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Abstract

Due to the COVID-19 pandemic, the focus on everydays mobility has been
shifted from traditional means of transport to how to safely commute for work
and/or move around the neighbourhood. Maintaining the safe distance among
pedestrian becomes crucial in big pedestrian networks. Looking at personal goals,
such as walking through the shortest path, could lead to congestion phenomena
on both roads and crossroads violating the imposed regulations. We suggest a
centralized multi-objective approach able to assign alternative fair paths for users
while maintaining the congestion level as lower as possible. Computational results
show that, even considering paths that are not longer than the 1% with respect
to the shortest path for each pedestrian, the congestion phenomena are reduced of
more than the 50%.

1 Introduction
The steady progress towards a globalized world has, in the last decades, reduced the

impact of distances: while in the past people were born, grew and spent all their lives
in the same city, travelling has recently become more popular. The need to commute
to reach the workplace consistently increased. As a consequence, the use of public and
private means of transportation also increased, before the sudden drop due to the COVID-
19 pandemic at the beginning of 2020. Before that, it was common to spend a lot of
time travelling, ending up in traffic jams as every car driver tried to achieve his/her
personal optimum, or being packed in overcrowded buses or trains. Now all this appears
freezed, while the focus on everyday mobility is shifted on how to safely move around
the neighborhood by foot. Walking also replaced public transports whenever possible, as
people feel safer in the open air than in buses or metros. This means, however, that the

1

ar
X

iv
:2

10
5.

04
91

5v
1 

 [
m

at
h.

O
C

] 
 1

1 
M

ay
 2

02
1



choice of the path to walk through is seen in a new light, because keeping social distance
is crucial also in the open air to reduce the risk of COVID-19 infections. Clearly, looking
at personal goals such as minimizing the length of your own path and being oblivious
of others’ presence is self-defeating at keeping low rates of pedestrian congestion on the
streets. On the other hand, by deferring the decisions to a centralized entity, which has
a global view of the demand and capacity on the streets, all users could gain something
in terms of experienced congestion phenomena.

This idea was already mentioned by Wardrop (1952), where, speaking about vehicular
traffic, the author makes the distinction between user equilibrium and system optimum:
user equilibrium is a traffic assignment in which each user decides on its own the best route
to follow while the system optimum is the traffic assignment in which the total travel
time is minimized, without considerations on the behaviour and fairness among users.
The deterioration of the overall solution in implementing the user equilibrium versus
the system optimum is known in literature as the price of anarchy (see Mahmassani
and Peeta (1993) and Roughgarden and Tardos (2002) for details and mathematical
background). A compromise solution between these two principles can offer interesting
insights, leading to a win-win situation for all people involved. In fact, a miopic view of
the problem from the perspective of the single user can lead to choices which, once put
into practise, prove to be sub-optimal. As an example, let’s consider drivers commuting
every day to and from the workplace. Each of them is prone to choose the shortest path,
in terms of distance, travelling times or both. But, if their paths intersect, the level
of congestion on the streets will increase the travelling times, reducing the effectiveness
of the user’s choice. Even using real-time information on congestion, users’ decisions
simply result in a shift of congestion from previously congested roads to other roads. On
the contrary, by choosing a different and at first sight less favourable path, the gain for
the user may be substantial. As highlighted in Avineri (2009), however, the majority of
users is not willing to act socially but instead selfishly, especially if the cost of acting
socially is high Fehr and Fischbacher (2003). Different approaches for balancing user
equilibrium and system optimum have been investigated (see van Essen et al. (2016) and
Morandi (2020) for comprehensive reviews), spanning different ways of transportation.
The bounded rational user equilibrium differs from the user equilibrium in the fact that
the users are not completely free to choose their best route. In fact, a number of paths
for each users can be considered according to the so-called indifference travel time band
for which users would not feel the desire to change route. Details on the bounded rational
user equilibrium can be found in Mahmassani and Chang (1987) and in Zhang (2011).
On the other hand, the constrained system optimum minimizes the total travel time
trying to limit the unfairness among users by limiting the set of eligible paths only to
those that are not longer than a small percentage with respect to the best choice. This
centralized approach inspired this work. The first attempt to formulate the constrained
system optimum, as a convex non-linear problem, can be found in Jahn et al. (2005).
For theoretical bounds on the price of anarchy we refer to Schulz and Stier-Moses (2006).
Given the difficulty of handling non-linear latency functions, a first attempt to use a
linear programming model to solve the constrained system optimum traffic assignment
problem is proposed in Angelelli et al. (2016) and later in Angelelli et al. (2020a). Since
the number of eligible paths is exponential, in Angelelli et al. (2018) a fast and reliable
heuristic algorithm to solve big road networks is proposed. In all presented approaches
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the set of eligible paths is generated a priori. Once the flow is routed on paths, it
could happen that the experienced unfairness is much higher than the one evaluated a
priori. To overcome the issue, in Angelelli et al. (2020b) two constrained system optimum
formulations directly controlling the real experienced unfairness are presented. None of
the presented approaches take into account the arc congestion level as a penalty for the
system objective. The first attempt to embed arc congestion reduction techniques has
been proposed in Angelelli et al. (2019), where a constrained system optimum with the
aim of lowering congestion on worst congested arcs is proposed.

