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Abstract

Under-representation of certain populations, based on gender, race/ethnicity, and
age, in data collection for predictive modeling may yield less-accurate predictions
for the under-represented groups. Recently, this issue of fairness in predictions has
attracted significant attention, as data-driven models are increasingly utilized to per-
form crucial decision-making tasks. Methods to achieve fairness in the machine learn-
ing literature typically build a single prediction model subject to some fairness criteria
in a manner that encourages fair prediction performances for all groups. These ap-
proaches have two major limitations: i) fairness is often achieved by compromising
accuracy for some groups; ii) the underlying relationship between dependent and in-
dependent variables may not be the same across groups. We propose a Joint Fairness
Model (JFM) approach for binary outcomes that estimates group-specific classifiers
using a joint modeling objective function that incorporates fairness criteria for predic-
tion. We introduce an Accelerated Smoothing Proximal Gradient Algorithm to solve
the convex objective function, and demonstrate the properties of the proposed JFM
estimates. Next, we presented the key asymptotic properties for the JFM parameter
estimates. We examined the efficacy of the JFM approach in achieving prediction
performances and parities, in comparison with the Single Fairness Model, group-
separate model, and group-ignorant model through extensive simulations. Finally,
we demonstrated the utility of the JFM method in the motivating example to obtain
fair risk predictions for under-represented older patients diagnosed with coronavirus
disease 2019 (COVID-19).

Keywords: algorithmic fairness, algorithmic bias, joint estimation, under-represented pop-
ulation

2



1 Introduction

1.1 Applied Context

The issue of making fair predictions has attracted significant attention recently in ma-

chine learning as a critical issue in the application of data-driven models. Though machine

learning models are increasingly utilized to perform crucial decision-making tasks, recent

evidence reveals that many carefully designed algorithms learn biases from the underlying

data and exploit these inequalities when making predictions. For example, large system-

atic biases in prediction performance have been detected for machine learning models in

areas such as recidivism prediction relative to race [Angwin et al., 2016], ranking of job

candidates relative to gender [Lahoti et al., 2018] and face recognition relative to both race

and gender [Ryu et al., 2018, Buolamwini and Gebru, 2018]. There is an emerging recog-

nition that such biases are also likely to be a significant issue in data-derived predictive

models in healthcare [Char et al., 2018]. Data obtained through clinical trials are often

biased and not representative of racial/ethnic minority groups and/or people over 75 with

multiple chronic conditions [Gianfrancesco et al., 2018], a phenomenon which has appeared

in studies of cancer incidence and mortality [Murthy et al., 2004], cardiovascular diseases

[Sardar et al., 2014] and diabetes [Chow et al., 2012], etc. Biased representation of different

populations in biomedical studies limits the benefits that can be potentially achieved for

these communities.

One motivating example is to predict mortality for patients infected with coronavirus

disease 2019 (COVID-19). As of January 23 2021, COVID-19 has infected more than 96

million people globally, accounting for more than 2 million known deaths. Older patients

are particularly vulnerable to severe outcomes and death due to COVID-19. The Centers

for Disease Control and Prevention (CDC) reported that the fatality rate was 18.8% for
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patients older than 80 years whereas the overall fatality rate is estimated at up to 5% for all

patients [Kompaniyets et al., 2021]. This difference in survival highlights an urgent need for

risk stratification of older patients with COVID-19 based on routine clinical assessments.

However, most COVID-19 studies have not been stratified by age groups [Tehrani et al.,

2021]. Thus, when a risk prediction equation generated from the general population was

applied to older patients with COVID-19, the model predicted high-risk scores overall due

to their older age, higher prevalence of comorbidities and more laboratory abnormalities.

This resulted in insufficient and unfair risk stratification for these patients as not all older

patients are at the same risk of death from COVID-19 [Tehrani et al., 2021].

1.2 Existing Approaches

Methods to address fairness in the machine learning literature typically begin with a formal

probabilistic definition of fairness. In the context of risk prediction, predictive fairness at

the group level means that a risk prediction model has performance characteristics (based

on accuracy, ranking, calibration) that are relatively independent of group memberships.

For example, if the false positive rate for a classification model is defined as P (ŷ = 1|y = 0),

where ŷ is the model’s prediction, then enforcing equality with respect to a particular binary

group indicator variable G can be stated as requiring the two predictive distributions P (ŷ =

1|G = 1, y = 0) and P (ŷ = 1|G = 0, y = 0) to be as close as possible. Other definitions

include demographic parity [Calders et al., 2009], equalized odds or equal opportunities

[Hardt et al., 2016], disparate treatment, impact and mistreatment [Zafar et al., 2019,

2017a] etc. It is recognized that there is no unique optimal way to define fairness, leading

to trade-offs between different approaches [Zafar et al., 2017b].

Given a fairness criterion, the second component of a fairness strategy requires an algo-

rithmic approach, typically consisting of either 1) pre-processing the data by mapping the
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training data to a transformed space where the dependencies between sensitive attributes

and class labels disappear [Kamiran and Calders, 2012, Dwork et al., 2018]; or 2) post-

processing of a trained prediction model to modify the probability of the decision being

positive from an existing classifier to limit unfair discrimination [Kamishima et al., 2012,

Hardt et al., 2016]; or 3) “in-process,” where fairness is accounted for during training of a

model, e.g., by adding a fairness constraint to the objective function during training. Zemel

et al. [2013] proposed to learning a fair representation of the data and classifier parameters

by optimizing a non-convex function. Zafar et al. [2017b] further defined a convex func-

tion as a measure of (un)fairness, and suggested optimizing accuracy subject to the convex

fairness constraints as well as their converse.

A key feature of nearly all existing approaches is that a single set of classifier parame-

ters is estimated, using fairness criteria that encourage fair prediction performance across

all groups. This approach has two main limitations: i) fairness is often achieved by com-

promising accuracy of some groups; ii) the underlying relationship between dependent and

independent variables may not be the same across group, and the differences in predictive

features may be of interest. In the example of predicting mortality risk for patients with

COVID-19, while one would expect some features to have the same association with mor-

tality for both older and younger patients, the associations between mortality and other

features may be different between age groups. For instance, overweight and obesity (Body

Mass Index [BMI] > 25kg/m2) increase the risk for COVID-19 associated mortality, par-

ticularly among adults aged < 65 years [Kompaniyets et al., 2021] However, geriatric BMI

guidelines are different from younger adults. For older adults, higher BMIs are often asso-

ciated with greater energy stores and a better nutritional state overall, which is beneficial

for patients’ survival outcomes when serious infections are developed. Estimating sepa-

rate prediction models for each group does not leverage potential similarities between the
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groups. Moreover, estimating a single prediction model, even with the fairness criteria, will

likely result in sub-optimal estimation or prediction performances for one group in order

to achieve fair performances with one set of parameters shared across groups. Danaher

et al. [2014] proposed the joint graphical lasso method, a technique for jointly estimating

multiple models corresponding to distinct but related conditions. Their approach is based

upon a penalized log-likelihood approach, which penalizes the differences between param-

eter estimates across groups. Penalized log-likelihood approaches have often been used by

other authors like Yuan and Lin [2007], Friedman et al. [2007b] etc. for similar estimation

purposes while minimizing the disparities in estimates across groups. In all such cases,

however, prediction performances are not considered.

