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ABSTRACT

Drug repurposing can accelerate the identification of effective compounds for clinical use against
SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply
chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of
subcellular structures to support their life cycle. These morphological changes can be quantified using
bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep
neural network models within a multiple instance learning (MIL) framework, to identify putative
treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available
RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-
infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative
morphological features to generate cell morphological profiles from the non-infected and infected
cells. These morphological profiles are then used in a statistical model to estimate the applied
treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of
localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD
identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity
of our approach. DEEMD is scalable to process and screen thousands of treatments in parallel and can
be explored for other emerging viruses and datasets to rapidly identify candidate antiviral treatments
in the future. Our implementation is available online1.

1github.com/Sadegh-Saberian/MIL-COVID19-RxRx19a
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1 Introduction

The COVID-19 global pandemic has urged the research community to focus their resources towards studying SARS-
CoV-2 and discovering or identifying potential therapeutics. To date, despite intense efforts, very few treatment options
are available for those suffering from COVID-19 [1]. Drug repurposing is an attempt to identify existing clinically
approved treatments with established pharmacological and safety profiles that could be rapidly redirected towards
clinical treatment of novel diseases such as COVID-19 [2, 3] (and references within). The antiviral activity of candidate
compounds can be tested using cell-based systems of viral infection. The detection of the viral infection is achieved
using molecular tools such as antibodies directed at virus-encoded proteins. In the case of newly emerging viruses
such as SARS-CoV-2, access to such molecular tools may represent an important limiting step to rapidly developing
cell-based assays to discover novel antiviral agents. Alternatively, since human pathogenic viruses such as SARS-CoV-2
manipulate cellular pathways to reorganize the host cell morphology to support their life cycle [4, 5], developing a
computational method to perform quantitative analysis of virus-induced cell morphology provides a unique approach to
discover candidate antiviral molecules without the use of viral biomarkers [6]. Virus infected cells can be treated with
thousands of compounds at different concentrations followed by staining of cellular structures with fluorescent dyes
that can be imaged using high-content screening microscopes [7, 8]. Morphological features can be extracted from
images of infected and non-infected cells and then applied to images of infected, drug-treated cells to predict antiviral
efficacy based on cellular morphology. Thus, quantitative morphological analysis of cells as a computational method
for drug repurposing allows for accelerated parallel screening of multiple therapeutics [9].

This paper is structured as follows: In Section 2 we review the literature on drug repurposing, high-throughput cell
imaging, and computational multiple instance learning framework. In Section 3 we present DEEMD and its components
and discuss them in detail. In Section 4 we describe the RxRx19a dataset and DEEMD implementation details. In
Section 5 we discuss our findings along with DEEMD’s limitations. Finally, in Section 6 we conclude the paper.

2 Background

2.1 Drug Repurposing and High-throughput Imaging

Drug repurposing is an active research area in the pharmaceutical industry in which existing drugs are used in alternative
applications for which they were originally designed and it has been shown to be an effective approach in many cases
[2]. Various approaches are used to identify candidate drugs for repurposing applications including computational
methods, i.e. genetic association or molecular docking, and experimental methods, i.e. phenotypic screening or binding
assays. An additional approach is to apply high-throughput imaging assays for morphological cell profiling and to
predict antiviral effectiveness. Morphological cell profiling combined with recent advancements in computer vision
models can be leveraged to extract the morphological changes induced by each compound in a cell population. These
morphological features can also provide information about how compounds may be interacting with the host cell,
their molecular targets, and the affected cellular pathways. Image-based morphological analysis has been successfully
utilized in small molecule profiling [6, 10], identifying drug mechanism of action [11, 12, 13], and in drug repurposing
[14, 9].

Recently, many drug repurposing studies have focused on COVID-19 to find FDA-approved and clinically evaluated
therapeutic compounds that exhibit antiviral activity against SARS-CoV-2 [15, 16] (and references within). Among
multiple methodologies, high-throughput screens have enabled image-based morphological analysis of cells infected
with SARS-CoV-2 [9, 17, 18, 19]. Mirabelli et al. [9] used Huh-7 cells infected with SARS-CoV-2 and treated with a
library of 1425 FDA-approved compounds at different concentrations to identify compounds with antiviral activity. The
samples were then probed for SARS-CoV-2 nucleocapsid protein and for dyes specific to cell organelles for imaging.
CellProfiler software [20] was used to extract morphological features from the infected cells, using SARS-CoV-2
nucleocapsid as an indicator for regions of interest, and trained a random forest model to predict efficacy scores
for each treatment. These scores were used to select efficacious compounds for follow-up experimental triplicate
dose-response confirmation. They identified 17 effective compounds including Remdesivir, of which 10 are novel in
vitro identifications.

Heiser et al. [17] used a morphological analysis pipeline on the RxRx19a dataset, a fluorescence microscopy dataset
of Human Renal Cortical Epithelial (HRCE) cells, to identify potential treatments for SARS-CoV-2. They used a
proprietary deep convolutional neural network to embed the sample images for calculating on-disease projection
and off-disease rejection scores per dose for each treatment. These scores were then aggregated and normalized
using a proprietary algorithm to compute the hit-scores. They reported that Remdesivir, GS-441524, Aloxistatin,
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Silmitasertib, and Almitrine showed moderate to strong effectiveness against SARS-CoV-2 in their model, whereas,
neither chloroquine nor hydroxychloroquine demonstrated any significant antiviral effectiveness. Similarly, Cuccarese
et al. [18] used an in vitro deep-learning-driven analysis of cellular morphology on Human Umbilical Vein Endothelial
Cells (HUVEC) treated with protein cocktails that mirror those from severe COVID-19 to identify potential drug
repurposing candidates against COVID-19-associated cytokine storm.

2.2 Multiple Instance Learning

Multiple instance learning (MIL), as a form of weakly supervised learning, has been under the spotlight of research
communities recently due to its ability to leverage weak supervision for tasks that are conventionally considered
heavily dependent on laborious human annotations [21]. MIL was originally introduced for drug activity prediction
[22] and recently it has been applied in many different domains such as computer vision [23], medical imaging and
diagnosis [24], and in biology for applications such as mechanism of action classification using microscopy images
[11], identifying antigen binding peptides [25], and predicting specific functional binding sites in microRNA targets
[26]. Deep multiple instance learning uses different MIL approaches combined with a deep neural network model
as a learner in the MIL framework, and it has shown performance competitive with state-of-the-art in recent studies
[27, 28, 11, 29, 30].

