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Optimal age-specific vaccination control for
COVID-19
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Abstract The outbreak of a novel coronavirus causing severe acute respira-
tory syndrome in December 2019 has escalated into a worldwide pandemic.
In this work, we propose a compartmental model to describe the dynamics of
transmission of infection and use it to obtain the optimal vaccination control.
The model accounts for the various stages of the vaccination and the optimi-
sation is focused on minimising the infections to protect the population and
relieve the healthcare system. As a case study we selected the Republic of
Ireland. We use data provided by Ireland’s COVID-19 Data-Hub and simulate
the evolution of the pandemic with and without the vaccination in place for
two different scenarios, one representative of a national lockdown situation and
the other indicating looser restrictions in place. One of the main findings of
our work is that the optimal approach would involve a vaccination programme
where the older population is vaccinated in larger numbers earlier while si-
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multaneously part of the younger population also gets vaccinated to lower the
risk of transmission between groups.

Keywords COVID-19 · Vaccination · Compartmental model · Optimal
control
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1 Introduction

In late 2019, an outbreak of pneumonia of unknown cause was reported in
the city of Wuhan in the Hubei province of China [30,12,60,41,23,57,38]. The
virus was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) by the World Health Organisation [10] and the disease that it causes is
referred to as COVID-19 [9]. The disease quickly became a source of interna-
tional worry as it spread around China with most countries around the world
following [31]. By March 2020 most countries in the world had confirmed cases
of COVID-19, including the Republic of Ireland, where the first confirmed case
was on February 29th 2020 [2], the same day that WHO raised the risk warn-
ing for the virus to “very high” [3]. In the absence of an effective treatment or
a vaccine, governments worldwide started implementing protective measures
with most of them announcing a national lockdown to try and control the
spread of the virus and reduce the strain on their healthcare systems. In Ire-
land, the first restrictive measures and social distancing guidelines were first
announced on March 12th 2020 and were initially intended to last until March
29th. While countries tried to control the virus and protect their citizens, the
scientific community committed to coming up with an effective vaccine to put
an end to the pandemic. At the same time, researchers dedicated themselves to
study, model and predict the evolution of the pandemic as well as investigate
non-pharmaceutical intervention methods to control the spread of the virus
[50,39,59,58,40,55,34,25,29,28,42,45,47].

On November 9th 2020 Pfizer and BioNTech [11,51] announced a vaccine
candidate that successfully completed the clinical trials and is 90% effective
in preventing infection from the virus. Shortly after, two more vaccines were
announced, namely the one by Moderna [16] and the one by AstraZeneca
[56]. All three vaccines got approved by the European Union [1,6,4] with a
fourth vaccine getting granted a conditional marketing authorisation in March
2021, namely the one by Johnson & Johnson/Janssen [5]. Worldwide, different
states have made different decisions regarding available vaccines, as there are
more vaccines available. However, all of them are based on preliminary data
rather than full approval process. Since the start of 2021, a vaccination roll-
out commenced in most countries, including Ireland, taking into account the
number of available vaccines and the level of risk different groups of people
are considered to be in. Given this situation, a need that naturally arises is
that of a way to determine the optimal vaccination strategy especially given
that the resources to reduce the severity of the pandemic are limited [13,53].
This idea was the main motivation for our study.

Modelling, predicting and controlling the behaviour of epidemics has been
a widely studied area [37,17]. A very prominent example is the pandemic
influenza, a virus that caused an outbreak of severe pneumonia in 2009, com-
monly known as “swine-flu” [24]. A number of models were developed to eval-
uate the implementation of mitigation strategies [20,49,26,35], with a great
focus on optimising these strategies.
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In this work, we introduce a new model that describes the transmission
dynamics of the virus among different groups of the population in a more
complete way compared to the well known SEIR model [50,15,43,14] which is
commonly used in the study of epidemics. The novelty of our approach lies in
the introduction of new compartments to the model accounting for stages of
the vaccination process as well as two different age groups. Using this model as
our baseline, we explore a way to determine the optimal vaccination strategy,
applying optimal control theory methods [27,48,32,19]. Using these tools, we
studied the evolution of the pandemic in the Republic of Ireland, starting
from January 2021, using data provided by Ireland’s COVID-19 Data-Hub
[7]. We obtained the optimal vaccination strategy based on estimates of the
initial conditions, which is similar to the course of action taken by the state.
However, we find that it is beneficial to start vaccinating people under the age
of 65 in parallel with people in older age groups but in smaller numbers, as
opposed to exclusively vaccinating the older population first.

In Section 2 we introduce our model and express it as a system of ordinary
differential equations. In Section 3 we use optimal control theory techniques
to obtain the optimal vaccination strategy, given our model. In Section 4 we
produce two sets of simulations to compare the evolution of the pandemic with
and without the vaccination strategy in place, under strict and loose restric-
tions. Finally, in Section 5 we discuss our findings, the possible drawbacks of
our method and extensions to our approach that are worth exploring.

2 Model

The model most commonly used in the study of epidemics was first introduced
by M’Kendrick in [43,14] and is known as the SIR model. This model suggests
that every member of a population can be considered to belong in one of the
three compartments: Susceptible (S), Infectious (I) or Recovered (R). In the
study of COVID-19, an extra compartment is usually added to the SIR model,
namely the Exposed (E) compartment, consisting of the people who have been
in contact with the virus yet have not developed any symptoms. This is known
as the SEIR model [50]. All compartments can be indexed by time (t), as they
are expressing the number of individuals in each compartment for each moment
in time. In a closed population with no births and no deaths, the model can
be expressed as a system of ordinary differential equations as follows:
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dSt
dt

= −βIt
N
St

dEt
dt

=
βIt
N
St − σEt

dIt
dt

= σEt − γIt
dRt
dt

= γIt

where N = St +Et + It +Rt and it is constant since we are dealing with a
closed population. β is the infectious rate, which expresses the probability that
a susceptible person gets infected by an infectious person, σ is the incubation
rate, meaning the rate at which an exposed individual becomes infectious and
γ is the recovery rate calculated as the inverse of the average time of infection.