In this paper, we propose a Joint Fairness Model, a technique for jointly estimating

multiple prediction models corresponding to distinct but related groups, to achieve fair

prediction performances across groups. The model parameters are estimated by encourag-

ing prediction fairness, while simultaneously ensuring high predictive accuracy irrespective

of the heterogeneity across the groups. The rest of this paper is organized as follows. In

Section 2, we present the proposed joint fairness model. Section 3 describes the algorithm to

find its optimal solution, and discusses hyperparameter selection. In Section 4, we discuss

asymptotic consistency of the estimators. We illustrate the performance of our proposal in

simulation studies in Section 5; and an application to the motivating example of predicting

COVID-19 mortality outcomes for patients of different age groups in Section 6. Section 7

extends the proposed joint fairness model to generalized linear models for other types of

outcomes. Finally, we summarize and discuss our findings in Section 8.
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2 Problem Formulation

For binary outcomes, consider we are given K groups of datasets Sk = {(Xk
i , y

k
i ) ∈ Rp ×

{0, 1} : i = 1, · · · , nk} with K ≥ 2 representing group membership. Assuming that the n =∑K
k=1 n

k observations are independently distributed: yki ∼ Bernoulli(pki ), ŷ
k
i : Rp → {0, 1}

is the predicted value based on predictor features Xk
i . We focus on the development of the

fair prediction approach for the widely-used logistic regression model. The log-likelihood

of the logistic model for the data from all groups takes the form

K∑
k=1

`(βk;Xk,yk) =
K∑
k=1

nk∑
i=1

(
ykiX

k
iβ

k − log
(
1 + exp

(
Xk
iβ

k
)))

. (1)

Define β = (β1 . . .βK) ∈ RpK . Maximizing the likelihood function (1) with respect to βk in

each group separately yields the maximum likelihood estimates β̂
k

of group k, thus making

separate predictions ŷk per group. If we ignore group memberships, β̂ can be estimated by

maximizing the likelihood function in equation (1) setting all βk equal to a single global

parameter vector β̂ and making predictions ŷ per individual (irrespective of group) using

that parameter vector.

If the K datasets correspond to observations collected from K distinct but related

groups, then one might wish to borrow strength across the K groups to estimate β and

predict ŷ, rather than estimating parameters βk for each group separately, or estimating

one set of βk for all k which can lead to heterogeneous prediction performance across

the groups. Therefore, instead of estimating β by maximizing the likelihood in equation

(1), we consider a penalized log-likelihood approach and seek to jointly estimate β by

solving an objective function of
∑K

k=1 `(β
k;Xk,yk) in equation (1) subject to constraints

on (i) fairness, PF(β;X,y, λF) (ii) parameter similarity, PSim(β;λSim), and (iii) parameter
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sparsity, PSp(β;λSp).

minimize
β

F (β) = −
∑
k

1

nk
`(βk;Xk,yk) + PF(β;X,y, λF) + PSim(β;λSim) + PSp(β;λSp).

(2)

We propose choosing a fairness penalty function PF(β;X,y, λF) that encourages each

group to have similar predictive performance. In this work, we use equalized odds [Hardt

et al., 2016] which encourages each group to have similar false positive rates (FPRs) and

false negative rates (FNRs). Thus, we want to minimize the absolute difference between

FPRj and FPRk |P (ŷ = 1|G = j, y = 0)− P (ŷ = 1|G = k, y = 0)|, and that between FNRj

and FNRk: |P (ŷ = 0|G = j, y = 1)− P (ŷ = 0|G = k, y = 1)|.

Under the logistic regression model, |P (ŷ = 1|G = j, y = 0)− P (ŷ = 1|G = k, y = 0)| =∣∣∣E [ exp(Xβj)

1+exp(Xβj)

∣∣∣G = j, y = 0
]
− E

[
exp(Xβk)

1+exp(Xβk)

∣∣∣G = k, y = 0
]∣∣∣ which is nonconvex due to the

nonconvexity of the sigmoid function. We instead minimize the absolute difference of the

expected linear components of the two groups
∣∣∣E[Xβj∣∣G = j, y = 0

]
− E

[
Xβk

∣∣G = k, y =

0
]∣∣∣. The inequality below, which follows from a first order Taylor series approximation of

the sigmoid function, guarantees that minimizing the difference of the linear components

results in minimizing the difference of the FPRs:∣∣∣∣∣E
[

exp(Xβj)

1 + exp(Xβj)

∣∣∣∣∣G = j, y = 0

]
− E

[
exp(Xβk)

1 + exp(Xβk)

∣∣∣∣∣G = k, y = 0

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

1

2
+

Xβj

4

∣∣∣∣∣G = j, y = 0

]
− E

[
1

2
+

Xβk

4

∣∣∣∣∣G = k, y = 0

]∣∣∣∣∣ .
Similar approximation can be used for the absolute difference between FNRj and FNRk.

Note that the empirical estimate of the expectation is

E
[
Xβk

∣∣∣G = k, y = y
]

=
1

|Sky |
∑
i∈Sky

Xiβ
k,

8



where Sky = {(Xi, yi) : Gi = k, yi = y} is a subgroup defined by group k and the true

response value y with y ∈ {0, 1}. Thus, our fairness penalty to bridge the between-group

gaps in the linear components of FPRk and FNRk is defined as:

PF(β;X,y, λF) = PFPR(β;X,y, λF) + PFNR(β;X,y, λF) (3)

= λF

∑
j<k

∣∣∣∣∣∣ 1

|Sj0|

∑
i∈Sj0

Xiβ
j − 1

|Sk0 |
∑
i∈Sk0

Xiβ
k

∣∣∣∣∣∣+ λF

∑
j<k

∣∣∣∣∣∣ 1

|Sj1|

∑
i∈Sj1

Xiβ
j − 1

|Sk1 |
∑
i∈Sk1

Xiβ
k

∣∣∣∣∣∣
where the summation

∑
j<k represents

∑K
k=1

∑k−1
j=1 for the simplicity.

The similarity penalty PSim(β;λSim) is chosen to encourage similarity across the K

estimated parameters. Here we use the generalized fused Lasso penalty [Hoefling, 2010,

Danaher et al., 2014, Dondelinger et al., 2018] defined as

PSim(β;λSim) = λSim

∑
j<k

‖βj − βk‖1. (4)

The sparsity penalty PSp(β) is chosen to encourage sparse estimates and to avoid ill-defined

maximum likelihood estimates when nk < p.

PSp(β;λSp) =
∑
k

λSpk‖β
k‖1. (5)

In the three penalty functions, λF, λSim, and λSp are nonnegative hyperparameters. Here

PSp(β;λSp), PF(β;X,y, λF), and PSim(β;λSim) are convex penalty functions, so that the

objective in equation (2) is convex in β. The proposed model jointly estimates β to achieve

fair performances across groups, herein referred to as the Joint Fairness Model (JFM). In

contrast, the dominant approach for fair predictions in the current literature is to estimate

a single set of β parameters with constraints on quality of performance metrics across

groups [Bechavod and Ligett, 2017].
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Penalty functions in (3), (4), and (5) are based on the L1 norm. They can be flexibly

adapted to L2 penalization or a combination of L1 and L2 penalizations. The difference

between L1 and L2 penalties have been well discussed [Tibshirani, 1996, Zou and Hastie,

2005]. For the fairness penalty, Bechavod and Ligett [2017] showed that there are no

remarkable differences in the empirical performances between L1 and L2 fairness penalty

forms. When we use the L2 form of the similarity penalty, it penalizes large differences more

aggressively so that models have less chance to obtain group-specific estimates. Note that

other formats of the similarity penalty can be used in the JFM framework. For example,

the group Lasso penalty [Yuan and Lin, 2006] has been shown to encourage similar sparsity

patterns across groups [Obozinski et al., 2010, Danaher et al., 2014], while the fused lasso

term is more aggressive in encouraging similar β̂
k

estimates.

3 Accelerated Smoothing Proximal Gradient Algorithm

for JFM

In this section, we introduce an Accelerated Smoothing Proximal Gradient (ASPG) Al-

gorithm [Chen et al., 2012] to solve the optimization problem (2) for JFM. The objective

function of (2) is convex in β so that a global optimal solution can be attained. However,

conventional proximal gradient-based or coordinate descent approaches (generally used for

Lasso-like methods) cannot be directly applied to solve Problem (2) because there is no

closed form solution for a proximal operator associated with PFPR and PFNR.
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3.1 Nesterov smooth approximation

To overcome the difficulty originating from the non-differentiability of the fairness and sim-

ilarity penalties, we decouple the terms into a linear combination of the decision variables

via the dual norm, then apply the Nesterov smoothing approximation [Nesterov, 2005].

We start with matrix representations of the fairness penalty terms PFPR(β;X,y, λF) =

λF ‖D0β‖1 and PFNR(β;X,y, λF) = λF ‖D1β‖1, where Dy ∈ RK(K−1)/2×pK is defined

as below. Similarly, the matrix representation of the similarity penalty PSim(β;λSim) =

λSim ‖Fβ‖1 with F defined as below.

Dy =


X̄1
y −X̄2

y 0 · · · 0

...

0 X̄2
y −X̄3

y · · · 0

.

..

