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Abstract

This paper deals with an important subject in classification problems ad-

dressed by machine learning techniques: the evaluation of the influence of

each of the features on the classification of individuals. Specifically, a mea-

sure of that influence is introduced using the Shapley value of cooperative

games. In addition, an axiomatic characterisation of the proposed measure

is provided based on properties of efficiency and balanced contributions.

Furthermore, some experiments have been designed in order to validate the

appropriate performance of such measure. Finally, the methodology intro-

duced is applied to a sample of COVID-19 patients to study the influence

of certain demographic or risk factors on various events of interest related

to the evolution of the disease.

Keywords: Machine learning; Classification; Influence of features; Shapley

value; COVID-19

2010 MSC: 97R40, 91A80, 62H30

1. Introduction

A classification problem consists of predicting the value of a qualitative

response variable for one or more individuals, making use of the values we

know of certain variables (features) of such individuals. Those predictions

are based on the knowledge obtained through a training sample of individ-

uals whose values of the features and of the response variable are known.

Classification problems can be addressed by using machine learning tech-

niques. Numerous classifiers have been proposed and analysed in the ma-

chine learning literature (see, for example, Fernández-Delgado et al., 2014).
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In this article we make use of some classification techniques to develop

a methodological tool for the exploratory analysis of a training sample of

the type described above. Specifically, our objective is to define a sensible

measure to estimate the influence of the features on the value of the response

variable. Below we illustrate our objective with a real problem of applied

research that we recently faced.

During the first wave of COVID-19 in Spain we had access to a database

of 10,454 patients from Galicia (a region in the northwest of Spain) infected

with COVID-19 from March 6, 2020 to May 7, 2020. Knowing the charac-

teristics of individuals that significantly increase their probability of needing

access to certain health infrastructures is highly useful for health authorities

to make the right decisions. Therefore, we set out to use these data to find

out which were the values of the features that most influenced the worsening

of an infected patient’s condition, so that he or she had to be hospitalised,

had to be admitted to the ICU or even died.

The problem of studying the influence of features on the values of the

response variable that we tackle in this paper has been treated with sev-

eral differentiating aspects in other works from the literature. For instance,

Ghaddar & Naoum-Sawaya (2018) introduce an iterative approach to ad-

dress feature selection in classification using support vector machines and

apply it to a case of medical tumours diagnosis. In a sense, the selection of

features is a problem prior to the study of the influences we discuss here,

because we start with an already selected set of features and then compar-

atively study their influences.

In the context of classification, Strumbelj & Kononenko (2010) introduce

a general procedure to assess the importance that the various features have

had in the classification of a particular individual. Our approach is different
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because it is not locally oriented: we do not attempt to evaluate the influence

of each feature on the classification of a particular individual, but rather to

evaluate the influence of each feature value on the response variable.

Probably the closest paper to the subject of our research is Datta et al.

(2015). In that paper, the authors also study how influential are the various

features in a classification problem. They theoretically base their measure

of influence in the binary case, that is, when both the features and the

response variable take only two possible values. However, their measure of

influence can also be used in the general non-binary case. Another difference

with our approach is that they start from a set of observed cases of the

feature vectors and an already fixed classifier, and study the influence of

each feature for that classifier. In our approach we start from a training

sample of individuals for whom we have observed their values of the features

and of the response variable; we intend to know the influence of the feature

values on the response in the population from which the training sample

has been drawn. It is certainly possible to use the approach of Datta et al.

(2015) to address our problem: train a classifier with the training sample,

and then apply Datta et al.’s measure of influence. In fact, in Section 3 we

compared the latter approach with our own.

A common point of Strumbelj & Kononenko (2010), Datta et al. (2015)

and our work is that all three make extensive use of cooperative game theory

tools, specially the Shapley value. The Shapley value (Shapley, 1953) is a

rule for distributing the profits generated by a collection of cooperating

agents and it has multiple applications in very diverse fields: just to give

a few instances, Liu et al. (2020) use the Shapley value for water resource

allocation in multinational river basins, Saavedra-Nieves & Saavedra-Nieves

(2020) propose a new quota system for the milk market that is based again
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on the Shapley value, Li & Chen (2020) make use of the Shapley value

in their study of alliance formation in an assembly system where several

upstream complementary suppliers produce components and sell them to a

downstream manufacturer. Algaba et al. (2019) is a recent review of the

Shapley value, its variants, and its applications.

