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Abstract

In 2020, Brazil was the leading country in COVID-19 cases in Latin America, and capital cities

were the most severely affected by the outbreak. Climates vary in Brazil due to the territorial ex-

tension of the country, its relief, geography, and other factors. Since the most common COVID-19

symptoms are related to the respiratory system, many researchers have studied the correlation be-

tween the number of COVID-19 cases with meteorological variables like temperature, humidity,

rainfall, etc. Also, due to its high transmission rate, some researchers have analyzed the impact of

human mobility on the dynamics of COVID-19 transmission. There is a dearth of literature that

considers these two variables when predicting the spread of COVID-19 cases. In this paper, we

analyzed the correlation between the number of COVID-19 cases and human mobility, and meteo-

rological data in Brazilian capitals. We found that the correlation between such variables depends

on the regions where the cities are located. We employed the variables with a significant correlation

with COVID-19 cases to predict the number of COVID-19 infections in all Brazilian capitals and

proposed a prediction method combining the Ensemble Empirical Mode Decomposition (EEMD)

method with the Autoregressive Integrated Moving Average Exogenous inputs (ARIMAX) method,

which we called EEMD-ARIMAX. After analyzing the results poor predictions were further inves-

tigated using a signal processing-based anomaly detection method. Computational tests showed

that EEMD-ARIMAX achieved a forecast 26.73% better than ARIMAX. Moreover, an improve-
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ment of 30.69% in the average root mean squared error (RMSE) was noticed when applying the

EEMD-ARIMAX method to the data normalized after the anomaly detection.

Keywords: COVID-19, EEMD, ARIMAX, anomaly, meteorological data, human mobility data

1. Introduction

According to the Centers for Disease Control and Prevention, a pandemic “refers to an increase,

often sudden, in the number of cases of a disease above what is normally expected” “over several

countries or continents, usually affecting a large number of people” (Dicker et al., 2006). Several

pandemic outbreaks have befallen humanity over the centuries. One of the first recorded pandemics

occurred between 165 A.D. and 180 A.D. in the reign of Marcus Aurelius, when Antonine Plague

wiped out a third of the population in some areas of the Roman empire and decimated the Roman

army (Ligon, 2006).

Almost 500 years later, during the mid-sixth century, the Justinian plague hit the Byzantine

empire. During this epidemic, 40% of Constantinople’s population was wiped out. One of the

greatest pandemics in human history, the Black Death, or Bubonic plague, occurred between 1347

and 1352, and killed between 75 and 200 million people. Several other pandemics have occurred,

such as New World Smallpox (1520-unknown), The Third plague (1855), and The 1918 Flu (1918-

1920).

In 2002, Severe Acute Respiratory Syndrome (SARS), caused by SARS Coronavirus (SARS-

CoV), emerged in the province of Guangdong, southern China, infecting thousands of people and

causing the death of approximately one thousand humans (Zhong et al., 2003). Cheng et al. (2007)

stated that “the presence of a large reservoir of SARS-CoV viruses in horseshoe bats, together with

the culture of eating exotic mammals in southern China” was “a time bomb”. The authors warned

about the possibility of a resurgence of SARS-Cov and other new viruses in animals or laboratories

and that everyone should be prepared for a new pandemic. Eight years later, a new coronavirus

variant was discovered in the Middle East, the Middle East Respiratory Syndrome Coronavirus

(MERS-CoV), which is still a reality. Four years after MERS-CoV, another coronavirus emerged

in Wuhan, China (December 2019). Because of its similarity to SARS-CoV, this new coronavirus

was called SARS-CoV-2, and the disease, COVID-19 (Coronavirus Disease 2019) (Huang et al.,

2020).
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COVID-19 is a highly contagious virus that spread rapidly around the world, causing world-

wide travel restrictions as well as mandatory lockdown in many cities. On April 29, 2021, the World

Health Organization (WHO) reported that the virus was in 223 Countries, with 148,999,876 con-

firmed cases, and 3,140,115 deaths (WHO, 2021a). In Brazil, until April 29, 2021, there had been

confirmed 14,441,563 COVID-19 cases and 395,022 deaths caused by the virus (WHO, 2021b).

For this reason, scientists around the world from the most diverse areas have focused their studies

on understanding COVID-19 transmission dynamics (Fang et al., 2020), prevention (Ali and Ghon-

imy, 2020; Li et al., 2020 in press; Voysey et al., 2021), detection (Ismael and Şengür, 2021; Vidal

et al., 2021), control measures (Meo et al., 2020), and prediction analysis (Hernandez-Matamoros

et al., 2020; Katris, 2021; Petropoulos et al., 2020).

Historically, viral respiratory tract infections, such as the ones caused by the coronaviruses

from past epidemics, H1N1 influenza and syncytial virus, were related to meteorological factors

which possibly influenced the transmission and stability of the virus (Baker et al., 2019; Barreca

and Shimshack, 2012; Chan et al., 2011; Lowen and Steel, 2014; Paynter, 2015). Several authors

studied the correlation between climatic variables and the number of COVID-19 cases in the world:

absolute humidity and temperature in the USA (Gupta et al., 2020); UV index, wind speed, absolute

humidity, among others, in 206 countries/regions (Islam et al., 2020); average air humidity and

temperature in Brazil (Neto and Melo, 2020); temperature, absolute humidity, dew point, among

others, in Singapore (Pani et al., 2020); and wind speed and temperature in Turkey (Şahin, 2020),

for example. However, only a few authors addressed the prediction of COVID-19 cases using

models that consider climatic variables, as can be observed in da Silva et al. (2020); Makade et al.

(2020); Mousavi et al. (2020).

Some studies also investigate the impact of human mobility on COVID-19 transmission. In

these cases, mobility can be measured by passenger traffic in airports (Oztig and Askin, 2020), for

example, or by changes in commuting patterns (Badr et al., 2020; Shao et al., 2021; Wang et al.,

2020; Zhu et al., 2020). All these studies show that there is a strong correlation between human

mobility and the number of people infected by COVID-19.

To our knowledge, no study has yet investigated the impact of both human mobility and meteo-

rological variables on COVID-19 transmission rates. Both these factors should both be considered

in such studies as there is clear evidence that climate affects human mobility (Brum-Bastos et al.,

2018). This statement likely holds since, on warmer days, people lean toward performing outdoor

3



activities and attending open-air events; and on colder days, the opposite holds is true.

The daily number of COVID-19 cases can be modeled and studied through the time series the-

ory. In a general way, a time series can be thought of as a combination of other time series, each

explaining the original data at different frequencies (Büyüksahin and Ertekin, 2018). In this way,

the frequency range of each subdivision is formed and creates more linear structures within them,

making the prediction of this original time series more accurate. Several techniques can be used

to obtain the decomposition, such as Principal Component Analysis (PCA) (Jolliffe, 2002), Vari-

ational Mode Decomposition (VMD) (Dragomiretskiy and Zosso, 2014), Fourier Transform (FT)

(Graps, 1995), Empirical Mode Decomposition (EMD) (Huang et al., 1998), Ensemble Empirical

Mode Decomposition (EEMD) (Huang and Wu, 2008), and Singular Spectrum Analysis (SSA)

(Golyandina et al., 2001). Since PCA is limited to linear time series; FT is limited to linear, pe-

riodic, or stationary time series (Huang et al., 1998); SSA is an application of PCA in the time

domain (Hsieh and Aiming Wu, 2002); the VMD application has to solve a variational optimiza-

tion problem which requires predetermining an appropriate number of variational modes; and since

EMD presents a mode-mixing problem; EEMD has been considered one of the most useful tools

to decompose time series, either because of its simplicity or because it is not limited to linear nor

stationary time series.

According to Dong et al. (2019), EMD-based methods, like EEMD, substantially enhance pre-

diction accuracy and have been successfully used in several types of datasets, such as IoT systems

(Yu et al., 2019), bitcoin (Khaldi et al., 2018), geology (Liu et al., 2019b), economy (Wu et al.,

2019), finance (Lin et al., 2021), medicine (Liu et al., 2019a; Zha et al., 2018), machine fault di-

agnosis (Amirat et al., 2018), and water resource management(Niu et al., 2019). It has also been

applied for meteorological data, such as temperature (Liu et al., 2019b), precipitation (Alizadeh

et al., 2019), and wind speed (Santhosh et al., 2019). In this paper, we propose an adaptation of the

EEMD method to decompose several time series, and to use these new decomposed time series in

the forecast of another time series also decomposed by the same adaptation. The time series that

will be predicted corresponds to the number of daily cases of COVID-19, and the other series, used

as independent variables, correspond to the meteorological and human mobility time series. Only

the time series that showed a reasonable correlation with the daily cases of COVID-19, in each city,

are considered in the prediction. The prediction method employed in this paper is the Autoregres-

sive Integrated Moving Average Exogenous inputs (ARIMAX) method (Box and Jenkins, 1990), a
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well-established method previously mentioned in the literature.

In this paper, we also aim at understanding how, together, meteorological conditions and human

mobility affect the transmission of COVID-19. For such, we analyze both meteorological variables

(rainfall, maximum temperature, minimum temperature, and humidity) and human mobility vari-

ables (movement trends over time by geography, across different categories of places: retail and

recreation areas, grocery stores and pharmacies, parks, transit stations, workplaces, and residential

areas). The main contributions of this paper can be summarized as follows:

• It provides a thorough analysis on the correlation of meteorological and human mobility

variables in Brazilian capitals;

• It uses meteorological variables and human mobility in the prediction of daily cases of

COVID-19 in Brazilian capitals;

• It adapts EEMD to decompose time series with independent variables;

• It proposes a novel method that combines the introduced EEMD-based method with ARI-

MAX to predict time series with independent variables, called EEMD-ARIMAX;

• It develops an oriented-case anomaly detection algorithm to better investigate the significant

errors in prediction and thus adjust the prediction;

• It improves the ARIMAX forecast by 26.73% using the new EEMD-ARIMAX method;

• It refines the method by using the introduced anomaly detection strategy, thus improving the

prediction by 30.69%.