Contrary to conventional supervised learning methods in which every instance in the training data is associated with a
label, in the MIL the learner is provided with a training set of labeled bags, where each bag is a set of instances. The
learner is tasked to predict a label for an unseen bag given its instances. Instance-space algorithms are a category of the
MIL which assume that the discriminative information lies within instances and is local. Hence, they predict the bag
label by training an instance classifier and then aggregating the instance-level predictions into the bag label [31]. The
most commonly used assumption in these methods –the standard multiple instance assumption– states that in a binary
bag classification set up, each bag labeled with the positive label contains at least one instance representing the positive
class, whereas the negative class bags do not contain any instance of positive class.

Virus-specific markers are not always included in high-throughput imaging studies that investigate the effects of viral
infection and drug treatments on host cell morphology; in these instances, the extent of viral infection is unknown.
This scenario may also occur during the very early stages of an outbreak or pandemic when limited virus-specific tools
are available, such as when COVID-19 first emerged. When no pixel-level annotations are available to specifically
identify infected regions of the imaged cell population, MIL may be used as an alternative strategy to localize viral
infection and the corresponding effects on host cell morphology. The imaged cell populations can be broken down
into smaller instances, single cells or patches, and the sample cell population label is utilized in the MIL formulation.
An instance-space approach would very well suit this problem for viral infections such as SARS-CoV-2, that induce
local morphological changes to cells [5]. Based on the standard assumption, we assume that if a sample cell population
is infected, then there should be at least one instance that contains infected cells. And a non-infected sample cell
population does not have any infected cells.

2.3 Contribution

In this work, we present DEEMD: a computational pipeline that estimates treatment efficacy using morphological
features of cells extracted using a deep learning model. DEEMD is scalable to process and screen multiple cell lines
and thousands of treatments and can accelerate the identification of clinically evaluated and FDA-approved compounds
with antiviral activity. We applied DEEMD on a public microscopy image dataset of SARS-CoV-2 infected cells, and it
identifies treatment compounds that have been suggested in the literature to be effective against COVID-19, further
supporting the validity of the pipeline. The specific design of the deep learning model allows us to localize infected
cells via a weakly supervised training procedure without expensive annotations. Localizing the infected cells allows us
to better explain the model predictions, as well as providing an opportunity to generate hypotheses about the biology
behind the morphological changes in cells induced by SARS-CoV-2.

To the best of our knowledge, this is the first work to approach the drug repurposing problem via leveraging weak
supervision through multiple instance learning. Some morphological analysis pipelines utilize a viral-specific marker
to localize infected regions of interest in sample images for studying morphological changes induced by the virus,
such as [9]. Another approach is to rely on computer vision models to extract viral-related morphological features
through massive datasets without providing any annotations on infected regions of interest, such as [17]. DEEMD is an
attempt to integrate both these approaches through identifying infected regions in sample images without requiring any
viral-specific markers or annotations. DEEMD can be applied to quantify the effectiveness of any available compound
and identify lead candidates that show therapeutic potential against viral infection. The identified candidates can then be
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evaluated using other molecular tools once they become available, such as fluorescent-tagged viruses, nucleic acid-based
methods (PCR), or animal models.

3 Methodology

We first describe a high-level overview of the DEEMD before delving into the details. DEEMD consists of two
components: First component is a deep learning model which is trained on microscopy images of untreated samples to
extract discriminative morphological features in MIL framework to distinguish between uninfected and SARS-CoV-
2-infected cell population images, further described in Section 3.1. Following infection of cells treated with a drug,
the trained deep learning model is used to extract a morphological profile for each sample. These profiles are then
aggregated and used in a statistical model, the second component, to estimate the treatment efficacy per concentration,
Section 3.4. Finally, all dose-dependent efficacy scores are aggregated for each treatment to form the final identified set
of potentially effective treatments. In this context, we define treatment effectiveness as how close a treated sample’s
morphological profile is to uninfected cell profiles. We discuss each component detail in the following sections. Table 1
includes all notations used in Section 3 for brevity.

3.1 Classification with deep MIL

Table 1: List of Notations

D Training set in form of (X,Y)
n Number of data points in D
xi Fluorescence microscopy sample image
yi Sample-level label of xi
c+ SARS-CoV-2 infected class
c− Non-infected class
N Number of patches in each xi
x
pj
i j-th patch of xi
y
pj
i Patch-level label of xpji
µ
pj
i Predicted patch-level label of xpji

P[A] Probability of the event A
Mi Set of all predicted patch-level labels for xi
Kki Set of k-top patches with highest µpji for xi

m(S, r) r-th greatest element in the set S
L(·) Binary cross entropy loss

w+, w− Class weights
ŷi Predicted sample-level label for xi
η Cut-off threshold for sample classification
I(·) Indicator function
Ai Calculated infection map for sample xi
O(l,m)
xi Set of patches overlapping at pixel x(l,m)

i
zi Infection probability of xi
ti i-th treatment
cj j-th concentration
T cjti Set of all replicates treated with ti at cj
Cti Set of all concentrations of ti
e
cj
ti Dose-dependent efficacy score for ti at cj
β
cj
ti Median point estimator for zi’s of T cjti

CI(·) Confidence interval an estimation
sup Supremum (least upper bound)
T (·) Descriptive statistic
ζ Cut-off threshold for effective treatment

Ω(ω) Model Ω with learned weights ω
EΩ(ω) Set of effective identified treatments by Ω(ω)
W(φ) Whole-image based model
V(ψ) Patch-based model
M(θ) MIL deep neural network model

In this work, we follow closely the training procedure de-
scribed in [27, 29] for training an instance classifier based
on a relaxed version of the standard multiple instance as-
sumption. The training set D consists of n data points
(X,Y) in form of (xi, yi) pairs where xi is a fluorescence
microscopy image along with its associated sample-level
label yi with two classes: SARS-CoV-2 infected (c+) and
non-infected (c−). Each sample image xi can be split into
N patches each referred to as xpji . We assume that each
x
pj
i is associated with a patch-level label ypji which is un-

known and not included in the training set D. LetM(θ)
be a deep neural network model responsible for predict-
ing a patch-level label µpji for every patch xpji of each
sample image xi. In the MIL terminology, modelM(θ)
is an instance classifier since it classifies each instance
into SARS-CoV-2 infected and non-infected classes. We
define µpji to be the modelM(θ) estimation of the un-
known true patch-level label ypji given the datasetD. This
can be expressed mathematically as:

µ
pj
i , P

[
y
pj
i = c+

∣∣∣D;M(θ)
]
, (1)

where P[A] shows the probability of the event A.