 F =


Ip −Ip 0 · · · 0

...

0 Ip −Ip · · · 0

..

.


Here, X̄j

y = 1

|Sjy |

∑
Xj∈Sjy X

j is the average logit vector for group j with outcome y, Ip

is the p-dimensional identity matrix. The single matrix form of the fairness penalty term

and the similarity penalty term is therefore defined as:

PF(β;X,y, λF) + PSim(β;λSim) =

∥∥∥∥∥∥∥∥∥


λFD0

λFD1

λSimF

β
∥∥∥∥∥∥∥∥∥

1

= ‖DλF,λSimβ‖1.

Thus, the objective function (2) can be written in matrix form:

minimize
β

−
∑
k

`(βk;Xk,yk) + ‖DλF,λSimβ‖1 +
∑
k

λSpk‖β
k‖1, (6)

where the associated proximal operator of ‖DλF,λSimβ‖1 does not have a closed form so-

lution. We apply the Nesterov smooth approximation to approximate ‖DλF,λSimβ‖1 by a

smooth function fµ(β). Since the dual norm of the L1 norm is the L∞ norm, we have

‖DλF,λSimβ‖1 = sup{αTDλF,λSimβ : ‖α‖∞ ≤ 1},
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and thus, for µ > 0, Nesterov smooth approximation of ‖DλF,λSimβ‖1 is

fµ(β;λF, λSim) = sup
{
αTDλF,λSimβ −

µ

2
‖α‖2

2 : ‖α‖∞ ≤ 1
}
. (7)

The following proposition provides the maximum gap between ‖DλF,λSimβ‖1 and its

Nesterov approximation fµ(β;λF, λSim).

Proposition 3.1 For any µ > 0, the Nesterov smooth approximation satisfies the following

inequalities:

0 ≤ ‖DλF,λSimβ‖1 − fµ(β;λF, λSim) ≤ µpK

2
.

Proof: See Supplementary Material S.2.

The proposition implies that we can control the upper bound of the approximation error

by manipulating µ. We can achieve an arbitrary accuracy δ by letting µ = 2δ
pK

.

The next proposition dictates that the gradient ∇fµ(β;λF, λSim) has a simple form and

is thus easy to compute.

Proposition 3.2 For any µ > 0, fµ(β;λF, λSim) is smooth and convex with respect to β,

whose gradient takes the following form:

∇fµ(β;λF, λSim) = DT
λF,λSim

α∗, (8)

where α∗ = argmax
{
αTDλF,λSimβ −

µ
2
‖α‖2

2 : ‖α‖∞ ≤ 1
}

. Moreover, the gradient is Lips-

chitz continuous with the Lipschitz constant Lµ = µ−1‖DλF,λSim‖2
2, where ‖ · ‖2 denotes the

matrix spectral norm (which is equivalent to the largest singular value of the matrix).

Proof: See Supplementary Material S.3.

Computational Remark: Matrix multiplication DT
λFλSim

α∗ requires O(p2K3) operations,

thus making it computationally intensive when p is large. However, DT
λFλSim

α∗ can be
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computed efficiently without matrix multiplication. Because of its special structure, its

computation can be substituted by a series of scalar multiplications and vector additions.

We can reduce the complexity to O(pK3). Details are provided in Supplementary Material

S.1.

The following proposition yields to attain α∗ in Proposition 3.2, which is essential to

compute the gradient ∇fµ(β;λF, λSim).

Proposition 3.3 For any µ > 0, we have

α∗ = S∞
(
µ−1DλF,λSimβ

)
,

where S∞(·) is the projection onto the unit L∞ ball, which is defined by

[S∞(x)]i =


xi if xi ∈ [−1, 1]

1 if xi ∈ (1,∞)

−1 if xi ∈ (−∞,−1)

.

Proof: See Supplementary Material S.4.

Computational Remark: The matrix multiplication DλF,λSimβ is computationally ex-

pensive as well. It requires O(p2K3) operations, however, we can simplify it to O(pK2)

by performing a series of vector subtractions. The details are presented in Supplementary

Material S.1.

3.2 Accelerated Smoothing Proximal Gradient Algorithm

With ‖DλF,λSimβ‖1 substituted by the Nesterov smooth approximation fµ(β;λF, λSim),

Problem (6) becomes

minimize
β

F̃ (β) = −
∑
k

`(βk;Xk,yk) + fµ(β;λF, λSim) +
∑
k

λSpk‖β
k‖1, (9)
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whose first two terms are convex smooth functions. Although the sparsity penalty term∑
k λSpk‖β

k‖1 is non-differentiable, it can be managed through the proximal gradient

method using the soft-thresholding operator S with a closed form solution [Friedman et al.,

2007a].

Algorithm 1 presents the proposed ASPG algorithm, starting from parameter initializa-

tion, to gradient descent iterations with proximal and momentum steps, until convergence.

The gradient descent step tries to improve the current solution γ(t−1) by using the gradients

∇` of the log-likelihood and ∇fµ of function (8). Subsequently, it performs a proximal step

for the sparsity penalty. Finally, a momentum-based update is performed to accelerate

the convergence. Specifically, we adopted the momentum coefficients in the fast iterative

shrinkage thresholding algorithm [Beck and Teboulle, 2009].

Although Algorithm 1 minimizes the Nesterov smooth approximation F̃ (β) instead of

the original objective function F (β) in equation (2), it can be proven that the solution

is sufficiently close to the optimal solution of equation (2). We first present a lemma

demonstrating a convergence property of the algorithm.

Lemma 3.1 Let {β(t) : t = 1, 2, · · · } be a sequence generated by Algorithm 1. Then for

any t ≥ 1,

F̃ (β(t))− F̃ (β∗) ≤ 2L‖β(0) − β∗‖2
2

t2
,

where β∗ is a global minimizer of Problem (9).

Proof: Proof of this theorem is analogous to the proof of Theorem 4.4 in Beck and Teboulle

[2009] because −
∑

k `(β
(k);Xk,yk)+fµ(β;λF, λSim) is a convex differentiable function and

it has Lipschitz continuous gradient with Lipschitz constant

L =
1

4
max

{
λmax(XkTXk) : k = 1, · · · , K

}
+ µ−1‖DλF,λSim‖2

2 > 0,
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Algorithm 1 Accelerated Smoothing Proximal Gradient (ASPG) Algorithm for the JFM

1: Input: Data Xk,yk for k = 1 . . . K, hyperparameters λF, λSim, λSp, ε, µ

2: Output: β̂ = (β̂1, · · · , β̂
K

) solving the joint fairness objective function (2).

3: Initialize: β(0) = 0, γ(0) = 0, s(0) = 1

4: L = 1
4

max
{
λmax(XkTXk) : k = 1, · · · , K

}
+ µ−1‖DλF,λSim‖2

2

5: for t ≥ 1 do

6: α(t) = γ(t−1) − L−1
(
−∇`

(
γ(t−1)

)
+∇fµ

(
γ(t−1)

))
7: β(t) = S

(
α(t);L−1λSp

)
8: if ‖β(t) − β(t−1)‖2 ≤ ε break

9: s(t) = 1+
√

1+4s(t−1)2

2

10: γ(t) = β(t) +
(
s(t−1)−1
s(t)

)(
β(t) − β(t−1)

)
11: t← t+ 1

12: end for

13: β̂ ← β(t).

where λmax(A) denotes the largest eigenvalue of A.

Based on the lemma, we establish a theorem that shows the solution provided by Al-

gorithm 1 can be arbitrarily close to the global optimum of Problem (2).

Theorem 3.1 Let {β(t) : t = 1, 2, · · · } be a sequence generated by Algorithm 1. Then for

any t ≥ 1,

F (β(t))− F (β∗∗) ≤ µpK

2
+

2L‖β(0) − β∗‖2
2

t2
,

where β∗ and β∗∗ are global minimizers of Problem (9) and Problem (2), respectively, and

L is the Lipschitz constant of F̃ presented in Lemma 3.1.

Proof: We can easily verify the inequality by applying Proposition 3.1 and Lemma 3.1, and
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using F̃ (β∗) ≤ F̃ (β∗∗) as below:

F (β(t))− F (β∗∗) =
(
F (β(t))− F̃ (β(t))

)
+
(
F̃ (β(t))− F̃ (β∗)

)
+
(
F̃ (β∗)− F (β∗∗)

)
≤ µpK

2
+

2L‖β0 − β∗‖2
2

t2
+ 0.