The rest of the paper is organized as follows. Section 2 presents a general literature review on

the prediction of COVID-19 cases using human mobility and meteorological data. Moreover, it also

shows a brief discussion on prediction methods, giving special attention to decomposition-based

methods introduced to predict COVID-19 cases. Section 3 shows the main features of the data

used in the case study and introduces the proposed EEMD-ARIMAX method. Section 4 presents

the results obtained by the proposed strategy EEMD-ARIMAX after a thorough correlation data

analysis is carried out. Section 5 shows the performed data anomaly detection and the results of the

EEMD-ARIMAX and ARIMAX in normalized data. Section 6 wraps up the paper drawing some
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conclusions and giving directions for future works. A list of symbols referring to all the notations

used throughout the paper is presented in Appendix A.

2. Related Work

This section presents a brief literature review on predicting COVID-19 cases considering either

meteorological or mobility variables. It also presents a short overview of methods for COVID-19

prediction, in particular, methods more closely related to the performed study.

2.1. Human mobility in the prediction of COVID-19 cases

According to Nayak et al. (2021), one of the primary impacts on predicting the COVID-19

cases consists of the variations in engagement, i.e. how committed people are to taking measures

to reduce the number of COVID-19 cases. These measures include washing hands, wearing face

masks, and maintaining social distancing. Concerning social distancing, one way to estimate the

level of commitment is by analyzing the rates of human mobility. In line with this, Oztig and Askin

(2020) considered the flow of people at airports as a human mobility measure, and observed that

the greater the number of airports in a country, the more likely it is for the country to have a higher

number of COVID-19 cases. This conclusion was drawn by the use of negative binomial regression

analysis.

Badr et al. (2020) studied the correlation between social distancing and COVID-19 cases, where

social distancing was quantified by mobility patterns. To model the mobility data, the authors

considered changes in commuting patterns between and within counties in the USA. The data to

model the mobility patterns were obtained by Teralytics (Zürich, Switzerland). Wang et al. (2020)

coupled the data of confirmed COVID-19 cases with the Google mobility data in Australia. The

authors concluded that the social restriction policies imposed in the country at the emergence of

the first COVID-19 case were effective in curbing the spread of the virus. Moreover, they observed

that the correlation between human mobility and the spread of COVID-19 varies according to the

type of mobility.

Shao et al. (2021) used human mobility data from 47 countries in 6 continents collected from

Mobility Trends Reports (from Apple Inc.), and showed that human mobility is strongly related

to the COVID-19 transmission rate. Zhu et al. (2020) demonstrated a positive link between hu-

man mobility and the number of people infected by COVID-19, considering data from 120 cities
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in China. These studies show a clear influence of human mobility on the spread of COVID-19.

However, cities present different human mobility patterns depending on factors such as how tech-

nological the cities are, the conditions of public and private transportation systems, among others.

Therefore, the relationship/correlation between human mobility and dissemination of COVID-19

must be evaluated considering the cities’ particularities. Bearing this in mind, in this study we

focus on the relationship between human mobility and the spread of COVID-19 cases in each of

the 27 Brazilian capitals.

2.2. Meteorological variables in the prediction of COVID-19 cases

Şahin (2020) and Sharma and Gupta (2021) state that meteorological features should be used

to improve the accuracy of COVID-19 predictions. Such variables are crucial factors affecting

infectious diseases, whether in terms of changes in the transmission dynamics, regarding host sus-

ceptibility, or the survival of the virus in the environment (McClymont and Hu, 2021). In line with

this, Gupta et al. (2020) studied the relationship among new COVID-19 cases, absolute humidity,

and temperatures in the USA. The authors observed that the spread of COVID-19 was majorly

influenced by the absolute humidity in a narrow range of 4 to 6 g/m3.

Islam et al. (2020) investigated the link between some environmental factors and COVID-19

cases in 206 countries/regions (until April 20, 2020). The relationship between the spread of

COVID-19 and humidity, and UV index were inconclusive. Their investigation suggested a nega-

tive relationship between wind speed and COVID-19 cases. Moreover, a higher rate of COVID-19

cases was observed in environments with an absolute humidity between 5 and 10 g/m3. In Singa-

pore, Pani et al. (2020) revealed that temperature, absolute humidity, and dew point have a positive

correlation with the number of daily COVID-19 cases. Wind speed, atmospheric boundary layer

height, and ventilation coefficient, on the other hand, showed a negative correlation with the num-

ber of COVID-19 cases. In Turkey, Şahin (2020) showed that wind speed has a positive correlation

with COVID-19 cases, and that temperature and COVID-19 cases are negatively correlated.

In Brazil, Neto and Melo (2020) concluded that only the average air humidity was significantly

correlated with the number of COVID-19 cases (considering data from Brazilian capitals, and data

available from April 2020 to May 2020). The study revealed a positive correlation, in contrast with

the results obtained by others studies performed in cities in China, Spain, and the United States.

The authors also demonstrated that population density presented a strong positive correlation with
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the number of COVID-19 cases in the Brazilian capitals. They emphasize that population density,

which is linked with higher human mobility, and poorer social-economic environments that have

deficient sanitary conditions contribute to the spread of the virus.

Although some studies have addressed the studies involving the relationship between meteoro-

logical variables and COVID-19, some results appear to be inconsistent. On the one hand, temper-

ature and humidity, for example, were reported as having a significant impact in the majority of the

studies. On the other hand, the correlation was positive in some cases and negative in others. These

observations suggest that the link between meteorological features and the number of COVID-19

cases is complex and hard to generalize. There is evidence that meteorological variables contribute

to the increase in the transmission of COVID-19, but the effect of these relationships should be

studied locally, since other factors such as human mobility and public health measures (lockdown,

for example) also have a strong influence on the number of COVID-19 cases.

2.3. COVID-19 and forecasting

From a methodological point of view, several studies attempt to understand the spread of

COVID-19 using artificial intelligence. Albahri et al. (2020) provided an exhaustive overview

of integrated artificial intelligence based on data mining and machine learning algorithms. The

authors pointed to a need for integrated sensor technologies for outdoor scenarios to control the

spread of the coronavirus. This process is only possible when there is an interconnection with IoT

technologies. Nayak et al. (2021) present an overview of the applicability of intelligent systems

such as machine learning and deep learning to solve COVID-19 outbreak-related issues. Sharma

and Gupta (2021) reported and summarized the research performed on COVID-19 with machine

learning and big data.

The literature presents few studies that address the problem of predicting new COVID-19 cases

through decomposition methods. To our knowledge, only da Silva et al. (2020) and Mousavi et al.

(2020) used decomposition methods in their predictions considering independent variables. Both

proposed strategies were based on the variational mode decomposition (VMD). da Silva et al.

(2020) used VMD and some prediction techniques including deep learning and machine learning,

to predict COVID-19 cumulative confirmed cases in five Brazilian states and five American states

with high daily incidences. The authors used temperature and precipitation as exogenous variables.

They pointed that the VMD coupled with cubist regression achieved the best results among the
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tested techniques. Mousavi et al. (2020) proposed a model based on the combination of VMD with

Long Short Term Memory considering the daily temperature, humidity, and transmission rates

in the prediction of new COVID-19 daily cases in Maharashtra, Tamil Nadu, and Gujarat, India.

Among these works, only Mousavi et al. (2020) addressed the prediction of daily COVID-19 cases,

since such prediction is more difficult because of the accumulated cases. In this study, we address

the prediction of new daily cases of COVID-19.

3. Case study: predictive analysis of Brazilian data

In 2020, Brazil had an estimated population of 212,622,578 inhabitants (IBGE, 2020). Brazil

was the country with the greatest number of COVID-19 cases in 2020 in Latin America, ranking

third in the world. Capitals are the most affected cities, and some experience health system collapse,

such as Manaus-AM (Ferrante et al., 2020). Since 23.86% of the Brazilian population lives in

capital cities, the spatial units of analysis in this study were the 27 capitals in Brazil (IBGE, 2020).

Brazil is a country with continental dimensions and the 5th largest country in the world in terri-

torial extension occupying an area of 8,510,295.91 km2. The Brazilian climate has great variations,

with 3 climate zones and 12 climate types (Alvares et al., 2013). We want to analyze the correla-

tion among COVID-19 cases with meteorological and human mobility parameters, and if there are

differences in these correlations within the same country.

3.1. Data

COVID-19 data were obtained from Brasil.io (Justen and et al., 2020), which compiles newslet-

ters from the State Health Secretariats of Brazil. Meteorological data were obtained from the Centro

de Previsão de Tempo e Estudos Climáticos located at the Instituto Nacional de Pesquisas Espaciais

(CPTEC, 2020). The meteorological data considered in this study are:

• Minimum Temperature (Min Temp): refers to the daily minimum temperature in degrees

Celsius;

• Maximum Temperature (Max Temp): refers to the daily maximum temperature in degrees

Celsius;

• Humidity (Hum): refers to the daily air humidity in percentage;
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• Rainfall (Rain): refers to the daily total precipitation in millimeters.

Human mobility data were obtained from the COVID-19 Community Mobility Reports

(GOOGLE, 2020) prepared by Google. These reports point to geographical movement trends over

time, across different categories of places. The place categories are:

• Retail and recreation (RR): refers to mobility trends to places like restaurants, shopping cen-

ters, theme parks, etc;

• Grocery and pharmacy (GP): refers to mobility trends to places like grocery markets, farmers

markets, pharmacies, etc;

• Parks (PA): refers to mobility trends to places like local parks, public beaches, public gardens,

etc;

• Transit stations (TS): refers to mobility trends to places like subway, bus, train stations, etc;

• Workplaces (WO): refers to mobility to places of work;

• Residential (RE): refers to mobility to places of residence.