The organisation of this paper is as follows. Section 2 presents the in-

fluence measure and discusses its theoretical basis, including an axiomatic

characterisation. In Section 3 various experiments are carried out to vali-

date in practice the behaviour of our measure, which is also compared with

another approach from the literature. Section 4 uses the measure to explore

data from a sample of COVID-19 patients to detect features that affect

mortality, ICU admission, and patient hospitalisation, and to evaluate the

influence of such features. Finally, Section 5 summarises the main conclu-

sions of this work.

2. Assessing Influence in Classification

We start this section by formally establishing what we mean by classi-

fication problem. In one such problem we have a vector of features X =

(X1, . . . , Xk) and a response variable Y . K = {1, . . . , k} denotes the set

of indices of the features. Each feature Xj takes values in a finite set

Aj and Y takes values in a finite set B. We also have a training sample

M = {(Xi, Y i)}ni=1, where Xi = (Xi
1, . . . , X

i
k) and Y i are the observed val-

ues of the features and the response variable corresponding to individual i.

A classification problem is thus characterised by a triplet (X,Y,M).

A classifier trained with sample M is a map fM that assigns to every

a ∈ A = A1 × · · · × Ak (an observation of X) a probability distribution

5



over B, i.e., fM(a) = (fMb (a))b∈B with fMb (a) ≥ 0, for all b ∈ B, and∑
b∈B f

M
b (a) = 1. Each fMb (a) is the estimated probability that an individ-

ual whose observed values of the features are given by a belongs to group b

of the response variable Y . From now on, AV , aV , XV , and Xi
V will denote

the restrictions of A, a, X, and Xi to the variables of V , respectively (for

all V ⊆ K).

Our goal in this section is to use classification techniques to define a

measure that allows us to study the influence of the features on the response

variable. The formal definition of an influence measure is the one included

below.

Definition 1. An influence measure for (X,Y,M) is a map I that as-

signs to every aR ∈ AR (R ⊆ K), b ∈ B, and T ⊆ K (T 6= ∅) a vector

I(aR, b, T ) = (Il(aR, b, T ))l∈T ∈ RT . The vector I(aR, b, T ) provides an

evaluation of the influence that each feature Xl (l ∈ T ) has on whether the

response is worth b when XR is worth aR and we only take into account the

features {Xl}l∈T .

Section 4 illustrates the interest of having a sensible influence measure.

In this section we introduce and theoretically support one based on the

Shapley value of cooperative games. In order to facilitate the reader’s un-

derstanding, we include the definition of the Shapley value below. First,

recall that a cooperative game is a par (N, v), where N is the finite set of

players, and v : 2N → R is the characteristic function of the game, which

satisfies v(∅) = 0. We usually interpret v(S) as the gain that coalition

S ⊆ N can obtain. Also, G(N) represents the set of all cooperative games

with set of players N . In general, we identify (N, v) with its characteristic

function, v. An extensively addressed problem in cooperative games is to

6



allocate v(N) among the cooperating agents. One of the most important

allocation rules is the Shapley value, Φ : G(N) → RN , which represents a

fair compromise for the players and it is defined by the following expression:

Φi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)),

for all v ∈ G(N) and i ∈ N . For more details on cooperative games see, for

instance, González-Dı́az et al. (2010).

Next, we consider two desirable properties and prove that there exists

a unique influence measure that fulfils them: the one based on the Shapley

value. The first property takes into account that a measure of influence

simply distributes among the T features the total influence that such features

have in that the value of the response variable is b when XR equals aR. One

way to estimate that total influence using the classifier fM is given by the

following expression:

1

nbaR

∑
(Xi,Y i)∈Mb

aR

 1

|AK\T |
∑

a′
K\T∈AK\T

fMb (Xi
T , a

′
K\T )− 1

|A|
∑
a′∈A

fMb (a′)

 , (1)

whereMb
aR

denotes the subsample ofM formed by the observations (Xi, Y i)

with Xi
R = aR and Y i = b, and nbaR denotes the size of the subsampleMb

aR
.

