwise, it is not a suitable

suggestion. We take the number of generated responses as k = 3. Therefore,

if the model is adept enough to include the proper reply among the top 3, it

will be considered an appropriate suggestion. We also report “precision@1”

and “precision@5” to gain more insights regarding the models’ performances.

Another useful metric is the rank of the suggested response. If a model puts

forward a reply in rank 4, there is a likelihood that it can be improved further

by some parameter tuning. On the other hand, if the response is ranked 20,

the model is unlikely to suggest a proper response. Consequently, we report

the Mean Reciprocal Rank (MRR) metric, that is,

MRR =
1

N

N∑
i=1

1

ranki

where N is the total number of messages. MRR ranges from 0 to 1, where 1
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indicates the optimal performance (all the suggestions are ranked first).

4.1. Triggering performance

Accurate triggering is important since an infeasible patient’s message

passing this filter not only leads to an irrelevant message but also increases

the computational complexity. Consequently, an inferior model will reduce

the quality of the suggested replies and degrade the performance of the overall

response generation mechanism.

Table 2 shows the performance of different models for the triggering phase.

All the models outperform the baseline approach, which generates the re-

sponse based on frequency. The reason for the relatively high accuracy of

the frequency-based approach is the imbalanced ratio of feasible and infea-

sible cases. Therefore, by overestimating the majority group, it still can

reach acceptable performance. However, when it comes to the threshold-

independent metric, AUC-ROC, the frequency-based approach performs as

poorly as a random guess with almost 50% AUC-ROC. On the other hand,

other approaches show significant improvement over the frequency-based sug-

gestion.

Table 2: Performances of different models for the triggering task (reported values are all
in percentages)

Method Accuracy
Precision Recall F1-score

AUC-ROC
Infeasible Feasible Infeasible Feasible Infeasible Feasible

BiLSTM† 87.4 72.1 92.1 73.7 91.4 72.9 91.8 91.5

XGBoost†* 86.0 73.7 88.9 61.1 93.5 66.8 91.2 92.4

SVM†* 85.7 74.8 88.0 57.0 94.3 64.7 91.0 92.2

Frequency 64.7 23.2 77.0 23.0 77.2 23.1 77.1 50.0

†: Wikipedia-PubMed embedding; *:TF-IDF values as weight
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Table 2 also shows that BiLSTM, XGBoost, and SVM perform similarly

in predicting the majority class. All the models have acceptable values for

precision, recall, and F1-score for the feasible cases. However, XGBoost and

SVM perform relatively poorly in recalling the infeasible messages. They

overfit the majority class, leading to passing so many messages to the next

phase and, consequently, an abundance of irrelevant reply suggestions. BiL-

STM shows the best aggregate performance over various performance met-

rics. Nonetheless, SVM and XGBoost demonstrate slight superiority in some

metrics. It mainly stems from overestimating one class and neglecting the

other one. Therefore, we choose BiLSTM as our primary triggering model.

We also note that BiLSTM provides the best performance when combined

with its response suggestion algorithm; however, we do not provide a detailed

analysis with combined triggering and response generation algorithm for the

sake of brevity.

4.2. Response suggestion performance

After a message successfully passes the triggering filter, it enters into the

response suggestion model. Response suggestion aims to suggest proper mes-

sages within the top responses to facilitate the patient-doctor conversation.

Here, we only concentrate on doctors’ response generation processes.

We compare machine learning algorithms with the baseline, frequency-

based suggestion. The baseline selects doctor responses from the canned

messages based on their occurrence probability in the training set. As our

response set includes certain frequent categories, the precision of the baseline

might seem relatively high. However, the difference between machine learning

algorithms and the baseline is statistically significant. Table 3 summarizes
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the accuracy of each algorithm. BiLSTM enhanced by Wikipedia-PubMed

embedding significantly outperforms other machine learning and deep learn-

ing algorithms. It suggests more correct responses in the first rank (preci-

sion@1) than other alternative approaches. In 61.95% of the suggestions, the

proper reply does exist in its first suggestion, and in 87.73% of the times, the

model can generate a response desired by a doctor. In a software application

that suggests top-3 responses, the model accuracy based on precision@3 is

promising. Table 3 also reports the Mean Reciprocal Rank of the models.

According to the MRR values, BiLSTM significantly outperforms others. It

is important to note that the model is able to generate an instantaneous

response, i.e., less than a second, which is desired by the application. There-

fore, the proposed model can suggest the proper reply options in a timely

manner.