In this study we use a model that takes the idea of the SEIR model one step
further, with additional compartments related to whether an individual has
been vaccinated and whether the vaccination was effective, hence protecting
the individual. The new set of states consists of the following: Susceptible
not yet vaccinated (S); Received the vaccine; waiting for it to take effect (V);
Received vaccine but it was not effective (N); Susceptible, refusing or unable
to receive the vaccine (U); Exposed, infectious but still asymptomatic (E);
Infectious symptomatic (I); Recovered or deceased (R); Protected from vaccine
(P).

A full table of the notation used throughout the paper can be found in A. In
addition, we assume that a susceptible individual may get infected by exposed
as well as infectious individuals. Furthermore, we consider two different age
groups, those over 65 years old and those younger than 65. The reasons for
this distinction can be found in [44], the main ones being that 80% of the
hospitalised individuals are over the age of 65 and this age group has 23 times
higher risk of death compared to those under 65. This results in two identical
models, one for the younger population and one for the older which allows for
the introduction of different parameters to account for the way the virus affects
people of different ages. Fig. 1 is a depiction of our model for an individual age
cohort (for brevity we do not show the full model configuration). The state
configuration is exactly the same in both cases with the difference being in the
transition rates from one state to the other.

We distinguish the states of the two models by adding an O or a Y as
an subscript to the state name to indicate the older or younger than 65 age
group respectively e.g. SO, VY etc. Since the states are time dependent, we can
write them in function notation e.g. SO(t), VY (t), however, for brevity, we will
omit the (t) in the equations that follow. We also use the notation TO, TY to
indicate the total number of people in each age group which is assumed to not
be time dependent. The two populations influence each other in the sense that
a susceptible person in any of the two groups may be infected by an exposed
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Fig. 1: Vaccination Compartmental model
The model compartments (states) are indicated by the coloured circles. Blue indicates states
at which one might get infected by an exposed or infectious person and green indicates the
states at which a person is considered to be safe from infection. The parameters describing
the transmission rates are indicated on the arcs between the states. The models for the
over and under 65 populations (indicated by O and Y subscripts) are identical with the only
differences being the age specific control functions uO(t), uY (t) which express the percentage
of the susceptible population to be vaccinated at each time point, and the rates of infection

from an exposed or infectious individual BO =
βOO(EO(t)+IO(t))

TO
+
βY O(EY (t)+IY (t))

TY
and

BY =
βOY (EO(t)+IO(t))

TO
+
βY Y (EY (t)+IY (t))

TY
.

or infectious person from either group. For brevity, we will indicate the older
than 65 age group as o65 and the younger than 65 age group as y65. We will
be using upper case Roman characters to indicate the model states and lower
case Greek characters to indicate model parameters.

The model is expressed as a system of ordinary differential equations
(ODEs), each of them describing the evolution through time of one of the
states. The ODEs describing the dynamics of our model are given by:

dSO
dt

= −
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
SO − uOSO

dSY
dt

= −
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
SY − uY SY

dVO
dt

= uOSO −
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
VO

−(1− αV )γV VO − γV αV VO
dVY
dt

= uY SY −
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
VY

−(1− αV )γV VY − γV αV VY
dNO
dt

= (1− αV )γV VO −
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
NO



Optimal age-specific vaccination control for COVID-19 7

dNY
dt

= (1− αV )γV VY −
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
NY

dUO
dt

= −
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
UO

dUY
dt

= −
(
βOY · (EO + IO)

TO
+
βY Y · (EY + IY )

TY

)
UY

dEO
dt

=

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
(SO + VO +NO + UO)

−γEEO
dEY
dt

=

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
(SY + VY +NY + UY )

−γEEY
dIO
dt

= γEEO − γIIO
dIY
dt

= γEEY − γIIY
dRO
dt

= γIIO

dRY
dt

= γIIY

dPO
dt

= γV αV · VO
dPY
dt

= γV αV · VY (1)

where TO, TY denote the total number of people in the over and under
65 years old populations respectively. These populations are divided in those
willing and those unwilling to get vaccinated (SO, SY , UO, UY ). This division
happens based on estimates of the percentages of people who refuse the vaccine
in each age group. The only option for individuals in the U compartments,
apart from staying there if the pandemic ends early, is to eventually get infected
and be moved to the exposed compartments E.

The terms uO, uY are the control functions and represent the percentage
of the old and young population respectively to be vaccinated at each time
point, which means that they are also time dependent. Each control function
is applied to the respective susceptible population (SO, SY ), moving that per-
centage of the population to the respective vaccinated compartment (VO, VY ).
The optimal values for uO, uY are obtained through the application of the
Optimal Control techniques [27,46] discussed in the next section. Any person
in the states (S, V, U,N) is considered susceptible to getting infected by an
infectious or exposed person (E, I). That is because they are either not yet
chosen for vaccination, they received the vaccine and are waiting for it to take
effect, they received the vaccine and it was ineffective, or they chose not to get
vaccinated. The terms βij , i, j ∈ {O, Y } describe the transmission rates of the
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infection between the age groups and they are analogous to the β parameter
in the standard SEIR model. Specifically:

– βOO = rate at which an o65 susceptible person becomes infected by an o65
exposed or o65 infected person

– βY O = rate at which an o65 susceptible person becomes infected by an y65
exposed or y65 infected person

– βOY = rate at which a y65 susceptible person becomes infected by an o65
exposed or o65 infected person

– βY Y = rate at which a y65 susceptible person becomes infected by an y65
exposed or y65 infected person

There are three rates taken into consideration in the model, the first being
γE which is the rate at which an exposed person becomes symptomatic. This
rate can be calculated as the inverse of the mean holding time to develop
symptoms and become infectious. The next rate is γI which is the rate at
which an infectious person recovers and can be calculated as the inverse of
the mean time to recovery. The final rate considered in the model is γV which
is the rate at which vaccination becomes effective and can be calculated as
the inverse of the mean holding time until protected from the vaccine. The
last parameter influencing the model is αV which is the vaccine effectiveness.
This is expressed as the percentage of people who become protected from the
vaccine, out of those who have received it.

