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Real-world data typically contain a large number of features that are often heterogeneous in
nature, relevance, and also units of measure. When assessing the similarity between data points,
one can build various distance measures using subsets of these features. Using the fewest features
but still retaining sufficient information about the system is crucial in many statistical learning
approaches, particularly when data are sparse. We introduce a statistical test that can assess the
relative information retained when using two different distance measures, and determine if they are
equivalent, independent, or if one is more informative than the other. This in turn allows finding
the most informative distance measure out of a pool of candidates. The approach is applied to find
the most relevant policy variables for controlling the Covid-19 epidemic and to find compact yet
informative representations of atomic structures, but its potential applications are wide ranging in
many branches of science.

Introduction

An open challenge in machine learning is to extract
useful information from a database with relatively few
data points, but with a large number of features avail-
able for each point [1–3]. For example, clinical databases
typically include data for a few hundreds patients with
a similar clinical history, but an enormous amount of in-
formation for each patient: the results of clinical exams,
imaging data, and a record of part of their genome [4].
In cheminformatics and materials science, molecules and
materials can be described by a large number of features,
but databases are limited in size by the great cost of the
calculations or the experiments required to predict quan-
tum properties [5, 6]. In short, real-world data are often
“big data”, but in the wrong direction: instead of mil-
lions of data points, there are often too many features
for a few samples. As such, training accurate learning
models is challenging, and even more so when using deep
neural networks, which typically require a large amount
of independent samples [7].

One way to circumvent this problem is to perform pre-
liminary feature selection, and discard features that ap-
pear irrelevant or redundant [2, 8–10]. Alternatively, one
can perform a dimensional reduction aimed at finding
a representation of the data with few variables built as
functions of the original features [11–13].

In some cases, explicit features are not available, as
in the case of raw text documents or genome sequences.
What one can always define, even in these cases, are dis-
tances between data points whose definition, however,
can be rather arbitrary [14, 15]. How can one select,
among an enormous amount of possible choices, the most
appropriate distance measure for a given task? Finding
the correct distance is of course as difficult as perform-
ing feature selection or dimensionality reduction. In fact,

these tasks can be considered equivalent if explicit fea-
tures are available, since in this case a particular choice of
features naturally gives rise to a different distance func-
tion computed through the Euclidean norm.

In this work, we approach feature/distance learning
through a novel statistical and information theoretic con-
cept. We pose the question: given two distance measures
A and B, can we identify whether one is more informa-
tive than the other? If distance A is more informative
than distance B, even partial information on the distance
A can be predictive about B, while the reverse will not
necessarily be true. If this happens, and if the two dis-
tances have the same complexity e.g, they are built using
the same number of features, A should be generally pre-
ferred with respect to B in any learning model.

We introduce the concept of “information imbalance”,
a measure able to quantify the relative information con-
tent of one distance measure with respect to another.
We show how this tool can be used for feature learning
in different branches of science. For example, by opti-
mizing the information content of a distance measure we
are able to select from a set of more than 300 material
descriptors, a subset of around 10 which is sufficient to
define the state of a material system, and predict its en-
ergy. Moreover, we find the combinations of national
policy measures which are most effective in containing
the Covid-19 epidemic. In this case, the information im-
balance also provides striking evidence on the causality
relationship between these policies and the severity of the
epidemic.

The information imbalance

Inspired by the widespread idea of using local neigh-
borhoods to perform dimensional reduction [16] and clas-
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(b)

FIG. 1. a): Illustration of the distance rank of two points in different feature spaces A and B. The rank rij of point j relative
to i is equal to 1 in space A, meaning that j is the first neighbor of i. This is not the case in space B, where point j is the
third neighbor of point i. b): Illustration of how ranks can be used to verify that space x is less informative than space xy.
The figure shows how a distance bound in the xy space automatically implies a distance bound in the less informative x space.
The opposite is not necessarily true and, in principle, the first neighbor of a point in the x space can be at any distance from
the point in the xy space.

sification [17] we quantify the relative quality of two dis-
tance measures by analyzing the ranks of the first neigh-
bors of each point. For each pair of points i and j, the
rank rij of point j relative to point i, is obtained by sort-
ing the pairwise distances between i and rest of the points
from smallest to largest. For example, rAij = 1 if point j
is the first neighbor of point i according to the distance
dA. The rank of two points will be, in general, different
when computed using a different distance measures B, as
illustrated in Figure 1a.