Given the desired accuracy δ > 0 for the approximation, we set µ = 2δ
pK

. Then, we have

F (β(t))−F (β∗∗) ≤ δ+
2L‖β0−β∗‖22

t2
. This inequality implies that the accuracy of Algorithm 1

both depends on the number of iterations t and the accuracy δ > 0 for the approximation.

Based on the theorem, we present the rate of convergence of the algorithm in the following

proposition.

Proposition 3.4 Given a desired accuracy ε > 0, rate of convergence of Algorithm 1 is

O
(√

pK
δ(ε−δ)

)
. Note that δ > 0 must be smaller than ε.

Proof: See Supplementary Material S.5.

Proposition 3.5 Time complexity of a single iteration of Algorithm 1 is O((n+K2)pK).

Proof: Computing the gradient ∇
∑

k `(β
k) of the sum of the log-likelihood functions

requires O(npK). Computing ∇fµ(β;λF, λSim) requires O(pK3). Thus, the gradient step

requires O((n+K2)pK) operations. The proximal step and momentum step both require

O(pK), which are dominated by the complexity of the gradient step. Therefore, a single

iteration of Algorithm 1 requires O((n+K2)pK) operations.

4 Asymptotic properties of the JFM estimates

We now present the key asymptotic results for the JFM parameter estimates β̂ for each

group by solving objective function (2) of a logistic regression for a binary outcome when
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K = 2. We assume p remains constant and n increases to infinity. Consider the following

assumptions

Assumption 1. I(βk)/nk → Ck, where Ck is a positive definite p × p matrix, for k = 1

and 2, where I(βk) is the information matrix of size p× p. For simplicity, we assume there

are no intercept terms in βk.

Assumption 2. As n = min
k=1,2

nk → ∞, max
β̂
k

∥∥∥∥(I(β̂
k
)−

1
2

)
I(βk)

(
I(β̂

k
)−

1
2

)T
− Ip

∥∥∥∥
2

→ 0

where I(β̂
k
) is the empirical information matrix, and Ip is a p× p identity matrix.

The following theorem proves
√
n-consistency for the estimators, complying with the

fairness and similarity constraints between the two groups as well as the sparsity constraint.

Theorem 4.1 Let β̂
k

for k = 1 and 2, minimize the loss function (2). If λ
(n)
F /
√
n →

λ
(0)
F ≥ 0, λ

(n)
Sim/
√
n → λ

(0)
Sim ≥ 0, and λ

(n)
Sp /
√
n → λ

(0)
Sp ≥ 0, then under the assumptions 1

and 2

√
n
(
β̂
k
− βk

)
→ ûk (10)

where {û1, û2} = argmin(V), for uk = (uk1, . . . , u
k
p) ∈ Rp,

V(u1,u2) = u1TW1 + u2TW2 +
1

2
u1TC1u1 +

1

2
u2TC2u2+

λ
(0)
F

[
(X̄1

0u
1 − X̄2

0u
2)sign(X̄1

0β
1 − X̄2

0β
2)I(X̄1

0β
1 6= X̄2

0β
2) + |X̄1

0u
1 − X̄2

0u
2|I(X̄1

0β
1 = X̄2

0β
2)+

(X̄1
1u

1 − X̄2
1u

2)sign(X̄1
1β

1 − X̄2
1β

2)I(X̄1
1β

1 6= X̄2
1β

2) + |X̄1
1u

1 − X̄2
1u

2|I(X̄1
1β

1 = X̄2
1β

2)

]
+

λ
(0)
Sp

2∑
k=1

p∑
j=1

{ukj sign(βkj )I(βkj 6= 0) + |ukj |I(βkj = 0)}+
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λ
(0)
Sim

p∑
j=1

{(u1
j − u2

j)sign(β1
j − β2

j )I(β1
j 6= β2

j ) + |u1
j − u2

j |I(β1
j = β2

j )}

Here Wk ∼ Np(0,Ck), where Ck = limn→∞
1
n

∑n
i=1 X

k
iX

kT
i , and 1

|Sky |
∑
i∈Sky

Xi = X̄k
y, for

y = 0, 1 and k = 1, 2.

Proof: See Supplementary Material S.6.

5 Simulation Study

We performed a series of simulations to evaluate the proposed JFM, and compared it with

the approaches of a group-separate individual logistic regression model, a group-ignorant

vanilla logistic regression model, and a Single Fairness Model (SFM) proposed by Bechavod

and Ligett [2017]. In the context of logistic regression, such an SFM minimizes the following

objective function. We also established ASPG for SFM (see S.8.)

minimize
β

−
∑
k

`(β;Xk,yk) + λF

{∑
j<k

∣∣∣∣∣
∑

Xj∈Sj0
Xjβ

|Sj0|
−
∑

Xk∈Sk0
Xkβ

|Sk0 |

∣∣∣∣∣
+
∑
j<k

∣∣∣∣∣
∑

Xj∈Sj1
Xjβ

|Sj1|
−
∑

Xk∈Sk1
Xkβ

|Sk1 |

∣∣∣∣∣
}

+ λSp‖β‖1.

When applying the group-separate model, regression coefficients were estimated for each

group separately with L1 penalty. The group-ignorant model estimated one logistic regres-

sion with group membership as an additional covariate with an L1 penalty.

5.1 Simulation Setup

We consider a two-group problem (K = 2) for simplicity with group 1 as the over-

represented group and group 2 as the under-represented group with respect to the sample
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sizes. The training samples were simulated as follows. The predictor matrix Xk was inde-

pendently generated from a standard normal distribution. The binary outcome yki was then

simulated from Bernoulli(πi(x
k
i )), where πi(x

k
i ) =

exp(xki β
k)

1+exp(xki β
k)

. Out of the total number of

features, 40% in each group had non-zero coefficients (β’s). The non-zero coefficients were

each set to the value 3. The simulations were conducted under four scenarios to investigate

performances at various levels of shared parameters, sample sizes and dimensionalities.

• In Scenario 1, the shared features between the two groups ranged from 0% to 100% of

features with non-zero coefficients. The intercepts were selected so that the baseline

event prevalence were at 10% for each group. The sample sizes were set at 500 and

200 for group 1 and 2 respectively. The number of features were set to p = 100.

• In Scenario 2, the baseline prevalence of the under-represented group (group 2) ranged

from 10% to 50%. The baseline event prevalence of the over-represented group (group

1) was fixed at 50%. Half of the features with non-zero coefficients were shared

between the groups, while the other half of the features were group-specific. The

sample sizes were set at 500 and 200 for group 1 and 2 respectively. The number of

features was set to p = 100.

• In Scenario 3, the sample size of the under-represented group (group 2) ranged from

50 to 300 while the sample size of group 1 was fixed at 500. The number of features

were set to p = 100. Half of the features with non-zero coefficients were shared

between the groups.

• In Scenario 4, the number of features p ranged from 50 to 2,000 in order to investigate

model performance in high-dimensional settings. Sample sizes were 500 and 200 for

group 1 and 2 respectively. For each value of p, 40 features had non-zero coefficients,

with half of the non-zero features shared between the two groups.
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We evaluated the methods on independent testing datasets with large sample sizes (n =

1000 for both groups) under the same simulation setups. The Area under the Receiver

Operating Characteristic curve (AUC) was used to assess the predictive ability of each

model. Prediction unfairness was assessed by the group difference in AUCs. Medians and

interquartile ranges (IQRs) of the assessment metrics were generated from 20 replicates for

each experiment. Predictive performances and their unfairness in terms of FPR and FNR

were calculated with cutoff of the predicted probability at 0.5 and presented in Supplemen-

tary Material S.10. We further presented additional simulation scenarios in Supplementary

Material S.11.