3 Optimal control

Optimal control theory [27,46,32] is the study of strategies to obtain the con-
trol function that optimises a certain objective. These type of techniques has
been widely adopted to biological systems in general [37] but also more specif-
ically to obtain optimal strategies when dealing with viruses and epidemics
[18,35,54,33]. More specifically, Pontryagin’s Maximum Principle [52,19] is
the main tool that is used when dealing with a problem whose dynamics are
described by a set of Ordinary Differential Equations.

An optimisation problem can be expressed as the problem of minimising
an objective (cost) functional under certain constraints. Let f(t, x, u) denote
the objective functional. Also, let g(t, x, u) denote the state equation (or set
of state equations) of our system. Using f and g we can form a Hamiltonian
function [32,48] as follows:

H(t, x, u, λ) = f(t, x, u) + λ(t, x, u)g(t, x, u)

where λ is a continuous function of time(t), state(x) and control (u(t))
similarly to f and g. For simplicity, we will write λ(t, x, u) as just λ in the
expressions that follow. The following theorem describes the main conditions
that when satisfied can lead us to the optimal control that solves the minimi-
sation problem.
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Theorem 1 (Pontryagin’s maximum principle) Given the Hamiltonian

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u),

then the following conditions are satisfied by the optimal control u∗:

∂H

∂u
= 0 at u∗ Optimality Condition

λ̇ = −∂H
∂x

Adjoint Equation

λ(T ) = 0 Transversality Condition

ẋ = g(t, x, u), x(0) = x0 Dynamics of state equation

where λ̇ = ∂λ/∂t and ẋ = ∂x/∂t.

Applying all the above ideas to the COVID-19 control problem and our
specific model, we can express the goal of our optimisation as the minimisation
of the number of infectious individuals, at a minimal cost via vaccination,
within a certain time frame [0, T ]. That goal can be expressed with the help
the following objective functional to be minimised:

F (U(t)) =

∫ T

0

[
IO(t) + IY (t) +

WO

2
u2O(t) +

WY

2
u2Y (t)

]
dt (2)

where U(t) = (uO(t), uY (t)) and WO,WY ≥ 0 are the age specific weight
constants enforcing the severity of the optimisation constraints. This type of
choice in objective functional is common in optimal control applications [35,
54,32]. The control functions are squared in order to ensure the convexity of
the functional, making the optimisation feasible. Consider X(t) = ( SO(t),
VO(t), NO(t), UO(t), EO(t), IO(t), RO(t), PO(t), SY (t), VY (t), NY (t), UY (t),
EY (t), IY (t), RY (t), PY (t) ). We are looking for the optimal pair of solutions
(U∗(t), X∗(t)), i.e. the optimal control U∗ and the corresponding trajectory
X∗ when U∗ is applied, such that

F(U∗(t)) = min
Ω
F(U(t)) (3)

where Ω =
{
U(t) ∈ L2(O, T )2‖a ≤ uO(t), uY (t) ≤ b, t ∈ [0, T ]

}
, a and b

are the upper and lower bounds for the control function and can usually be
expressed as real values, and T is the time horizon for our optimisation.

There are a few different approaches that can be taken in defining the
constraint optimisation problem and are worth mentioning. We can include
weighting factors to the infectious compartments (IO, IY ) in the objective
functional F that correspond to the mortality rates for each age group or more
factors that generally model the cost that large number of infections can have
in the healthcare system. Additionally, when it comes to bounding the control
functions, we can chose a constraint of the form a ≤ uO(t) + uY (t) ≤ b which
can be interpreted as the total percentage of vaccinations being bounded as
opposed to bounding them per age group. This kind of constraint would result
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in an extra term in the objective functional and the Hamiltonian function
having the form λ · (uO + uY ).

In order to apply the maximum principle we first need to define the Hamil-
tonian function, omitting for brevity the (t) from the state notation:

H =

[
IO + IY +

WO

2
u2O +

WY

2
u2Y

]
+ λSO

{
−
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
SO − uOSO

}
+ λSY

{
−
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
SY − uY SY

}
+ λVO

{
uOSO −

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
VO − γV VO

−αV VO}

+ λVY

{
uY SY −

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
VY − γV VY

−αV VY }

+ λNO

{
γV VO −

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
NO

}
+ λNY

{
γV VY −

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
NY

}
− λUO

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
UO

− λUY

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
UY

+ λEO

{(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
(SO + VO +NO + UO)

−γEEO}

+ λEY

{(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
(SY + VY +NY + UY )

−γEEY }
+ λIO {γEEO − γIIO}
+ λIY {γEEY − γIIY }

where Λ := { λSO
, λSY

, λVO
, λVY

, λNO
, λNY

, λUO
, λUY

, λEO
, λEY

, λIO , λIY }
is a set of continuous functions of time (Λ(t)), given the states and controls.
These functions have a key role in our optimisation technique.