The Residential category shows a change in the permanence of people in their homes, while

the other categories measure changes in the total number of visitors. Changes in mobility patterns

each day were compared with a baseline corresponding to the same day of the week. This baseline

corresponds to the median of the corresponding day of the week, during the five weeks from January

3 to February 6, 2020.

The number of observations in human mobility data and meteorological data varies according

to the number of data in the variable relative to daily COVID-19 cases in each city. In each city,

all reported data start at the day they confirmed the first COVID-19 case in the city (column “first

case” in Table B.8 of the Appendix B) and end at the final compiled day: November 6, 2020. A

more descriptive analysis of the data is presented in Appendix B.

3.2. Ensemble Empirical Mode Decomposition

Time series decomposition techniques have the goal of extracting simple periodic signals from

the original time series, which can be used as inputs to machine learning approaches or other sta-

tistical models. Our study focuses on the use of the Ensemble Empirical Mode Decomposition
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(EEMD) technique (Huang and Wu, 2008), an adaptive data analysis method based on local char-

acteristics of the data. EEMD catches nonlinear, non-stationary oscillations effectively. EEMD has

been successfully used in several types of datasets (Lin et al., 2021; Niu et al., 2019), mainly in

meteorological data, such as temperature (Liu et al., 2019b), precipitation (Alizadeh et al., 2019),

and wind speed (Santhosh et al., 2019).

EEMD is an improvement of the empirical mode decomposition (EMD) method (Huang et al.,

1998; Huang and Wu, 2008). It aims at decomposing the original data into a series of modes, called

finite intrinsic mode functions (IMFs) and a residual, identifying the oscillatory modes that coexist.

EEMD overcomes the so-called mode-mixing problem found in EMD. The mode-mixing occurs

when different oscillation components coexist in a single IMF and very similar oscillations reside

in different IMFs (Huang and Wu, 2008).

EEMD uses an ensemble of IMFs obtained by applying EMD to several different series of

the original time series obtained by adding white Gaussian noise. Adding a white Gaussian noise

reduces the mode-mixing problem by occupying the whole time-frequency space (Huang and Wu,

2008). In summary, EEMD has the following steps.

1. Let Wt, m and s be the input data corresponding to, respectively, the original time series that

will be decomposed, the number of ensembles, and the number of IMFs to be extracted from

Wt.

2. Make k = 1, a control variable that indicates the ensemble to be generated in the iteration.

3. Generate a new time series Zt, obtained from Wt for the ensemble k, adding to it a white

noise with a standard deviation σnoise proportional to the standard deviation of Wt, called

σoriginal. Therefore, σnoise = µσoriginal, where µ is a relatively small number which must be

empirically determined. Make j = 1, a control variable related to the index of the IMF of the

k-th ensemble to be defined in the following steps, referred to as IMFk
j.

4. Identify all the local extreme values of Zt – a combination of high and low values of the

series. After that, interpolate all this values by a cubic spline interpolation as the upper (high

values) and lower envelopes (low values), respectively ek
max and ek

min.

5. Calculate the point-to-point arithmetic mean between the envelopes – mk
t = (ek

min + ek
max)/2

– and subtract this “average time series” from time series Zt, obtaining the time series dk
t –

dk
t = Zt − mk

t .
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6. If j ≤ s, then IMFk
j = dk

t , j = j + 1, Zt = Zt − dk
t , and repeat steps 4 and 5. If j > s, assign Zt

to the residual time series, called ResWt .

7. Make k = k + 1 and repeat Steps 3 to 6 until k > m, i.e. until the method obtains the m

ensembles.

The values of µ and m were empirically chosen after several computational tests. These tests

indicated that an ensemble number m = 125 and the µ value equals 0.01 presented better outcomes.

Furthermore, because of the proposed EEMD-ARIMAX method in Section 3.4, the number of

IMFs into which the time series is decomposed was fixed in advance and, after tests, we found that

a decomposition into 5 IMFs plus a residual was the most appropriate, i.e., s = 5.

Figure 1 shows the IMFs extracted from the data of São Paulo COVID-19 cases, by applying

the EEMD algorithm. The IMFs were plotted from the first to the last component extracted from

the series, where the last plot corresponds to the residual. The x-axis indicates the days, whereas

the y-axis represents the values of the decomposed time series.

3.3. Autoregressive Integrated Moving Average Exogenous inputs (ARIMAX)

The Autoregressive Integrated Moving Average (ARIMA) model proposed by Box and Jenk-

ins (1990) is the most general class of models for forecasting time series due to its simplicity of

application and capability of handling non-stationary data. The AR part of ARIMA indicates that

the variable of interest is regressed on its own lagged values. The MA part indicates that the re-

gression error is a linear combination of error values that occurred in the past. Finally, the I (for

“integrated”) part represents the order of differencing to turn the time series into a stationary series

(if necessary). Differencing means replacing the original series by the difference between their val-

ues and the previous values (Box and Jenkins, 1990). The ARIMA model that includes other time

series as input variables (exogenous variables) is referred to as Autoregressive Integrated Moving

Average Exogenous inputs (ARIMAX) model.

The parameters of ARIMAX(p, d, q, n) model are: p, the number of autoregressive terms; d,

the number of nonseasonal differences needed for stationary; q, the number of lagged forecast

errors in the prediction equation; n, the number of exogenous variables; η, a constant; and, φi, for

i = 1, . . . , p, θ j, for j = 1, . . . q, and ζl, for l = 1, . . . , n, the model parameters. Mathematically, this

model can be formulated as in Equation (1).
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Figure 1: Decomposed IMFs and residual obtained by EEMD considering the number of COVID-19 cases in São

Paulo.
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Wt = η +

p∑
i=1

φiWt−i −

q∑
j=1

θ jet− j +

n∑
l=1

ζlYl, (1)

where Wt and Wt−i, for i = 1, . . . , p, are the predicted values of the time series; Yl, for l = 1, . . . , n,

are the exogenous variables; and et− j, for j = 1, . . . , q, represent the error terms.

3.4. EEMD-ARIMAX

To our knowledge, EEMD has not yet been used to predict time series with independent vari-

ables. The main idea behind EEMD-ARIMAX is to predict time series of independent and de-

pendent variables. For this, we first decompose each time series of the independent variables

(Y1,Y2, . . . ,Yn) and dependent variables by applying the EEMD method, creating s levels of de-

composition for each variable. Then, in each level of the decomposition, we use the ARIMAX

method to predict the IMFs related to the dependent variables, by considering the IMFs of the

variables Y1,Y2, . . . ,Yn as the exogenous variables. We employ the same procedure to predict the

time series of the residual values. Finally, by summing the predicted time series, we obtain the

prediction for the original time series of the daily number of COVID-19 cases. The algorithm of

the proposed EEMD-ARIMAX method can be described by steps 1-5:

1. Let Xt be dependent variable under study, Y1, Y2, . . . ,Yn the independent/predictor variables,

m the number of ensembles, and s the number of IMFs that will be extracted of each time

series;

2. Apply EEMD to decompose the time series of the dependent and independent variables indi-

vidually, to obtain a set of s IMFs and a time series Res, in each decomposition;

3. Fit IMFs of the same “levels” using ARIMAX – meaning that the j-th IMF of the time series

represented by the “Daily number of COVID-19 cases”, denoted here by IMF j
Xt

, will be fitted

by the j-th IMFs of the same level j of the time series related to meteorological/mobility

variables Yl, denoted by IMF j
Yl

, for all l = 1, . . . , n. The estimated j-th IMF is denoted by
ˆIMF

j
;

4. Denote the residual values obtained by applying EEMD in Y1, . . .Yn by ResY1 ,. . .,ResYn , re-

spectively. Denote the residual value found by applying EEMD in Xt by ResXt . Let ˆRes

be the estimated time series of ResXt through ARIMAX using ResY1 ,. . .,ResYn as exogenous

variables;
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5. Denote the fitted values of variable Xt by X̂t. Thereby, X̂t = ˆIMF
1

+ . . . + ˆIMF
s
+ ˆRes.

A flowchart of the proposed EEMD-ARIMAX method is presented in Figure 2.

4. Results and discussion

We apply a lag of 5 days in the number of new confirmed COVID-19 daily cases, since symp-

toms start five days after someone is infected, and the patients seek medical advice (He et al., 2020).

All studies were performed considering the database with this lag. We used R statistical software

(R Core Team, 2020) in all tests carried out for this paper.

4.1. Correlation analysis

We evaluate the pairwise correlation between the number of COVID-19 cases and meteoro-

logical/mobility variables using Spearman correlation. For more details about this measure, see

Appendix C.

Tables 1 and 2 show the correlation values – columns “ρ” – between the number of COVID-19

cases and the meteorological and human mobility variables, respectively, for all Brazilian capitals,

in the period considered. In addition, these tables present the p-value regarding the statistical signif-

icance of the corresponding variables at a significance level of α = 0.01. Therefore, if the p-value

of the indicated correlation is less than or equal to 0.01, the correlation is said to be statistically

significant.

We consider that two variables are correlated if ρ ≥ 0.3 or ρ ≤ −0.3. As stated before, if

ρ is positive, the variables are directly proportional, otherwise, they are inversely proportional.

Therefore, on the one hand, we say that there is a positive correlation between a pair of variables

when ρ ≥ 0.3, meaning that there is evidence that the variables grow together. On the other, when

the correlation is negative, i.e., ρ ≤ −0.3, it means that the analyzed pair of variables has an opposite

behavior: the greater the values of one variable, the smaller the values of the other variable. For

better visualization, we highlighted the positive correlations in dark gray, and negative correlations

in light gray.