Each iteration within a training epoch starts with an ex-
haustive inference using the model from previous itera-
tion over all patches in the training set and all correspond-
ing µpji are estimated. Then for each sample image xi,
all of its patch-level estimated labels µpji , denoted as Mi,
are sorted and the set of k patches with the highest prob-
ability, denoted as Kki , are selected for model training.

tr ,
{
j
∣∣∣µpji = m(Mi, r)

}
, Kki ,

k⋃

r=1

tr, (2)

where we define m(S, r) to be the r-th greatest element
in the set S.

The sample-level label yi is assigned to each set of patches in the set Kki , and the modelM(θ) is trained to minimize
the binary cross entropy loss, L(·), between yi and µpji for all patches in the set Kki . More specifically, we can break
this process down into multiple steps:
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1. Given a patch xpji and the label yi associated with its corresponding sample image xi, we can calculate binary
cross entropy loss as follows:

L
(
x
pj
i |D;M(θ)

)
= −yilog(µ

pj
i )− (1− yi)log(1− µpji ). (3)

2. We define the loss value for the sample image xi to be only inclusive of informative patches, e.g. patches that
we have confidence in their predicted infection probability. In other words, we only include patches which
are in the set Kki and take an average over them. Thus the value of the loss function for each sample image is
defined as follows:

L
(
xi|D;M(θ), w+, w−

)
= −1

k

∑

j∈Kk
i

[
w+yilog(µ

pj
i ) + w−(1− yi)log(1− µpji )

]
, (4)

where w+ and w− are incorporated in the loss function L
(
· |D;M(θ)

)
to account for class imbalance [32].

3. Finally the value of loss function over the whole dataset in each epoch is calculated as follows:

L
(
X|D;M(θ), w+, w−

)
= − 1

n

n∑

i=1

L
(
xi|D;M(θ), w+, w−

)
. (5)

We will provide more details on how to tune hyper-parameter k in Section 5.4. The reader is encouraged to refer
to Section 1 in the Supplementary Material for a detailed discussion on how hyper-parameter k affects the training
dynamics for a MIL learner.

3.2 Inference with deep MIL

Since the classification labels are only available for the sample images, aggregation of the patch-level infection
probabilities is required for performance evaluation and downstream analysis. For inference, each sample image is split
into patches and a forward pass through the model. This provides us with the estimated infection probabilities, which
are aggregated to form the sample-level label ŷi:

ŷi = I
(

min
pj∈Kk

i

{µpji } ≥ η
)

= I
(
m(Mi, k) ≥ η

)
, (6)

where η is the cut-off threshold, selected based on the validation set and I(·) is an indicator function.

For the MIL modelM(θ), hyper-parameter k is incorporated into the standard multiple instance assumption so that the
model can generalize to a more relaxed constraint: a positive (SARS-CoV-2 infected) sample image should contain
at least k positive patches to be considered positive and a sample image would be considered negative if less than k
patches are predicted to be infected. This generalized assumption is mathematically expressed in equation (6).

3.3 MIL infection localization

Localization of the infected region is achieved using the estimated µpji . To form the infection map Ai all patches
need to be aggregated. Based on the set of all patches that overlap at the pixel x(l,m)

i , denoted as set O(l,m)
xi , the

value of infection map A(l,m)
i is calculated by the weighted average of its overlapping patches infection probabilities,

{µpji }pj∈O(l,m)
xi

. We opt to set sample weights based on the sample’s values, similar to the quadratic mean, but using

(µ
pj
i )α, where α < 1, instead of µpji . The infection map Ai is calculated as:

A
(l,m)
i =

∑
pj∈O(l,m)

xi

(µ
pj
i )1+α

∑
pj∈O(l,m)

xi

(µ
pj
i )α

. (7)

By using this averaging method, with α < 1 when all µpji ’s are smaller than 1, the average is more sensitive to higher
values, and smaller values have less diminishing power on the result compared to simple averaging. This property
is well-suited for infection localization since patches with high infection probabilities do not get diminished by the
adjacent overlapping low probability ones. Finally, prior to rendering the infection map, a low-pass Gaussian filter,
σ = 60 pixels, is applied to make the infection map smoother. For generating the infection map Ai based on the MIL
model,M(θ) we set α to 0.2.
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3.4 Treatment Efficacy Estimation

DEEMD estimates the treatment efficacy based on its trained MIL model that compares the morphological profile of
drug-treated cells with those of untreated infected and uninfected cells. We assume that an effective treatment would
prevent drastic infection-induced morphology changes in the cells, hence, the treated cells morphological profile would
be similar to that of uninfected ones. A statistical model takes in the infection probabilities predicted by the MIL model
and estimates the probability that a treatment is effective based on its morphological similarities to uninfected cells. For
each sample image xi, the infection probability zi is calculated as:

zi = Median{µpji |pj ∈ Kki }. (8)

We define the set T cjti such that it consists of infection probabilities for every sample image of a given treatment ti
at concentration cj in the treated test set. We have to aggregate the infection probabilities, zi, over the set T cjti to
minimize the inevitable variations that have occurred during the sample preparation, treatment administration and
image acquisition. We define ecjti to be the dose-dependent estimated efficacy score of the treatment ti at concentration
cj based on any model Ω(ω) capable of assigning an infection probability to a sample image based its morphology.
Since we do not have any assumptions on the distribution of infection probabilities zi in the set T cjti , we opt to use
non-parametric statistics related to the median of this distribution, βcjti . We observed that the distribution infection
probabilities zi in the set T cjti for any ti is heavily skewed and asymmetric, thus using Wilcoxon test is misleading
since it assumes a symmetric distribution for the data[33]. However, the sign test is still valid[34]. Given a confidence
level a, we can calculate the exact confidence interval for the estimated median, denoted as CI(βcjti |a,Ω(ω)). To be
more conservative about the false positive rate, instead of using the point estimate βcjti , we use the least upper bound,
supremum, of CI(βcjti |a,Ω(ω)). The mathematical expression for the dose-dependent estimated efficacy score of the
treatment ti at concentration cj is:

e
cj
ti , T (T cjti |Ω(ω)) = 1− sup

{
CI
(
β
cj
ti |a,Ω(ω)

)}
, (9)

where T (·) is a descriptive statistic. The dose-dependent efficacy score ecjti reflects the model Ω(ω) belief on the
morphological similarity between the sample images in the set Tti,ci and the uninfected ones in the training set. Close
to 1 values for ecjti imply that the treatment ti at concentration cj is effective against SARS-CoV-2. In this context, we
assume that the morphological profile of cells treated with an effective treatment is more similar to the uninfected cells
rather than infected ones.