Applying each of the conditions of the maximum principle (1) we obtain
the following:

– Optimality condition: ∂H/∂uO = 0 and ∂H/∂uY = 0



Optimal age-specific vaccination control for COVID-19 11

Which gives us the following equations for the optimal control functions:

u∗O(t) =
SO(t)

WO
(λSO

(t)− λVO
(t)) (4)

u∗Y (t) =
SY (t)

WY
(λSY

(t)− λVY
(t)) (5)

– Adjoint Equation: Λ̇ = −∂H/∂X which results in the following system of
ODEs:

λ̇SO
=

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY
+ uO

)
λSO
− uOλVO

−
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
λEO

λ̇SY
=

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY
+ uY

)
λSY
− uY λVY

−
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
λEY

λ̇VO
=

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY
+ γV

)
λVO
− (1− αV )γV λNO

−
(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
λEO

λ̇VY
=

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY
+ γV

)
λVY
− (1− αV )γV λNY

−
(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
λEY

λ̇NO
=

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
(λNO

− λEO
)

λ̇NY
=

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
(λNY

− λEY
)

λ̇UO
=

(
βOO(EO + IO)

TO
+
βY O(EY + IY )

TY

)
(λUO

− λEO
)

λ̇UY
=

(
βOY (EO + IO)

TO
+
βY Y (EY + IY )

TY

)
(λUY

− λEY
)

λ̇EO
=
βOOSO
TO

(λSO
− λEO

) +
βOOVO
TO

(λVO
− λEO

)

+
βOONO
TO

(λNO
− λEO

) +
βOOUO
TO

(λUO
− λEO

)

+
βOY SY
TO

(λSY
− λEY

) +
βOY Y Vt
TO

(λVY
− λEY

)
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+
βOYNY
TO

(λNY
− λEY

) +
βOY UY
TO

(λUY
− λEY

)

+ γEλEO
− γEλIO

λ̇EY
=
βY OSO
TY

(λSO
− λEO

) +
βY OVO
TY

(λVO
− λEO

)

+
βY ONO
TY

(λNO
− λEO

) +
βY OUO
TY

(λUO
− λEO

)

+
βY Y SY
TY

(λSY
− λEY

) +
βY Y VY
TY

(λVY
− λEY

)

+
βY YNY
TY

(λNY
− λEY

) +
βY Y UY
TY

(λUY
− λEY

)

+ γEλEY
− γEλIY

λ̇IO =
βOOSO
TO

(λSO
− λEO

) +
βOOVO
TO

(λVO
− λEO

)

+
βOONO
TO

(λNO
− λEO

) +
βOOUO
TO

(λUO
− λEO

)

+
βOY SY
TY

(λSY
− λEY

) +
βOY VY
TO

(λVY
− λEY

)

+
βOYNY
TO

(λNY
− λEY

) +
βOY UY
TO

(λUY
− λEY

)

+ γIλIO − 1

λ̇IY =
βY OSO
TY

(λSO
− λEO

) +
βY OVO
TY

(λVO
− λEO

)

+
βY ONO
TY

(λNO
− λEO

) +
βY OUO
TY

(λUO
− λEO

)

+
βY Y SY
TY

(λSY
− λEY

) +
βY Y VY
TY

(λVY
− λEY

)

+
βY YNY
TY

(λNY
− λEY

) +
βY Y UY
TY

(λUY
− λEY

)

+ γIλIY − 1

where λ̇ denotes ∂λ/∂t

– The transversality condition: Λ(T ) = 0 gives us a terminal condition for
the system of adjoint ODEs. This condition implies that the adjoint system
should be solved backwards [21] as opposed to the state system.

– The dynamics of the system are described by the system of state equations
(1).

Having obtained all the necessary conditions and equations, Algorithm 1
describes the steps that when followed lead to the optimal control and trajec-
tory.
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Algorithm 1: Determining the optimal control
Result: Optimal control and trajectory U∗, X∗

Input: Initial state x0, Parameter values, Time horizon, Initial control,
Convergence threshold δ

1 Solve the system of state ODEs forwards in time to determine the state;
2 Solve the system of adjoint ODEs backwards in time;
3 Update the controls using (4) and (5) ;

4 Compute the error term
‖xk−xk−1‖1
‖xk−1‖1

;

5 If the error term is smaller than some predetermined threshold δ then extract the
optimal control and optimal trajectory. Otherwise repeat the process until
convergence.

4 Simulation Setup and Results

We used our model to estimate the evolution of the virus in the Republic of
Ireland, starting from January 2021 using data provided by [7] regarding the
population of the country, the number of exposed, infected and recovered peo-
ple in both age groups. Additionally, we applied the optimal control strategy
on the same data to obtain the effect that the vaccination would have on the
evolution of the pandemic.

Table 1 includes the initial values of the states EO, IO, RO, EY , IY , RY .
The rest of the states can be calculated with the use of this information and
some of the parameter values. The total susceptible people in each age group
are the people not yet vaccinated along with the people refusing or unable
to receive the vaccine (S := S + U). This total of susceptibles for each age
group can be calculated by: S = T − (E+ I +R). The separation between not
yet vaccinated (S) and unwilling to get vaccinated (U) can be expressed as a
percentage for each population, representing the refusal rate for the vaccine.
Let rO and rY be these percentages in the over 65 and under 65 populations
respectively. Then SY = (1− rY )S, UY = rY S, SO = (1− rO)S, UO = rOS.

State (Compartment) Number of people
Total y65 (TY ) 4000000
Total o65 (TO) 900000
Y65 exposed (EY ) 2000
O65 exposed (EO) 200
Y65 infected (IY ) 2000
O65 infected (IO) 200
Y65 recovered (RY ) 200000
O65 recovered (RO) 100000

Table 1: Initial values for the model states

We produce two different simulations, to study the evolution of the pan-
demic, following the steps described in Algorithm 1. In the first case we assume
strict measures are in place, meaning that the transmission rates of the virus
among individuals is low. In the second case we assume minimal restrictions
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are in place, hence the transmission rates are much higher. The parameters
used in both simulations are listed in Table 2.