According to the results, the number of COVID-19 cases and meteorological variables were

correlated in 16 cities. In 11 of them, the correlated meteorological variable was the minimum

temperature. The number of COVID-19 cases and meteorological variables were not correlated in
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Figure 2: Flowchart of the proposed EEMD-ARIMAX method.
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Table 1: Spearman correlation between the number of COVID-19 cases and the meteorological data.

Region City-Federative unit
Rain (mm) Max Temp (ºC) Min Temp (ºC) Hum (%)

ρ p-value ρ p-value ρ p-value ρ p-value

North

Belém-PA 0.005 0.945 0.137 0.037 -0.013 0.842 -0.137 0.037

Boa Vista-RR 0.154 0.019 -0.201 0.002 -0.290 0.000 -0.071 0.285

Macapá-AP -0.015 0.817 0.133 0.043 0.052 0.433 -0.021 0.749

Manaus-AM 0.009 0.885 -0.051 0.429 0.028 0.672 -0.013 0.843

Palmas-TO -0.527 0.000 0.315 0.000 -0.489 0.000 -0.614 0.000

Porto Velho-RO -0.293 0.000 0.135 0.040 -0.349 0.000 -0.261 0.000

Rio Branco-AC -0.170 0.009 -0.191 0.003 -0.241 0.000 0.067 0.307

Northeast

Aracaju-SE 0.064 0.324 -0.527 0.000 -0.433 0.000 -0.003 0.959

Fortaleza-CE 0.219 0.001 -0.325 0.000 0.013 0.837 0.329 0.000

João Pessoa-PB 0.206 0.002 -0.517 0.000 -0.305 0.000 0.118 0.071

Maceió-AL 0.355 0.000 -0.570 0.000 -0.372 0.000 0.153 0.016

Natal-RN -0.012 0.857 -0.321 0.000 -0.293 0.000 -0.171 0.008

Recife-PE 0.267 0.000 -0.367 0.000 -0.139 0.031 0.316 0.000

Salvador-BA 0.004 0.953 -0.482 0.000 -0.511 0.000 -0.058 0.368

São Luis-MA 0.339 0.000 -0.402 0.000 -0.017 0.801 0.289 0.000

Teresina-PI -0.520 0.000 0.393 0.000 -0.361 0.000 -0.585 0.000

Midwest

Brasilia-DF -0.609 0.000 -0.111 0.083 -0.677 0.000 -0.597 0.000

Campo Grande-MS -0.086 0.188 0.098 0.130 -0.079 0.224 -0.209 0.001

Cuiabá-MT -0.127 0.053 -0.482 0.000 -0.590 0.000 0.263 0.000

Goiânia-GO -0.427 0.000 0.232 0.000 -0.166 0.010 -0.551 0.000

Southeast

Belo Horizonte-MG -0.053 0.421 -0.169 0.009 -0.292 0.000 -0.066 0.311

Rio de Janeiro-RJ -0.077 0.227 -0.194 0.002 -0.336 0.000 -0.078 0.225

São Paulo-SP -0.082 0.192 -0.207 0.001 -0.369 0.000 -0.203 0.001

Vitória-ES 0.012 0.861 -0.100 0.127 -0.225 0.001 -0.072 0.274

South

Curitiba-PR 0.003 0.959 -0.155 0.016 -0.254 0.000 -0.099 0.127

Florianópolis-SC 0.127 0.050 -0.247 0.000 -0.192 0.003 0.167 0.009

Porto Alegre-RS 0.214 0.001 -0.227 0.000 -0.118 0.068 0.154 0.016
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Table 2: Spearman correlation between the number of COVID-19 cases and the human mobility data.

Region City-Federative unit
RR GP PA TS WO RE

ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

North

Belém-PA 0.041 0.534 0.102 0.121 0.082 0.209 0.020 0.766 0.127 0.052 0.010 0.882

Boa Vista-RR 0.308 0.000 0.420 0.000 0.247 0.000 0.332 0.000 0.427 0.000 -0.238 0.000

Macapá-AP -0.039 0.557 0.004 0.956 -0.041 0.537 -0.060 0.359 0.057 0.385 0.021 0.747

Manaus-AM 0.109 0.094 0.146 0.024 0.069 0.291 0.132 0.042 0.080 0.218 0.054 0.403

Palmas-TO 0.380 0.000 0.410 0.000 0.461 0.000 0.365 0.000 0.332 0.000 -0.312 0.000

Porto Velho-RO 0.103 0.119 0.175 0.008 0.052 0.433 0.045 0.499 0.166 0.012 -0.004 0.957

Rio Branco-AC -0.122 0.062 -0.051 0.437 -0.106 0.106 -0.097 0.138 -0.045 0.488 0.227 0.000

Northeast

Aracaju-SE -0.021 0.741 0.075 0.248 -0.145 0.025 -0.068 0.299 0.056 0.389 0.093 0.151

Fortaleza-CE -0.348 0.000 -0.256 0.000 -0.406 0.000 -0.322 0.000 -0.207 0.001 0.350 0.000

João Pessoa-PB 0.023 0.723 0.162 0.013 -0.092 0.160 -0.058 0.378 0.169 0.010 -0.029 0.661

Maceió-AL -0.267 0.000 -0.185 0.004 -0.290 0.000 -0.243 0.000 -0.233 0.000 0.345 0.000

Natal-RN -0.041 0.527 0.076 0.238 -0.076 0.244 0.005 0.943 0.030 0.647 0.090 0.163

Recife-PE -0.286 0.000 -0.175 0.007 -0.313 0.000 -0.279 0.000 -0.177 0.006 0.336 0.000

Salvador-BA -0.015 0.820 0.126 0.052 0.003 0.969 0.008 0.901 0.087 0.178 0.024 0.716

São Luis-MA -0.297 0.000 -0.192 0.003 -0.290 0.000 -0.339 0.000 -0.222 0.001 0.316 0.000

Teresina-PI 0.333 0.000 0.279 0.000 0.530 0.000 0.406 0.000 0.484 0.000 -0.398 0.000

Midwest

Brasilia-DF 0.258 0.000 0.341 0.000 0.294 0.000 0.228 0.000 0.251 0.000 -0.153 0.016

Campo Grande-MS 0.437 0.000 0.562 0.000 0.343 0.000 0.382 0.000 0.392 0.000 -0.161 0.013

Cuiabá-MT -0.534 0.000 -0.369 0.000 -0.597 0.000 -0.544 0.000 -0.352 0.000 0.519 0.000

Goiânia-GO 0.491 0.000 0.608 0.000 0.431 0.000 0.500 0.000 0.482 0.000 -0.472 0.000

Southeast

Belo Horizonte-MG 0.099 0.128 0.195 0.003 0.128 0.050 0.162 0.012 0.311 0.000 -0.235 0.000

Rio de Janeiro-RJ -0.106 0.099 -0.011 0.862 -0.145 0.023 -0.087 0.176 -0.009 0.888 0.098 0.126

São Paulo-SP -0.197 0.002 -0.006 0.929 -0.118 0.059 -0.163 0.009 -0.059 0.344 0.137 0.029

Vitória-ES 0.280 0.000 0.339 0.000 0.027 0.683 0.253 0.000 0.369 0.000 -0.245 0.000

South

Curitiba-PR 0.155 0.016 0.137 0.034 0.149 0.021 0.127 0.049 0.237 0.000 -0.185 0.004

Florianópolis-SC 0.548 0.000 0.532 0.000 0.367 0.000 0.608 0.000 0.500 0.000 -0.563 0.000

Porto Alegre-RS 0.379 0.000 0.453 0.000 0.146 0.023 0.421 0.000 0.410 0.000 -0.372 0.000

any of the cities in the South region. The maximum temperature and the number of COVID-19

cases were correlated in all cities in the Midwest region.

The correlations between the number of COVID-19 cases and minimum temperature were neg-

ative, indicating that the number of cases increases when the minimum temperature decreases. The

same behavior was observed between the number of COVID-19 cases and maximum temperature,

except in Teresina-PI and Palmas-TO. In these two cities, the relationship between the number of

COVID-19 cases and maximum temperature was inversely proportional.

Humidity and the number of daily COVID-19 cases are correlated in the following cities:

Palmas-TO, Fortaleza-CE, Recife-PE, Teresina-PI, Brası́lia-DF, and Goiânia-GO. Particularly in

Palmas-TO and Teresina-PI, the humidity and number of COVID-19 cases showed a strong corre-

lation. The average humidity of Palmas-TO was the lowest among the capitals of the North region.

The average humidity of Teresina-PI was the second lowest average of the capitals of the Northeast

region. Since humidity is directly linked to temperature, these facts could explain the inversely

proportional correlations between the number of COVID-19 cases and the maximum temperature
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in both cities.

Among the 6 capitals that showed a correlation between the number of COVID-19 cases and

humidity, Fortaleza-CE and Recife-PE presented correlations of 0.329 and 0.316 respectively. The

other four capitals showed negative correlations. One can observe that the rainfall variable and

the number of COVID-19 cases are not correlated in Fortaleza-CE and Recife-PE. In Palmas-TO,

Teresina-PI, Brası́lia-DF, and Goiânia-GO, on the other hand, it is possible to see that they were

negatively correlated.

It is known that meteorological data regarding temperature, humidity, and rainfall are related

and, therefore, influence one another. In this study, however, we will only consider the meteoro-

logical variables of each capital that had a correlation with the number of COVID-19 cases greater

than 0.3, in absolute value. These values are summarized in Table 3.