Notice that expression (1) can be interpreted as an estimation of the vari-

ability of the response variable due to the T features (using fM). Therefore,

the first property we ask for an influence measure is the fM-Efficiency below.

fM-Efficiency. An influence measure I satisfies fM-Efficiency if, for every

(X,Y,M), every aR ∈ AR (R ⊆ K), b ∈ B, and T ⊆ K (T 6= ∅), it holds

that
∑

l∈T Il(aR, b, T ) is equal to the amount in expression (1).

The second property that we consider is a fairness property that treats

all features in a balanced way. Informally, it states that given two of these
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features, the effect of ignoring one to the measure of the influence of the

other is identical for both features. Note that the marginal loss or gain of

influence that the inclusion or exclusion of one feature causes to another

feature is due to the dependency that exists between the two. The fact

that the dependence between features is symmetrical, makes advisable the

property of balanced contributions.

Balanced Contributions. An influence measure satisfies Balanced Con-

tributions if, for every (X,Y,M), every aR ∈ AR (R ⊆ K), b ∈ B, T ⊆ K

(T 6= ∅), and l,m ∈ T with l 6= m,

Il(aR, b, T )− Il(aR, b, T\{m}) = Im(aR, b, T )− Im(aR, b, T\{l}).

Now we state and prove the main mathematical result of this section. It

provides a characterisation and a formal expression of an influence measure

that satisfies all the properties introduced above.

Theorem 2. There exists a unique influence measure for (X,Y,M) which

satisfies the properties of fM-Efficiency and Balanced Contributions. For

all aR ∈ AR (R ⊆ K), b ∈ B, T ⊆ K (T 6= ∅) and l ∈ T , this measure (that

we denote by IΦ) is given by

IΦ
l (aR, b, T ) =

1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φl(v
b
Xi |T ), (2)

where Φ denotes the Shapley value, vb
Xi denotes the game with set of players

K given by

vbXi(S) =
1

|AK\S |
∑

a′
K\S∈AK\S

fMb (Xi
S , a
′
K\S)− 1

|A|
∑
a′∈A

fMb (a′), (3)
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for all S ⊆ K, and vb
Xi |T denotes the restriction of the game vb

Xi to the

subsets of T .1

Proof. Existence. To show that IΦ satisfies fM-Efficiency, take aR ∈ AR

(R ⊆ K), b ∈ B, and T ⊆ K (T 6= ∅). Shapley (1953) proves that the

Shapley value of cooperative games satisfies an efficiency property. In our

case, this property implies that∑
l∈T

Φl(v
b
Xi |T ) = vbXi(T ).

Applying this result we obtain that:∑
l∈T

IΦ
l (aR, b, T )

=
∑
l∈T

1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φl(v
b
Xi |T )

=
1

nbaR

∑
(Xi,Y i)∈Mb

aR

∑
l∈T

Φl(v
b
Xi |T )

=
1

nbaR

∑
(Xi,Y i)∈Mb

aR

vbXi(T )

=
1

nbaR

∑
(Xi,Y i)∈Mb

aR

 1

|AK\T |
∑

a′
K\T∈AK\T

fMb (Xi
T , a

′
K\T )− 1

|A|
∑
a′∈A

fMb (a′)

 .

To show that IΦ satisfies Balanced Contributions, let aR ∈ AR (R ⊆ K),

b ∈ B, T ⊆ K (T 6= ∅), and l,m ∈ T with l 6= m. Myerson (1980) proves

that the Shapley value of cooperative games satisfies a property of balanced

contributions. In our case, this property implies that

Φl(v
b
Xi |T )− Φl(v

b
Xi |T\{m}) = Φm(vbXi |T )− Φm(vbXi |T\{l}).