To summarise all estimated dose-dependant efficacy scores of a given treatment ti for ranking all treatment compounds
and identifying the effective ones, the estimated efficacy score eti is calculated:

ẽ
cj
ti =

{ {ecjti |e
cj
ti ≥ ζ}cj∈Cti ∃cj : e

cj
ti ≥ ζ

{ecjti }cj∈Cti otherwise , eti = Median{ẽcjti }, (10)

where ζ is a cut-off threshold and Cti refers to all available concentrations of treatment ti in the treated test set.
The treatment compounds that DEEMD identifies as effective against SARS-CoV-2 are those for which at least one
dose-dependent efficacy score is higher than ζ or equivalently: EM(θ) = {ti|eti ≥ ζ}.

4 Experimental Design and Implementation Details

4.1 Dataset

We are using the publicly available RxRx19a dataset, which is the first morphological imaging dataset of cells infected
with SARS-CoV-2 [17]. The dataset consists of HRCE and African green monkey kidney epithelial (Vero) cell lines
subjected to three different conditions: 1) mock non-infected control, 2) infection with ultraviolet (UV)-light inactivated
SARS-CoV-2 (irradiated for 20 minutes), or 3) infection with SARS-CoV-2 at multiplicity of infection (MOI) of 0.4. All
samples were incubated for 96 hours. A library of 1672 small molecules and FDA-approved treatments were applied to
a subset of SARS-CoV-2 infected samples in 6+ half log concentrations with six replicates per dose for each compound.
All cells were stained with five fluorescent dyes detecting various subcellular structures, each imaged in a separate
channel on a fluorescent confocal high-content imaging microscope. The dyes include Hoechst (nucleus), Syto14
(nucleoli and cytoplasmic RNA), phalloidin (actin cytoskeleton), Concanavalin A (ConA; endoplasmic reticulum) and
Wheat Germ Agglutinin (WGA; Golgi and plasma membrane). The dataset consists of more than 300K 5-channel
labeled images of size 1024× 1024 and is publicly available through the Recursion website: www.rxrx.ai/rxrx19a.

For this work, we only used the HRCE cell line and merged the mock control and the UV inactivated control into a
single non-infected class, as no cytopathic effects were observed in either condition [17]. We also verified this by using
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each sample image’s corresponding deep learning embeddings included in the dataset. We decided to merge mock
control and UV-inactivated into a single class as they were indistinguishable by a trained classifier.

4.2 Cell nucleus count in the sample images

Figure 1: Distribution of cell nucleus count in the stitched
well sample images from non-infected and SARS-CoV-2
infected HRCE cells. The non-infected class consists of
samples from both Mock and UV Inactivated SARS-CoV-2
classes.

RxRx19a dataset includes Hoechst stain which binds dou-
ble stranded DNA in the nucleus. We used this stain to
identify and count the cells in each sample image for both
explanatory analysis and preprocessing the data. We first
stitch images of 4 adjacent sites of each well on each
plate to reconstruct the image of whole sample cell popu-
lation in each well. This step is necessary to avoid repeat
counting of nuclei in multiple images. We localize and
count the nuclei in each stitched image using a segment-
ing pipeline based on Otsu thresholding and watershed
algorithm [35]. We used this pipeline to exclude any
sample images which did not contain any detectable cells
from the dataset. The distribution of the nuclei count in
the sample images for infected and non-infected samples
are shown in Fig 1. The cell nucleus count is signifi-
cantly lower in the infected samples (using two-sided
Mann-Whitney test with p = 0.0).

4.3 Baseline Classification Models

To compare the MIL modelM(θ) performance, two other deep learning models are trained: 1) A model that is trained
with the conventional training procedure for training convolutional neural networks by minimizing a cross-entropy-based
loss function, similar to equation (4), with full resolution sample images as input. Denoted asW(φ), this model will be
referred to as the whole-image based modelW(φ) throughout the paper. Unlike most deep neural network classifiers,
the input sample image is not down-sampled, and the full resolution version was used to make the comparison fair.
The whole-image based modelW(φ) takes in the sample image xi and calculates infection probability for that cell
population.

2) Instead of limiting the model to only use k instances with the highest probabilities within each bag for training,
we can have a reasonable alternative approach of using all instances in the bag and assigning them with the bag-level
label. There are studies in histopathology such as [36] that used this alternative approach and their proposed model
outperformed other models at their respective tasks. We refer to this model as the patch-based model V(ψ) in the text.
Similar to MIL instance classifier, V(ψ) calculates a patch infection probability for all patches in the input sample
image xi. Intuitively, in this approach the model would potentially be able to eliminate the effect of noisy labels and
estimate the true distribution of the instance labels given large enough training data. This approach is an extreme case
of the MIL training procedure in which k = N is where N is the total number of instances within a bag.

4.4 Implementation Details

The HRCE sample images in the RxRx19a dataset are split into 4 non-overlapping sets: 1) training, 2) validation, 3)
untreated, and 4) treated test sets consisting of 20K, 5K, 6K, and 247K sample images respectively. The training set
is used for updating the weights and training the neural networks using backpropagation, whereas the validation set
is used to tune hyper-parameters. The performance of the tuned model is measured on the held-out untreated test set,
while the treated test set is solely used for estimating the efficacy of the treatments. All sets are balanced in terms of
class labels except for the treated test set which only consists of SARS-CoV-2 infected sample images.

All models are based on ResNet34 architecture, pretrained on ImageNet with a modified input layer to accommodate
5-channel inputs [37, 38]. Each model was trained for 150 epochs, monitored for early stopping, with Adam optimizer
at a learning rate η = 10−4, β1 = 0.9 and β2 = 0.999, [39], with a batch size of 128. All hyper-parameters were
tuned with respect to the model’s performance on the validation set. Sample images are channel normalized using the
empirical means and standard deviations calculated on the training set. We used PyTorch framework [40] for model
training and evaluation and treatment efficacy estimation was coded using R [41].

For evaluating the performance of the models on both validation and untreated test set, we used η = 0.5. For the
treatment efficacy estimation, ζ was set to 0.5, inspired by the concept of effective concentration 50 (EC50) in dose-
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response curves, and a confidence level of 0.95% was used in the sign test for estimating the confidence interval for the
point estimated median used in the efficacy score estimations.

For both the MIL modelM(θ) and the patch-based model V(ψ), we used a uniform grid of 256× 256 patches with
50% overlap, resulting in 49 patches per sample image. Since we wanted DEEMD to be applicable to other microscopy
imaging datasets with minor modifications, we choose a uniform grid of patches over a cell-based segmentation map.
Although a cell-based segmentation map could potentially provide a single cell resolution infection map, it is heavily
dependent on the stains used in the imaging procedure, which in turn reduces the pipeline generalization. Based on the
validation set, we set the hyper-parameter k for the MIL modelM(θ) to 2. The whole-image based modelW(φ) was
trained on full-resolution (1024× 1024) sample images without any input downsampling.