Table 3: Accuracy of the suggested responses for different models

Method precision@1 (%) precision@3 (%) precision@5 (%) MRR

BiLSTM† 58.98 83.28 85.37 0.75

Seq2Seq† 53.21 61.48 68.63 0.60

XGBoost†* 51.33 79.59 82.83 0.69

SVM†* 47.62 78.97 82.25 0.68

Frequency 16.71 32.20 42.80 0.35

†: Wikipedia-PubMed embedding; *:TF-IDF

We note that in a previous work by Kannan et al. [6] for Gmail, thou-

sands of possible responses were available, and they reached the precision@10

value of 48.3%. This seemingly lower performance can be attributed to the

high number of messages existing in their canned response set. Nevertheless,
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in their work, even the frequency-based method was able to fulfill the preci-

sion@10 equal to 32.1%, implying that the number of frequent responses was

dominant. In another work for in-app communication of drivers by the Uber

team [7], a slightly different metric for accuracy is used. They found 77.2%

accuracy in intent detection of the generated replies. However, our work

mainly concentrates on the precision of the suggested responses and not just

their intentions. In comparison to these previous studies, we can conclude

that our adopted algorithm for response generation in online medical ser-

vices is successful and surpasses the baseline (i.e., frequency-based response

generation) by enhancing its precision more than 2.5 times (see Table 3).

We demonstrate the distribution of the actual frequency of the most fre-

quent medical responses (i.e., excluding casual responses such as “You are

welcome.” and “Thanks.”) in Figure 6. The ground-truth frequency is

shown in black, while the predicted frequency is grey. We observe that both

the prediction and the ground truth follow a similar distribution. For the ca-

sual responses, which are excluded from the graph, the generated frequencies

exhibit a similar pattern as the actual ones.

Figure 7 shows the accuracy of suggested responses given their rank. If

a message passes the triggering phase, the model will recommend a reply

whether the original message is feasible or not. Therefore, the plot shows

the ratio of precise suggestions per rank for all feasible and infeasible cases

entering the response generator. BiLSTM has the best overall performance

for the top-3 responses. It prompts the highest ratio of correct replies in

the first rank while having the least suggestions in the fourth position and

above. Surprisingly, seq2seq, which is the second-best algorithm consider-
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Can you rate your pain 

 on an intensity scale of ...

Can you send a picture of it?

For how long you have this 

 problem?

If you have a fever, cough, 

 bodyaches, headache, diarrhea, ...

Can you send your report?
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Figure 6: The distribution of the actual frequency of the doctor messages compared to
the predicted responses by BiLSTM

ing the suggested messages ranked first, loses its superiority shortly after.

One reason for the performance drop is the beam search associated with the

response selection. It does not have the option to diversify the message,

and adding rule-based diversification increases its computation time. There-

fore, the model fails to generate high-quality responses considering the pace

needed to output a reply. All the analyses highlight the advantage of using

BiLSTM in automated doctor response recommendations.

4.3. Sample generated responses

Figure 8 demonstrates sample replies generated by the BiLSTM model. If

a patient’s message passes the triggering phase, the algorithm suggests top-3

possible responses in order. In Figure 8a, the proper response is ranked first.

The model learned from the training set to select an automated message

from the canned set to apologize for delays. As these kinds of less frequent
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Figure 7: The distribution of correct responses ranked top-10 for different methods

messages are not diversified, and we do not have other alternatives for them,

the third suggested response might seem less relevant. Figure 8b depicts a

situation in which the expected response is ranked second. However, the

other two responses are pertinent to the patient’s message. As the patient

asks about itchy bumps, the doctor may either request a picture to have

a better idea or ask about its longevity. In Figure 8c, the patient implies

Covid-19 condition by referring to “virus”, “testing”, and “positive”, and

the suggested response inform the patient about the symptoms of Covid-

19. The other two responses show compassion for the patient and ask for

a report if there is any clinical test available. Although the response does

not appear at the first rank, others still provide an appropriate alternative

for the ground truth. Lastly, Figure 8d shows a case in which the proper

response is not provided. The patient asks for the place where he/she can

find weight gain supplements, and the model cannot suggest the location. We

manually checked for the rank of the correct reply and found it at rank six.
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Nonetheless, there is a typo in the patient’s message that can be addressed,

and the wrong responses can be potentially avoided.

Helloooo

are you still there??

08:47 ...

I am sorry my 
replies can be a 
bit delayed as I 
am dealing with 
multiple patients. 
Thank you for 
your patience.

Yes.
Can you send 
your report?

Expected response:
I am sorry my replies can be a bit delayed as I am dealing with 
multiple patients. Thank you for your patience.

Text with a tap

(a) Example 1: A response appears at the
first position as expected.

12:15 ...

Can you send a 
picture of it?

For how long you 
have this 
problem?

It is not normal.

I was just talking with another
doctor. I already explained it.

Expected response:
Can you send a picture of it?
s

I have small itchy bumps on my 
finger spreading onto my hands.
I have no idea about them!

Text with a tap

(b) Example 2: The expected response is
still among the top-3 suggestions.

03:51 ...

No worries now.
Can you send 
your report?

Expected response:
If you have a fever, cough, body or headache, difficulty in breathing, 
loss of sense of smell, these can be signs of Covid-19 ...

Text with a tap

Not that i know of, but i was at my 
friends 6 days ago.

Her parents came over and said 
that they are testing their other 
daughter for the virus. they never 
let me know if she was positive.

If you have a 
fever, cough, 
body or headache, 
difficulty in 
breathing, loss of 
sense of smell, 
these can be signs 
of Covid-19 ...