A different approach which can be pursued to combine user equilibrium and system
optimum is to formulate the problem as a multi-objective model. An example in the
context of Air Traffic Management can be found in Dal Sasso et al. (2018), where the
authors assess the viability of incorporating single airlines preferences within a collabo-
rative European framework. The main goal of the model presented is to ensure that air
space capacity over Europe is never exceeded, while trying to accommodate stakehold-
ers’ requirements. Indeed, airlines request to the Air Traffic Manager trajectories and
departure times for their flights, but usually they are not willing to share which poli-
cies lead to such choices. Hence, the requests may be disguised and may vary from one
airline to the other, on the basis of the airlines’ target. In order to adapt each airline’s
demand to the global objective of reducing costs, while ensuring the congestion level of
air space sectors is below a set capacity, the model tries to minimize the deviation from
the preferred trajectories, both in terms of delays and routing, and to minimize the total
costs of traversing air sectors. The outcome of the model is a set of Pareto optimal solu-
tions, among which one solution may be selected by further considerations on the fairness
between the different stakeholders.

The problem of route assignment for pedestrians fits in these frameworks: the goal in
this case is to ensure social distancing, and hence avoid congestion, while people walk on
the streets. When the walking activity is motivated by the need of reaching a destination,
most people would choose the shortest path available. Thus, quite intuitively, the users’
satisfaction drops fast with the increase in the length of paths. Anyway, just a small
increase may be necessary to avoid congestion.

The aim of this paper is to show how paths may be assigned to pedestrians, balancing
the opposing goals of minimizing the increase on the length for users and minimizing
the capacity excess on both the streets and crossroads/squares. We recall that a path is
considered eligible if it is no longer than a percentage of the shortest path, guaranteeing
fairness among users. In Section 2, the gathering avoiding pedestrian routing model is
presented. In Section 3, the result of thorough experiments assessing the performance of
the model on real road networks is shown. Finally, in Section 4, some concluding remarks
and future developments are provided.

2 The gathering avoiding pedestrian routing model
In this Section, we present the Gathering Avoiding Centralized Pedestrian Routing

problem (GA-CPR). The model assigns paths to users in order to balance two opposing
objectives, i.e. minimizing the increase in path length and minimizing the excess in the
capacity. Hence, the problem is formulated as a multi-objective model. The fairness
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between users is embedded into the model by selecting as eligible paths only those that
are not too unfair for users.

In the following, we will assume that the flow of pedestrians is constant. This allows
us to neglect the time dimension of the problem and consider a static demand on the
network. As assessed by Sheffi (1985), this modelling choice holds when rush hour time
slots are considered.

