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Abstract—The COVID-19 (Coronavirus disease 2019) has in-
fected more than 151 million people and caused approximately
3.17 million deaths around the world up to the present. The
rapid spread of COVID-19 is continuing to threaten human’s
life and health. Therefore, the development of computer-aided
detection (CAD) systems based on machine and deep learning
methods which are able to accurately differentiate COVID-19
from other diseases using chest computed tomography (CT) and
X-Ray datasets is essential and of immediate priority. Different
from most of the previous studies which used either one of CT or
X-ray images, we employed both data types with sufficient sam-
ples in implementation. On the other hand, due to the extreme
sensitivity of this pervasive virus, model uncertainty should be
considered, while most previous studies have overlooked it.
Therefore, we propose a novel powerful fusion model named
Uncer t ai nt yFuseNet that consists of an uncertainty module:
Ensemble Monte Carlo (EMC) dropout. The obtained results
prove the effectiveness of our proposed fusion for COVID-19
detection using CT scan and X-Ray datasets. Also, our proposed
Uncer t ai nt yFuseNet model is significantly robust to noise and
performs well with the previously unseen data. The source codes
and models of this study are available at: https://github.com/
moloud1987/UncertaintyFuseNet-for-COVID-19-Classification.

Index Terms—COVID-19, Deep learning, Early fusion, Feature
fusion, Uncertainty quantification.

I. INTRODUCTION

THE 2019 novel coronavirus (COVID-19) has been
spreading astonishingly across the globe since its in-

ception in Wuhan, China in December 2019 [1]. Overall,
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the COVID-19 worldwide pandemic has caused a consec-
utive series of catastrophic losses, from the sense of being
healthy and safe to the social connections/bonds to the
financial security. These all make the COVID-19 not only
an epidemiological disaster, but also a psychological and
emotional one. The uncertainties and grappling with the
loss of normalcy in this pandemic provoke severe anxiety,
stress and sadness among people.
Respiratory transmission of the disease from person to
person occurred due to swift spread of the pandemic.
While most of the COVID-19 cases showed milder symp-
toms, while the symptoms of the remaining cases are
unfortunately illness or critical. The health-care systems
in many countries including developed ones seem to have
arrived to the point of collapse as the number of cases
has been increasing drastically. With regard to the COVID-
19 diagnosis, reverse transcription polymerase chain reac-
tion (RT-PCR) is one of the gold standards for COVID-19
detection. However, RT-PCR yields low sensitivity. Hence,
many COVID-19 cases will not be recognized by this test
and the patients may not get the proper treatments. These
unrecognized patients pose a threat to the larger population
due to highly infectious nature of the virus. Chest X-ray
(CXR) and Computed Tomography (CT) are widely utilized
to locate the prominent pneumonia pattern of chest. These
imaging modalities along with artificial intelligence tools
may be applied to diagnose COVID-19 patients in more
accurate, fast and cost-effective manner. Failure to prompt
detection and treatment of COVID-19 cases may increase
the mortality rate. Hence, the detection of COVID-19 cases
using deep learning models with CXR and CT images have
huge potential in healthcare applications.
Deep learning models have the widespread applicability not
only in medical imaging paradigm but also in many other
paradigms in recent years [2]–[5]. For COVID-19 detection
and diagnosis, these models have been extensively applied.
It is critical to discriminate COVID-19 from other forms of
pneumonias and flus. Farooq et al. [6] introduced the open
source code and an open access dataset with a CNN frame-
work for distinguishing COVID-19 from analogous pneumo-
nia cohorts by using chest X-ray (CXR) images. The authors
designed COVIDResNet by utilizing a pre-trained ResNet-50
framework for improving model performance and reducing
training time. An automatic and accurate identification
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of COVID-19 using CT images help radiologists to screen
patients in a better way. The authors in [7] proposed a fully
automated system for COVID-19 detection by using chest
CT. They dubbed their deep learning model as COVNet
which investigated visual features from chest CT images.
Moreover, Hall et al. [8] presented a new deep learning
model termed as COVIDX-Net to aid radiologists for COVID-
19 detection from CXR images. They explored seven deep
learning architectures including DenseNet, VGG-19 and Mo-
bileNet v2.0, etc. In another study, Abbas et al. [9] devised
Decompose, Transfer, and Compose (DeTraC) for COVID-
19 classification using CXR images. A class decomposition
approach was utilized to engage in irregularities in the
image dataset by scrutinizing the class boundaries.
Segmentation also plays a key role in COVID-19 quan-
tification measured by CT images. The authors in [10]
proposed a novel deep learning method for segmentation
of COVID-19 infection regions automatically. Aggregated
Residual Transformations were employed to learn a robust
and expressive feature representation and applied the soft
attention technique to improve the potential of the system
to distinguish several symptoms of the COVID-19. However,
we noticed that there are still some open issues in the
current proposed machine and deep learning methods for
COVID-19 detection. For this reason, optimizing existing
methods should be a priority in COVID-19 detection and
classification. Ensemble and fusion-based methods [11]
have shown outstanding performance for further improve-
ment of different medical applications. In the following
we provide more information about information fusion
methods and how they can help to imprve the performance
of deep learning methods.