(c) Example 3: The expected reply is
ranked third. Still easy to be tapped.

21:43 ...

Can you 
elaborate your 
question please?

For how long
you have this
problem?

You're welcome.
If you had a good
experience using
our service, we
are trying to get
as many 5 star
reviews on our ...

no gym just fat and where would 
i get weight gain suplements.

Expected response:
Any drug store.
s

Text with a tap

(d) Example 4: A wrong suggestion. The
model does not suggest the expected reply.

Figure 8: Examples of smart responses generated by BiLSTM
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4.4. Sensitivity of the model to the triggering threshold

One of the most significant parameters of the algorithm is the triggering

threshold. As the triggering model suggests the probability of generating a

response, it is important to determine how to convert that probability to

a binary decision. As a rule of thumb, we round numbers greater than or

equal to 0.5 to 1 and smaller ones to 0. However, the question is whether the

threshold of 0.5 provides the best-suggested replies. When the threshold is

too small, the model tends to generate responses for most infeasible cases; on

the other hand, when it is close to 1, the model becomes more conservative

as it avoids generating inappropriate responses.
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ratio of correct prediction
Ratio of TN
precision@3

(a) Correct predictions in detail
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(b) Wrong predictions in detail

Figure 9: The sensitivity of the algorithm to the threshold of the triggering phase

Figure 9 demonstrate the sensitivity of the performance of the BiLSTM

model to its triggering threshold. Figure 9a demonstrates the source of pre-

cision. It can come either from the correct filtering of infeasible responses

(TN) or the correct suggested replies that fall in the top-3 suggestions. There-

fore, the total precision@3, the sum of the other two predictions, is shown in

black. We observe that the algorithm is robust to the threshold parameter as
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there is only a negligible fluctuation in the total precision for different values

of the triggering threshold. In Figure 9b, we explore the effect of trigger-

ing threshold on the ratio of mispredictions. We divide the misprecision@3

into three folds: the incorrect predictions originating from passing infeasible

messages (FP), the ratio of incorrectly filtered feasible messages (FN), and

missuggestions of feasible responses, meaning a suggested response is not

among the top 3. Same as the previous plot, we depict the sum of these

three subdivisions in black. The misprecision@3 has the least effect on the

ratio of missuggestions; however, it highly affects both False Positive and

False Negative cases. Altogether, misprecision@3 does not oscillate within

the range of 0.3 and 0.8. Hence, the method seems robust under different

threshold values. Accordingly, we choose the common threshold of 0.5 for all

the experiments.

5. Concluding remarks

Considering the rapid growth of online medical chat services, telehealth

companies may choose to either expand their capacity — e.g., the number of

physicians — or facilitate the communication for the existing employees to

maximize their utilization. Instead of employing an expensive workforce, the

cost of enhancing the current application with Artificial Intelligence is almost

negligible. Accordingly, smart response suggestions can relieve the doctors’

burden by facilitating patient-doctor communication, proposing appropriate

replies, and saving their valuable time. To the best of our knowledge, we in-

vestigate the feasibility of having smart reply suggestions in medical contexts

for the first time.
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We use the actual conversations between patients and doctors coming

from an online medical chat service. Accordingly, after exploratory data

analysis, we clean the dataset by devising a canned response set. Using

clustering techniques, we find the densest clusters of doctors’ messages and

extract frequent responses from those. Afterward, we match the patient and

doctor messages being aware of the complexity of disorderly exchanged chats,

which results in 31,407 paired messages. Not all patient messages require

smart replies; therefore, we also label the pairs as “feasible” or “infeasible”.

Our algorithm proceeds in two steps: predicting whether we need to trigger

a smart reply and suggesting the proper response given a message passes the

triggering phase. We explore different combinations of machine learning and

deep learning algorithms to address each step. Furthermore, we tune the

parameter and report the performance using 5-fold nested cross-validation.

We assess each algorithm’s performance using threshold-dependent and -

independent metrics and observe that Bidirectional LSTM is the best method

for the triggering phase. It has a balanced score for both majority and minor-

ity class labels, i.e., feasible and infeasible cases. In addition, its suggested

replies are also the most appropriate in the response generation phase. More-

over, we tested its robustness to the triggering threshold and found it to be

resilient to its parameter changes.

A relevant venue for future research would be to improve the method by

including more data points (i.e., more labeled-conversations). To the best

of our knowledge, there is no publicly available dataset for medical conver-

sations. Therefore, we only apply the algorithm to our proprietary dataset.

Besides, in response to the COVID-19 pandemic, our dataset is continuously
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being updated. Specifically, we find constant changes in patient queries and

doctor answers. For instance, with regards to the modeling symptoms’ ques-

tions, we observe that the vaccine queries become dominant. Accordingly,

an automated mechanism to retrain the models according to unprecedented

challenges can be developed. We note that the overall response generation

mechanism becomes feasible by introducing enough paired messages and up-

dating the model weights. Moreover, as manual labeling is a tedious task,

we plan to investigate semi-supervised learning for semantic clustering and

labeling big datasets.
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