The key idea of our approach is that distance ranks
can be used to identify whether one metric is more infor-
mative than the other. Take the example given in Figure
1b, depicting a cartoon of a dataset represented either in
the two-dimensional space xy or in the less informative
one-dimensional space x. Point j is the first neighbor of
i in the space xy and it becomes the third neighbor in
space x (rxij = 3). Similarly, point k is the first neighbor
of i in space x and it becomes fifth neighbor in space xy
(rxyik = 5). In this case we find that rxij < rxyik i.e., the
rank in space x of first neighbors in space xy is smaller
than the rank in space xy of first neighbors in space x.

To give a more quantitative example, let’s consider a
dataset of points harvested from a 3-dimensional Gaus-
sian whose standard deviation along the z direction is a
tenth of those along x and y. In this case, one can define
a Cartesian distance between data points either using all
the three features, d2xyz = (xi−xj)2+(yi−yj)2+(zi−zj)2,
or using a subset of these features ( dxy, dyz and so on).
Intuitively, dxyz and dxy are almost equivalent since the
standard deviation along z is small, while there are infor-
mation imbalances, say, between dx and dxy, which would
allow saying that dxy is more informative than dx. In the
first row of Figure 2, we plot the ranks computed using
one distance against the ranks computed using a second
distance (for example the ranks in dxy as a function of

those in dxyz for panel a). In the second row of the fig-
ure we show the probability distribution p(rA | rB = 1)
of the ranks rAij in space A restricted to those pairs for

which rBij = 1, namely to the nearest neighbors according
to distance B. In panels a and b, we compare the most
informative distance containing all three coordinates to
the one containing only x and y coordinates. Given the
small variance along the z direction, these two distance
measures are practically equivalent, and this results in
rank distributions strongly peaked around one. In pan-
els c and d, we compare the two metrics dxy and dx. In
this case, the former is clearly more informative than the
latter, and we find that the distribution of ranks when
passing from dxy to dx is more peaked around small val-
ues than when going in the opposite direction. Finally,
for two metrics built using independent coordinates (x
and y, in panels c and f) the rank distributions are com-
pletely uniform.

We hence propose to assess the relationship between
any two distance measures dA and dB by using the prop-
erties of the conditional rank distribution p(rB | rA = 1).
The closer this distribution is to a delta function peaked
at one, the more information about space B is contained
within space A.

This intuition can be made more rigorous through
the statistical theory of copula variables. We can de-
fine a copula variable cA as the cumulative distribution

cA =
∫ dA
0

pA(w | x)dw, where pA(w | x) is the of prob-
ability of sampling a data point within distance w from
x in the A space. The value of cA can be estimated
from a finite dataset by counting the fraction of points
that fall within distance dA of point x, cA ≈ rA/N .
Copula variables and distance ranks can be considered
continuous-discrete analogues of each other. As a con-
sequence, the distributions p(rB | rA = 1) shown in
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FIG. 2. Illustration of the information imbalance calculation and usage on a 3D Gaussian dataset with a small variance along
z. a), c), e): scatter plot of the rank between ordered pairs of points. The highlighted regions indicate the points considered for
generating the bottom plots. b), d), f): Probability of that two points have a given rank in one representation given that they
are first neighbors in the other. The three columns represent different pairs of representations. g): The four different types of
relationships that can characterize the relative information content of two metric spaces A and B. h): Information imbalance
plane for the 3D Gaussian dataset discussed. The different colors roughly mark the regions corresponding to the four types of
relationships listed in g.

Figure 2 are nothing else but estimates of the copula
distributions p(cB | cA) with cA conditioned to be very
small. This is important, since Sklar’s theorem guaran-
tees that the copula distribution p(cA, cB) contains the
entire correlation structure of the metric spaces A and B,
independently of any details of the marginal distributions
p(dA | x) and p(dB | x) [18–20].