Let G = (V,A) be a directed network, where V represents the set of vertices and
A ⊆ V × V the set of arcs. The set of arcs represents the set of roads in the pedestrian
network while the set of vertices represents the set of crossroads between roads in set A.
Each vertex h ∈ V is associated to a capacity caph representing the number of pedestrians
that can transit through the vertex without causing gathering phenomena, and a travers-
ing time th. Similarly, each road is associated with a capacity capij, representing the
number of pedestrians that can walk through that road segment without gatherings, and
a traversing time tij. The requests for walking through the pedestrian area are collected
and the demand of all pedestrians going from the same origin to the same destination
are consolidated in an Origin-Destination (briefly OD). The set C represents the set of
OD pairs, each associated to an origin Oc ∈ V , a destination Dc ∈ V , and a pedestrian
demand rate dc from Oc to Dc. tcSP indicates the traversing time while walking along
the shortest path between Oc and Dc. Only paths that are similar to the shortest path in
terms of length are given as input to the model for each OD pair. As it is necessary that
the pedestrians feel that the proposed paths are among the best available. In details, we
consider as eligible only paths whose relative excess in walking time with respect to the
shortest path are within the fairness percentage φ. The set of eligible pedestrian paths
from origin to destination for each OD pair c ∈ C is denoted by Kφ

c . For each k ∈ Kφ
c ,

let tck be the time needed to go across path k. The indicator parameter akcij has value 1
if path k ∈ Kφ

c traverses arc (i, j) ∈ A, while it has value 0 otherwise. Details on the
generating paths algorithm are discussed and provided in Angelelli et al. (2016).

Variables xij represent the total pedestrian flow on arc (i, j) ∈ A, while variables σij
represent the excess of flow with respect to arc capacity on arc (i, j). Similarly, variables
δh indicate the excess of flow traversing a certain vertex h ∈ V . Moreover, a number of
variables are related to each path. Variables yck represent the pedestrian flow of OD pair
c ∈ C routed on path k ∈ Kc.

The objective functions of the GA-CPR model are denoted by

τ(φ) =
∑
c∈C

∑
k∈Kφ

c

tck
tcSP

yck (1)

η(φ) =
∑

(i,j)∈A

tij
capij

σij +
∑
h∈V

th
caph

δh (2)

Objective 1 records the total relative increase in walking time of pedestrians on paths
with respect to the shortest one. It depends on the walking time unfairness parameter
φ. Objective 2, also depending on φ, records the total relative excess of capacity for arcs
and nodes weighted by the traversing time.
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The GA-CPR bi-objective model follows:

min τ(φ), η(φ) (3)
dc =

∑
k∈Kφ

c

yck c ∈ C (4)

xij =
∑
c∈C

∑
k∈Kφ

c

ackij yck (i, j) ∈ A (5)

zh =
∑

(i,j)∈A|j=h
xij h ∈ V (6)

σij ≥ xij − capij (i, j) ∈ A (7)
δh ≥ zh − caph h ∈ V (8)
xij ≥ 0 (i, j) ∈ A (9)
zh ≥ 0 h ∈ V (10)
σij ≥ 0 (i, j) ∈ A (11)
δh ≥ 0 h ∈ V (12)
yck ≥ 0 c ∈ C, k ∈ Kc. (13)

Constraints (4) ensure that the pedestrian demand dc of OD pair c ∈ C is routed on
paths in Kφ

c . Constraints (5) set the flow on an arc equal to the sum of the flows on the
pedestrian paths traversing the arc. Constraints (6) set the inflow of a vertex to be equal
to the sum, among arcs entering in the vertex, of their pedestrian flows. Constraints (7)
set σij, for each arc (i, j) ∈ A, greater or equal to the excess of flow xij with respect to the
arc capacity capij. Notice that, because of constraints (11) and objective function (3),
variable σij assumes value 0 whenever the arc capacity is not exceeded and xij − capij,
otherwise. Similarly, constraints (8) set δh greater or equal to the excess of flow zh in
vertex h ∈ V with respect to the vertex capacity capz. Together with Constraints (12) and
objective function (3), variable δh assumes value 0 if the vertex capacity is not exceeded
and zh − caph, otherwise. Finally, constraints (9)-(13) define the domain of the decision
variables.