As mentioned before, Table 2 shows the correlation between the mobility variables and the

number of COVID-19 cases. The mobility variables and the corresponding cities with which the

number of COVID-19 cases have a positive correlation are:

• Retail and recreation: Boa Vista-RR, Palmas-TO, Teresina-PI, Campo Grande-MS, Goiânia-

GO, Florianópolis-SC, Porto Alegre-RS;

• Grocery and pharmacy: Boa Vista-RR, Palmas-TO, Teresina-PI, Brası́lia-DF, Campo

Grande-MS, Goiânia-GO, Vitória-ES, Florianópolis-SC, Porto Alegre-RS;

• Parks: Palmas-TO, Teresina-PI, Campo Grande-MS, Goiânia-GO, Florianópolis-SC;

• Transit stations: Boa Vista-RR, Palmas-TO, Teresina-PI, Campo Grande-MS, Goiânia-GO,

Florianópolis-SC, Porto Alegre-RS;

• Workplaces: Boa Vista-RR, Palmas-TO, Teresina-PI, Campo Grande-MS, Goiânia-GO, Belo

Horizonte-MG, Vitória-ES, Florianópolis-SC, Porto Alegre-RS;

• Residential: Fortaleza-CE, Maceió-AL, Recife-PE, São Luis-MA, Cuiabá-MT.

On the one hand, the positive correlation between the mobility parameters and the number of

COVID-19 cases, except for the Residential variable, shows that the increase in the number of

COVID-19 cases is directly proportional to the rise in the populations’ mobility trends in traffic,
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Table 3: Variables per Brazilian capital which showed some level of correlation with the number of COVID-19 cases

and were considered in the proposed models.

Region City-Federative unit Meteorological variables Mobility variables

North

Belém-PA - -

Boa Vista-RR - RR, GP, TS, WO

Macapá-AP - -

Manaus-AM - -

Palmas-TO Rain, Max Temp, Min Temp, Hum RR, GP, PA, TS, WO, RE

Porto Velho-RO Min Temp -

Rio Branco-AC - -

Northeast

Aracaju-SE Max Temp, Min Temp -

Fortaleza-CE Max Temp, Hum RR, PA, TS, RE

João Pessoa-PB Max Temp, Min Temp -

Maceió-AL Rain, Max Temp, Min Temp RE

Natal-RN Max Temp -

Recife-PE Max Temp, Hum PA, RE

Salvador-BA Max Temp, Min Temp -

São Luis-MA Rain, Max Temp TS, RE

Teresina-PI Rain, Max Temp, Min Temp, Hum RR, PA, TS, WO, RE

Midwest

Brasilia-DF Rain, Min Temp, Hum GP

Campo Grande-MS - RR, GP, PA, TS, WO

Cuiabá-MT Max Temp, Min Temp RR, GP, PA, TS, WO, RE

Goiânia-GO Rain, Hum RR, GP, PA, TS, WO, RE

Southeast

Belo Horizonte-MG - WO

Rio de Janeiro-RJ Min Temp -

São Paulo-SP Min Temp -

Vitória-ES - GP, WO

South

Curitiba-PR - -

Florianópolis-SC - RR, GP, PA, TS, WO, RE

Porto Alegre-RS - RR, GP, TS, WO, RE

20



pharmacies, work, parks, and retail. This means that the higher the mobility rate, the greater the

number of cases. On the other hand, some cities showed a negative correlation between mobility

variables and the number of COVID-19 cases. They are:

• Retail and recreation: Fortaleza-CE, Cuiabá-MT;

• Grocery and pharmacy: Cuiabá-MT;

• Parks: Fortaleza-CE, Recife-PE, Cuiabá-MT;

• Transit stations: Fortaleza-CE, São Luis-MA, Cuiabá-MT;

• Workplaces: Cuiabá-MT;

• Residential: Palmas-TO, Teresina-PI, Goiânia-GO, Florianópolis-SC, Porto Alegre-RS.

Therefore, for example, the negative correlation between Residential and daily COVID-19 cases

means that the fewer people stayed at home, the greater the number of COVID-19 cases.

The negative correlations between COVID-19 cases and meteorological parameters in Cuiabá-

MT are due to a sequence of null values at the end of the series describing the number of COVID-19

cases. If these values were excluded, the correlation coefficient between these variables would be

positive.

4.2. Analysis of the number of predicted cases

The EEMD-ARIMAX method was implemented in the R software using the “Rlibeemd” and

“forecast”. We generated 125 new time series for each variable considering that the standard de-

viation of Gaussian noise was 1% of the standard deviation of the corresponding original time

series.

Table 4 shows the results of the EEMD-ARIMAX method for all Brazilian capitals. We com-

pared EEMD-ARIMAX with the ARIMAX method. The objective was to analyze the effect of

EEMD on the prediction. In both methods and for each city, we present the widely employed mean

error (ME), root-mean-square deviation (RMSE), and mean absolute error (MAE) measures to de-

scribe the results of the predictions. For details about these measures, see Section Appendix C.

Column “City-Federative unit” shows the pair city-federative unit and the parameters used by ARI-

MAX to forecast the number of COVID-19 cases in this capital. These parameters were calibrated
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for each city using auto.arima() function in R. The independent variables that were considered to

predict the number of cases of COVID-19 in each corresponding city are shown in Table 3 and

follow the Spearman correlation coefficients shown in Tables 1 and 2.

In all cities, the proposed decomposition method improved the predictions of the time series

in terms of RMSE values. The average RMSE of the predictions considering only the ARIMAX

method was 211.987 with a standard deviation of 186.335. Using the EEMD-ARIMAX method,

the average RMSE was 155.330 with a standard deviation of 145.645. EEMD-ARIMAX showed

an improvement of 26.73% over ARIMAX. Appendix D presents some graphics comparing the

original time series with the predicted values by EEMD-ARIMAX in all Brazilian regions.

Table 4: Results achieved by ARIMAX and EEMD-ARIMAX methods.

Region City-Federative unit
ARIMAX EEMD-ARIMAX

ME RMSE MAE ME RMSE MAE

North

Belém-PA (1,0,1) 3.213 139.121 100.688 -5.891 89.189 61.905

Boa Vista-RR (0,1,1) 5.092 235.997 123.145 -2.248 159.335 97.518

Macapá-AP (3,0,2) 0.229 185.697 79.845 -7.852 148.587 69.708

Manaus-AM (2,1,3) 9.106 213.732 152.327 -12.994 142.140 102.373

Palmas-TO (2,0,2) -0.223 62.519 37.374 -0.168 53.240 34.604

Porto Velho-RO (2,1,3) 6.074 186.198 104.206 0.266 162.095 98.116

Rio Branco-AC (0,1,2) 1.088 46.482 28.736 -1.487 30.006 18.009

Northeast

Aracaju-SE (0,1,1) 1.413 163.284 91.061 -0.183 107.398 58.659

Fortaleza-CE (1,0,1) 7.275 255.173 139.918 0.023 150.085 98.026

João Pessoa-PB (3,0,2) 6.512 104.106 73.007 -0.629 61.758 42.498

Maceió-AL (2,1,2) 0.646 89.629 54.596 0.010 61.337 41.793

Natal-RN (1,0,3) 4.485 209.895 104.098 -12.078 183.497 99.912

Recife-PE (3,0,2) 3.028 144.336 82.521 -6.969 114.020 69.529

Salvador-BA (0,1,3) 3.456 329.488 197.839 -2.474 214.520 134.791

São Luis-MA (2,0,3) 2.091 54.378 32.419 -2.704 32.342 19.566

Teresina-PI (2,0,3) 0.703 78.607 59.522 -4.655 56.288 43.008

Midwest

Brasilia-DF (0,1,4) 5.992 272.017 173.067 3.756 176.154 111.602

Campo Grande-MS (0,1,4) 4.305 130.909 65.215 -7.399 87.561 50.282

Cuiabá-MT (1,0,4) 1.487 58.115 28.884 1.521 35.695 19.566

Goiânia-GO (4,1,1) 7.194 262.247 165.356 -11.852 209.587 150.245

Southeast

Belo Horizonte-MG (2,1,3) 6.596 273.975 183.085 -1.762 186.489 123.697

Rio de Janeiro-RJ (2,1,3) 12.532 444.872 294.399 -15.907 318.717 227.619

São Paulo-SP (0,1,5) 18.479 988.765 660.780 4.203 775.817 494.870

Vitória-ES (1,0,2) 3.598 62.274 42.943 1.440 41.234 27.729

South

Curitiba-PR (5,1,0) 0.843 127.775 76.223 -9.406 103.601 61.407

Florianópolis-SC (0,1,3) 26.907 230.129 80.612 15.483 210.716 86.626

Porto Alegre-RS (0,1,1) 25.704 373.925 140.315 -23.187 282.510 140.701
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5. Anomaly analysis

The data used in the case study have several registration errors that may affect the accuracy

of the prediction model. We used an anomaly detection strategy to identify whether there is a

relationship between data errors and significant errors in the values predicted by EEMD-ARIMAX.

The employed anomaly detection method uses the Fourier transform in graphs as a tool to analyze

the daily variation in the number of COVID-19 cases in each region. Thus, it identifies days with

potentially anomalous numbers of COVID-19 cases.

Section 5.1 presents a discussion about the strategy adopted to define and quantify the model

errors. Section 5.2 shows the concept of anomaly adopted and a tool to highlight anomalies. Section

5.3 addresses the methodology employed to compare the errors of the model with the detected

anomalies. Section 5.4 presents the strategy adopted to correct the anomalies and run the model

again.

In summary, the anomaly analysis shows that there is a direct relationship between the days

when the EEMD-ARIMAX significantly missed the prediction and the days when the anomaly

detection strategy pointed to an abnormality. This indicates that the data errors affected the models’

effectiveness. After normalizing and correcting the data, EEMD-ARIMAX’s accuracy showed a

significant increase.

5.1. Analyzing Model Errors

We analyzed the days for which the model significantly missed the predicted number of cases

for each city. The error made by the model was quantified by the difference between the observed

and predicted number of cases, as shown in Equation (2).

et
i =

∣∣∣∣∣∣1 − ct
i

ĉt
i

∣∣∣∣∣∣ (2)

where ct
i and ĉt

i are, respectively, the observed and predicted number of COVID-19 cases on day t

in city i. An error is considered significant when et
i > T D(Ei), where Ei is the vector formed by the

elements et
i ∀t, and T D is defined by Equation (3), where Mean(Ei) and S T D(Ei) are the arithmetic

mean and standard deviation of Ei, respectively.