Parameter Description Symbol Case 1 Case 2
Mean no of o65 infected by an o65 R0OO 1.2 8
Mean no of y65 infected by a y65 R0Y Y 1.2 8
Mean no of y65 infected by an o65 R0OY 0.9 4
Mean no of o65 infected by a y65 R0Y O 0.9 3
Mean holding time exposed in days tE 6.6
Mean holding time infected in days tI 7.4
Mean holding time vaccinated in days tV 14
Vaccine effectiveness αV 0.9
Upper bound for control function b 0.3
Percentage of o65 people refusing the vaccine rO 0.07
Percentage of y65 people refusing the vaccine rY 0.21
Weight constant relating to o65 group WO 1011

Weight constant relating to y65 group WY 1011

Table 2: Parameter values for both simulations. The mean numbers of infec-
tions from each infected person within each age group and between age groups
vary for the two simulations, while for the rest of the parameters we used the
same values. Case 1 is representative of a situation where strict measures are
in place and the results of the simulation can be found subsection 4.1. Case
2 is an example of a situation with minimal restrictions and is explored in
subsection 4.2.

The three parameters tE , tI , tV , describe the mean holding times in each of
the states E, I and V. They are the inverses of the rates we have in our model
(1), namely γE , γI , γV . Also, particularly interesting are the four RO parame-
ters, that are related to how quickly the infection is transmitted between the
members of the entire population. More specifically, these parameters are di-
rectly related to the terms βij in our model which describe the transmission
rates, with the help of the three mean holding times:

βOO =
R0OO

tE + tI + tV
, βY O =

R0Y O
tE + tI + tV

,

βOY =
R0OY

tE + tI + tV
, βY Y =

R0Y Y
tE + tI + tV

Two different sets of R0 numbers are used to produce our two simulations
and give an insight to the evolution of the pandemic under different levels of
restrictions.

The values we use for the parameters are estimates specific to COVID-19
(mean holding times) [22], or based on estimates used in similar studies of
other infectious diseases such as (weight constants) [35]. The upper bound for
the control function (b) is chosen arbitrarily, however it is not a value that is
ever obtained for either control function, thanks to the high weight constants
used in the objective functional that model the cost of the vaccination and the
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severity of the constraints. An alternative approach would be for b to bound
the sum of the control functions as opposed to each of them individually.
The weight constants WO,WY are chosen to be equal because we assume no
difference in the cost of providing the vaccination to people in different age
groups. However, the two groups can be weighed differently, explaining the
cost of bringing the vaccination to remote locations, nursing homes etc. The
refusal percentages for both age groups (rO, rY ) we used are based on a survey
[8], the results of which suggest that 77% of the overall population of Ireland
are willing to receive the vaccine and the the willingness is stronger in the
over 65 population, with 93% of the group intending to get vaccinated. We
included the percentage of people unsure about the vaccination (15% overall)
in the refusal percentage (6%) along with the people who claimed to already
be against receiving the vaccination. Finally, as we mentioned in section 3, it
is possible for one more set of parameters to be included in our model and
more specifically the optimisation function, weighing the number of infectious
individuals by the mortality rate for each age group.

4.1 Evolution of pandemic under tight restrictions

We simulate the evolution of the pandemic using the initial state values given
in Table 1 and the parameter values given in Table 2. Specifically, the R0
numbers we use are given in the column named Case 1 and are an example
of the way the virus is evolving under a strict restriction policy. In that case,
the average number of infections within each age group is 1.2 and between age
groups 0.9.

Fig. 2 shows the difference between the evolution of the pandemic when
there is no control in place and when the optimal control is applied. Due to
the transmission rates being quite low, the increase in the number of infectious
individuals will not be particularly evident, especially when the vaccination is
applied. For that reason we represented the same information also on the log
scale in Fig. 3 to give a clearer picture of the difference an optimal vaccination
strategy makes to the evolution of the pandemic. In the case where no control
is applied there is a peak in the number of infectious individuals in both age
groups and as a result, the number of susceptible people drops fast with the
pandemic ending in a very short period of time, namely less than 250 days,
with the greatest part of the population having been infected. Specifically,
80% of the population over 65 (720,249) and 79% of the population under
65 (3,159,510) gets infected by the virus until the end of the pandemic. That
means that around 79% of the total population of the country (3,879,759) will
get infected by the virus when no vaccination strategy is in place.

On the other hand, when the optimal vaccination strategy is applied, the
infectious curve is flattened to the point where it becomes nearly indistinguish-
able from the horizontal axis. This means that the number of people to become
infected by the virus is substantially reduced as a result of the protection pro-
vided by the vaccine. In particular, only 11.3% (101,764) and 5.38% (215,132)
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Fig. 2: Evolution of the pandemic with and without vaccination under strict
measures. In the case where no vaccination policy is in place, there is an
early peak for the infectious individuals in both age groups (red and turquoise
curves). In the second graph the peaks are almost indistinguishable. This is
due to the vaccination reducing both the total and the maximum number of
infections that take place, hence flattening the curve. The number of suscep-
tible people (pink and blue curves) in both age groups declines fast in the
first graph, due to most of them getting infected, while in the second case the
decline is much slower, as many individuals are getting vaccinated and thus
protected from infection.

of the over and under 65 years old groups respectively will get infected by the
virus, resulting in a total 6.47% of the population (316,896). This is achieved
thanks to the 70.58% (635,187) and 17.08% (683,044) of the over 65 and un-
der 65 populations respectively receiving the vaccine and being successfully
protected by it. In total, that is 26.9% of the population (1,318,231) being
successfully vaccinated.