A. Information fusion

Information fusion is initiated from data fusion and
can be termed as multi-sensor information fusion [12],
feature fusion for combining different features [13], var-
ious biological sources [14], [15], medical signals [16] or
medical image fusion [17]–[19]. The data fusion methods
were largely used for military applications. Their purpose
was to integrate or correlate data of several sensors in
different or same type to achieve better results than that
yielded by a single sensor. Gradually, data fusion models
are converted into information fusion. Information fusion
does not rely on only multi-sensor data, but its area of
research and applications have drastically altered. The rapid
growth of network technology has made it possible for the
information fusion technology to change from centralized
single node information fusion in to distributed information
fusion. There are numerous studies on big data fusion and
image fusion methods.
Modern medicine nowadays depends on amalgamation of
data and information from manifold sources that includes
structured imaging data, laboratory data, unstructured nar-
rative data, and even observational or audio data in some
occasions [20]. Substantial clinical context is required for
medical image interpretation to facilitate diagnostic deci-
sion [21]. The imaging data and its significant impact is not

only limited to radiology but also on many other image-
based medical specialties such as dermatology, ophthal-
mology and pathology [22]. Unstructured and structured
clinical data from the electronic heath record (EHR) is cru-
cial for clinically relevant medical image interpretation [23].
Clinically relevant models rely on automated diagnosis and
classification systems that use both clinical data from EHR
and medical imaging data. Multimodal learning models
employ various imaging data with other data types (fusion)
have in various applications such as video classification,
autonomous driving and medical data analysis. The cur-
rent medical imaging paradigm showcases a drift where
both pixel and EHR data are utilized in fusion-domain
for tackling complicated tasks that cannot be resolved by
single modality. A wide variety of fusion techniques have
been applied to a numerous of machine and deep learning
techniques. Machine and deep learning models have shown
their efficacy in many well-known benchmark datasets in
the last several years. This facilitates an increasing interest
in several domains and non-traditional issues each of which
has their specific prerequisites. In medicine, customized
predictions carry significant meaning as incorrect decisions
are associated with severe costs due to associated ethical
concerns and risk to human life [24]. Prevailing deep
neural networks (DNNs) in medicine which use one or an
ensemble of models focus on enhancing the accuracy of
probabilistic predictions. Model uncertainty that is inherent
in fitting DNNs is not well addressed by the models while
they capture only data uncertainty. For example, when in
an intensive care unit (ICU) setting, mortality of a patient is
predicted, the state-of-the-art (SOTA) methods may be able
to yield high AUC-ROC, but will be unable to discriminate
between those for whom the model is certain about its
probabilistic prediction and patients for whom the model
is fairly uncertain. Hence, there is a need for examining
the utilization of model uncertainty specifically in the
context of predictive medicine. Model uncertainty achieved
several methodological advances in recent years—including
function priors, deep ensembles and efficient alternatives,
Monte Carlo (MC) dropout and reparameterization-based
variational Bayesian neural networks (BNNs). Several clin-
ical care problems that naturally transpire in predictive
medicine are addressed by the DNNs integrated with model
uncertainty techniques.

B. Uncertainty quantification (UQ)

Many machine and deep learning models have been de-
veloped not only for CXR and CT images but also for many
other medical applications and yielded great accuracies
with limited number of images [5]. However, DNNs require
a large number of data to fine tune trainable parameters.
Limited number of images lead to epistemic uncertainty.
Trust is an issue for such models deployed with less number
of training samples. Out of distribution (OoD) samples or
discrimination between the training and testing samples
will make such models fail in real world applications. Lack
of confidence in unknown or new cases are not reported by
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these models. Such information is essential for the devel-
opment of reliable medical diagnostic tool. These unknown
samples which are hard to predict have more practical
values. It is very essential to estimate uncertainties with an
extra insight to their point estimates. This additional vision
aims to enhance the overall trustworthiness in the systems
such that clinicians or users will come to know when and
where they can trust predictions made by these models. The
flawed decisions made by these models could be fatal for
the patients at risk. Hence, proper uncertainty estimations
are essential to improve the efficacy of the model and apply
to medical domain with trust and reliability.
Proper UQ is crucial to enhance interpretability and trust in
machine and deep learning models, which is significantly
important in various healthcare applications [25], [26].
Trustworthy uncertainty estimations can facilitate inform-
ing clinical decision making, and more importantly, prepare
clinicians with appropriate feedback on when to relinquish
automatically obtained results. As discussed above, COVID-
19 has had many negative effects on all aspects of human
life around the world so far. Most importantly, COVID-19
disease has caused thousands of deaths worldwide. In this
regard, this study, therefore, attempts to propose a simple
accurate and robust deep learning model for COVID-19
disease detection called Uncer t ai nt yFuseNet . Due to the
high susceptibility of this disease and in order to increase
trust in the obtained results, we include uncertainty quan-
tification method.

C. Main Contributions

The major contributions of this study are listed as follows:

• Proposed a novel feature-based fusion model
for accurate detection of COVID-19 cases called
Uncer t ai nt yFuseNet .

• Presented quantify uncertainty in our proposed fusion
model using recently ensemble MC (EMC) dropout.

• Developed fusion model demonstrates strong robust-
ness to data contaminations (data noise).

• Generated model yielded excellent results in terms of
unknown data detection.

The rest of this study is organized as follows. Section II sum-
marizes a few relevant studies. Section III formulates the
proposed methodology. The main experiments of this study
is discussed in Section IV. Section V presents the achieved
outcomes and provides a comprehensive comparison with
previous studies. Finally, the paper concludes in Section VI.

II. LITERATURE REVIEW

In this section, we will briefly review a few recent studies
conducted on information fusion on disease identification,
COVID-19 detection/segmentation as well as the impor-
tance of UQ in medical image analysis.