5.2 Choice of the Evaluation Metrics in Selecting Hyperparam-

eters in Cross-validations

The group-ignorant model, group-separate model, SFM, and JFM contain 1, K, 2, and

K + 2 hyperparameters respectively. For every method, 5-fold cross-validation on the

training dataset was used to determine the hyperparameters. For the vanilla models

(group-separate and group-ignorant), the lasso penalty term was selected by optimizing

cross-validation AUCs. For the fairness-aware models, we compared a series of evalua-

tion metrics for selecting the hyperparameters in cross-validations, including group aver-

age of AUCs/accuracies (arithmetic mean, geometric mean, and harmonic mean), overall

AUCs/accuracies on all samples ignoring group memberships, and the group average of

AUCs/accuracies subtracting the disparity of AUCs/accuracies (absolute differences and

squared differences) in Supplementary Materials S.9. The harmonic mean of group-wise

AUCs in cross-validations selected the hyperparameters generating the most robust AUCs

and parities in the test datasets, therefore was used in the following simulations results.
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5.3 Simulation Results

For Scenario 1, Figure 1(a) displays the estimated AUC for the under-represented group

against the proportion of shared features in the two groups. The AUCs of the under-

represented group from the JFM, SFM, and group-ignorant models improved as the pro-

portion of shared features increased. The SFM and group-ignorant models were highly

sensitive to the percentage of shared nonzero features as they both estimate a single set

of parameters for both groups. In contrast, JFM showed consistently higher AUC than

the other three methods. When the proportion of shared features is high, JFM estimated

higher AUCs and smaller variances than those from the group-separate model. JFM’s

performance was similar to those of the SFM and the group-ignorant model. When the

proportion of shared features is low, JFM estimated higher AUCs than the SFM and the

group-ignorant model, and showed similar AUC to the group-separate model. Figure 1(b)

displays the estimated AUC for the majority group against the proportion of shared fea-

tures in the two groups. JFM was robust in achieving comparable AUC to that from the

group-separate model. The SFM and group-ignorant models were highly sensitive to the

percentage of shared features for the majority group with lower AUCs when the proportion

of shared parameters is low. Figure 1(c) displays the estimated overall AUCs, and Figure

1(d) displays the group disparity of AUCs from the four approaches. Together, these fig-

ures demonstrate that the JFM achieves fair prediction performances robustly across the

range of varying proportions of shared features between groups, by training the classifiers

jointly with a flexible parameterization. Figure S.5(a) through Figure S.5(d) compares the

average of TPR and TNR and disparity in TPR and TNR differences of the four methods.

The patterns are similar to those found using AUCs.

Figure 2 displays the performance of the four methods when varying the baseline event

prevalence of the under-represented group while holding the prevalence of the majority
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group fixed. In Figure 2(a), the JFM showed consistently higher AUCs for the under-

represented group than those from all the other models. The AUCs estimated from the

group-separate method showed higher variance when the prevalence is rare. Figure 2(b)

indicates that the AUC of the over-represented group was not impacted for the JFM and

group-separate methods, remaining consistently higher than those from the SFM and the

group-ignorant models. As seen in Figure 2(c) and 2(d), the JFM achieves overall satisfac-

tory AUCs and parity between groups with varying sample sizes of the under-represented

group. Figure S.6(a) through Figure S.6(d) compares the average of TPR and TNR and

disparity in TPR and TNR differences of the four methods.

Figure 3 displays the performance of the four methods against the sample size of the

under-represented group with other settings fixed. In Figure 3(a), the AUCs of the under-

represented group from all models were improved as its sample size increased. The JFM

showed consistently higher AUCs and smaller variances than those from all the other mod-

els. JFM outperforms the other models the most when the minority group’s sample size

is small, showing the benefits of borrowing information between groups in situations with

unbalanced sample sizes. Figure 3(b) illustrates that the AUC of majority group was not

impacted for the JFM and group-separate methods. However, the AUC of the majority

group decreased as sample size of the under-represented group increased for the SFM and

the group-ignorant models. This decrease highlights an undesirable performance from these

two methods, namely, compromising accuracy by estimating a single set of classifier param-

eters. Figure 3(c) and 3(d) illustrates that the JFM achieves overall satisfactory AUCs and

parity between groups across varying sample sizes of the under-represented group. Figure

S.7 compares the average of TPR and TNR and disparity of TPR and TNR of the four

methods.

Figure 4 displays the performance of the four methods while varying the number of
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features from 200 to 2000, and holding the number of associated features constant at 40. It

demonstrates that the JFM method in going from low dimensional to high dimensional set-

tings can maintain overall satisfactory prediction performances and parity between groups.

Supplementary Figure S.12 displays the performance of the four methods while varying

the number of features from 200 to 2000, and setting the number of associated features to

a fixed proportion of the total number of features. The resultant patterns are similar to

Figure 4.

We investigated the empirical computational complexity of JFM with the increasing

number of features and sample sizes in the Supplementary Materials. Figure S.1 shows

that the JFM computation time is approximately O(p1.5) and O(n). Details are presented

in Section S.7.

6 COVID-19 Risk Prediction Case Study

We applied the JFM, in comparison with other methods, to predict mortality related to

COVID-19 from patients’ routine ambulatory encounters and laboratory records prior to

COVID-19 infection, with the goal of better stratifying patient risk for clinical manage-

ment. We used a retrospective EHR dataset of 11,594 patients of age 50+ with laboratory-

confirmed COVID-19 at New York University Langone Health (NYULH) from March 2020

to February 2021. Among the 11,594 patients, 1,242 (10.7%) died of COVID-19. The

patients were divided into four groups by their age at the time of COVID-19 diagnosis:

50-64, 65-74, 75-84, and 85+ with 5, 905 (50.9%), 2, 946 (25.4%), 1, 814 (15.6%), and 929

(8.0%) patients, respectively. The observed mortality rates were 4.44%, 11.17%, 18.96%

and 33.05%, respectively. Candidate features (p = 82) included demographic variables,

such as age, sex, race/ethnicity, smoking status, body mass index (BMI); common chronic
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Figure 1: Experimental Results for Scenario 1

disease history such as diabetes, dementia, chronic kidney diseases (CKD); Myocardial In-

farction (MI) & Atrial Fibrillation (AF); and routinely collected laboratory markers, such

as lipid panels, blood panels, albumin, creatinine, aspartate aminotransferase (AST) etc.

obtained from patients routine ambulatory histories before their COVID-19 infections. To

build the prediction models, we randomly split the dataset into training (n = 8, 115, 70%)
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Figure 2: Experimental Results for Scenario 2

and testing (n = 3, 479, 30%) sets. We first standardized all features to zero-mean and

unit variance. Five-fold cross-validation was conducted on the training set to determine

the optimal hyperparameters for each model. Hyperparameters for the group-separate and

group-ignorant models were selected to maximize the groupwise AUCs and the overall AUC,

respectively, while those for the SFM and JFM were determined to maximize the harmonic
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Figure 3: Experimental Results for Scenario 3

mean of groupwise AUCs. Subsequently, we trained the final models with the optimal

hyperparameters using the entire training set and applied the final models to the testing

dataset to demonstrate their predictive performance. We repeated the training/testing

split 10 times and averaged the performances across the 10 times. Table 1 presents the

AUCs and the averages of TPR and TNR of the four methods for each age group. The
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Figure 4: Experimental Results for Scenario 4

JFM performed better across all age groups than the separate model did, demonstrating

that joint modeling yields higher efficiency. Compared with the group ignorant model, the

JFM performed better in the three older age groups, with comparable AUC for the 50-64

age group, which resulted in smaller disparities in prediction performance overall. This

phenomenon supports the observed pattern in simulation studies that the JFM reduced
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disparities in prediction performances without impacting those from the majority groups.