Using the copula variables, we define the “information
imbalance” from space A to space B as

∆(A→ B) = 2 lim
ε→0
〈cB | cA = ε〉, (1)

where we used the conditional expectation 〈cB | cA =
ε〉 =

∫
cB p(cB | cA = ε)dcB to characterize the devi-

ation of p(cB | cA = ε) from a delta function. In the
limit cases where the two spaces are equivalent or com-
pletely independent we have that 〈cB | cA = ε〉 = ε and
〈cB | cA = ε〉 = 1/2 respectively, so that the definition
provided in Eq. (1) statistically confines ∆ in the range
(0, 1). The information imbalance defined in Eq. (1) is
estimated on a dataset with N data points as

∆(A→ B) ≈ 2〈rB | rA = 1〉/N (2)

We remark that the conditional expectation used in
Eq. (1) is only one of the possible quantities that can be
used to characterize the deviation of the conditional cop-
ula distribution from a delta function. Another attractive
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option is the entropy of the distribution. In the Supple-
mentary Information (SI) (S1.3), we show how these two
quantities are related and we demonstrate that the spe-
cific choice does not substantially affect the results. In
the SI (S1.2), we also show how copula variables can be
used to connect the information imbalance to the stan-
dard information theoretic concept of mutual informa-
tion.

By measuring the information imbalances ∆(A → B)
and ∆(B → A), we can identify four classes of relation-
ships between the two spaces A and B. We can find
whether A and B are equivalent or independent, whether
they symmetrically share both independent and equiva-
lent information, or whether one space contains the in-
formation of the other. These relationships are presented
in Figure 2g. These relationships can be identified vi-
sually by plotting the two imbalances ∆(A → B) and
∆(B → A) against each other in a graph as done in
Figure 2h. We will refer to this kind of graphs as infor-
mation imbalance planes. In Figure 2h we present the
information imbalance plane of the 3-dimensional Gaus-
sian dataset discussed so far, and used for Figure 2a-f.
Looking at this figure, one can immediately verify that
the small variance along the z axis makes the two spaces
xyz and xy practically equivalent. Similarly, one can ver-
ify that space x is correctly identified to be contained in
xyz and that the two spaces x and y are classified as
orthogonal. The figure also includes a point correspond-
ing to a different dataset sampled from a 4-dimensional
isotropic Gaussian with dimensions x̃, ỹ, z̃ and w̃. This
point (black star) shows that the spaces x̃ỹz̃ and ỹz̃q̃ are
correctly identified as sharing symmetric information.

Importantly, the information imbalance only depends
on the local neighborhood of each point and, for this
reason, it is naturally suited to analyze data manifolds
which are arbitrarily nonlinear. In the SI (section 2.1),
we show that our approach is able to correctly identify
the best feature for describing a spiral of points wrapping
around one axis, and a sinusoidal function.

Identifying causal relationships in the spreading of
the Covid-19 epidemic

We now use the information imbalance measure to ver-
ify whether national policy measures have been useful in
containing the Covid-19 epidemic, and to identify which
measures have been the most effective. The “Covid-19
Data Hub” provides comprehensive and up to date in-
formation on the Covid-19 epidemic [21], including epi-
demiological indicators such as the number of confirmed
infections and the number of Covid-19 related deaths for
nations where this is available, as well as the policy in-
dicators that quantify the severity of the governmental
measures such as school and workplace closing, restric-
tions on gatherings and movements of people, testing
and contact tracing [22]. More details on the dataset
are available in the SI (S2.2.1).

We define the space of policy measures Pt as the set of
policy indicators at week t, and the state of the epidemic
Et′ as a two-dimensional space composed of the number
of weekly deaths Dt′ and the ratio Rt′ = Ct′/Tt′ of con-
firmed cases Ct′ over total number of tests performed Tt′
per week at time t′. Here we use a time lag (t′− t) of two
weeks, but the analysis is similar for time lags of one and
three weeks; these results are reported in the SI (S2.2.2).

What is the information imbalance ∆(Pt → Et′) be-
tween the space of policy measures indicators Pt at time
t and the space of epidemiological variables Et′ at a later
time t′ > t? A low value of ∆(Pt → Et) means that Pt
can predict Et′ . We first compute the information imbal-
ances between all possible combinations of d policy vari-
ables among a total of ten. In Figure 3a we present the
minimum information imbalance ∆(Pt → Et′) achievable
with any set of d policy measures.