A. Information Fusion in Medical Systems

In this sub-section, we briefly summarized a few re-
cent information fusion-based methods developed for the

accurate diagnosis of diseases. Smart health care systems
utilizing body sensor data for pattern analysis and a wide
range of human-computer interaction have attracted wide
attention from academics. Uddin et al. [27] employed deep
Recurrent Neural Network (RNN) to design a body sensor-
based framework for the identification of behaviour. They
fused data from various body sensors like magnetometer,
accelerometer, electrocardiography (ECG), etc. In another
research, Chen et al. [15] provided a medical artificial intel-
ligence approach based on data width evolution and self-
learning to facilitate skin ailment health service gathering
the necessity of real time, individualization and extendibil-
ity. Firstly, remote medical data and in the closed-loop flow
of medical user data in large quantities were obtained in
this research. In the next step, to improve the learning
ability of cloud remote analysis model and to lessen the
load of edge node, an information entropy-based data set
filter method was formulated.
Quellec et al. [28] proposed a new content-based heteroge-
neous information retrieval approach to browse particularly
medical data and support CADx (Computer Aided Diagno-
sis) systems. Incomplete documents comprising of semantic
information and several images could be retrieved using the
developed technique. Their approach could handle complex
data types such as video. They also devised two new
information fusion techniques to integrate degrees of match
for ranking the reference documents. They evaluated their
technique on two medical databases and yielded promising
results. Wu et al. [29] introduced a personalized interactive
simulator which modelled COVID-19 pandemic via multi-
source information fusion. It is vital in terms of outbreak
prediction and for its dynamics and effects estimation for a
novel pandemic like COVID-19. There were three challenges
in this– complexity in programming, roughness in models
and uncertainty in data. Moreover, Muzammal et al. [30]
proposed an ensemble approach based on data fusion in a
fog computing setting using medical data from Body Sensor
Network (BSNs). A collection of sensors was used to obtain
daily activity data that were fused to used and fed as an
input to an ensemble model for the classification of heart
diseases. Their empirical results yielded an accuracy of 98%
using 8 features and 40 estimators.

B. COVID-19 Classification/Segmentation

It is crucial to recognize COVID-19 infected cases quickly
to better manage and prevent the pandemic from further
spreading. Ardakani et al. [31] analyzed 108 COVID-19
pandemic patients, viral pneumonia and other atypical
patients using CT scan images. They applied ten CNN
approaches to discriminate COVID-19 group from non-
COVID-19 cohorts. Xception and ResNet-101 demonstrated
superior performance in all networks with an AUC value
of 0.994 for both cases. Deep learning model can assist
the clinicians and radiologists utilizing CXR scans for the
detection of COVID-19. Khan et al. [32] introduced Coro-
Net, a deep CNN, for such automated detection. Xception
architecture was used for pre-training and two publically
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available X-ray datasets were used for the classification
of normal, pneumonia and COVID-19 X-ray radiographs.
Their model yielded an accuracy of 95% for 3-class (normal
vs Pneumonia vs COVID) classification. In addition, their
model demonstrated an overall accuracy of 89.6% for 4-
class (Pneumonia bacterial vs pneumonia viral vs normal
vs COVID) cases. Coronet exhibited promising outcome
with minimal pre-processing of data. Chimmula et al. [33]
used modern deep learning methods to design a COVID-19
forecasting model (the Long short-term memory (LSTM)
method) for the outbreak in Canada based on publically
available Canadian health authority and John Hopkins
University datasets. They scrutinized the vital features to
forecast the probable stopping time and trends of the
pandemic.
Afshar et al. [34] devised an approach based on Capsule
networks (COVID-CAPS) and produced efficient results with
smaller X-Ray datasets. Their framework exhibited better
performance than the existing CNN-based models. COVID-
CAPS showed AUC value of 0.97, specificity of 95.8%,
sensitivity of 90%, and accuracy of 95.7% while dealing with
less number of parameters than its counterparts. Transfer
learning and pre-training was used to enhance diagnostic
nature of the framework further and tested with a new
X-Ray dataset. The utilization of artificial intelligence (AI)
to exploit CXR images for patient triage and diagnosis of
COVID-19 is of supreme importance. Lack of systematic
collection of CXR data set for training of deep learning
strategies hindered the proper diagnosis. Oh et al. [35]
presented a patch-based CNN technique with less number
of trainable parameters for COVID-19 diagnosis to address
the issue. Their statistical analysis of potential imaging
biomarkers of CXR images was the inspiration for the
proposed task. Punn et al. [36] proposed the weighted
class loss function and random oversampling methods for
transfer learning in different SOTA deep learning meth-
ods. They used posteroanterior CXR images for multiclass
classification: (pneumonia, COVID-19, and normal cases)
and binary classification (COVID-19 and normal cases).
Empirical results demonstrated that each model was sce-
nario dependent; NASNetLarge showed better scores in
comparison to its counterparts.

C. Uncertainty Quantification in Medical Image Analysis

There are numerous studies conducted on Uncertainty
Quantification (UQ) for medical image analysis using ma-
chine and deep learning methods. In this section, we briefly
introduce a few recent studies which applied UQ methods
for medical image analysis. Deep CNNs seldom facilitate
uncertainty estimations regarding medical image segmen-
tation e.g., image-based (aleatoric) and model (epistemic)
uncertainties despite delivering the SOTA performance.
Wang et al. [37] examined different types of uncertainties
related with 3D and 2D medical image segmentation tasks
at both structural and pixel levels. Moreover, they intro-
duced test-time augmentation-based aleatoric uncertainty
to measure the effect of various transformations of the input

image on the output segmentation. MC simulation with
prior distributions of parameters estimated a distribution
of prediction in an image acquisition model with noise and
image transformations was provided to formulate test-time
augmentation.
There are two commensal and traditional tasks i.e., direct
ventricle function index estimation and bi-ventricle seg-
mentation are assigned to tackle ventricle quantification
issue. Luo et al. [38] introduced a unified bi-ventricle
quantification approach based on commensal correlation
between the direct area estimation and bi-ventricle segmen-
tation. They also devised a new deep commensal network
(DCN) to combine these two commensal tasks into a unified
framework based on the proposed commensal correlation
loss. The DCN yielded fast convergence and end-to-end
optimization as well as uncertainty estimation with one-
time inference. Colorectal cancer which is one of the
prime reasons of cancer-related fatalities around the globe
and its key precursor is colorectal polyps. Convolutional
Neural Networks (CNNs) based decision support systems
for segmentation and detection of colorectal polyps showed
outstanding performance. In another research, Ghoshal et
al. [39] used drop-weights based Bayesian CNN (BCNN)
to measure uncertainty in deep learning methods to en-
hance the diagnostic performance. They demonstrated that
accuracy of the prediction was highly correlated with the
uncertainty in prediction.