1The game in (3) results to be the same as the one used in Strumbelj & Kononenko

(2010) to assess the importance of the various features in the classification of a particular

individual in a classification problem.
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Applying this result we obtain that:

IΦ
l (aR, b, T )− IΦ

l (aR, b, T\{m})

=
1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φl(v
b
Xi |T )− 1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φl(v
b
Xi |T\{m})

=
1

nbaR

∑
(Xi,Y i)∈Mb

aR

(
Φl(v

b
Xi |T )− Φl(v

b
Xi |T\{m})

)
=

1

nbaR

∑
(Xi,Y i)∈Mb

aR

(
Φm(vbXi |T )− Φm(vbXi |T\{l})

)
=

1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φm(vbXi |T )− 1

nbaR

∑
(Xi,Y i)∈Mb

aR

Φm(vbXi |T\{l})

= IΦ
m(aR, b, T )− IΦ

m(aR, b, T\{l}).

Uniqueness. We show uniqueness by induction on the size of T . Suppose

that I1 and I2 are two influence measures satisfying fM-Efficiency and

Balanced Contributions. If |T | = 1, by fM-Efficiency,

I1(aR, b, T ) =
1

nbaR

∑
(Xi,Y i)∈Mb

aR

vbXi(T ) = I2(aR, b, T ).

Assume now that I1(aR, b, S) = I2(aR, b, S) for all S ⊆ T with 1 ≤ |S| < |T |.

Then by Balanced Contributions, for all l,m ∈ T , l 6= m,

I1
l (aR, b, T )− I1

m(aR, b, T ) = I2
l (aR, b, T )− I2

m(aR, b, T ). (4)

Using fM-Efficiency,∑
l∈T

I1
l (aR, b, T ) =

∑
l∈T

I2
l (aR, b, T ). (5)

By (4) and (5) it is obtained that:

I1
l (aR, b, T ) = I2

l (aR, b, T ) for all l ∈ T.

This last expression gives the uniqueness. 2
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3. Empirical results

In this section we show the performance of the proposed influence mea-

sure (2) by means of a computational study. Three different experiments

have been carried out using the software R. The objective of such simulations

is to corroborate that the results obtained by the methodology introduced

in the current work are in accordance with the expected ones. Furthermore,

these results are compared with those obtained by the influence measure

introduced in Datta et al. (2015), which counts the number of times that a

modification in a feature results in a different classification. We provide the

formal definition of such an influence measure below.

Definition 3. Given a training setM = {(Xi, Y i)}ni=1 and a classifier fM,

the influence of the j-th feature is

χj(f
M) =

∑
a′∈{Xi}

∑
aj∈Aj :

(a′−j ,aj)∈{Xi}

min

{∣∣∣∣arg max
b∈B

fMb (a′−j , aj)− arg max
b∈B

fMb (a′)

∣∣∣∣, 1},
where {Xi} denotes {(Xi

1, . . . , X
i
k)}ni=1, and B ⊂ N.

The classifier used in this paper is Breiman’s random forest classifier

(Breiman, 2001), implemented in Weka2 and used through RWeka3. This

choice is motivated by the excellent result of the random forest type classi-

fiers (see, for example, Fernández-Delgado et al., 2014). The code was run

on a quad-core Intel i7-8665U CPU with 16GB RAM.

The procedure adopted in the experiments is as follows. We start from

a sample of individuals from which their attributes and response are known,

2http://www.cs.waikato.ac.nz/ml/weka.
3https://cran.r-project.org/web/packages/RWeka/index.html.
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M = {(Xi, Y i)}ni=1. Right after, such sample is used to train a previ-

ously chosen classifier, obtaining fM. To evaluate the influence of feature

Xj on the response Y taking the value b, the quantities IΦ
j (aj , b,K) and∑

l∈K IΦ
l (aj , b,K) are computed and analysed for all aj ∈ Aj .

For the first experiment, a sample of 1000 instances with four binary

features {X1, X2, X3, X4} was generated. Such attributes take the values 0

and 1 with probability 0.5 (hence, aj ∈ Aj = {0, 1}, j ∈ K). In half of

the instances, the value of Y coincides with the value of X1, while in the

remaining instances the value of Y coincides with the value of X2; note thus

that b ∈ B = {0, 1}. The following step is to select those observations whose

assigned class was b = 1. Afterwards, for each attribute Xj , j ∈ K, and each

of its possible values, we study the influence that such feature had on the

response when it took such value. Since the procedure by which the class

has been generated is known, it is evident that the influence of attributes

X3 and X4 should be independent of their values. Furthermore, the value 1

for features X1 and X2 should have a stronger influence in the classification

than the value 0. Table 3.1 and Figure 3.1 present the results obtained for

this simulation, which took a runtime of 9.3 minutes.