We trained the models on a single Nvidia TITAN V GPU. Notice that the effective training set for the MIL model
M(θ) on each training iteration is k/N of the whole training samples, thus its training is N/k times faster compared
to the patch-based model V(ψ). The patch-based model V(ψ) even has longer training time than the whole-image
based modelW(φ) since the patches are overlapping. Thus, the MIL modelM(θ) is computationally more efficient
compared to the other two.

In the early stages of the training a deep learning model within MIL framework, the model has not learned the concepts
of positive and negative instances from the training samples. Thus, the selected set Kki , populated based on the the
initial exhaustive inference at the beginning of each iteration, consists of randomly selected patches from each image.
To prevent this random selection process from heavily affecting the training procedure and avoiding any drastic random
changes in the weights, it is important to control the learning rate of the model. To this end, we used an one-cycle policy
based on cosine annealing, [42], for the learning rate during the training to make sure that the network gradually learns
to distinguish between the positive and negative samples. Using this approach, resulted in a stable training procedure
with consistently comparable trained models.

4.5 Selecting the optimal value for hyper-parameter k

Choosing an optimal value for hyper-parameter k is crucial to the performance of MIL models since it effectively
controls the amount of noise in the training labels. The hyper-parameter k is the number of top high probability
instances in each bag used for loss calculation in each training iteration, equation (4). Tuning this hyper-parameter can
be either based on problem-specific domain knowledge or a performance metric on the validation set. For the problem
of estimating the treatment efficacy against SARS-CoV-2, the choice of optimal k was found based on incorporation of
domain knowledge and common model performance metrics.

In a simple yet reasonable modeling, let’s assume that the virions enter the cells independent of each other and X is a
random variable that counts the number of virions entering a cell. Since we are dealing with a counting process, it is
reasonable to assume that random variable X comes from a Poisson distribution with parameter m, which is actually
the multiplicity of infection or MOI X ∼ Poisson(m). The probability of a cell being infected is calculated as follows:

P[A cell is infected] = 1− P[X = 0] = 1− e−m. (11)

The probability of a cell being infected is shown in Fig 2-(a) as a function of MOI. Based on the data provided in [17],
in the preparation process of the the RxRx19a dataset, the samples were infected with a MOI of 0.4. Based on our
modeling of the infection process, this value would indicate that around 33% of the cells in each sample are infected on
average.

We incorporate this domain knowledge about the expected number of infected cells within each sample image in
selecting the optimal value for hyper parameter k. Since we are using a uniform grid of overlapping patches for the
sample images, the number of the selected patches in the set Kki can not be directly translated into the fraction of the
infected cells within each sample image. The area of the infected regions based on the infection maps can be a good
approximation for the faction of the infected imaged cells. We trained multiple MIL models with different values for
the hyper-paremeter k ∈ {1, 2, 3, 5, 10, 15, 25, 49}. Next, we calculated the fraction of pixels that were higher than
the cutoff threshold η in the generated infection map for each sample images in the validation set for all of the MIL
models, as shown in Fig 2-(c). We can see that when k equals to 1 or 2 or 3, the average of the distribution is close
to the theoretical calculated value using the MOI. Hence, these 3 options are candidates for the optimal value for k.
Finally, to select the optimal value between these 3 candidates, we turn to the average precision metric. As shown in
Fig 2-(b, we can see that the models have a very close AUC, but when K is 2 the performance is slightly better and thus
we set k to be 2.
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Figure 2: Selecting optimal value for hyper-parameter k. (a) Cell infection probability as a function of MOI in a
simple modeling. (b) Zoomed Precision-Recall curve for candidate optimal values of k on the validation set. (c) The
distributions of the fraction of infected pixels in each sample image in the validation set for multiple values of k, along
with the mean of the distribution.

5 Results and Discussion

5.1 The MIL model can accurately predict SARS-CoV-2 infection

We evaluate the performance of the MIL modelM(θ), along with two baseline models, on the untreated test set in terms
of the area under the curve for precision-recall curves, or average precision, as shown in Fig 3. The precision-recall
curve effectively represents the trade-off between precision and recall for all possible cut-off values based on the
model predictions. All three models are capable of accurately classifying the sample images into non-infected and
SARS-CoV-2 infected classes, with an average precision of ≈ 0.99. The performance of the models is independent of
the learner architecture; similar results were observed with models based on VGG16 architecture [43]. High average
precision implies that these models have learned morphological features that can be generalized to the untreated test
set for accurate classification, however, the learned feature spaces have drastically different characteristics due to
their input and training procedures. The MIL modelM(θ) has learned to extract highly discriminative features from
micro-populations or single cells whereas the whole-image based modelW(φ) focuses on the macro-population of
cells and learns morphological features of the population, which are not as detailed as in the MIL modelM(θ). The
patch-based model V(ψ) lies in between those two models in the spectrum; on the one hand it has been trained using

9



A PREPRINT - MAY 13, 2021

patches with micro-population features, but on the other hand, the labels it was provided for training were noisy. Thus,
this model is not focused on the details as the MIL modelM(θ). These shifts in the learned feature spaces are further
transferred to the downstream analysis of treatment efficacy, as discussed in Section 5.2.

5.2 DEEMD dose-dependent efficacy scores are well-structured

Figure 3: Comparison of precision-recall curves. All three
models are capable of accurately classifying the sample
images as infected or non-infected in the untreated test set.
A random classifier is included as a reference.

We assume that an efficacious treatment is able to effec-
tively stop viral infection and prevent major infection-
induced morphological changes in the cell population.
Using morphological analysis we can estimate treatment
efficacy by profiling the treated and infected cell mor-
phology and quantifying its similarity to non-infected and
infected morphology. We applied DEEMD to the infected
and treated cell images from the RxRx19a dataset, using
ζ = 0.5 inspired by concept of EC50 in dose-response
curves, which resulted in a ranked list of 18 potential effi-
cacious treatments against SARS-CoV-2, EM(θ) (Supple-
mentary Table 1). The dose-dependent efficacy scores for
top 6 ranked effective compounds identified by DEEMD
are shown in Fig 4-(a). As is expected for effective an-
tiviral compounds, the dose-dependent efficacy score of
the identified treatments increases with increasing con-
centration, similar to the fitted logistic curve. We expect
to observe higher effectiveness with increasing concentra-
tion of a treatment with antiviral potency against a specific
target, up to the point that it does not cause toxicity or
drastically alter cell morphology. Importantly, many of
the identified compounds were previously demonstrated
to have antiviral activity against SARS-CoV-2 by other
drug repurposing studies for COVID-19 based on mor-
phological profiling [9, 17, 18], supporting DEEMD’s
methodology. On the other hand, if we compare the same
plots for the predictions based on the whole-image based
modelW(φ) to those of the DEEMD, we notice that the
estimated efficacy scores are scattered randomly among all treatments and lack any form of structure or pattern, Fig 4-(c).
As mentioned in Section 5.1, the patch-based model V(ψ) is a hybrid of the other two models in terms of its training.
This hybridization also manifests itself in Fig 4-(b). We can see that the estimations are slightly structured, not as much
as DEEMD’s. Implying that the model was not able to extract the informative features and information completely due
to its noisy training environment.