In contrast, the SFM tended to reduce prediction disparities by lowering the performances

for the majority groups. Figure 5 presents the boxplots of odds ratios (ORs) of selected

demographic and clinical features estimated by the JFM. These results support the hy-

pothesis that some features have common associations between groups, and some have

group-specific ORs. For example, the decreasing OR estimates of BMI along age-groups

confirmed the prior hypothesis that the association between BMI and COVID-19 mortality

is heterogeneous between age-groups. In JFM estimates, BMI is positively associated with

higher risks of COVID-19 mortality for patients younger than 75, but with smaller and

even reversed ORs in the oldest age groups. For older adults, higher BMIs are often associ-

ated with greater energy stores and a better nutritional state overall, which is beneficial for

patients’ survival outcomes when infected by COVID-19. The proportion of underweight

patients (BMI<18) increased from 0.6% in the age group 50-64 to 5.5% in the age group

85+. The underweight status, often a proxy of frailty, has been repeatedly reported as a

strong risk factor of COVID-19-induced multiorgan failure and mortality in older patients

[Tehrani et al., 2021]. On the other hand, the JFM can improve efficiencies for covariates

with rare prevalence in a subgroup. For instance, dementia has been reported as a risk

factor with COVID-19 mortality. In the group-separate model, dementia was insignificant

in patients aged 50-64, mainly due to its low prevalence in this group (0.6%). In contrast,

dementia was significantly associated with mortality in all age groups with similar ORs in

the JFM estimates.
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Models
AUCs Average of TPR and TNR

50-64 65-74 75-84 Over 85 50-64 65-74 75-84 Over 85

Group-separate 0.838 0.773 0.709 0.649 0.780 0.722 0.669 0.632
Group-ignorant 0.855 0.786 0.735 0.659 0.803 0.731 0.687 0.639

SFM 0.847 0.774 0.728 0.660 0.791 0.724 0.688 0.640
JFM 0.852 0.791 0.736 0.672 0.794 0.731 0.690 0.659

Table 1: Predictive Performance on COVID-19 Case Study
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Albumin
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Figure 5: Estimated Odds Ratios for COVID-19 Dataset

7 JFM for Generalized Linear Models

The proposed JFM framework in (2) can be extended to Generalized Linear Models (GLMs)

when the response variable yk is obtained from an exponential family.

We can choose a generalized fairness penalty function to encourage each group to have
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similar linear components.

PF(β;X,y, λF) = λF

∑
j<k

Ey

[ ∣∣E[Xβj|G = j,y = y
]
− E

[
Xβk|G = k,y = y

]∣∣ ],
The proposed accelerated smoothing proximal gradient method can also be extended to

solve the generalized JFMs.

8 Conclusions and Discussion

In this study we introduced a new method, the joint fairness model, for jointly estimating

sparse parameters on the basis of observations drawn from distinct but related groups with

the goal of achieving fair performances across groups. We employ an efficient accelerated

smoothing proximal gradient algorithm to solve the joint fair objective function, which

has convex penalty functions. Our algorithm is tractable on high-dimensional datasets

(thousands of features on thousands of samples.) Further, we presented the asymptotic

distributions of parameter estimates β̂
k

and provided a framework to perform hypothesis

testing of the overall β or the individual elements of βj. Our JFM predictions outperform

competing approaches, including group separate models, group ignorant models and single

fairness models, on a range of simulated scenarios.

We note that the JFM’s reliance on separate hyperparameters (K+2 hyperparameters)

that control sparsity, fairness and similarity can be viewed as a strength rather than a

drawback because one can vary separately the amount of similarity, sparsity and fairness to

enforce in the group specific estimates. In situations with many groups, further assumptions

can be made to reduce the number of sparsity hyperparameters (i.e. λSpk = ckλSp). Possible

choices of ck include 1√
nk

so that sparsity is inversely proportional to the number of samples,

and 1 for the simplicity.
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As an exception of nearly all existing fairness-aware prediction approaches estimating a

single set of classifier parameters, recent studies have proposed to use multi-task learning

(MTL) to improve algorithm fairness [Oneto et al., 2019]. However, most MTL researches

have focused on joint architecture, optimization, and task relationship learning, which is a

different emphasis from the proposed JFM approach to improve risk prediction performance

for under-represented populations.

Moving forward, the proposed JFM framework can be extended for time-to-event out-

comes by putting similar constraints. It can also be extended to non-linear models by

adding a suitable fairness penalty term to the objective function. Given the increasing

ability to subclassify diseases according to their molecular features and the recognition

that substantial heterogeneity exists in many molecular subtypes, most diseases will be

eventually classified into a collection of multiple subtypes with unbalanced sample sizes.

Therefore, the proposed JFM has wide application potential to improve prediction effi-

ciencies and reduce subgroup prediction disparities beyond applications addressing gender,

race/ethnicity and age disparities.

A Python package implementing the JFM will be made available at

https://github.com/hyungrok-do/joint-fairness-model.
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SUPPLEMENTARY MATERIAL

S.1 Computational Remark

Although DT
λF,λSim

α∗ and DλF,λSimβ in Proposition 3.2 and 3.3 seem computationally ex-

pensive due to the high-dimensionality of DλF,λSim ∈ R(p+1)K(K−1)×pK , we can reduce the

complexity because of their structure.

For DT
λF,λSim

α∗, we have

DT
λF,λSim

α∗ = λFD0α
∗
1 + λFD1α

∗
2 + λSimA

∗, (S.1)

where

A∗ =



α∗3+ α∗3+ α∗3+ · · · 0

−α∗3+ 0 0 · · · 0

0 −α∗3+ 0 · · · 0
...

0 0 0 · · · α∗3+

0 0 0 · · · −α∗3+


,

and α∗3+ = (α∗3, · · · , α∗pK) is sub-vector of α∗ that obtained by removing first two elements

from it. (S.1) requires scalar-matrix multiplication and matrix addition and thus its compu-

tational complexity is O(pK3), which is lower than O(p2K3) of the matrix multiplication.

On the other hand, we have

DλF,λSimβ =


λFD0β

λFD1β

λSimFβ

 . (S.2)

Here, F is a sparse matrix consists of identity matrices and thus Fβ can be computed
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without matrix multiplication by

Fβ =


β1 − β2

...

βK−1 − βK

 . (S.3)

Its complexity is O(pK2) which is lower than O(p2K3), the complexity of the standard

matrix multiplication for Fβ. Since (S.3) only requires a series of vector subtraction op-

erations, it is more efficient than multiplying large matrices. Note that the complexity of

(S.2) is also O(pK2) because D0β and D1β both require O(pK) computations.

S.2 Proof of Proposition 3.1

Note that the proof of Proposition 3.1 to Proposition 3.3 are based on the work of Chen

et al. [2012]. The left-hand side of the inequalities is trivial by definition. For the right-hand

side, we have

‖DλF,λSimβ‖1 − fµ(β;λF, λSim) ≤ µ

2
‖α‖2

2, ∀α ∈ RpK s.t. ‖α‖∞ ≤ 1,

and it is easy to verify that ‖α‖2
2 ≤ pK given that α ∈ RpK and ‖α‖∞ ≤ 1, which

completes the proof.

S.3 Proof of Proposition 3.2

The smoothness of fµ(β;λF, λSim) can be proved by applying the following Theorem 26.3 in

Rockafellar [1970]. We start by the conjugate φ∗ of φ(α) = 1
2
‖α‖2

2 defined on {α : ‖α‖∞ ≤

1}, which is given by

φ∗(β) = sup
{α:‖α‖∞≤1}

(
αTβ − φ(α)

)
.
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By plugging
DλF,λSim

β

µ
into the conjugate function, we have

µφ∗
(
DλF,λSimβ

µ

)
= sup
{α:‖α‖∞≤1}

(
αTDλF,λSim −

µ

2
‖α‖2

2

)
= fµ(β;λF, λSim).

Therefore, fµ has the essentially smooth conjugate function (we can easily verify that

φ(α) = 1
2
‖α‖2

2 defined on {α : ‖α‖∞ ≤ 1} is essentially convex) and thus it is a smooth

function.

To obtain the gradient ∇fµ, we apply Danskin’s theorem. Let

ψ(α,β) = αTDλF,λSimβ −
µ

2
‖α‖2

2.

Then,

fµ(β;λF, λSim) = max
{α:‖α‖∞≤1}

ψ(α,β).

Since {α : ‖α‖∞ ≤ 1} is a compact set, fµ is continuous in both α and β, and it is convex

in β for every α such that ‖α‖∞ ≤ 1. Under these three conditions, Danskin’s theorem

grants that fµ is convex in β. Moreover,

∇fµ(β;λF, λSim) =
∂

∂β
ψ(α∗,β) = DT

λF,λSim
α∗,

since the set {
α∗ : ψ(α∗,β) = max

{α:‖α‖∞≤1}
ψ(α,β)

}
has a single element because ψ is strongly convex in α.

S.4 Proof of Proposition 3.3

α∗ can be attained by solving the following optimization problem

max
α
αTDλF , λSimβ −

µ

2
‖α‖2

2 s.t. ‖α‖∞ ≤ 1,
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which can be rewritten as the following minimization problem

min
α

µ

2
‖α‖2

2 −αTDλF,λSimβ s.t. ‖α‖∞ ≤ 1.