D. Research Gaps

Comprehensive literature review identified several impor-
tant research gaps in COVID-19 detection/segmentation.
We list a few most important ones as follows:

• There are no sufficient COVID-19 data to develop accu-
rate and robust machine and deep learning methods,
which hinders This can impact the performance of
such methods.

• There are very few studies that have used both types
(CT scan and X-Ray) of images simultaneously.

• To the best of our knowledge, there is no study that
has examined the uncertainty of model in predicting
the COVID-19 cases.

• Moreover, we found that there were very few studies
considering robustness and unknown data detection
for COVID-19 classification.

• The impressive effect of different fusion methods have
received less attention in the COVID-19 studies. It can
be noted that these methods are very effective both to
improve the performance and also to deal with the
uncertainty with ML and DL models (as a kind of
ensemble).

III. PROPOSED METHODOLOGY

This section has two main sub-sections: basic deep
learning methods in sub-section III-A and our proposed
fusion model: Uncer t ai nt yFuseNet in sub-section III-B.
It may be noted that we also applied two traditional ma-
chine learning algorithms (i.e., Random For est (RF) and
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Deci si on Tr ee (DT, max-depth=50 and n-estimators=200))
and compared their performances with the applied deep
learning methods.

A. Basic Deep Learning Methods

In this sub-section, we provide more details regarding
two basic deep learning methods: deep 1 (Simple CNN)
and deep 2 (Multi-headed). Figs. 1 and 2 show deep 1
(Simple CNN) and deep 2 (Multi-headed), respectively. The
first deep (Simple CNN) includes three convolutional layers
followed by MC dropout in the feature extraction layer. The
extracted features are then given to the classification layer,
including three dense layers and MC dropout. More details
of deep 1 (Simple CNN) can be found in Fig. 1. In the
second deep learning, i.e., Multi-headed, three main heads
(as feature extractors) are included. The extracted features
in each branch are then given to the fusion layers followed
by the classification layer as illustrated in Fig. 2.
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B. Proposed Fusion Model: Uncer t ai nt yFuseNet

Feature fusion is an approach used to combine features
(different information) of the same sample (input) extracted
by various methods. Assume Ω = {ξ | ξ ∈ RN } be a training
sample (image) space of m labeled samples (images). Given
A = {x | x ∈ mathbbRp }, B = {y | y ∈ Rq }, ..., and Z = {n | n ∈
Rk }, where x, y , ..., n are the feature vectors of the same
input ξ sample extracted by various deep learning methods,

respectively. Therefore, the total feature fusion vector space
D f f

v s obtained from different sources can be calculated as
follows:

D f f
v s =Concat [A,B , ..., Z ], (1)

In this study, after preprocessing the data, we feed our
data set to the model. Our model consists of two major
branches: The first branch has five convolutional blocks.
Each block is made up of two tandem convolutional layers
followed by batch normalization and max-pooling layers.
Also, the fourth and fifth blocks have dropout layers in their
outputs. The second branch is a VGG16 transfer learning
network whose output will be used in the fusion layer.
After two branches, the model is followed by a fusion layer
that concatenates the third, fourth, and fifth convolutional
layers’ outputs with VGG16’s output.

Finally, we used fully connected layers to process the
fusion features and classify the data. In this part, we have
used four dense layers with 512, 128, 64, and 3 neurons
with ReLU activation function, respectively. The first three
dense layers’ output have a dropout in their outcomes with
a rate equal to 0.7, 0.5, and 0.3, respectively.
The stated model is not simplistic. Indeed, to boost the
model’s power in dealing with data and extracting high-
quality features, we have employed a novel feature fusion
approach obtained from different sources:

• We selected the third convolutional block’s output as
a fusion source to have a holistic perspective about
the data distribution. These features help the model
to consider the unprocessed and raw information and
use them in the prediction.

• We included the final and penultimate convolutional
blocks’ outputs in the feature fusion layer to have more
accurate information. This feature gives a detailed view
of the dataset to model and helps the model to process
advanced classification features.

• As pre-trained networks have been widely used in
pneumonia detection in recent studies and can create
high-quality and generalizable features, we used the
output of VGG16 in the fusion layer.

The pseudo-code of the proposed Uncer t ai nt yFuseNet
model for COVID-19 detection is shown by Algorithm 1
and its general view in Fig. 3.

After training our models, to generate final prediction,
we have averaged the predicted softmax probabilities
in N random forward paths of data x through
Uncer t ai nt yFuseNet and stochastic sampling dropout
mask wt for each path:

ŷt = Softmax
(
UncertaintyFuseNet (x;wt )

)
, (2)

ŷ∗ = 1

N

N∑
0

ŷt . (3)
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Fig. 3: A general overview of the proposed Uncer t ai nt yFuseNet model inspired by a novel hierarchical feature fusion
and MC dropout.