The difference that the control function makes to the number of infectious
individuals (in the log scale) can be more clearly seen in Fig. 4. For both age
groups, the curve is substantially flattened as a result of the vaccination. This
is a visual representation of the reduction in the total number of infections
and also showcases the fact that less people will be infected at the same time,
causing less stress on the healthcare system.

The optimal vaccination strategy for each age group, i.e., the control func-
tions that resulted from the optimisation technique described in section 3 can
be seen in Fig. 5. As expected, close to the start of our simulations, a high
percentage of the susceptible population gets vaccinated to quickly get the
pandemic under control, and then that percentage continuously declines. It is
interesting to note how the o65 population gets vaccinated earlier and with
higher percentages while the vaccination of the younger population is happen-
ing slower, with smaller percentages every day, and goes on after the pandemic
is over as can be seen in Fig. 5. This is also evident in the percentages of the
people in each age group that get vaccinated by the end of the simulation, with
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Fig. 3: Evolution of the pandemic with and without vaccination under strict
measures. The graphs are produced in vertical log scale to give a clearer view of
the peaks. In the first graph there are clear peaks in the number of infectious
individuals in both age groups while in the second, the curves are clearly
flattened thanks to the vaccination.
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(a) Evolution of infectious in over 65
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Fig. 4: Comparison of baseline curves (without vaccine) with optimal vaccina-
tion strategy curves for the infectious populations in both age groups under
strict measures. The vertical scale is in log units. The vaccination successfully
flattens the curve in both cases, resulting in fewer infections overall as well as
fewer simultaneous infections.

70.58% and 17.08% for the over and under 65 groups respectively, as described
earlier.

It is worth noting that the parameter setup used for this simulation is
indicative of a national lockdown situation, which is an unrealistic scenario for
this length of time. For this reason, we looked into a second parameter setup,
discussed in the next section.
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Fig. 5: Optimal control functions for both age groups. 5a presents both control
functions on a vertical log scale. The o65 group gets vaccinated faster and in
higher percentages, while the vaccination of the y65 group commences but
proceeds slower and continues after the pandemic is under control.

4.2 Evolution of pandemic under loose restrictions

We now simulate the evolution of the pandemic in Ireland, using the same
initial conditions for the states as defined in Table 1. We are interested in
investigating the effect a different choice of parameters, specifically different
R0 numbers, would have on our results. We are looking into values that are
indicative of an extreme scenario where the measures in place are not strict or
even non existent and each infected individual can infect multiple individuals
before recovering. The column titled Case 2 in Table 2 consists of values chosen
for the parameters, while the rest of the parameters remain the same as in
subsection 4.1.

When no vaccination policy is in place, the curves of infectious individuals
in both age groups present a very high peak due to the high transmission
rates as can be seen in Figures 6 and 7. This peak is indicative of a period
of time where a very large number of people are infected at the same time, a
situation that would cause a huge strain on the country’s healthcare system.
The percentages of people that get infected in the over and under 65 group
respectively are 99.995% (899,954) and 99.993% (3,999,713), resulting in a
total 99.993% (4,899,667) of the population. This means that nearly every
single resident of the country will get infected by the virus in a very short
period of time, while at the same time paralysing the healthcare system.

That curve gets flattened, with a lower peak and greater spread, thanks
to the optimal control functions, i.e. the optimal vaccination strategy. This
would offer some relief to the healthcare system, as not all infections will
be active at the same time. The percentages of people that get infected in
the over and under 65 group respectively are 85.29% (767,614) and 99.1%
(3,965,963), resulting in a total 96.6% of the population (4,733,577). These
percentages, though reduced, are still very high and that is due to the fact that
the chosen transmission rates are so high. For the same reason the percentages
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of the people that get successfully protected from the vaccine are relatively
low, namely 14.2% (127,871) and 0.1% (3,861) for the over 65 and under 65
groups respectively, meaning a total 2.7% of the population (131,732) will be
successfully vaccinated. There is an additional reason to why these percentages
are so low. From the moment an individual receives the vaccine, there is a
period equal to the mean holding time vaccinated (tV ) during which the person
may still get infected. Due to the high transmission rates, a lot of vaccinated
individuals will get infected, hence not making it to the protected state.

A side by side presentation of the evolution of the pandemic with and
without vaccination is given in Fig. 6 and a comparison of the optimised with
the baseline curves for the infectious populations in each age group are given
in Fig. 7.
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Fig. 6: Evolution of the pandemic with an without vaccination under loose
measures. Without a vaccination policy in place, the curve of infectious indi-
viduals presents an earlier and higher peak as opposed to the case where the
vaccination strategy is applied and the curve is flattened.

Fig. 8 shows the optimal control functions that can be obtained as the
solution to our optimisation problem. Similar to the previous simulations, the
control function curves present a peak at first, indicating a high percentage
of the population being chosen for vaccination early on and that percentage
getting reduced as time progresses.

5 Discussion

Since the end of February 2020, the Republic of Ireland has been affected by
the COVID-19 pandemic, like most countries in the world. For the greater
part of the year no effective treatment or vaccine was present, leaving the
government with one tool to attempt to flatten the curve of infection: the
application of various levels of restrictions, depending on the occurrence of
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Fig. 7: Comparison of baseline curves (without vaccine) with optimal vaccina-
tion strategy curves for the infectious populations in both age groups under
loose restrictions.
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Fig. 8: Optimal control functions for both age groups. 8a presents both control
functions in log scale.

new daily cases. In light of the vaccines that became available near the end of
2021, a need arose for efficient vaccination plans based on the availability of
the vaccines and the risk levels of different groups of the population.