It is equivalent to

min
α

∥∥∥∥α− DλF,λSimβ

µ

∥∥∥∥2

2

s.t. ‖α‖∞ ≤ 1,

whose optimal solution satisfies

α∗i =


di if di ∈ [−1, 1]

1 if di ∈ (1,∞)

−1 if di ∈ (−∞,−1)

,

where di =
[
DλF,λSim

β

µ

]
i

is the i-th element of
DλF,λSim

β

µ
. Note that solving the minimization

problem is equivalent to finding a Euclidean projection of
DλF,λSim

β

µ
onto the unit L∞ ball.

S.5 Proof of Proposition 3.4

From Theorem 3.1, with µ = 2δ
pK

for the approximation accuracy 0 < δ < ε, we have

F (β(t))−F (β∗∗) ≤ δ+
2‖β(0) − β∗‖2

2

t2

(
1

4
max

{
λmax(XkTXk) : k = 1, · · · , K

}
+
pK

2δ
‖DλF,λSim‖2

2

)
.

Thus, the number of iterations t to achieve F (β(t))− F (β∗∗) ≤ ε, is bounded by√
2‖β(0) − β∗‖2

2

ε− δ

(
1

4
max {λmax(XkTXk) : k = 1, · · · , K}+

pK

2δ
‖DλF,λSim‖2

2

)
,

which can be simplified to O
(√

pK
δ(ε−δ)

)
.
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S.6 Proof of Theorem 4.1

To prove the theorem, it is sufficient to show that Vn(u1,u2)→ V(u1,u2) as n→∞, where

Vn(u1,u2) is defined in (S.4).

From Theorem 4.1, we can re-write V(u1,u2) as

V(u1,u2) = g(u1,u2) + h(u1,u2)

where

g(u1,u2) = u1TW1 + u2TW2 +
1

2
u1TC1u1 +

1

2
u2TC2u2

and

h(u1,u2) =

λ
(0)
F

[
(X̄1

0u
1 − X̄2

0u
2)sign(X̄1

0β
1 − X̄2

0β
2)I(X̄1

0β
1 6= X̄2

0β
2) + |X̄1

0u
1 − X̄2

0u
2|I(X̄1

0β
1 = X̄2

0β
2)+

(X̄1
1u

1 − X̄2
1u

2)sign(X̄1
1β

1 − X̄2
1β

2)I(X̄1
1β

1 6= X̄2
1β

2) + |X̄1
1u

1 − X̄2
yu

2|I(X̄1
1β

1 = X̄2
1β

2)

]
+

λ
(0)
Sp

2∑
k=1

p∑
j=1

{ukj sign(βkj )I(βkj 6= 0) + |ukj |I(βkj = 0)}+

λ
(0)
Sim

p∑
j=1

{(u1
j − u2

j)sign(β1
j − β2

j )I(β1
j 6= β2

j ) + |u1
j − u2

j |I(β1
j = β2

j )}.

Let

Vn(u1,u2) = gn(u1,u2) + hn(u1,u2) (S.4)

where

gn(u1,u2) = −
{
`

(
β1 +

u1

√
n

)
− `(β1)

}
−
{
`

(
β2 +

u2

√
n

)
− `(β2)

}
,
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and

hn(u1,u2) = λF

{∣∣∣∣X̄1
0

(
β1 +

u1

√
n

)
− X̄2

0

(
β2 +

u2

√
n

)∣∣∣∣− ∣∣X̄1
0β

1 − X̄2
0β

2
∣∣ (S.5)

+

∣∣∣∣X̄1
1

(
β1 +

u1

√
n

)
− X̄2

1

(
β2 +

u2

√
n

)∣∣∣∣− ∣∣X̄1
1β

1 − X̄2
1β

2
∣∣}

+ λSp

2∑
k=1

p∑
j=1

{∣∣∣∣∣βkj +
ukj√
n

∣∣∣∣∣− |βkj |
}

+ λSim

p∑
j=1

{∣∣∣∣(β1
j +

u1
j√
n

)
−
(
β2
j +

u2
j√
n

)∣∣∣∣− |β1
j − β2

j |

}
.

We first show gn(u1,u2)→ g(u1,u2), that is,

`k

(
βk +

uk√
n

)
− `k(βk)→ (uk)TWk +

1

2
(uk)TCkuk. (S.6)

Following the arguments of Viallon et al. [2013], we apply Taylor series expansion on the

left side of (S.6) which yields

`k

(
βk +

uk√
n

)
− `k(βk) =

∇`k(βk)Tuk√
n

+
1

2
ukT I(βk)

n
uk + oP

(
1

n

)
.

Here, oP is the small o with respect to the probability measure P. Assumption 1 ensures

1
2
ukT I(βk)

n
uk → 1

2
ukTCkuk and assumption 2 ensures ∇`k(βk)Tuk/

√
n→Wkk.

On the other hand, to show hn(u1,u2)→ h(u1,u2), we follow the arguments in Theorem

2 of Knight and Fu [2000]. For the first term of (S.5), we have

λ
(n)
F

{∣∣∣∣X̄1
y

(
β1 +

u1

√
n

)
− X̄2

y

(
β2 +

u2

√
n

)∣∣∣∣− ∣∣X̄1
yβ

1 − X̄2
yβ

2
∣∣}

= λ
(n)
F

{∣∣∣∣∣X̄1
yβ

1 − X̄2
yβ

2 +
X̄1
yu

1 − X̄2
yu

2

√
n

∣∣∣∣∣− ∣∣X̄1
yβ

1 − X̄2
yβ

2
∣∣}

→ λ
(0)
F (X̄1

yu
1 − X̄2

yu
2)sign(X̄1

yβ
1 − X̄2

yβ
2)I(X̄1

yβ
1 6= X̄2

yβ
2) + |X̄1

yu
1 − X̄2

yu
2|I(X̄1

yβ
1 = X̄2

yβ
2),
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as n→∞, for y = 0, 1. Similarly,

λ
(n)
Sim

p∑
j=1

{∣∣∣∣(β1
j +

u1
j√
n

)
−
(
β2
j +

u2
j√
n

)∣∣∣∣− ∣∣β1
j − β2

j

∣∣}

= λ
(n)
Sim

p∑
j=1

{∣∣∣∣β1
j − β2

j +
u1
j − u2

j√
n

∣∣∣∣− ∣∣β1
j − β2

j

∣∣}

→ λ
(0)
Sim

p∑
j=1

{
(u1

j − u2
j)sign(β1

j − β2
j )I(β1

j 6= β2
j ) + |u1

j − u2
j |I(β1

j = β2
j )
}
,

as n→∞, for k = 1, 2. We also have

λ
(n)
Sp

p∑
j=1

{∣∣∣∣∣βkj +
ukj√
n

∣∣∣∣∣− ∣∣βkj ∣∣
}
→ λ

(0)
Sp

p∑
j=1

{ukj sign(βkj )I(βkj 6= 0) + |ukj |I(βkj = 0)},

as n→∞.

We showed that gn(u1,u2) → g(u1,u2) and hn(u1,u2) → h(u1,u2) as n → ∞. Thus,

Vn(u1,u2)→ V(u1,u2) as n→∞ as desired.

Note: The Theorem 4.1 is proved for the JFM with L1 penalization. For a model defined

with L2 penalization, we can simply modify h(u1,u2) as below.

h(u1,u2) =λ
(0)
F

[
(X̄1

0u
1 − X̄2

0u
2)sign(X̄1

0β
1 − X̄2

0β
2)|X̄1

0u
1 − X̄2

0u
2|+

(X̄1
1u

1 − X̄2
1u

2)sign(X̄1
1β

1 − X̄2
1β

2)|X̄1
1u

1 − X̄2
yu

2|

]
+

λ
(0)
Sp

2∑
k=1

p∑
j=1

{ukj sign(βkj )|ukj |+ λ
(0)
Sim

p∑
j=1

{(u1
j − u2

j)sign(β1
j − β2

j )|u1
j − u2

j |}.