Indeed, it can be observed that for attributes X1 and X2 the value

IΦ
j (aj , b,K) is positive when aj = 1 and negative when aj = 0, which

means that features X1 and X2 taking the value 1 works in favour of the

response resulting in 1, unlike what happens if these features are worth 0.

Note also that
∑

l∈K IΦ
l (aj , b,K) is the total influence of the four features

on the response being 1 when feature Xj takes the value aj . In view of

the results obtained, for features X1 and X2 the quantities IΦ
j (aj , b,K) and∑

l∈K IΦ
l (aj , b,K) are closer when aj = 1 than when aj = 0. Thus, the total

influence on the response being 1 when either X1 or X2 are 1, is in fact due
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to these specific attributes taking the value 1. In the case of features X3

and X4, their influence is near 0 whatever value they take.

Xj , j ∈ K aj
∑

l∈K IΦ
l (aj , b,K) IΦ

j (aj , b,K)

X1

0 -0.002 -0.250

1 0.344 0.247

X2

0 -0.019 -0.260

1 0.361 0.260

X3

0 0.268 0.000

1 0.268 0.000

X4

0 0.258 -0.010

1 0.277 0.010

Table 3.1: Results for simulation 1.

●

●

●

●

● ●

●

●

●

●

● ●

● ●

● ●

● ●

●
●

●
●

● ●

Figure 3.1: Influence and total influence for the features (Simulation 1).
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Applying the procedure in Datta et al. (2015) to the previous experiment,

we obtain the measure (0.50, 0.50, 0.25, 0.25). As expected, features X1 and

X2 present a higher influence than X3 and X4. Just as we have already

mentioned, Datta et al.’s procedure measures the number of times that

a change in a specific attribute produces a different response. Thus, it

only takes positive values, which prevents us from knowing the direction of

the influence. In our case, setting features X1 and X2 to 0 works against

the response being 1, and this is made clear by the negative sign of their

influences.

The second experiment differs from the previous one in the procedure to

assign the class to the instances. The response is now generated as a binary

vector which takes the values 0 and 1 with probability 0.5, independently

of the attributes. The goal of this simulation is to show that the influence

of the features in the classification of the instances with response b = 1

does not depend on the features’ values. Table 3.2 and Figure 3.2 present

the results obtained for this simulation. The computational time was 12.4

minutes.

Xj , j ∈ K aj
∑

l∈K IΦ
l (aj , b,K) IΦ

j (aj , b,K)

X1

0 -0.001 -0.009

1 0.017 0.011

X2

0 -0.012 -0.019

1 0.026 0.023

X3

0 0.007 -0.002

1 0.010 0.006

X4

0 0.002 -0.003

1 0.014 0.005

Table 3.2: Results for simulation 2.
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Again, the outcomes are as expected: for each feature, there are barely

differences in the values IΦ
j (aj , b,K) and

∑
l∈K IΦ

l (aj , b,K) when aj changes.

In this case, Datta et al.’s measure resulted in (0.375, 0.375, 0.375, 0.375).

The response is not influenced by any one attribute more than the others.

However, because the class was generated independently of the features, one

would expect their influence to be zero.

●
●

●
●

● ●

●

●

●

●

● ●

● ●● ●

● ●

● ●●
●

● ●

Figure 3.2: Influence and total influence for the features (Simulation 2).

Finally, we have considered the non-binary case. Now, the four attributes

can take the values 0, 1 and 2 with equal probability, and the class of the

response is computed as follows: in 1/3 of the instances, it is the value of

15



attribute X1 that determines the response; while in the remaining 2/3, it

is attribute X2 that determines it. Table 3.3 and Figure 3.3 illustrate the

results. This took a runtime of 13.3 minutes.

Xj , j ∈ K aj
∑

l∈K IΦ
l (aj , b,K) IΦ

j (aj , b,K)

X1

0 0.364 -0.091

1 0.455 0.233

2 0.360 -0.120

X2

0 0.105 -0.172

1 0.495 0.445

2 0.005 -0.245

X3

0 0.421 -0.012

1 0.391 0.012

2 0.424 0.016

X4

0 0.410 0.042

1 0.385 -0.041

2 0.435 0.020

Table 3.3: Results for simulation 3.