5.3 DEEMD identified treatments are reoccurring in the literature

DEEMD has identified treatments that are reported in the literature to possess therapeutic activity against SARS-
CoV-2 or COVID-19 [9, 17, 18, 3]. In Fig 5 we compare DEEMD efficacy scores to hit-scores reported by Heiser
et al. [17], which similarly used the RxRx19a dataset. We can see that reoccurring treatments with high DEEMD
efficacy scores, namely Remdesivir, GS-441524, and Aloxistatin were also assigned a high hit-score by Heiser et
al. (ρ = 0.56, p = 0.02). In the following, we review DEEMD top ranked identified treatments and briefly discuss
their potential mechanisms of action against SARS-CoV-2 infection. A complete list of treatments identified to be
effective by DEEMD along with the studies that have reported them to be effective against SARS-CoV-2 or COVID-19
is presented in the Supplementary Table 1. We also compare the DEEMD dose-dependent efficacy score for these
compounds to previously reported EC50 values as a measure of validity whenever such data is available. However it
should be noted that due to differences in experimental design, such as cell line, timing of treatment and duration of
infection, EC50 values from cell-based studies can vary widely.

The most well-known treatment in EM(θ) is Remdesivir and its metabolite, GS-441524. Previously studied for their
antiviral effectiveness against Ebola virus, these compounds target the virus-encoded RNA-dependent RNA polymerase
complex needed by RNA viruses to replicate their genome [44]. Multiple studies and clinical trials have found that
both compounds are effective against SARS-CoV-2, which led to its emergency approval by the FDA [3, 17, 18, 9]
(and refrences within). DEEMD dose-dependent efficacy scores for Remdesivir are shown in Fig 4-(a). We can see
that the DEEMD efficacy score for Remdesivir is persistently close to 1 for concentrations of 0.3− 10 µM which is
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(a) DEEMD dose-dependent efficacy scores based on MIL model M(θ) with k = 2
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(b) Dose-dependent efficacy scores based on the patch-based model V(ψ)
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(c) Dose-dependent efficacy scores based on the whole-image based model W(φ)
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Figure 4: Estimated efficacy scores for top ranked identified treatments in EM(θ). (a) Estimated Dose-dependent
efficacy scores for DEEMD top-ranked treatments with k = 2. The x and y axes show Log10(Concentration) and
dose-dependent efficacy score for each compound. Each data point corresponds to a replicate sample for tcji . The
points for a concentration are black if DEEMD identified that concentration to be effective, i.e. ecjti ≥ ζ. For better
visualization and to avoid overlapping points, a small noise on both x and y axis are added to the data points. We
used all of the data points, Tti , to fit a logistic regression to better visualize the trend. (c) and (b) are similar plots for
predictions based on the whole-image based modelW(φ) and the patch-based model V(ψ) respectively.

consistent with EC50 values reported by a number of other cell-based studies ranging between 0.003 to 27 µM [45].
Similarly, GS-441524 was estimated to be efficacious at concentrations of 3− 10 µM by DEEMD, which is comparable
to previously reported EC50 values ranging from 0.5 to 8.2 µM [45].

Digoxin is a treatment used for heart disease with a well-established safety profile. Multiple in vitro drug repurposing
studies for COVID-19 reported its ability to inhibit SARS-CoV-2 infection [45]. The exact mechanism of action for
viral inhibition is not identified yet, however, Cho et al. [46] hypothesised that Digoxin inhibition occurs at the step of
viral RNA synthesis. They used multiple FDA-approved treatments, including Digoxin, on SARS-CoV-2 infected Vero
cells. To understand how the drugs might inhibit SARS-CoV-2, they were administered at three different time points: 1)
prior to infection (prophylactic), 2) at the time of infection (entry), and 3) after the infection (therapeutic). They reported
that Digoxin showed high efficacy following prophylactic and therapeutic administration but failed to effectively inhibit
the virus when administered at the time of infection. However, it should be noted that Digoxin exhibited cytotoxicity, as
reported by Mirabelli et al [9]. Fig 4-(a) shows the DEEMD estimated dose-dependent efficacy scores for Digoxin; it
passed the threshold at 0.3 µM which is aligned with multiple studies that found an EC50 between 0.04 and 0.2 µM
[45]. We hypothesize that the DEEMD dose-dependent efficacy scores are not conclusive for higher concentrations
because of Digoxin reported cytotoxicity.

Aloxistatin (E-64d) is another potential candidate treatment reported in the literature as an effective agent against
SARS-CoV-2. Aloxistatin is a membrane-permeable irreversible cysteine-protease inhibitor of calpains and cathepsins.
Recent studies have shown that SARS-CoV-2 requires cathepsin L to enter some cell types. Aloxistatin can significantly
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Figure 5: Comparison of DEEMD efficacy scores and Heiser et al. hit-scores [17] for treatments in EM(θ). Each data
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the treatment has gone into clinical trial against COVID-19. The y-axis represents the DEEMD efficacy scores and
hit-scores are on the x-axis.

reduce entry of SARS-CoV-2 pseudovirions by inhibiting cathepsin L [47, 3, 48] (and references within). Fig 4-(a)
shows DEEMD estimated dose-dependent efficacy scores for Aloxistatin. As we can see, the estimated efficacy is higher
than the cutoff threshold ζ at 0.3 and 10 µM. Olaleye et al. used Vero cells to investigate the antiviral activity of several
compounds including Aloxistatin for which they reported an EC50 of 22 µM [49]. Two additional studies [17] and
[18] using morphology-based approaches found that Aloxistatin shows strong efficacy without inducing morphological
changes to cells.

DEEMD also identified Mitoxantrone to be effective against SARS-CoV-2, as shown in Fig 4-(a). The cell surface
heparan sulfate (HS) is a molecule commonly found on the membrane and on extracellular proteins of cells that assists
the endocytosis of many cargos, including SARS-CoV-2 spike. Recently, Zhang et al. reported that HS facilitates
spike-dependent viral entry of SARS-CoV-2 [50]. They experimented with inhibitor drugs that target the HS-dependent
cell entry pathway, and observed that Mitoxantrone inhibited viral entry by directly binding to cell surface HS. DEEMD
identified Mitoxantrone to be effective at 3.0 µM, while Zhang et al. reported an EC50 value of 0.03 µM.