T D(Ei) = Mean(Ei) + (1.5 × S T D(Ei)) (3)
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Figure 3 illustrates the values of et
i considering the city of Goiânia - GO. The threshold value

T D(Ei) is highlighted in red. Therefore, every day t whose et
i is above the red line corresponds to a

significantly mispredicted day by the model.

Figure 3: Model errors of Goiânia - GO and the significance threshold.

5.2. Analyzing Data Anomalies

A spectral anomaly detection strategy was adopted to detect days when the recorded number of

daily COVID-19 cases was potentially anomalous. While the model errors are identified by com-

paring the predicted values with the observed values, the anomaly detection strategy analyzes the

daily variation in the number of cases considering the distance between cities to identify potentially

anomalous variations.

For example, if a city has a slight variation over two days in the number of COVID-19 cases, we

expect nearby cities to have a similar variation. Similarly, if the number of cases in a city suffers

a significant increase from one day to the other, we expect nearby cities also to have a relative

increase in the number of cases.

To perform this analysis, we model a complete and weighted network where a node vi ∈ V

represents a city, and the weight of the edge wi j is the Euclidean distance between cities i and j.

Each node vi carries the daily variation in the number of cases in city i, with the daily variation st
i

defined by Equation (4), ∀t > 1.
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st
i =

∣∣∣∣∣∣∣1 − ct
i

c(t−1)
i

∣∣∣∣∣∣∣ (4)

A signal S t contains the values st
i for every city i in the dataset. We calculate the spectra Ŝ t

of S t signal, ∀t > 1, using the Fourier transform for graphs (Sandryhaila and Moura, 2013). In

graph Fourier analysis, the graph Laplacian eigenvectors associated with small eigenvalues λl vary

slowly across the graph, whereas eigenvectors associated with larger eigenvalues oscillate more

rapidly (Ortega et al., 2018). It means that if two vertices are connected by an edge with a large

weight, the values of the eigenvector at those locations are likely to be similar. This concept is then

used to define low and high frequencies for signals indexed by graphs.

According to this definition, abrupt oscillations are concentrated at the high frequencies of the

signal spectrum. To highlight abrupt variations and expose anomalies, we accentuate the magnitude

of the high frequencies of Ŝ t spectrum to make anomalous variations more evident, generating a

new spectrum R̂t. We apply the inverse Fourier transform to R̂t to get a new Rt signal, that contains

the accentuated variation in the number of cases in each city. The intuition behind this operation is

that, if the variation in the number of cases in a city i is normal, then rt
i < st

i probably holds, where

rt
i is the i-th element in vector Rt. On the other hand, if the city has an anomalous variation, rt

i > st
i

probably holds. Figure 4 shows a graphic visualization of the normal variation and the accentuated

variation.

The threshold used to determine whether a variation is anomalous or not is calculated in the

same way for errors, as defined in Equation (3), for Rt. Figure 5 illustrates the values of Ri, which

is a vector with the rt
i of a given city i, and the threshold T D(Ri). It is worth noting the similarity

between Figures 3 and 5, which points out that there is a direct relation between the cases in which

EEMD-ARIMAX significantly missed the prediction and the days when the attenuator pointed out

potentially anomalous variations.

5.3. Comparing Errors and Anomalies

As presented in Section 5.2, Figures 3 and 5 indicate that there is a direct relationship be-

tween the days when EEMD-ARIMAX made a significant error and the days whose variation in

the number of cases was interpreted as potentially anomalous. We compared the model’s errors

with anomalous variations to establish a quantifier that indicates whether there is, in fact, a direct

relationship between them.
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Figure 4: Observed variation versus accentuated variation in all 27 capitals of Brazil on August 17, 2020.

Figure 5: Accentuated daily variations in the number of COVID-19 cases in Goiânia - GO and the anomaly threshold.
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For each city, two sets were defined: set CE, containing the days on which the model made a

significant error; and set CA, with the days whose variation was detected as potentially anomalous.

To quantify the relationship between CE and CA, we adopted the following criterion: if a day

t ∈ CE, 1 < t < nc and {t − 1, t, t + 1} ∩CA = ∅, then the error made by the model on day t and the

anomalous variation that occurred on the days adjacent to t are directly related.

Figure 6 shows the percentage of days the model made significant mispredictions and which

are directly related to a day with a potentially anomalous variation. On average, more than 60%

of the days when the model was wrong were detected as anomalous, as indicated by the red line,

which represents the average.

Figure 6: Percentage of days which EEMD-ARIMAX significantly mispredicted and corresponded to an anomaly.

This result indicates that EEMD-ARIMAX was affected by errors in the data and the results

point that the model’s errors are directly related to anomalous variations. To overcome this problem

and correct the anomalies, we adopted a spectral strategy for removing anomalies, also based on the

Fourier transform. Section 5.4 presents the methodology employed to correct the data anomalies.

5.4. Normalizing Data

As discussed before, the abrupt variations are concentrated in the high frequencies. To detect

the anomalies, the presented anomaly detection strategy accentuated the magnitude of the high
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frequencies. Then, to correct the anomalies, we adopted a strategy that does the opposite, using

a low-pass filter that attenuates high frequencies. Unlike the high-frequency accentuator, the low

pass filter decreases the magnitude of the high frequencies, attenuating abrupt variations.

While the accentuator was applied to the signal that carried the daily variation in the number of

cases, the low-pass filter was applied to the signal formed by the number of cases on each day, that

is, the C signal, where ct
i is the number of cases in city i at day t, to generate a filtered signal Ĉ.

Figure 7 compares an original signal and a filtered signal. It is possible to note that, in general, the

signal oscillation is mitigated, ensuring a more reliable signal.

Figure 7: Observed Daily Cases versus Normalized Daily Cases

By applying both the ARIMAX and the EEMD-ARIMAX methods to the normalized data,

we obtained the results shown in Table 5, which are presented as in Table 4. The average RMSE

for the forecasting considering only the ARIMAX method was 142.981 with a standard deviation

of 122.703. The average RMSE for the EEMD-ARIMAX method was 107.664 with a standard

deviation of 99.917. Therefore, EEMD-ARIMAX was 24.70% better than ARIMAX.

There was an improvement of 30.69% in the prediction by EEMD-ARIMAX when normalized

data were used. Figure 8 shows all the RMSEs obtained by the EEMD-ARIMAX method using

non-normalized (black) and normalized (red) data.
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Table 5: Results achieved by ARIMAX and EEMD-ARIMAX using normalized data.

Region City-Federative unit
ARIMAX EEMD-ARIMAX

ME RMSE MAE ME RMSE MAE

North

Belém-PA (4,1,1) 3.496 88.611 64.383 0.823 55.300 40.659

Boa Vista-RR (1,0,1) 7.276 228.034 115.729 -15.266 165.307 100.733

Macapá-AP (2,1,3) 2.783 129.141 56.598 -0.702 79.429 39.340

Manaus-AM (4,1,1) 0.796 18.994 12.861 0.005 12.406 8.771

Palmas-TO (3,1,2) 1.301 49.561 35.493 1.416 35.471 26.719

Porto Velho-RO (2,1,3) -0.193 151.779 87.690 -0.024 131.221 19.299

Rio Branco-AC (2,0,2) 0.287 44.530 29.891 -1.546 28.245 17.304

Northeast

Aracaju-SE (0,1,1) 2.672 103.176 65.999 -2.111 75.438 48.003

Fortaleza-CE (1,0,1) 7.836 179.518 103.165 0.758 122.469 76.730

João Pessoa-PB (0,1,4) 2.929 83.694 57.921 0.827 45.635 32.355

Maceió-AL (0,1,5) 1.645 65.674 43.626 -1.429 42.589 29.490

Natal-RN (0,1,3) 2.701 155.989 83.457 -12.897 130.216 72.329

Recife-PE (0,1,5) 2.483 105.509 63.195 -4.679 80.054 50.157

Salvador-BA (4,1,1) 3.053 195.621 121.726 -7.470 155.119 102.551

São Luis-MA (0,1,4) 1.747 42.258 31.661 1.173 25.417 18.514

Teresina-PI (3,1,2) 2.676 59.647 42.921 2.135 47.579 35.588

Midwest

Brasilia-DF (3,1,2) 4.041 135.460 87.941 -1.909 91.309 57.297

Campo Grande-MS (3,1,2) 3.944 90.317 55.276 -0.974 62.449 40.751

Cuiabá-MT (2,1,3) 1.410 54.245 37.052 -0.109 35.409 24.553

Goiânia-GO (3,1,2) 3.249 136.126 88.814 -11.139 100.058 73.351

Southeast

Belo Horizonte-MG (3,1,2) 4.806 156.051 109.193 1.246 114.420 81.809

Rio de Janeiro-RJ (0,1,5) 8.852 292.669 192.758 -22.889 230.824 159.742

São Paulo-SP (0,1,5) 12.976 628.305 420.853 -57.823 497.835 314.477

Vitória-ES (3,1,2) 1.569 56.394 41.890 3.439 44.391 32.097

South

Curitiba-PR (2,1,3) 2.342 99.194 61.001 -7.094 80.935 51.362

Florianópolis-SC (0,1,3) 18.719 184.337 76.301 -8.676 144.855 68.046

Porto Alegre-RS (0,1,1) 25.068 325.657 129.257 -2.233 272.542 150.659
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Figure 8: RMSE of original data versus RMSE of normalized data.