In this work, we introduced a novel compartmental model which more ade-
quately describes the dynamics of the virus compared to the approaches taken
thus far in the literature. We added compartments representing the stages of
infection and vaccination, and assumed two different age groups sharing the
same model structure. Using this model as a baseline to describe the evolution
of the pandemic in the Republic of Ireland, we applied Optimal Control meth-
ods to obtain a suggested vaccination strategy that minimises the number of
infections under certain restrictions such as the available vaccines. We simu-
lated the evolution of the pandemic with and without the vaccination strategy
in place for two different scenarios, indicative of strict and loose restrictions
respectively. The main conclusions we drew were:
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1. The optimal control strategy in both scenarios successfully flattens the
curve of infectious individuals, ensuring that less people will get infected
by the virus due to protection from the vaccine and, most importantly,
that less people will be simultaneously infected thus avoiding exhausting
the national healthcare system.

2. In the case of low transmission rates, the vaccination not only flattens
the curve but also significantly reduces the total number of infections,
specifically from 80% to 11.3% for the over 65 group and from 79% to 5.38%
for the under 65 group. However, the pandemic lasts a long time, meaning
that a big part of the population remains in the susceptible compartment,
not yet vaccinated but also not infected due to the low transmission rates,
as opposed to being moved to the protected or recovered compartments.

3. When the transmission rates are high however, the vaccination reduces the
number of infections by a much smaller percentage, namely from 99.995%
to 85.29% for the over 65 group and from 99.993% to 99.1% for the under
65 group. However it still succeeds in flattening the curve and ensuring less
simultaneous infections, hence preventing a healthcare crisis. The pandemic
in this case ends in a very short period of time with the biggest part of the
population having been infected and eventually recovered.

4. For both scenarios, the optimal strategy suggests focusing on vaccinating
the older population in higher percentages first, while simultaneously vac-
cinating part of the younger population. This is a different approach to the
one taken by many states, including Ireland, where the older population
gets exclusively vaccinated first.

All of the above lead us to conclude that an approach involving a combination
of strict and loose measures would be ideal, while the vaccination programme
is taking place. That would ensure that the infection doesn’t spread to such
a high percentage of the population while the restrictions are not as severe so
as to make the situation unbearable for a certain length of time.

While our approach led us to a lot of interesting conclusions, there are
certain drawbacks to it. Our model assumes that all of the parameters remain
constant for the duration of the simulations which is not a realistic assump-
tion. For example the transmission rates, which were the source of the vastly
different results in our two simulations, do not remain constant for long pe-
riods of time. Furthermore, our model is a deterministic model which means
that there is no accounting for any uncertainty in the model. However, uncer-
tainty can occur since the parameter values being used are estimates of the
real parameters.

In order to avoid the drawbacks described above, a stochastic model would
have to be introduced or a model with variable parameters. A study on a time-
varying stochastic SEIR model for the control of the Ebola virus can be found
in [36]. In addition, as we mentioned earlier, it is interesting to explore alter-
native expressions for the objective functional to be minimised. For example,
different weights to the control functions for each age group can be introduced,
modelling the cost of bringing the vaccine to different populations, or weight
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factors relating to the mortality rates of each group, to the numbers of in-
fectious individuals. Moreover, the introduction of more compartments could
enrich the model further, for instance a compartment for the hospitalised in-
dividuals or one for the deceased. Finally, notable extensions would be the
introduction of more age groups and high risk groups, as well as multiple vac-
cines and their effectiveness. We leave these topics as future research topics
which we pursue elsewhere.
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A Table of notations

Model states Symbol
Susceptible not yet vaccinated (o65 and y65) SO, SY

Received vaccine, waiting for it to take effect (o65 and y65) VO, VY
Received vaccine but was not effective (o65 and y65) NO, NY

Susceptible, refusing or unable to receive vaccine (o65 and y65) UO, UY
Exposed (o65 and y65) EO, EY
Infectious (o65 and y65) IO, IY
Recovered (o65 and y65) RO, RY

Protected from vaccine (o65 and y65) PO, PY
Total number of people in age group (o65 and y65) TO, TY

Model Parameters Symbol
Rate at which an o65 person infects an o65 person βOO

Average number of o65 people infected by an o65 person R0OO
Rate at which a y65 person infects an o65 person βY O

Average number of o65 people infected by a y65 person R0Y O
Rate at which an o65 person infects a y65 person βOY

Average number of y65 people infected by an o65 person R0OY
Rate at which a y65 person infects a y65 person βY Y

Average number of y65 people infected by a y65 person R0Y Y
Rate at which exposed becomes infected γE

Rate at which infected becomes recovered γI
Rate at which vaccinated becomes protected γV

Vaccine effectiveness αV
Percentage of over 65s refusing the vaccine rO

Percentage of under 65s refusing the vaccine rY
Control functions Symbol

Percentage of over 65s to get vaccinated at time t uO(t)
Percentage of under 65s to get vaccinated at time t uY (t)

Optimisation Functions and Parameters Symbol
Hamiltonian function H

Cost function F
Age specific weight constants WO,WY
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15. Bacaër, N.: A short history of mathematical population dynamics. Springer Science &
Business Media (2011)

16. Baden, L.R., El Sahly, H.M., Essink, B., et al.: Efficacy and safety of the mrna-1273
sars-cov-2 vaccine. New England Journal of Medicine 384(5), 403–416 (2020). DOI
10.1056/NEJMoa2035389. PMID: 33378609

17. Bailey, N.T., et al.: The mathematical theory of infectious diseases and its applications.
Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE.
(1975)

18. Behncke, H.: Optimal control of deterministic epidemics. Optimal Control Applications
and Methods 21(6), 269–285 (2000). DOI https://doi.org/10.1002/oca.678