For d ≤ 2, ∆(Pt → Et′) is close to one, indicating
that no single or couple of policy measure is predictive
about the state of the epidemic, consistently with [23].
When three or more policy measures are considered, the
information imbalance decreases rapidly reaching a value
of about 0.28 when almost all policy measures are con-
sidered. This sharp decrease and the low information
imbalance clearly indicate that policy measures do con-
tain information on the future state of the epidemic. As
a sanity check, a dummy policy variable was introduced
for this test (blue hexagon). This variable is never se-
lected by the algorithm, and its addition deteriorates the
information content of the policy space. We finally note
that the information imbalance ∆(Et+2 → Pt) (shown in
Figure 3b) remains considerably high for any number of
policy variables. This is a clear indication of the asymme-
try in the relationship between policy measures and state
of the epidemic, and of the sensitivity of the information
imbalance to causality and to the arrow of time.

Our analysis show that policy interventions have been
effective in containing the spreading of the Covid-19 epi-
demic, a result which has been already verified in a num-
ber of studies [23–26]. In accordance with these stud-
ies, we also find that multiple measures are necessary
to effectively contain the epidemic, with no single policy
being sufficient on its own [27], and that the impact of
policy measures increases monotonically with the num-
ber of measures put in place. We find that a small yet
effective set of policy measures has been the combina-
tion of testing, stay home restrictions and restrictions
on international movement and gatherings. While our
results are computed as averages over all nations consid-
ered, further analysis carried out in the SM (S2.2.3) on
disjointed subsets of nations give results which are consis-
tent with our main findings. In the SM (S2.2.4), we also
show that when building a model for predicting future
Covid-19 related deaths, one can optimally choose the
relative scale of heterogeneous epidemiological variables
using the information imbalance. This is important in
real-world applications, where features are often charac-
terized by different units of measure and different scales
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FIG. 3. Information imbalances between sets of policy variables Pt and the state of the epidemic after two weeks Et+2. a):
Minimum information imbalances from Pt to Et+2 achievable with a given number of policy measures. b): The corresponding
information imbalance plane with the number of policy variables going from 1 to 10 reported in the gray circles. Point 10 is
not visible as it lies below point 9. The figure shows that the policy measures space Pt can predict the state of the epidemic
Et+2, while Et+2 cannot predict Pt.

of variations.

Selection and compression of descriptors for
atomistic systems

We now show that the information imbalance criterion
can be used to assess the information content of com-
monly used numerical descriptors of the geometric ar-
rangement of atoms in materials and molecules, as well as
to compress the dimension (number of features) of a given
descriptor with minimal loss of information. Such atom-
istic descriptors are needed for applying any statistical
learning algorithm to problems in physics and chemistry
[28–32]. Example applications include the interpolation
of potential energy surfaces [33, 34], the prediction of
a variety of molecular and materials properties [35–37],
and visualization and exploration of atomistic databases
[38, 39].

We first consider a database consisting of an atomic
trajectory of amorphous silicon generated from a molec-
ular dynamics simulation at 500K (see S2.3.1 of the SM
for details). At each time step of this trajectory we select
a single local environment by including all the neighbor-
ing atoms within the cutoff radius of 4.5Å from a given
central atom. In this simple system, which does not un-
dergo any significant atomic rearrangement, one can de-
fine a fully informative distance measure as the minimum
over all rigid rotations of the root mean square deviation
(rmsd) of two local environments (details in S2.3.2 of the
SM).

In Figure 4a, this ground truth distance measure is
compared with some of the descriptors most commonly
used for materials modeling: the “Atom-centered Sym-
metry Functions” (ACSF) [33, 40], the “Smooth Over-
lap of Atomic Positions” (SOAP) [41, 42] and the 2 and
3-body kernels [43, 44]. Unsurprisingly, all descriptors
are contained in the ground truth distance measure. For
ACSF and SOAP representations, one can increase the

resolution by increasing the size of the descriptor in a sys-
tematic way, and we found that doing this allows both
representations to converge to the ground truth.