The outcomes obtained show that changes in features X3 and X4 do

not affect to the response being b = 1, and their influence is almost zero

whatever their values. Nevertheless, the value 1 of attributes X1 and X2

has a positive influence, which is larger in the case of the latter. On the

contrary, when these attributes take the values 0 and 2, their influence is

negative. This speaks against the class resulting in 1. In this case, the

influence measure of Datta et al. is (0.321, 1.827, 0.296, 0.296). This result

shows that X2 is the most influential feature, and that X1 is more relevant

than X3 and X4. Nevertheless, this measure does not properly capture the

magnitude of how much more influential attribute X1 is in comparison to

X3 and X4.
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Figure 3.3: Influence and total influence for the features (Simulation 3).

In view of the previous results, our methodology seems to be appropriate

to study the influence that the different feature values have on the classifica-

tion of individuals. Since the experiments are satisfactory, this analytic tool

can be applied to real-life problems. Consequently, this procedure has been

employed on a real dataset concerning COVID-19 patients, whose results

are presented in the next section.

4. Application of our influence measure to COVID-19 data

This section analyses a database of 10,454 patients from Galicia (a re-

gion in the northwest of Spain) infected with COVID-19 from March 6, 2020

17



to May 7, 2020. The objective is to study the influence of various patients’

characteristics in three binary response variables of special interest: the need

for hospitalisation, the need for ICU admission, and the eventual decease.

The emphasis is not on the predictive classification of new patients, but on

the analysis of the characteristics that influenced the patients whose com-

plete history is known to have a positive response in the binary variables

indicated. On the other hand, what follows is not intended to be an exhaus-

tive study of these data to draw definitive conclusions about the evolution

of COVID-19, but simply an illustration of some of the uses of the measure

of influence we introduced in Section 2.

The features or attributes which have been considered in this study are

the following:

• Sex: 0 (woman), 1 (man).

• Age: 0 (0-49 y/o), 1 (50-64 y/o), 2 (65-79 y/o), 3 (80 y/o and over).

• Cardiovascular diseases: 0 (without diseases), 1 (mild diseases), 2

(severe diseases: ischaemia with angina, infarction, stroke).

• Respiratory diseases: 0 (no diseases), 1 (mild diseases), 2 (severe

diseases: malignancy, COPD, pneumonia).

• Metabolic diseases: 0 (no diseases), 1 (mild diseases), 2 (severe

diseases: malignancy, insulin-dependent diabetes).

• Urinary diseases: 0 (none or mild diseases), 1 (severe diseases: ma-

lignancy, kidney failure).

The binary response variables considered in this application are:

• Decease (exitus): 0 (no), 1 (yes).
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• ICU admission: 0 (no), 1 (yes).

• Need for hospitalisation: 0 (no), 1 (yes).

Next, we applied the methodology outlined in Section 2 to measure the

influence of the features in the classification with respect to the binary re-

sponse variables. For instance, the interest would reside in selecting those

individuals who resulted in decease (that is, decease = 1) when our pur-

pose is to know the most influential attributes for the exitus. Note that

to estimate the influence of feature Xj on Y , we use the influence that Xj

has in the classification of the elements of the sample M using an excellent

classifier, since it is precisely trained with the sampleM. As in the previous

section, we use the random forest classifier introduced by Breiman (2001)

and implemented in R through the RWeka library.

Let {X1 = sex, X2 = age, X3 = cardi, X4 = resp, X5 = meta, X6 = uri} be

the set of features. We start the analysis by presenting Figures 4.1, 4.2 and

4.3, which display the influence and total influence of the different features’

values on the three classification problems. Let us explain in more detail

what the graphics in the figures show. In each of the graphics a response

variable is chosen and set its value to 1, and also a feature is chosen. The

graphic shows in red the measure of influence of the chosen feature when

we set its value to each of the possible values it can take (feature influence),

and in blue the sum of the measures of influence of all the features (total

influence). The objective of these figures is to identify what we call influence

scenarios. An influence scenario is detected when the total influence shown

in the corresponding graphic deviates noticeably from zero.
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Figure 4.1: Influence and total influence for the features on the decease.
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Figure 4.2: Influence and total influence for the features on the ICU admission.
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Figure 4.3: Influence and total influence for the features on the need for hospitalisation.