As shown in Fig 4-(a), DEEMD also identified Colchicine as an effective compound against SARS-CoV-2 at concentra-
tions of 0.3− 3.0 µM. Colchicine is an anti-inflammatory compound used for multiple indications including gout and
heart disease. The anti-inflammatory activity is predicted to result from the inhibitory effect on tubulin polymerization
and microtubule assembly [3]. Due to the anti-inflammatory properties, and the known link between inflammation
and severe COVID-19 outcomes, Colchicine has been evaluated as a potential COVID-19 therapeutic with conflicting
results [51]. Encouragingly, a meta-analysis of multiple clinical trials suggests Colchicine is associated with improved
outcomes for individuals with COVID-19 [52]. To date, a direct antiviral effect of Colchicine on SARS-CoV-2 has not
been demonstrated, but tubulin has been implicated in coronavirus entry [53]. Our findings suggest that the antiviral
activity of Colchicine against SARS-CoV-2 warrants further investigation.

DEEMD also identified three compounds, Mebendazole, Oxibendazole and Albendazole with effective concentrations
ranging from 1.0 − 3.0 µM Fig 4-(a). These compounds belong to a large chemical family of Benzimidazoles that
are used to treat nematode and trematode infections [54]. These three compounds specifically have not yet been
demonstrated to exhibit therapeutic activity against SARS-CoV-2 or COVID-19. However, antiviral activity against
other viruses has been shown using other Benzimidazole derivatives with EC50 values ranging from 0.02− 90.0 µM
[55]. Thus based on our analysis, these should be further examined for activity and possible mechanism of action
against SARS-CoV-2.

5.4 DEEMD identified treatments are robust across multiple selections of k

When comparing the set of identified treatments EM(θ) for different values of k, multiple reoccurring treatments were
observed. Moreover, the fitted logistic regression curved on the estimated dose-dependent efficacy scores retained its
shape and the inflection points are close together; suggesting a consensus, almost independent of choice of k, between
the MIL models on the degree of effectiveness for various treatments (See Fig 2 in the Supplementary Material).
As shown in Fig 5, most of the treatments in EM(θ) have a high recurrence rate in the MIL models, implying their
distinguishable ability to suppress viral-induced morphological changes robust across multiple MIL models trained
with different values for k. We noticed that based on the patch-based model V(ψ) only three treatments were identified
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to be effective: Remdesivir, GS-441524, and Aloxistatin, which are among the most commonly identified treatments
both in COVID-19 drug repurposing studies and multiple MIL models trained with different k, as shown in Fig 5.
This observation suggests that for high values of k the amount of noisy labels drastically changes the dynamics of the
training. The learned feature space lacks the required sensitivity for downstream analysis of treatment identification,
while the model is still capable of accurately classifying the sample images into infected and non-infected classes.

Hoechst Syto14 Phalloidin ConA WGA

Figure 6: Generated infection maps for a representative set of infected samples from the untreated test set. Sample
images are overlaid with their corresponding infection map on each of the indicated stains, displayed separately. Each
row represents a SARS-CoV-2 infected sample image from the untreated test set and each column corresponds to stains
used in the dataset. The intensity of the red color shows the probability of the infection on each position based on
the MIL modelM(θ) predictions. On the middle row the arrows point to the same region, which is assigned a high
infection probability by the MIL modelM(θ), despite it lacks visible signs of CPE compared to other high infection
probability regions. For better visualization, each dye image is color-inverted.

5.5 The MIL infection maps and cytopathic effects

Localization of infected regions in a sample image can be done by aggregating all estimated patch-level labels µpji to
generate an infection map, as described in Section 3.3. These maps can be used to better understand and explain the
MIL modelM(θ) classification predictions as well as providing an annotation for patches that contain SARS-CoV-2
infected cells. Notice that in the calculation of these maps, no form of annotation was used; instead, the MIL model
uses sample-level labels to localize the infection. Figure 6 shows three representative examples from the untreated test
set, stain-separated overlaid with infection maps predicted by the MIL modelM(θ). Visual inspection of the infection
maps and regions that are predicted with high infection probability, annotated as red, suggests that the patches that
trigger the MIL modelM(θ) include but not limited to high intensity stained areas, which we predict to reflect cell
death or cytopathic effects (CPE), detectable in all channels, except for Hoechst. However, there are patches without
the visible signs of CPE that are assigned a high infection probability by the model, e.g. notice the identified infected
region on the bottom left corner of samples in the the middle row in Fig 6. CPE refers to changes in host cell structure
as a result of viral infection and SARS-CoV-2 is known to be a cytopathogenic agent [56]; for example SARS-CoV-2
is known to cause cell death and to induce syncytia formation (fusion of adjacent cell membranes) [57]. CPE can be
measured indirectly by using luminescent cell viability assays [58], however, the RxRx19a dataset does not include
a specific viability marker, hence CPE can not be quantified on these samples. Nonetheless, it appears that CPE is
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being detected in the highlighted regions of the infection maps. These regions often contain very brightly stained
rounded cells or nuclei, and we hypothesize that the stronger fluorescent signals are associated with morphological
changes related to cell death such as loss of membrane integrity, cell shrinkage, and nuclear fragmentation [59]. We
also observed that the cell nucleus count is significantly lower in the infected samples, Fig 1, which is also indicative of
cell death. This suggests that the MIL modelM(θ) has incorporated biologically relevant morphological features into
the infection map, as is expected.

5.6 DEEMD is limited by drug toxicity

Drug toxicity refers to a compound’s negative side effects on a living cell, as the compound can disrupt crucial cellular
functions and pathways to the extent of causing cell death. Taking drug toxicity into consideration is essential for
optimizing the concentration of the compound needed for optimal efficacy [60]. It is noteworthy to clarify that a
low efficacy score ecjti estimated by DEEMD does not necessarily indicate dose or treatment ineffectiveness against
SARS-CoV-2. If the treatment has toxic effects or induces other changes in cell morphology, the sample morphology
may no longer resemble either the uninfected or SARS-CoV-2 infected class; subsequently, the model’s prediction
would not be conclusive. Currently, DEEMD only relies on the assumption that if the drug is toxic, the treated cell
morphology would not be similar to uninfected cells, thus the model estimates a low efficacy for a toxic compound.
A more complex model capable of integrating drug toxicity with cell morphology is required to properly capture the
dynamics of the treatment compound, toxicity and effects on cellular morphology, including cell death.