19. Boltyanski, V., Gamkrelidze, R., Mishchenko, E., Pontryagin, L.: The maximum princi-
ple in the theory of optimal processes of control. IFAC Proceedings Volumes 1(1), 464
– 469 (1960). DOI https://doi.org/10.1016/S1474-6670(17)70089-4. 1st International
IFAC Congress on Automatic and Remote Control, Moscow, USSR, 1960

https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty
https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty
https://www.irishtimes.com/news/health/coronavirus-man-treated-in-dublin-hospital-as-officials-trace-contacts-1.4189306
https://www.irishtimes.com/news/health/coronavirus-man-treated-in-dublin-hospital-as-officials-trace-contacts-1.4189306
https://www.irishtimes.com/news/health/coronavirus-outbreak-who-raises-risk-warning-to-very-high-1.4188313
https://www.irishtimes.com/news/health/coronavirus-outbreak-who-raises-risk-warning-to-very-high-1.4188313
https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-astrazeneca
https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-astrazeneca
 https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-janssen
 https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-janssen
https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-moderna#overview-section
https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-moderna#overview-section
https://covid19ireland-geohive.hub.arcgis.com/pages/detailed-profile-of-cases
https://covid19ireland-geohive.hub.arcgis.com/pages/detailed-profile-of-cases
https://www.ipha.ie/just-6-of-people-will-refuse-covid-19-vaccine-says-ipsos-mrbi-tracker-survey-for-ipha/
https://www.ipha.ie/just-6-of-people-will-refuse-covid-19-vaccine-says-ipsos-mrbi-tracker-survey-for-ipha/
https://www.ipha.ie/just-6-of-people-will-refuse-covid-19-vaccine-says-ipsos-mrbi-tracker-survey-for-ipha/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
https://www.sciencedirect.com/science/article/pii/S0025556421000596
https://www.sciencedirect.com/science/article/pii/S0025556421000596


Optimal age-specific vaccination control for COVID-19 25

20. Bowman, C.S., Arino, J., Moghadas, S.M.: Evaluation of vaccination strategies during
pandemic outbreaks. Mathematical Biosciences & Engineering 8(1), 113 (2011). DOI
10.3934/mbe.2011.8.113

21. Butcher, J.C., Goodwin, N.: Numerical methods for ordinary differential equations,
vol. 2. Wiley Online Library (2008)

22. Cereda, D., Tirani, M., Rovida, F., et al.: The early phase of the COVID-19 outbreak
in Lombardy, Italy (2020)

23. Chan, J.F.W., Yuan, S., et al.: A familial cluster of pneumonia associated with the 2019
novel coronavirus indicating person-to-person transmission: a study of a family cluster.
The Lancet 395(10223), 514–523 (2020). DOI 10.1016/S0140-6736(20)30154-9

24. Chowell, G., Bertozzi, S.M., Colchero, M.A., et al.: Severe respiratory disease concurrent
with the circulation of h1n1 influenza. New England journal of medicine 361(7), 674–679
(2009). DOI 10.1056/NEJMoa0904023

25. Fang, Y., Nie, Y., Penny, M.: Transmission dynamics of the COVID-19 outbreak and
effectiveness of government interventions: A data-driven analysis. Journal of Medical
Virology 92(6), 645–659 (2020). DOI 10.1002/jmv.25750

26. Ferguson, N.M., Cummings, D.A.T., Fraser, C., et al.: Strategies for mitigating an
influenza pandemic. Nature 442(7101), 448–452 (2006). DOI 10.1038/nature04795

27. Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control. Springer-Verlag
New York (1975). DOI 10.1007/978-1-4612-6380-7

28. Garba, S.M., Lubuma, J.M.S., Tsanou, B.: Modeling the transmission dynamics of the
covid-19 pandemic in south africa. Mathematical Biosciences 328, 108441 (2020). DOI
https://doi.org/10.1016/j.mbs.2020.108441. URL https://www.sciencedirect.com/
science/article/pii/S0025556420301061

29. Godio, A., Pace, F., Vergnano, A.: SEIR modeling of the Italian epidemic of SARS-
CoV-2 using computational swarm intelligence. International Journal of Environmental
Research and Public Health 17(10), 3535 (2020). DOI 10.3390/ijerph17103535

30. Hui, D.S., I Azhar, E., et al.: The continuing 2019-nCoV epidemic threat of novel coro-
naviruses to global health ; The latest 2019 novel coronavirus outbreak in Wuhan,
China. International Journal of Infectious Diseases 91, 264–266 (2020). DOI
10.1016/j.ijid.2020.01.009

31. Kamel Boulos, M.N., Geraghty, E.M.: Geographical tracking and mapping of coron-
avirus disease covid-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
epidemic and associated events around the world: how 21st century GIS technologies
are supporting the global fight against outbreaks and epidemics. International Journal
of Health Geographics 19(1), 8 (2020). DOI 10.1186/s12942-020-00202-8

32. Kirk, D.E.: Optimal control theory: an introduction. Courier Corporation (2004)
33. Kirschner, D., Lenhart, S., Serbin, S.: Optimal control of the chemotherapy of HIV.

Journal of mathematical biology 35(7), 775–792 (1997). DOI 10.1007/s002850050076
34. Kucharski, A.J., Russell, T.W., Diamond, C., et al.: Early dynamics of transmission and

control of COVID-19: a mathematical modelling study. The lancet infectious diseases
20(5), 553–558 (2020). DOI 10.1016/S1473-3099(20)30144-4

35. Lee, S., Golinski, M., Chowell, G.: Modeling Optimal Age-Specific Vaccination Strate-
gies Against Pandemic Influenza. Bulletin of Mathematical Biology (2012). DOI
10.1007/s11538-011-9704-y
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