Algorithm 1: Pseudo-code of the proposed fusion
model (Uncer t ai nt yFuseNet )

Input: A gray-scale image.
Output: COVID-19 classification with higher certainty.
Feature Extraction Layer: Branch1:
Conv1 ← First Convolutional Block ← Input Image
Conv2 ← Second Convolutional Block ← Conv1
Conv3 ← Third Convolutional Block ← Conv2
Conv4 ← MCDropout(rate=0.2) ←

Fourth Convolutional Block ← Conv3
Conv5 ← MCDropout(rate=0.2) ←

Fifth Convolutional Block ← Conv4 Branch2:
VGG features ← VGG16 Block ← Input Image
Fusion Layer:
X ← Concatenation of (Conv3, Conv4, Conv5, VGG features)
Classification Layer:

X ← Dense(X, units=512, activation=ReLU)
X ← MCDropout(X, rate=0.7)
X ← Dense(X, units=128, activation=ReLU)
X ← MCDropout(X, rate=0.5)
X ← Dense(X, units=64, activation=ReLU)
X ← MCDropout(X, rate=0.3)
Output ← Dense(X, units=3, activation=softmax)

We then used model ensembling and acquired predictions
from the N trained model with various weight distributions
and initialized weights by this strategy. Hence, we obtained
a meaningful improvement in our achieved results.

Pr edi cted_C l ass = Argmax(ŷ∗). (4)

The pseudo-code of the applied ensemble MC dropout
in our proposed Uncer t ai nt yFuseNet model for COVID-

Algorithm 2: Ensemble MC dropout

Predictions = 0
for k = 1, k++, while k < i do

Probability ← UncertaintyFuseNet ← Input Image
Predictions ← Predictions + Probability

Predictions ← Mean(Predictions)
Predicted Class ← Argmax(Predictions)

19 detection is given in Algorithm 2.

IV. EXPERIMENTS

In this section, we provide more information about the
datasets in IV-A, the obtained results using the proposed
methods are illustrated in IV-B, robustness against noise
is presented in IV-C, and unknown detection is shown in
IV-D.

A. Datasets

In this study, we used two datasets: CT scan 1 and X-
Ray 2. More information about each dataset is presented
in Table I. In addition, few random samples of both CT
scan and X-Ray datasets used in this study is showed in
Fig. 4. The CT scan dataset has three main classes: non-
informative CT (NiCT), positive CT (pCT), and negative CT
(nCT). Moreover, the X-Ray dataset also has three main
classes: COVID-19, Normal, and Pneumonia.

1Sources: https://www.kaggle.com/azaemon/
preprocessed-ct-scans-for-covid19,http://ictcf.biocuckoo.cn/

2Sources: https://www.kaggle.com/prashant268/
chest-xray-covid19-pneumonia

https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19, http://ictcf.biocuckoo.cn/
https://www.kaggle.com/azaemon/preprocessed-ct-scans-for-covid19, http://ictcf.biocuckoo.cn/
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
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TABLE I: The COVID-19 datasets used in this study.

Dataset # of Samples # of Classes
CT scan 19685 3
X-Ray 6432 3

(a) CT scan (b) X-ray

Fig. 4: Some random samples from both CT scan and X-Ray
datasets are used in this study.

B. Experimental Results

In this section, the experimental results are presented
and discussed. Since we considered the impact of UQ
methods, the experiments are conducted without apply-
ing the UQ method for CT scan and X-Ray datasets. In
the first step, we used five different algorithms, including
Random Forest (RF), Decision Tree (DT, max-depth=50, and
n-estimators=200), Deep 1 (Simple CNN), Deep 2 (Multi-
headed), and our proposed model (Fusion model) to eval-
uate the performance.

1) COVID-19 classification without considering uncer-
tainty: First, we investigated the performance of five clas-
sifiers(RF, DT, simple CNN, multi-headed and our proposed
fusion model) without considering uncertainty: using two
COVID-19 datasets (CT scan and X-Ray). The obtained
results are presented in Tables and II and III for CT scan
and X-Ray datasets, respectively. It may be noted from Table
II that, our proposed fusion model outperformed the other
applied methods using CT scan dataset with a test accuracy
of 99.136%, followed by Simple CNN with a test accuracy
of 98.763%. The results also indicate that DT has obtained
the weakest performance with CT scan dataset among the
five algorithms used. Figs. 5 and 6 show the confusion
matrix and ROC using different CT scan dataset without
quantifying uncertainty, respectively.

To demonstrate the effectiveness of our proposed fusion

TABLE II: Comprehensive comparison of results obtained
using different CT scan dataset methods for COVID-19
detection without considering uncertainty (%).

Method Precision Recall F-Measure Accuracy
RF 97.111 97.070 97.091 97.070
DT 93.049 93.040 93.045 93.040
Deep 1 (Simple CNN) 98.787 98.763 98.775 98.763
Deep 2 (Multi-headed) 98.599 98.577 98.588 98.577
Proposed (Fusion model) 99.137 99.136 99.136 99.136

model, the same methods tested on CT scan dataset are
applied to the X-Ray dataset too. We noticed that the results
obtained using X-Ray dataset are different from the CT scan
dataset. It may be noted from Table III that, our proposed
fusion model performed far better than the other applied
methods with an accuracy of 97.127%, followed by multi-
headed model with an accuracy of 94.953%. Using the CT
scan dataset, it can be seen that, DT performed worse on
automated COVID-19 detection using X-Ray dataset with an
accuracy of 84.006%. Figs. 7 and 8 indicate the confusion
matrix and ROC obtained using three deep learning meth-
ods with X-Ray dataset and without quantifying uncertainty,
respectively.

TABLE III: Comprehensive comparison of results obtained
using different methods for COVID-19 detection using X-
Ray dataset without considering uncertainty (%).