The RxRx19a public dataset does not include images from healthy drug treated cells, which restricts the morphological
feature space learned by the model during training. The model can only learn the regions corresponding to the uninfected
and SARS-CoV-2 infected cell morphology, and it is unaware of the space structure outside of these regions. Including
additional classes into the training dataset would allow the model to learn a wider range of morphological variations
and enable it to differentiate between treatments that are ineffective from those that are impacting cell morphology
through toxicity or any other mechanisms; thus a better control over the false negative rate would be in place. We
noticed clear cases of drug toxicity with multiple compounds in the dataset, where high concentrations clearly disrupted
cell morphology. These sample images lack a detectable signal for the different cell structures and thus we decided to
exclude them from the treated test set. Training the model to identify cellular morphology associated with drug toxicity
would support the identification of the compound and corresponding concentrations with optimal efficacy and minimal
toxicity [60].

6 Conclusion

In this work, we present DEEMD: a pipeline capable of estimating the treatment efficacy of compounds based on
morphological analysis of fluorescent-labelled cells. It includes a deep learning model trained within a MIL framework
to extract morphological features corresponding to the predicted SARS-CoV-2 infection versus no infection in micro-
populations, as well as generating an infection map in a weakly supervised fashion. We compared the performance of
the MIL modelM(θ) to the conventionally trained whole-image based modelW(φ). As discussed in Section 5, both
models are capable of accurately distinguishing between images from uninfected and SARS-CoV-2 infected sample
images. By integrating a statistical test into the pipeline, DEEMD identifies efficacious compounds that have been
reported to have antiviral effectiveness against SARS-CoV-2 using other methods, supporting the performance of the
proposed pipeline, whereas the whole-image based modelW(φ) fails to estimate meaningful predictions.

We only applied DEEMD to the RxRx19a dataset [17] in this work. With the current configuration, DEEMD is not
transferable to other datasets, cell lines, or viruses because it was only trained on the HRCE cells with SARS-CoV-2
infection. A version of DEEMD that is capable of identifying infection-induced morphological changes across multiple
viruses and cell lines can be achieved by leveraging a compiled dataset of multiple cell lines and viruses. The training
procedure would be the same except for the addition of an auxiliary input that conditions the model based on the cell
line and the virus used in the generation of each sample input image.

DEEMD is designed to be adopted and applied to other datasets and problems with few adjustments and modifications.
With proper assumptions and data preprocessing, this pipeline can be applied to any fluorescence microscopy datasets,
regardless of the stains and image size, for treatment efficacy estimation.

In the future, we plan to generate and apply DEEMD to more comprehensive datasets that include drug-treated,
uninfected cells along with specific markers of viral infection that can be used to properly address the shortcomings
and limitations of the current version of DEEMD. Having treated uninfected samples would have a great impact on
morphological profiling and would bring machine learning-based drug repurposing one step closer to being widely
applied to therapeutics.
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Supplementary Material of
DEEMD: Drug Efficacy Estimation against

SARS-CoV-2 based on cell Morphology with Deep
multiple instance learning

1 Noisy label analysis in MIL

As mentioned in subsection IV-B, the patch-based model V(ψ) trains the model in the
presence of noisy labels. To better understand this model and compare it to the MIL model
M(θ), it would be insightful to measure how much noise is in the training labels for both
models. Each image is split into N patches and there are Np positive samples and Nn

negative samples in the dataset. We define the label noise in the dataset to be the ratio of
the samples correctly labeled in the dataset to the total number of samples. Without loss of
generality, assume that the fraction of the patches in a sample image that are truly infected
has an expected value of λ. Therefore, the expected noise ratio (NR) for the MIL model
M(θ) and the patch-based model V(ψ) can be expressed as follows:

NRM(θ) =
| k
N
− λ|NP

NP +NN

, NRV(ψ) =
(1− λ)NP

NP +NN

. (1)

By defining r(λ, k
N

) to be the log ratio of NRV(ψ) to NRM(θ), we can quantitatively analyze
these two models behaviour in different configurations for λ and k.

r(λ,
k

N
) , ln

( NRV(ψ)
NRM(θ)

)
= ln

( 1− λ
| k
N
− λ|

)
. (2)

When r(λ, k
N

) ≥ 0 the MIL model M(θ) has less noisy labels compared to the patch-
based model V(ψ). The landscape of r(λ, k

N
) is visualized in Fig 1 for closer inspection. To

ensure the numerical stability of r(λ, k
N

) and keep it bounded on the y = x line, a small
value ε was added to NRM(θ).

One can notice that in almost three forth of the cases, r(λ, k
N

) ≥ 0, meaning that the
MIL modelM(θ) has less noisy labels in its training procedure on average, hence, the model
converges faster to an optimum point. Moreover, the MIL model M(θ) training procedure
results in a more efficient training both in terms of computation footprint and extracted
features. The model is using only k/N of the training set for updating the weights. This is
N/k times faster than using the whole dataset in the patch-based model V(ψ). And more

1



Figure 1: Contour plot for r(λ, k
N

), all possible values for λ and k
N

are shown on the x and
y axis respectively.

importantly, the patches that are selected for training the MIL model M(θ), would contain
more discriminative features since they were top-ranked among all patches in their samples
for their informativeness. Finally, the MIL model M(θ) has the capability of incorporating
domain knowledge about the problem into the training by the choice of hyper-parameter k.
By choosing k based on prior or domain knowledge, the MIL model M(θ) can iteratively
refine its training dataset towards for less noisy labels.
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Rank Compound Studies

1 Remdesivir [4, 5, 12, 19,20,24,31,33,35–37]
2 Digoxin [3, 31]
3 Aloxistatin [5, 12,21,22,26,36]
4 Colchicine [6, 11,25,30,36]
5 Mitoxantrone [38]
6 Mebendazole [8, 18,32]
7 Oxibendazole [18]
8 GS-441524 [19,24,27,33,35,37]
9 Thymoquinone [1, 7, 28, 34]
10 Lasalocid [29]
11 Digitoxin [16,17,23]
12 Venetoclax [9]
13 Homoharringtonine [2, 4, 14, 15,35,36]
14 Proscillaridin [10]
15 Albendazole [18]
16 Harringtonine -
17 Gemcitabine [14,35,39]
18 Podophyllotoxin [13]

Table 1: Ranked list of DEEMD identified treatments, EM(θ), along with drug repurposing
or clinical studies that reported to show effectiveness against SARS-CoV-2 or COVID-19.
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Figure 2: DEEMD estimated efficacy scores for identified treatments for different k values.
The logistic curves are fitted based on each value for k. The blue curves represents the MIL
model with k = 2 which showed the best classification performance on the validation set.
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