A SOAP descriptor typically involves a few hundred
components. Following a procedure similar to the one
used in the last section to select policy measures, we
use the information imbalance to efficiently compress this
high-dimensional vector with minimal loss of information
(more details are given in S2.3.3 of the SM). We perform
this compression for a complex database of local atomic
environments sampled from different phases of carbon
[45] [46]. As illustrated in Figure 4b and c, the selection
leads to a rapid decrease of the information imbalance,
and converge much more quickly than other strategies
such as random selection (blue squares) and standard se-
quential selection (green triangles). Figure 4d depicts the
test error of a potential energy model constructed using a
a state-of-the-art Gaussian process regression model [34]
(see S2.3.5 of the SM) on the compressed descriptors, as
a function of the size of the descriptors and for the differ-
ent compression strategies considered. Remarkably, the
graph shows that a very accurate model can be obtained
using only 16 out of the 324 original components of the
SOAP vector considered here [42]. In the SM (S2.3.6), we
present more details on the components selected by our
procedure, and show that they appear in an order that
can be understood considering the fundamental structure
of the SOAP descriptor.

Conclusions

In this work we introduce the information imbalance,
a new method to assess the relative information content
between two distance measures. The key property which
makes the information imbalance useful is its asymmetry:
it is different when computed using a distance A as a
reference and a distance B as a target, and when the
two distances are swapped. This allows distinguishing
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FIG. 4. Use of the information imbalance for the selection and compression atomistic descriptors. a): Information imbalances
between ground truth “rmsd” distance metric and standard atomistic descriptors. b): Information imbalances between a full
description and the most informative d-plet of components (d = 1, . . . , 4). c): Convergence of the “symmetric” information
imbalance with the number of components for three different compression strategies. The symmetric information imbalance
is defined as ∆̄(A,B) = [∆(A → B) + ∆(B → A)]/

√
2; more details can be found in the SM (S2.3.3). d): Force error on a

validation set of a machine learning potential energy model built on the compressed descriptors.

three classes of similarity between two distance measures:
a full equivalence, a partial but symmetric equivalence,
and an asymmetric equivalence, in which one of the two
distances is observed to contain the information of the
other.

The potential applications of the information imbal-
ance criterion are multifaceted. The most important one
is probably the long-standing and crucial problem of fea-
ture selection [11–13]. Low-dimensional models typically
allow for more robust predictions in supervised learning
tasks [2, 8]. Moreover, they are generally easier to in-
terpret and can be used for direct data visualization if
sufficiently low dimensional. We design feature selection
algorithm by selecting the subset of features which mini-
mizes the information imbalance with respect to a target
property, or to the original feature space.

As we have showcased, such algorithms can be “ex-
act” if the distances to be compared are relatively few
(as done for the Covid-19 database) or approximate, if
one has to compare a very large number of distances (as
done for the atomistic database). Such algorithms work
well even when in the presence of strong nonlinearities
and correlations within the feature space. This is exem-
plified by the analysis of the Covid-19 dataset, where 4
policy measures which appear similarly irrelevant when
taken singularly, were instead identified as maximally in-
formative when taken together with regards to the future
state of the epidemic.
Other applications include dimensionality reduction, as
the information imbalance could be used directly as an
objective function. Admittedly such function will in gen-
eral be non differentiable and highly non-linear but, in
spite of this, efficient optimization algorithms could be

developed exploiting recent results on the computation
of approximate derivatives for sorting and ranking oper-
ations [47].
Another potentially fruitful line of research would be ex-
ploiting the information imbalance to optimize the per-
formance of deep neural networks. For example, in SM
(S2.3.7), we show that one can reduce the size of the in-
put layer of a neural network that predicts the energy of a
material, yielding more computationally efficient and ro-
bust predictions. However, one can imagine to go much
further, and compare distance measures built using the
representations in different hidden layers, or in different
architectures. This could allow for designing maximally
informative and maximally compact neural network ar-
chitectures. We finally envision potential applications of
the proposed method in the study of causal relationships:
we have seen that in the Covid-19 database the use of in-
formation imbalance makes it possible to distinguish the
future from the past, as the former contains information
about the latter, but not vice-versa. We believe that this
empirical observation can be made robust by dedicated
theoretical investigations, and used in practical applica-
tions in other branches of science.
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