Following Knight and Fu [2000] and the arguments above, we can show
√
n-consistency of

the estimates obtained from a model with L2 penalization. The consistency of estimates

obtained form a model utilizing mixture of L1 and L2 penalization can be proved similarly.
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S.7 Computational Analysis

Figure S.1 displays JFM’s empirical computational complexity against the number of fea-

tures and sample sizes.

For the first experiment, we increased the number of covariates from 100 to 5,000 while

fixing the sample size at 200 and 500 respectively. Figure S.1(a) shows that the JFM

computation time is approximately O(p1.5), which is because Algorithm 1’s per iteration

complexity is linear in p and its rate of convergence is proportional to
√
p. With 5, 000

features, JFM finishes in 9 seconds on one Intel Xeon Platinum 8268 Processor (2.90 GHz,

24 cores) and 32GB RAM.

We then varied the sample size to 7,000 (5:2 ratio between groups) while the number

of features was fixed at 1,000. In Figure S.1(b), the computation time is approximately

O(n) for n > 1, 000, as shown in Proposition 3.5. For n < 1, 000, the computation time

is inversely proportional to n because Problem (3) is ill-posed (p > n) and requires more

iterations for convergence.

S.8 Accelerated Smoothing Proximal Gradient Algorithm for SFM

Bechavod and Ligett [2017] suggested to use CVXPY [Diamond and Boyd, 2016] to solve

the SFM optimization problem. Since the problem is convex, CVXPY it can easily be

handled. However, CVXPY is equipped with a general quadratic optimization solver and

it is not efficient enough to be scalable for high-dimensional problems. Here, we introduce

a variant of Algorithm 1 to solve the SFM more efficiently. Consider the following SFM

optimization problem:

minimize
β

− `(β;X,y) + λF0

∑
j<k

|(X̄j
0 − X̄k

0)β|+ λF1

∑
j<k

|(X̄j
1 − X̄k

1)β|+ λSp‖β‖1. (S.7)
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Figure S.1: Experimental Results for Computational Analysis
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Analogous to the matrix representation in Chapter 3, we can rewrite the objective function

in matrix form:

minimize
β

− `(β;X,y) + ‖DλFβ‖1 + λSp‖β‖1,

where
...

DλF =



λF0(X̄
1
0 − X̄2

0)
...

λF0(X̄
K−1
0 − X̄K

0 )

λF1(X̄
1
1 − X̄2

1)
...

λF1(X̄
K−1
1 − X̄K

1 )


.

We can easily verify the Nesterov smooth approximation can be applied to approximate

‖DλFβ‖1 and Proposition 3.1, 3.2, and 3.3 hold. Therefore, Algorithm 2 solves the SFM

optimization problem.
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Algorithm 2 Accelerated Smoothing Proximal Gradient Method for SFM

1: Input: Data X,y, hyperparameters λF0 , λF1 , λSp, ε, µ

2: Output: β̂ solving the Single Fairness optimization problem (S.7).

3: Initialize: β(0) = 0, γ(0) = 0, s(0) = 1

4: Compute L = 1
4
λmax(XTX) + µ−1‖DλF‖2

2

5: for m ≥ 1 do

6: α(m) = γ(m−1) − L−1
(
−∇`

(
γ(m−1)

)
+∇fµ

(
γ(m−1)

))
7: β(m) = S

(
α(m);L−1λSp

)
8: if ‖β(m) − β(m−1)‖2 ≤ ε break

9: s(m) = 1+
√

1+4s(m−1)2

2

10: γ(m) = β(m) +
(
s(m−1)−1
s(m)

)(
β(m) − β(m−1)

)
11: m← m+ 1

12: end for

13: β̂ ← β(m).

S.9 Choice of the Evaluation Metrics in Selecting Hyperparam-

eters in Cross-validations

The group-ignorant model, group-separate model, SFM, and JFM contain 1, K, 2, and

K + 2 hyperparameters respectively. For every method, 5-fold cross-validation on the

training dataset was used to determine the hyperparameters. For the vanilla models

(group-separate and group-ignorant), the lasso penalty term was selected by optimizing

cross-validation AUCs. For the fairness-aware models, we compared a series of evalua-

tion metrics for selecting the hyperparameters in cross-validations, including group aver-

age of AUCs/accuracies (arithmetic mean, geometric mean, and harmonic mean), overall

AUCs/accuracies on all samples ignoring group memberships, and the group average of
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AUCs/accuracies subtracting the disparity of AUCs/accuracies (absolute differences and

squared differences). Supplementary Figures S.2, S.3, and S.4 show the prediction perfor-

mances in the test datasets with the optimal hyperparameters selected by various metrics.

They demonstrate that the performances in the test datasets with the hyperparameters

optimizing group-average AUCs in cross-validations were more optimal than those with

the hyperparameters optimizing overall AUCs in cross-validations. Although the hyperpa-

rameters chosen to optimize group average of AUCs subtracting disparities provided better

fairness performance in test datasets, it was often achieved by lowering the performance

of the over-represented group. We also note that the hyperparameters optimizing AUC-

based evaluation metrics generated more robust performances in test datasets than those

optimizing threshold-based metrics such as accuracies and TPRs/TNRs. Therefore, the

simulation results use the hyperparameters optimized by the harmonic mean of group-wise

AUCs in cross-validations.
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Figure S.2: Experimental Results for Evaluation Metrics on Scenario 1
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Figure S.3: Experimental Results for Evaluation Metrics on Scenario 2
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Figure S.4: Experimental Results for Evaluation Metrics on Scenario 3
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S.10 Average of TPR and TNR Plots for Simulation Study
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Figure S.5: Experimental Results for Scenario 1 (TPR + TNR)
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Figure S.6: Experimental Results for Scenario 2 (TPR + TNR)
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Figure S.7: Experimental Results for Scenario 3 (TPR + TNR)
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Figure S.8: Experimental Results for Scenario 4 (TPR + TNR)
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S.11 Additional Simulation Scenarios

Here, we present the results for additional simulation scenarios. The datasets are generated

in the same way as in Section 5.

• In Scenario 1B, the number of non-zero coefficients of the under-represented group

ranged from 20 to 40. The number of shared features fixed at 20, the baseline preva-

lence were 50% and 30% for the over and under-represented groups, respectively.

The sample sizes were set at 500 and 200 for over and under-represented groups. The

number of features were p = 100.

• In Scenario 2B, the baseline prevalence of the under-represented group ranged from

50% to 90% while the baseline event prevalence of the over-represented group was

fixed at 50%.

• In Scenario 3B, samples size of the over-represented group ranged from 500 to 2500

with the sample size of the under-represented group fixed at 200.

• In Scenario 4B, the number of features p ranged from 50 to 2,000. Everything is

same with the Scenario 4, except that for each p, 30% of the features had non-zero

coefficients.

As same as with the Section 5, we evaluated the methods on independent testing datasets

under the same setups with large sample sizes (both 1000). AUC was used to evaluate the

predictive performance of each model.
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Figure S.9: Experimental Results for Scenario 1B
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Figure S.10: Experimental Results for Scenario 2B
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Figure S.11: Experimental Results for Scenario 3B
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Figure S.12: Experimental Results for Scenario 4B
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S.12 Python Implementation

We provide a Python implementation to reproduce the simulation study results. The codes

will be available at https://github.com/hyungrok-do/joint-fairness-model.

Dependencies:

- anaconda3 (≥ 4.8.3)

- cython (≥ 0.29.8)

- scipy (≥ 1.6.2)

- numpy (≥ 1.17.0)

- pandas (≥ 1.2.4)

- matplotlib (≥ 3.1.1)

- scikit-learn (≥ 0.24.1)

Install: Users have to compile the enclosed cython source code (tested on Windows 10,

macOS Catalina 10.15.7, and Red Hat Enterprise Linux 8.2.) After unzipping or cloning

the git, type

python setup.py build ext --inplace.

Reproducing the results: We provide shell/slurm scripts to run the repeated experi-

ments to reproduce the results. For the results of scenarios 1 through 4 and the supple-

mentary results scenarios 1B through 4B, use run-simulation.sh or run-simulation.s.

To draw the plots, run visualization-simulation-results.py.

For the experiments for validation measures, execute run-validation-measure.sh or

run-validation-measure.s. To draw the plots, run visualization-validation-measures.py.

Executing experiment-computation-time-p.py and experiment-computation-time-n.py

will produce the Figure S.1 (a) and (b), respectively.
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