Method Precision Recall F-Measure Accuracy
RF 91.532 91.381 91.456 91.381
DT 83.828 84.006 83.917 84.006
Deep 1 (Simple CNN) 93.847 93.167 93.506 93.167
Deep 2 (Multi-headed) 95.041 94.953 94.997 94.953
Proposed (Fusion model) 97.121 97.127 97.124 97.127

2) COVID-19 classification with considering uncer-
tainty: The obtained results of the previous sub-section
(IV-B1) are promising hence, our proposed fusion model
can be used in the clinical domain. We also believe that
providing intelligent (i.e. ML and DL) models to deal with
this serious virus is urgently needed. But at the same
time, we firmly believe in the transparency of the results
obtained by such intelligent-based models with certainty. To
accomplish this, we applied the uncertainty quantification
method called EMC dropout with the uncertainty of the
deep learning models, i.e., deep 1 (simple CNN), deep 2
(multi-headed), and our proposed fusion model. Hence,
these three deep learning models are fed with both CT scan
and X-Ray datasets.

Table IV and Figs. 9 and 10 show the obtained results of
three applied deep learning methods on COVID-19 classi-
fication using CT scan dataset with uncertainty. It may be
noted from Table IV that our fusion model has obtained
more promising performance than other two models with
an accuracy of 99.085% followed by simple CNN with the
accuracy of 98.831% using CT scan dataset. Comparison of
results obtained using deep learning models without and
with UQ method reveal that our proposed fusion model
with UQ method has yielded slightly poorer performance
than the model without UQ. However, simple CNN with UQ
performed better as compared to when it is applied without
UQ method.

TABLE IV: Comprehensive comparison of results obtained
using different CT scan methods for COVID-19 detection t
with uncertainty (%).

Method Precision Recall F-Measure Accuracy
Deep 1 (Simple CNN) 98.831 98.854 98.843 98.831
Deep 2 (Multi-headed) 98.493 98.523 98.508 98.493
Proposed (Fusion model) 99.085 99.085 99.085 99.085
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Fig. 5: Confusion matrices obtained using different CT scan datasets methods without quantifying uncertainty.
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Fig. 6: ROC obtained using different CT scan methods without quantifying uncertainty.

Similar to the previous procedures, we evaluated the
performance of three applied deep learning models with
uncertainty on X-Ray dataset. The obtained results, confu-
sion matrix, and ROC of the applied deep learning methods
on X-Ray dataset with uncertainty are presented by Table
V, Figs. 11 and, 12, respectively. Our proposed fusion model
achieved the best performance for COVID-19 detection us-
ing X-Ray dataset with an accuracy of 96.350% compared to
the simple CNN (accuracy of 95.263%). The obtained results
in Tables IV and V show that our proposed fusion model
performed outstandingly in COVID-19 detection using both
CT scan and X-Ray image datasets.

C. Robustness Against Noise

The individual visual system is significantly robust
against a wide variety of natural noises and corruptions
occurring in the nature such as snow, fog or rain [40].
However, the overall performance of various modern image

TABLE V: Comprehensive comparison of results obtained
using different methods for COVID-19 detection using X-
Ray dataset with uncertainty (%).

Method Precison Recall F-Measure Accuracy
Deep 1 (Simple CNN) 95.263 95.354 95.309 95.263
Deep 2 (Multi-headed) 95.186 95.257 95.222 95.186
Proposed (Fusion model) 96.350 96.370 96.360 96.350

and speech recognition systems is greatly degraded when
evaluated using previously unseen noises and corruptions.
This means that intelligent image and speech recognition
systems are weak against noise and corruptions. Therefore,
considering different ML and DL methods in robustness test
can reveal the level of stability of the models against noise.
In this study, the robustness of the applied deep learning
models against noise is investigated.
We added different values of noises to both CT scan
and X-Ray datasets to evaluate the performance of simple
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Fig. 7: Confusion matrices obtained using different X-Ray dataset methods without quantifying uncertainty.
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Fig. 8: ROC obtained using different X-Ray dataset methods without quantifying uncertainty.
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Fig. 9: Confusion matrices obtained using different CT scan dataset methods with quantifying uncertainty.

CNN, multi-headed deep learning and our proposed fusion
model. Both STD coefficient and Mean coefficient are used

to add noises (Gaussian noise) to our models. The values
of STD coefficient are 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4,
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Fig. 10: ROC obtained using different CT scan datasets methods with quantifying uncertainty.
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Fig. 11: Confusion matrices obtained using different X-Ray datasets methods with quantifying uncertainty.
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Fig. 12: ROC of different methods applied to X-Ray dataset with quantifying uncertainty.

0.5, and 0.6 while the value of Mean coefficient is 0. The
obtained results using CT scan and X-Ray datasets are
presented in Tables VI and VII, respectively. It may be noted
from Table VI that, both simple CNN and multi-headed
deep learning models did not perform well with noise as
compared to our fusion model when noise is added to CT
scan dataset. The results in Table VI show that all metrics
of the simple CNN and multi-headed deep learning models
are dramatically decreased with the increase of noise. In
contrast, our fusion model is more robust against noise
when noise is added to CT scan dataset.

Table VII shows the performance of deep learning meth-
ods with noise in X-Ray dataset. Both simple CNN and
multi-headed deep learning methods did not perform well
with the addition of noise while our model is found to
be more robust against noise. It should be noted that, our
fusion model performed well when using CT dataset with

noise than using X-Ray dataset with noise. Nevertheless,
our proposed fusion model is more robust against noise
compared to the other two deep learning methods.