For example, in Figure 4.1 several influence scenarios can be identified.

The first is the case of age, both when it is worth 0 and when it is worth 3.

There are two influence scenarios here that allow us to state that in the case

of young individuals (age = 0) and in the case of old individuals (age = 3)

we detect an important influence of the features on mortality, negative in
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the first case and positive in the second. We can observe that in this graphic

the red and blue lines (age influence and total influence, respectively) are

very close, which means that this total influence is mainly due to age.

Other influence scenarios that can be inferred from the figure are those

corresponding to the feature cardi being 2 and the feature meta being 2.

Note, however, that in such scenarios the red and blue lines are noticeably

separated, which means that the significant total influence detected is not

primarily due to the features chosen in each case. Therefore, for each of

these two scenarios, Table 4.1 presents the value of the influence measure

for all the features, in order to identify which ones are influencing the most.

sex age cardi resp meta uri Total

cardi = 2 0.025 0.151 0.049 0.016 0.014 0.023 0.279

meta = 2 0.035 0.142 0.034 0.062 0.078 0.017 0367

Table 4.1: Influence measure. Decease = 1.

From Table 4.1 it can be seen that age is the most influential feature in

these two scenarios, although the features chosen in each case (cardi and

meta, respectively) are the second most influential.

Figure 4.2 shows, surprisingly, a minor influence of age on ICU admis-

sions. This is probably because in the first wave of COVID-19 in Spain, a

considerable number of elderly died in nursing homes before they could even

be hospitalised or admitted to ICU. In any case, age generates an influence

scenario when it is worth 2. As in Figure 4.1, in the case of age the blue and

red lines are very close, showing that the total influence in this particular

situation is mainly due to age.

Another influence scenario presented in Figure 4.2 is the one correspond-

ing to the meta feature being equal to 2. In that case, the blue and red lines
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are far apart, so we show in Table 4.2 the value of the influence measure for

all features. It can be observed that all features are influential, although the

most influential are, in this order, age and metabolic diseases.

sex age cardi resp meta uri Total

meta = 2 0.064 0.098 0.072 0.071 0.084 0.022 0.412

Table 4.2: Influence measure. ICU admission = 1.

Figure 4.3 allows us to identify other influence scenarios, among which

we highlight those corresponding to age equal to 0, meta equal to 2 and resp

equal to 2. In this case, although the blue and red lines tend to coincide

more in the age feature, they are considerably separated in all the influence

scenarios. Therefore, we show in Table 4.3 the value of the influence measure

for all features in the three scenarios.

sex age cardi resp meta uri Total

age = 0 -0.001 -0.184 -0.013 -0.047 -0.030 -0.034 -0.310

resp = 2 0.039 0.085 -0.009 0.113 0.014 0.005 0.247

meta = 2 0.026 0.095 0.054 0.012 0.089 -0.017 0.247

Table 4.3: Influence measure. Need for hospitalisation = 1.

Again, age remains a highly influential feature in the occurrence of hos-

pitalisation in all the influence scenarios we have detected. In the first sce-

nario, when age is 0, what we observe is that the marked tendency towards

less hospitalisation when patients are young is mainly due to their youth,

although we also detect an important influence of good health in terms of

respiratory ailments. In the influence scenario when resp = 2, the measure

indicates that respiratory diseases are the most influential in the need for

hospitalisation, even more so than age. Somehow we detect that respiratory

pathologies, in addition to age, are considerably influential in the need for
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hospitalisation of COVID-19 patients.

In light of the above, it is evident that the most influential feature in all

the response variables considered is age: young people are less likely to need

hospitalisation and admission to the ICU, as well as to die from COVID-

19; the only exception we detected is that elderly people who die have a

tendency to die quickly, even before being admitted to the ICU.