6. Final Remarks and Future Works

As stated by Fildes et al. (2008), contributions to forecasting are normally achieved by devel-

oping new methods that establish a connection between their effectiveness and the context they are

applied to. The contributions offered by this paper meet this purpose, since it is case-oriented and

we examine the system as a whole, identifying patterns in the time series as well as anomalies to

draw conclusions about the correlation between meteorological and mobility variables. The novel

method is an EEMD-ARIMAX hybrid, which uses an intelligent strategy to detect anomalies in

data after the method has provided a forecast.

The analysis of the original data indicated that the correlation between the number of COVID-

19 cases and the meteorological/human mobility variables depends on the region the Brazilian city

under study is located. The prediction methods ARIMAX and EEMD-ARIMAX achieved an aver-

age square error of 211.99 and 155.33, respectively. These results indicate that the decomposition

method improved the prediction of COVID-19 cases.

Because some data anomalies were observed, e.g., as very high peaks and negative numbers of
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cases, we proceeded with an anomaly study to normalize the data. When the ARIMAX and EEMD-

ARIMAX methods were applied to the normalized data, an average quadratic error equal to 142.98

and 99.92 was found, respectively, confirming the positive effect of the data decomposition in the

prediction of COVID-19 cases. Therefore, anomaly detection played a key role in effectively fitting

the COVID-19 curve as it repaired the data deficiencies found in the vast majority of real-world

applications.

Future studies may involve the use of other prediction methods, including deep learning strate-

gies. We also suggest the use of optimization algorithms, such as nature-inspired metaheuristics

(Kar, 2016; Abualigah, 2021) and the sine and cosine algorithm (Mirjalili, 2016), to either identify

approximations of the local maxima and minima or to optimize the decision on which points to in-

terpolate in the EEMD-ARIMAX. Optimization algorithms can also be used to find the best values

of p, d, and q in the ARIMAX model (p, d, q, n) in each extracted IMF, or to determine a linear

regression model as described by Makade et al. (2020), which used particle swarm optimization

for this task. Another future work direction would be to determine anomalies in the extracted IMFs

instead of in the original time series.
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Brum-Bastos, V.S., Long, J.A., Demšar, U., 2018. Weather effects on human mobility: a study

using multi-channel sequence analysis. Computers, Environment and Urban Systems 71, 131 –

152. doi:10.1016/j.compenvurbsys.2018.05.004.

Büyüksahin, U.C., Ertekin, S., 2018. Time series forecasting using empirical mode decomposition

and hybrid method, in: 2018 26th Signal Processing and Communications Applications Confer-

ence (SIU), pp. 1–4. doi:10.1109/SIU.2018.8404560.

Chan, K.H., Peiris, J.S., Lam, S.Y., Poon, L.L., Yuen, K.Y., Seto, W.H., 2011. The Effects of

Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in

virology doi:10.1155/2011/734690.

Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., 2007. Severe Acute Respiratory Syndrome

Coronavirus as an Agent of Emerging and Reemerging Infection. Clinical Microbiology Reviews

20, 660–694. doi:10.1128/CMR.00023-07.

CPTEC, 2020. Centro de Previsão de Tempo e Estudos Climáticos. https://www.cptec.inpe.
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Appendix A. List of symbols

This appendix contains a list of symbols used throughout the paper and their descriptions.

Table A.6: Part 1 of the list of symbols and notations used in this paper.

Symbol Description

Xt, Wt time series

m number of ensembles in EEMD

s number of IMFs to be extracted from Xt or Wt

k variable that specifies an ensemble in a given iteration of EEMD

n number of meteorological and human mobility variables

Y1, . . . ,Yn meteorological and human mobility variables

Zt time series obtained from Wt

σoriginal standard deviation of Xt

σnoise standard deviation of Zt

µ a relatively small number which relates σnoise and σoriginal

ek
max upper envelope of Xt

ek
min lower envelope of Xt

mk
t time series which correspond to average between ek

max and ek
min

dk
t time series obtained by the operation dk

t = Zt − mk
t

IMFk
j j-th IMF of ensemble k

IMF j
Xt

j-th IMF obtained from the time series Xt

IMF j
Yt

j-th IMF obtained from the time series Yt

RESY j residual values found by applying EEMD to Y j

ˆIMF
j

j-th IMF of the estimated time series
ˆRes estimated residual values

X̂t time series X̂t = ˆIMF
1

+ . . . + ˆIMF
s
+ ˆRes

ρ Spearman correlation coefficient
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Table A.7: Part 2 of the list of symbols and notations used in this paper.

Symbol Description

p number of autoregressive terms in ARIMAX

d number of nonseasonal differences needed for stationarity in ARIMAX

q number of lagged forecast errors in ARIMAX

η constant of the ARIMAX

φi i-th element of parameter φ in ARIMAX, for i = 1, . . . , p

θ j j-th element of parameter θ in ARIMAX, for j = 1, . . . q

ζl l-th element of parameter ζ in ARIMAX, for l = 1, . . . , n

et− j error terms of the ARIMAX, for j = 1, . . . , q

nc number of days in the dataset

ct
i observed number of COVID-19 cases on day t in city i

ĉt
i predicted number of COVID-19 cases on day t in city i

et
i error in the prediction of the number of COVID-19 cases on day t in city i

st
i absolute value of the difference between 1 and ct

i

c(t−1)
i

S t set S t = {st
i,∀i}

Ŝ t spectrum of S t

λt eigenvalues of graph Laplacian

Rt time series obtained by applying the inverse Fourier transform in R̂t

rt
i i-th element of vector Rt
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Appendix B. Descriptive statistics of the data

This section presents a brief discussion about the data employed in the prediction analysis.

Tables B.8 and B.9 summarize, in terms of average values (Mean) and standard deviations (SD),

the sample data over the considered period. The results were divided according to the five regions

of Brazil: North, South, Midwest, Northeast and Southeast.

Considering each region, the cities with the highest average daily number of COVID-19 cases

are Manaus (North region), Salvador (Northeast region), Brası́lia (Midwest region), São Paulo

(Southeast region) and Curitiba (South region). These are the largest cities in each region, except

Curitiba (IBGE, 2020).

Regarding meteorological variables, the North region had the highest average rainfall, while

the Midwest region had the lowest average rainfall. The South region had the lowest averages in

terms of maximum and minimum temperatures. The Midwest region had the least average values

of humidity.

The behavior of the Brazilian population changed after the first confirmed COVID-19 cases.

This can be attested by the human mobility data. Figure B.9 displays the human mobility variables

in São Paulo.

The red vertical line points to the day when the first case was found in the city. A few days

after the first case was confirmed, the population started to change mobility patterns. For example,

grocery consumers were visiting stores less often; the number of park visits by people has reduced;

transit stations became less busy; and so on. But we can see that, on average, 50 days after the

sudden change in human mobility patterns, the population slowly started to return to their old

mobility trends. As a consequence, the number of COVID-19 cases increased, as we can see in

Figure B.10.

Table B.9 shows the mobility data for the 27 capitals of Brazil. One can notice an abrupt

change in the mobility behaviour within the 50 days after the first COVID-19 case was reported

in São Paulo. This information is clear by the average values of mobility trends for retail and

recreational, parks, transit stations and work. Again, they are negative in relation to the baseline,

and the average values of the residential data are positive.

The mobility data for parks and transit stations related to the cities Rio Branco, Macapá, Palmas,

Porto Velho, and Boa Vista were incomplete. These data comprised a limited sequence of days in

the middle of the corresponding series. To overcome this limitation, we generated the missing data
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(a) Retail and recreation variable.

0 50 100 150 200 250 300

−
40

−
20

0
20

40

days

G
ro

ce
ry

 a
nd

 p
ha

rm
ac

y

(b) Grocery and pharmacy variable.
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(d) Transit station variable.
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Figure B.9: Human mobility numbers in São Paulo during 297 days starting at February 15, 2020, and ending on

December 2, 2020. The first recorded COVID-19 case in São Paulo was on February 25, 2020.
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Figure B.10: The number of COVID-19 cases in São Paulo in 261 days starting at February 25, 2020.

using the ARIMA method, with the training data being the data until the last day before the missing

data sequence. The missing data are deliberate because it was not possible to guarantee anonymity,

not meeting the minimum standards of quality and privacy (GOOGLE, 2020).

Appendix C. Spearman correlation coefficient and metrics

We used the Spearman correlation coefficient to find the strength of the pairwise relationship

between the data variables. Spearman is a well-known nonparametric measure to assess the rank

correlation between a pair of variables by a monotonic function. COVID-19 number of cases per

day is the dependent variable, whereas the meteorological and mobility information is modeled as

independent variables. The generalized expression for the Spearman rank correlation is given by

Equation (C.1).

ρ = 1 −
6

n3
s − ns

ns∑
i=1

D2
i , (C.1)

where ρ is the rank correlation, Di is the pairwise difference between the ranks of the samples, and

ns is the number of samples. Our interpretation to the Spearman correlation coefficient absolute

value considers 0.0 to 0.3 a negligible correlation between the variables; 0.3 to 0.5 is a low cor-

relation; 0.5 to 0.7 is a moderate correlation; 0.7 to 0.9 is considered a high correlation; and 0.9
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Table B.8: Average Daily meteorological outcomes and number of COVID-19 cases in the 27 capitals of Brazil in

2020.