2.1 Solution method
A number of methodologies can be used to tackle multi-objective optimization. We

will refer to Chiandussi et al. (2012) for a comprehensive review of such methodologies.
We decided to use the linear combination of weights as solution method since, as assessed
by Chiandussi et al. (2012), the main advantages of this method are its simplicity and its
efficiency (computationally speaking). However, its main drawback is the determination
of the appropriate weight coefficients to be used in the final objective function. In fact,
the choice of weights is crucial in determining the solution. Thus, the choice has to be
made by the decision maker carefully considering the real-world problem characteristics.

The two objective functions τ(φ) and η(φ) introduced in the previous paragraph are
weighted according to the importance parameters α and 1-α, respectively, with α ∈ [0, 1].
The resulting objective function is:
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min α
∑
c∈C

∑
k∈Kφ

c

tck
tcSP

yck + (1− α)[
∑

(i,j)∈A

tij
capij

σij +
∑
h∈V

th
caph

δh]

.
In Section 3, we will also analyze the impact of the choice of α parameter on the

optimal solution. The aim is to give an overview of the impact of the two objective
functions on different policy maker choices.

3 Computational results
A benchmark of 4 map-based instances has been used in a computational study to

assess the performance of the presented model. Instances are generated by randomly
draw coordinates for origins and destinations of pedestrian flows from four Italian cities,
namely Brescia, Bolzano, Rome and Vicenza. Arc walking times are obtained using
Graphhopper and arc capacities are obtained by dividing the real distance on map by
the safety walking distance of 2m imposed by Covid-19 regulations. Vertices’ capacity
is obtained as a percentage of the entering arcs capacity and vertices’ traversing time is
obtained randomly within a short time windows. OD pairs’ demands are generated as a
percentage of the capacity of the arcs exiting the origin. The 4 tested networks have 50
nodes with approximately 2500 arcs and 25 OD pairs, each one with a different demand.
All instances can be found at: https://valentinamorandi.it/research-outcomes/.
For each instance, a traffic assignment has been found using a restricted path set with
φ values in {0.01, 0.05, 0.1, 0.15, 0.2} and α values in {1, 0.9, 0.7, 0.5, 0.3, 0.1, 0}. For each
instance, we compute also the user equilibrium (in which each passenger goes on their
shortest route) as a matter of comparison. It is obtained by setting α = 1 and φ = 0.
In total, we obtain 36 traffic assignments for each instance. The model is solved using
CPLEX 12.6.0 on a Windows 64-bit computer with Intel Xeon processor E5-1650, 3.50
GHz, and 64 GB RAM. Results for the GA-CPR model are presented and discussed in
Sections 3.1.

In the following all the computed and collected statistics are defined.

• Congestion distribution

– σ̄: average relative excess of flow with respect to the arc capacity, i.e. 1
|A|

∑
(i,j)∈A

σij
capij

.

– δ̄: average relative excess of flow with respect to the node capacity, i.e. 1
|V |

∑
h∈V

δh
caph

.

– λ=0: Percentage of arcs and nodes with σij
capij

= 0 or δh
caph

= 0 w.r.t. the total
number of arcs and nodes.

– λ0<...<0.25: Percentage of arcs and nodes with 0 < σij
capij

< 0.25 or 0 < δh
caph

<

0.25 w.r.t. the total number of arcs and nodes.
– λ≥0.25: Percentage of arcs and nodes with σij

capij
≥ 0.25 or δh

caph
≥ 0.25 w.r.t. the

total number of arcs and nodes.

• User experience for each OD pair c ∈ C
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– U ck = tck−tSP
tSP

: user walking unfairness with respect to fastest path for the OD
pair.

– Ū = 1∑
c∈C

dc

∑
c∈C

∑
k∈Kφ

c

yckU
ck: weighted user walking unfairness.