This stage of the experiment is particularly necessary
to demonstrate the stability of the applied models against
noise. We clearly showed in this section that our proposed
fusion model is very robust against noise for both CT scan
and X-Ray image datasets.

D. Unknown Detection

In this sub-section, we evaluate the performance of deep
learning models when they are fed by an unknown image.
This part of the study emphasizes that models either do
not know or can not clearly show their uncertainty during
predictions. To achieve this goal, we fed one sample image
from the well-known MNIST dataset (see Fig. 13). The mean
and STD values of the simple CNN, multi-headed and our
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TABLE VI: Comprehensive comparison of robustness
against noise using different methods for COVID-19 detec-
tion using CT scan dataset (%). Please note that ST D −
Cooe f = σε

σ0
, where σε is standard deviation of the noise

and σ0 is standard deviation of the noise.

Method STD-Cooef Precision Recall F-Measure Accuracy

Deep 1

(Simple CNN)

0.0001 98.852 98.831 98.842 98.831
0.001 98.868 98.848 98.858 98.848
0.01 98.754 98.730 98.742 98.730
0.1 95.785 95.614 95.700 95.614
0.2 89.270 87.284 88.266 87.284
0.3 86.370 82.593 84.439 82.593
0.4 82.628 75.194 78.736 75.194
0.5 78.303 64.053 70.465 64.053
0.6 75.770 57.534 65.405 57.534

Deep 2

(Multi-headed)

0.0001 98.526 98.493 98.509 98.493
0.001 98.524 98.493 98.508 98.493
0.01 98.558 98.526 98.542 98.526
0.1 93.447 92.871 93.158 92.871
0.2 86.943 83.423 85.147 83.423
0.3 80.168 69.065 74.203 69.065
0.4 76.032 58.465 66.102 58.465
0.5 73.837 54.690 62.837 54.690
0.6 72.914 53.149 61.482 53.149

Proposed
(Fusion model)

0.0001 99.085 99.085 99.085 99.085
0.001 99.119 99.119 99.119 99.119
0.01 99.194 99.187 99.190 99.187
0.1 99.098 99.085 99.092 99.085
0.2 98.828 98.814 98.821 98.814
0.3 98.109 98.086 98.097 98.086
0.4 96.956 96.884 96.920 96.884
0.5 96.201 96.088 96.145 96.088
0.6 95.804 95.665 95.734 95.665

TABLE VII: Comprehensive comparison of robustness
against noise by different methods for COVID-19 detection
using X-Ray dataset (%).

Method STD-Cooef Precision Recall F-Measure Accuracy

Deep 1

(Simple CNN)

0.0001 95.408 95.341 95.375 95.341
0.001 95.408 95.341 95.341 95.341
0.01 95.338 95.263 95.301 95.263
0.1 94.554 94.254 94.404 94.254
0.2 91.540 89.285 90.398 89.285
0.3 88.534 82.065 85.176 82.065
0.4 85.770 73.136 78.951 73.136
0.5 84.294 64.518 73.092 64.518
0.6 82.545 57.375 67.696 57.375

Deep 2

(Multi-headed)

0.0001 95.474 95.419 95.446 95.419
0.001 95.188 95.108 95.148 95.108
0.01 95.404 95.341 95.372 95.341
0.1 93.922 93.322 93.621 93.322
0.2 88.861 82.453 85.537 82.453
0.3 83.781 58.074 68.598 58.074
0.4 82.207 40.062 53.871 40.062
0.5 81.750 31.521 45.499 31.521
0.6 81.366 27.639 41.262 27.639

Proposed
(Fusion model)

0.0001 96.498 96.506 96.502 96.506
0.001 96.568 96.583 96.576 96.583
0.01 96.492 96.506 96.499 96.506
0.1 96.363 96.350 96.357 96.350
0.2 94.403 94.254 94.329 94.254
0.3 91.769 91.071 91.418 91.071
0.4 88.225 85.714 86.951 85.714
0.5 84.181 78.804 81.404 78.804
0.6 81.082 68.322 74.157 68.322

proposed fusion methods are reported in Table VIII. It
can clearly be observed that, our fusion model showed its
uncertainty towards unknown data more clearly than the
other two deep learning methods.

We fed Fig. 13 to all three deep learning methods trained
by CT scan and X-Ray datasets and then predicted the class
of this unknown image sample.

Estimating uncertainty of machine and deep learning
algorithms using different UQ methods is vital during crit-

Fig. 13: The MNIST sample image fed to the deep learning
methods as an unknown sample.

ical predictions such as medical case studies. The applied
machine and deep learning with different UQ methods
should be able to capture a portion of uncertainties such
as epistemic and aleatoric. In this study, we applied a
fusion model to classify two types of COVID-19 images: CT
scan and X-Ray datasets. In Table VIII, we computed Mean
and STD for three deep learning methods to evaluate the
predictions of these models when fed with unknown input
data. It should be noted that Mean is the prediction and
STD is the uncertainty of models. As can be seen in Table
VIII, our model usually has 0 (or nearly zero) for one out
of three classes in both datasets.

V. DISCUSSION

The early, timely and accurate detection of COVID-19
is crucial role in dealing with coronavirus as quickly and
effectively as possible. It may be noted that various fields of
science have been proposing new methods to deal with this
disease. Among them, ML and DL methods are found to be
more efficient and have been widely used for segmentation
and detection of COVID-19 tasks. In this work, we mainly
focused on the detection task using both CT scan and X-
Ray images. In this study, we proposed a new, simple yet
very efficient fusion model called Uncer t ai nt yFuseNet
and compared its performance with several classical and
DL algorithms. It can be noted from the obtained results
that our developed fusion model is accurate in detecting
the COVID-19 cases. Besides these, we have also shown the
superiority of our model in dealing with noise over the other
two models. Also, the obtained results in the earlier section
reveal the highest ability of our Uncer t ai nt yFuseNet
model in detecting features of the unseen images.
Finally, the performance of the proposed fusion model is
compared with other existing methods in the literature. In
Table 14, we compared the performance of the proposed
fusion model with other state-of-the-art techniques devel-
oped using CT and X-Ray image datasets.