Region City-Federative unit First case
Daily cases Rain (mm) Max Temp (ºC) Min Temp (ºC) Hum (%)

Mean SD Mean SD Mean SD Mean SD Mean SD

North

Belém-PA Mar. 18 197.115 163.009 6.492 8.713 32.591 1.220 24.332 0.462 59.919 10.053

Boa Vista-RR Mar. 21 193.299 262.747 5.078 7.657 33.063 1.961 24.375 0.880 53.000 9.937

Macapá-AP Mar. 20 89.681 203.286 6.281 7.543 31.980 1.677 24.012 0.604 59.450 11.207

Manaus-AM Mar. 13 275.665 247.215 6.410 7.896 32.311 1.950 23.721 0.784 59.995 11.206

Palmas-TO Mar. 03 77.244 97.651 2.119 5.899 33.996 2.528 22.209 1.953 39.237 17.909

Porto Velho-RO Mar. 21 147.697 208.449 3.749 6.423 32.428 2.376 22.135 1.715 55.524 13.013

Rio Branco-AC Mar. 17 53.766 62.227 2.380 4.276 31.317 2.943 20.317 2.171 55.371 13.951

Northeast

Aracaju-SE Mar. 14 164.038 214.724 1.967 3.317 29.294 1.824 22.250 1.475 28.462 19.018

Fortaleza-CE Mar. 16 244.119 290.521 3.311 7.183 31.981 1.201 23.357 0.937 58.372 15.969

João Pessoa-PB Mar. 18 144.842 140.762 2.779 5.967 28.802 1.693 21.486 1.363 63.376 10.272

Maceió-AL Mar. 08 122.709 136.231 5.456 9.884 29.239 2.082 21.443 1.566 62.794 9.238

Natal-RN Mar. 03 111.988 233.551 4.619 9.039 30.218 1.286 23.232 1.176 61.497 9.626

Recife-PE Mar. 12 156.083 173.076 2.260 4.368 29.335 1.958 20.974 1.456 61.335 10.460

Salvador-BA Mar. 03 389.050 428.000 5.575 8.374 28.175 1.906 21.435 1.533 66.525 9.684

São Luis-MA Mar. 03 104.190 76.485 7.966 9.269 33.299 1.720 23.829 0.791 60.032 15.095

Teresina-PI Mar. 19 171.391 138.570 2.627 7.227 34.424 2.411 22.657 1.625 42.158 18.229

Midwest

Brası́lia-DF Mar. 07 779.633 657.652 2.375 5.481 27.984 2.863 16.345 2.612 39.216 16.106

Campo Grande-MS Mar. 14 160.004 187.732 1.750 5.499 30.653 4.819 17.163 3.834 35.860 12.122

Cuiabá-MT Mar. 20 60.142 109.988 1.308 3.943 34.861 4.163 20.596 3.417 36.021 18.261

Goiânia-GO Mar. 12 283.125 365.502 1.329 3.574 31.603 3.214 17.988 2.861 35.294 15.746

Southeast

Belo Horizonte-MG Mar. 16 210.390 332.629 1.351 3.995 25.840 3.350 12.242 3.817 45.616 13.695

Rio de Janeiro-RJ Mar. 06 503.545 516.836 1.854 5.997 27.892 3.521 18.761 2.485 55.643 13.905

São Paulo-SP Feb. 25 1271.117 1278.987 2.964 7.599 25.624 3.750 15.645 2.769 57.710 13.350

Vitória-ES Mar. 19 92.176 76.349 2.360 6.893 26.274 2.906 17.717 2.126 44.898 8.728

South

Curitiba-PR Mar. 12 171.408 209.541 2.245 5.928 23.207 4.778 11.358 3.694 54.833 17.165

Florianópolis-SC Mar. 12 101.121 283.230 2.537 6.708 22.200 3.791 14.001 3.442 59.544 14.037

Porto Alegre-RS Mar. 11 182.946 403.069 4.030 10.551 23.528 5.564 12.644 4.368 53.136 14.700
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Table B.9: Average Daily Mobility outcomes in the 27 capitals of Brazil in 2020.

Region City-Federative unit
RR GP PA TS WO RE

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

North

Belém-PA -35.312 25.832 4.949 21.322 -13.462 41.875 -32.188 24.972 -21.145 19.478 12.034 5.534

Boa Vista-RR -31.186 21.595 8.182 16.354 -36.738 24.833 -43.054 21.553 -11.242 16.423 11.390 3.688

Macapá-AP -42.397 24.631 8.931 24.195 -27.592 31.360 -47.847 23.750 -24.284 22.120 11.987 7.568

Manaus-AM -23.004 25.252 16.410 20.614 -24.385 27.292 -9.732 24.354 -11.941 20.574 9.251 5.030

Palmas-TO -35.517 17.736 -2.090 14.930 -41.091 25.342 -45.692 15.887 -17.876 17.140 12.697 4.885

Porto Velho-RO -29.745 20.042 6.087 15.260 -29.370 22.445 -46.111 19.859 -14.788 15.953 12.303 3.601

Rio Branco-AC -35.617 21.537 6.472 15.572 -33.934 14.490 -28.929 63.994 -14.957 16.856 11.804 3.668

Northeast

Aracaju-SE -46.437 18.266 -6.336 17.536 -56.685 20.277 -54.538 19.647 -30.080 17.081 15.000 4.343

Fortaleza-CE -45.432 24.277 -4.360 17.288 -62.331 19.439 -36.432 23.416 -29.174 20.000 14.182 6.150

João Pessoa-PB -51.675 22.633 -5.308 17.577 -57.333 24.585 -62.936 27.449 -26.303 18.695 15.192 5.459

Maceió-AL -42.037 21.166 -7.828 16.143 -38.832 21.254 -31.180 18.528 -23.820 17.033 12.307 5.150

Natal-RN -48.429 20.224 -9.037 17.077 -50.954 20.587 -27.471 24.412 -25.692 16.102 14.550 4.710

Recife-PE -48.929 21.464 -3.467 21.369 -44.417 19.026 -31.562 24.025 -28.167 19.216 14.371 5.480

Salvador-BA -54.418 16.492 -5.414 19.258 -59.180 14.703 -41.184 17.735 -30.661 16.285 17.607 5.021

São Luis-MA -31.474 27.618 11.358 23.003 -21.694 29.205 -40.272 21.138 -20.672 20.521 12.263 5.741

Teresina-PI -54.567 19.814 -12.811 27.881 -38.712 17.869 -62.210 15.384 -30.399 17.221 18.502 5.268

Midwest

Brası́lia-DF -36.727 17.673 7.796 13.966 -30.976 23.291 -26.543 16.725 -22.788 18.711 14.759 5.558

Campo Grande-MS -27.508 16.548 4.185 13.095 -29.798 17.011 -32.571 14.316 -10.849 15.021 10.853 3.451

Cuiabá-MT -41.134 18.657 -0.522 12.057 -53.534 12.493 -29.556 17.200 -19.806 16.210 13.207 4.201

Goiânia-GO -39.908 17.393 -0.362 13.111 -26.267 17.847 -26.750 14.500 -20.613 16.128 13.562 5.294

Southeast

Belo Horizonte-MG -47.415 14.166 4.148 14.837 -44.076 14.669 -29.508 14.944 -25.538 16.407 14.521 4.824

Rio de Janeiro-RJ -45.077 19.047 -4.496 14.365 -48.171 23.398 -40.508 18.095 -27.805 18.166 13.780 6.015

São Paulo-SP -44.402 19.667 -0.363 13.463 -33.719 19.750 -37.387 19.178 -27.207 20.239 14.891 7.061

Vitória-ES -52.575 14.905 -5.888 17.864 -53.996 14.497 -52.712 15.100 -28.112 15.954 15.914 4.505

South

Curitiba-PR -41.554 16.657 -5.158 17.210 -28.533 16.907 -34.696 15.779 -24.579 16.085 14.421 5.087

Florianópolis-SC -57.192 13.327 -31.829 13.217 -73.671 11.086 -71.725 16.036 -33.600 15.449 17.012 5.506

Porto Alegre-RS -49.398 15.710 -5.241 13.805 -38.000 18.273 -41.813 14.907 -29.606 16.680 17.739 5.349

to 1 indicates a very high correlation. If ρ is positive, then the variables are directly proportional,

otherwise, they are inversely proportional.

To evaluate the performance of fitting models we used widely employed measures known as

Mean Error (ME), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Their

respective formulas are given by Equations (C.2), (C.3), and (C.4):

ME =
1
ns

ns∑
i=1

(predicti − observedi), (C.2)

RMSE =

√√
1
ns

ns∑
i=1

(predicti − observedi)2, (C.3)

MAE =
1
ns

ns∑
i=1

|predicti − observedi|, (C.4)

where predicti are the predicted values for the model, and observedi are the original values of the

time series, for all i = 1, . . . , ns.
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Appendix D. Prediction analysis

This section shows an illustrative analysis of the results achieved by EEMD-ARIMAX on the

data without the normalization by the anomaly detection strategy.

Figures D.11 to D.17 present the original daily number of COVID-19 cases and the daily pre-

dicted number of COVID-19 cases by the EEMD-ARIMAX method in each of the Brazilian capi-

tals. The x-axis corresponds to the days of the analyzed period and the y-axis refers to the number

of daily COVID-19 cases.

On the one hand, Porto Alegre-RS, São Paulo-SP and Rio de Janeiro-RJ were the cities with

the worst prediction results by the EEMD-ARIMAX method, reaching RMSE values of 282.510,

775.817, and 318.717, respectively. On the other, Cuiabá-MT, Palmas-TO, Rio Branco-AC, and

São Luis-MA were the cities that had the best prediction results by the EEMD-ARIMAX method,

reaching RMSEs of 35.695, 53.240, 30.006, and 32.342, respectively.
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Figure D.11: Predicted (red) and observed (black) models to the North region of Brazil.
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Figure D.12: Predicted (red) and observed (black) models to the North region of Brazil (continuation).
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Figure D.13: Predicted (red) and observed (black) models to the Northeast region of Brazil.
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Figure D.14: Predicted (red) and observed (black) models to the Northeast region of Brazil (continuation).
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Figure D.15: Predicted (red) and observed (black) models to the Midwest region of Brazil.
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Figure D.16: Predicted (red) and observed (black) models to the Southeast region of Brazil.
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Figure D.17: Predicted (red) and observed (black) models to the South region of Brazil.
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