With this in mind, we could look further for other influential features

by eliminating the age effect. That is, we can remove age from the list

of features (i.e., following the notation in Section 2, T = K \ {2}, where

X2 = age) and calculate the corresponding measure of influence. Through

this approach, the expectation is that fewer influential scenarios will be

detected; but in detected cases, the most influential features after age may

come to light. We perform this analysis for the sub-sample in which we

have the largest number of observations: the one corresponding to need for

hospitalisation equal to 1.

Figure 4.4 seems to confirm the considerable influence of respiratory

diseases on the need for hospitalisation of COVID-19 patients. Indeed, the

only positive influence scenario detected occurs when resp = 2. Note also

that, in this case, the blue and red lines are close, so that the total influence

detected is mostly due to respiratory pathologies.

There is another scenario of influence when cardi = 0. In this case,

it is striking that the red line is close to the point (0, 0). This seems to

indicate that in healthy individuals regarding cardiac functions an important

influence on the decrease in hospitalisations is detected, but however such

a decrease is not due to the feature cardi. To detect which is the most

influential feature in this case, we show in Table 4.4 the value of the measure

of influence when cardi = 0 and any other of the pathologies considered is
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also 0. Notice that in these three cases, feature resp is the most influential by

far. Once again, the data we handle seem to confirm the important influence

of the presence of respiratory pathologies on the need for hospitalisation of

COVID-19 patients.
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Figure 4.4: Influence and total influence for features K\{2} on the need for hospitalisation.
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sex cardi resp meta uri Total

cardi = 0, resp = 0 0.006 -0.028 -0.063 -0.025 -0.046 -0.156

cardi = 0, meta = 0 0.009 -0.038 -0.052 -0.033 -0.037 -0.151

cardi = 0, uri = 0 0.005 -0.030 -0.054 -0.022 -0.042 -0.143

Table 4.4: Influence measure without considering age. Need for hospitalisation = 1.

5. Conclusions

This paper addresses and provides a methodological contribution to the

important problem of classification, which is of great interest in machine

learning. It introduces a new general measure of the influence that vari-

ous features of a set of individuals have on their classification, that is, on

the category or value they take for a given response variable. For the con-

struction of such measure of influence, we consider several ideas taken from

game theory. In particular, starting from the problem of measuring influence

on classification, we define a cooperative game (whose players are the fea-

tures considered) and apply a solution. This solution, known as the Shapley

value, is closely connected with the idea of “contribution”, and applied in

this context to classification. Together with the definition of the measure of

influence, an axiomatic characterisation theorem is stated and mathemati-

cally proved. The properties used in this result are adaptations of Shapley

value’s properties in the general context of cooperative games. The pro-

posed adaptations yield highly desirable properties of the influence measure

from the exploratory data analysis point of view. To test the scope and ade-

quacy of the proposed influence measure, a control experiment that provides

a very satisfactory result is designed. Our proposal is also compared with

the influence measure defined in Datta et al. (2015), which also uses ideas

from game theory. Section 4 provides an application of our measure to the
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study of a Spanish database of patients infected with COVID-19 from the

first wave of the pandemic, between March and May 2020. The aim of this

application is to determine which demographic features, as well as previous

pathologies, are the most influential in the classification of a patient regard-

ing their potential need for hospitalisation, admission to the intensive care

unit, or death. Initial results obtained present a promising future for the

technique proposed here as a decision support tool, especially in the field

of disease management. It serves, in particular, to alert medical profession-

als of the importance of certain patient characteristics, such as age or prior

pathologies, as opposed to the lesser importance or influence of others. Such

characteristics potentially pose an added difficulty in patients with a given

disease, which should be taken into account both in the care and treatment

that these patients should receive and in the planning of resources destined

for them.

As for future lines of research, we believe that additional work on the

recently introduced measure of influence is worthwhile. We cite, for example,

the desirability of further analysing the sensitivity of the results provided by

the measure of influence according to the classifiers used. It would also be

possible to complete the application presented using data from successive

waves of the COVID-19 pandemic. In such case, it would be interesting

to include a new variable distinguishing the virus strain, or even analyse

the data separately depending on the type of strain, as it is known that

new emerging strains behave differently. Finally, it may be appealing to

further study the interest of this new measure of influence by exploring its

relation with other statistical techniques of multivariate analysis, as well as

extending it to continuous scenarios (for instance, considering that some of

the features are continuous variables).
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