• Network statistics

– T : increase of total walking time with respect to UE.
– Σ: reduction of the total walking time with exceeded capacity on arcs with

respect to UE.
– ∆: reduction of the total walking time with exceeded capacity on nodes with

respect to UE.

3.1 Performance of the model
In this Section, we summarize the results obtained. Multi-objective models are in-

teresting as they are able to show how contrasting goals are affected by each other. By
increasing parameters φ and α we are, respectively, assessing the impact of loosening the
constraint on users’ fairness and of focusing on the reduction of congestion.

Quite intuitively, the walking time increases both when more importance is given to
the reduction of congestion and when longer routes are made available (see Figure 1). It
is interesting to notice how, by just allowing a small freedom in the increase of the paths
length, there is a considerable drop in the total time spent walking on congested nodes
or arcs. Figure 2 represents exactly this: the chart on the left shows how by, just adding
those paths that are a 1% longer than the shortest path, the reduction of walking time
across congested nodes drops by 50%. There is not much improvement, however, when
longer paths are allowed. Another interesting results is that there is not much difference
when the value of α changes (except, of course, when α = 1: when no weight is given to
the congestion, there is no incentive of leaving the shortest path). On the right, a similar
chart show an analogous results for the walking time on congested arcs. Notice that, in
this case, the drop is more substantial when longer paths are allowed.

0 5 10 15 20

0

2

4

6

8

φ (%)

%

α = 0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9
α = 1

Figure 1. Increase in total walking time T , as a function of φ.

Figure 3 shows how the average user unfairness, calculated as shown in the previous
section, increases when longer paths are allowed. It clearly depicts the advantage of
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Figure 2. Decrease of walking time with exceeded capacity on nodes ∆ (on the left) and on
arcs Σ (on the right), as a function of φ.

considering two contrasting objectives, as by varying the value of α the unfairness can be
kept under control.

0 5 10 15 20

0

2

4

6

φ (%)

Ū
(%

)

α = 0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9
α = 1

Figure 3. Average Ū user walking unfairness, as a function of φ.

Figure 4 remarks what already shown in Figure1 but from another point of view.
Instead of the total walking time on congested arcs and nodes, we are looking at the
excess of flow. Congestion on nodes and arcs drops considerably when paths just 1%
longer than the shortest paths are taken into account. There is not much improvement,
instead, in choosing longer paths, as expected. Figure 5 shows the congestion on arcs
and nodes at the extreme points of the dominant solutions, i.e. the solutions of the multi
-objective model obtained by setting α either 1 or 0. The percentage of non-congested
arcs and nodes (in green) when only the total increase in walking time is minimized is
very low, while it arises to almost 70% when total increase in walking time is neglected
and all the focus is on minimizing congestion. As noted also above, just a small increase
on the length of the allowed paths gives a high reduction of congestion.

4 Conclusions and future research
In this paper we presented a multi-objective model for the Gathering Avoiding Cen-

tralized Pedestrian Routing Problem. Its aim is to ensure pedestrians can walk in safety
according to COVID-19 regulations, which request people to social distancing. Hence,
the objectives were to minimize the total increase in time needed by the users to reach
their destinations and to minimize the exceeding of capacity on the arcs and at nodes.
Taking into account users’ fairness, the eligible paths are chosen among the ones that do
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Figure 4. Average node congestion δ̄ (on the left) and arc congestion σ̄ (on the right), as a
function of φ.
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Figure 5. Percentage of arcs and nodes in congestion classes with α = 1 and α = 0.

not exceed the length of the shortest path of more than a proper percentage. Because of
the contrasting nature of these objectives, the problem is modeled as a multi-objective
model.

The computational experiments were carried on by combining the two objectives lin-
early. The results are promising and show that just a small increase in the length of the
paths that are taken into account can lead to a substantial reduction in congestion. More-
over, by opportunely setting parameter α it is possible to ensure the levels of unfairness
among users is controlled.

Future researches may improve the solution method by exploring different methods
for multi-objective models. Heuristic methods to handle very large instances could be
explored too.
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