To identify the important features in our proposed fusion
model for each class, the Grad-CAM visualization approach
is used to both CT scan and X-Ray image datasets. Figs.
16 and 17 show the most important features used by our
fusion model for identifying each class separately.

Finally, the output posterior distributions of our proposed
fusion model for both datasets is presented in Fig. 18. It
can be noted from the figure that, the correctly classified
samples do not overlap with the other two classes (incorrect
classes).
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TABLE VIII: Unknown class detection by different deep learning methods when fed with Fig. 13.

Method
CT scan X-Ray

nCT NiCT pCT COVID-19 Normal Pneumonia
Deep 1
(Simple CNN)

Mean 0.02 0.98 0.0 0.57 0.15 0.28
STD 0.10 0.10 0.01 0.39 0.26 0.35

Deep 2
(Multi-headed)

Mean 0.05 0.30 0.65 0.68 0.22 0.10
STD 0.19 0.43 0.45 0.32 0.27 0.16

Proposed
Fusion

Mean 0.56 0.0 0.44 0.41 0.59 0.0
STD 0.50 0.07 0.50 0.49 0.49 0.0
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Fig. 14: T-SNE visualisation of different methods applied to CT scan dataset without and with quantifying uncertainty.

In our study, we have evaluated our
Uncer t ai nt yFuseNet model using both CT scan and
X-Ray datasets. This research attempts to fill the gap in [64]
which are reported in the literature.

Indeed, this study is a work entirely related to past study
developed to fill their gap(s) [64]. Wang et al. [64] proposed
a deep feature fusion model for COVID-19 detection using
CT scan dataset. Their proposed model performed signifi-
cantly better in detecting COVID-19 using CT scan dataset.
However, they stated the proposed model may not perform
well for other types of data such as X-Ray. In another study,
Tang et al. [65] proposed an ensemble deep learning model
for COVID-19 detection using X-Ray images only. Most of
previous studies on COVID-19 detection only focused on
performance rather than the uncertainty analysis of their
models. We firmly believe in obtaining accurate predictions,
having impressive performance. Shamsi Jokandan et al. [5]
considered uncertainty in their study; however, they used
very small datasets in their study. In this work, we proposed
a novel fusion model using two big CT scan and X-Ray
datasets. Also, we applied an uncertainty quantification
method (i.e., EMC) to improve the quality of predictions.

There are a limited number of studies that have con-

sidered noise in the COVID-19 datasets which is another
important research gap that we are facing in real scenarios.
Also, uncertainty of models during predictions must be
demonstrated in practice. One way is to give unknown
samples and make the model predict their classes. We
considered both tests to evaluate the effectiveness of our
Uncer t ai nt yFuseNet model. The proposed fusion model
in this study undoubtedly provides a practical solution for
the real-world scenarios. It should be noted that although
the proposed fusion model fusion is found to be suitable for
COVID-19 detection, but it is a general model, and we think
it is also effective in classifying other diseases. To sum up,
the most important features of our proposed fusion model
in this study are listed below:

1) Obtained the highest COVID-19 detection perfor-
mance compared to both datasets (CT and X-Ray).

2) The developed model is able to incorporate model
uncertainty during detection.

3) Proposed model is robust against noise.
4) Able to detect unknown data with high accuracy.
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Fig. 15: T-SNE visualisation of different methods applied to X-Ray dataset without and with quantifying uncertainty.

TABLE IX: Comprehensive comparison of results obtained by our proposed model with state-of-the-art techniques on
automated detection of COVID-19 cases using both CT scan and X-Ray image datasets.

Dataset Study Year # of Samples
Performance

UQ Code
Precision Recall F-measure Accuracy AUC

CT scan
Li et al. [41] 2020 1540 (3 classes) N/A 82.60 N/A N/A 0.918 × ×
Jaiswal et al. [42] 2020 2492 (2 classes) 96.29 96.29 96.29 96.25 0.970 × ×
Wang et al. [43] 2020 640 (2 classes) 96.61 97.71 97.14 97.15 N/A × ×
Sharma [44] 2020 2200 (3 classes) N/A 92.10 N/A 91.00 N/A × ×
Panwar et al. [45] 2020 1600 (2 classes) 95.00 95.00 95.00 95.00 N/A × ×
Do and Vu [46] 2020 746 (2 classes) 85.00 85.00 85.00 85.00 0.922 × ×
Singh [47] 2020 N/A (2 classes) N/A 91.00 89.97 93.50 N/A × ×
Pham [48] 2020 746 (2 classes) N/A 91.14 93.00 92.62 0.980 × ×
Martinez [49] 2020 746 (2 classes) 94.40 86.60 90.30 90.40 0.965 × ×
Loey et al. [50] 2020 11012 (2 classes) N/A 80.85 N/A 81.41 N/A × ×
Ning et al. [51] 2020 19685 (3 classes) N/A N/A N/A N/A 0.978 × ×
Han et al. [52] 2020 460 (3 classes) 95.90 90.50 92.30 94.30 0.988 × ×
Shamsi Jokandan et al. [5] 2021 746 (2 classes) N/A 86.50 N/A 87.90 0.942

p ×
Ours 2021 19685 (3 classes) 99.08 99.08 99.08 99.08 1.00

p p

X-Ray
Khan et al. [32] 2020 1251 (4 classes) 90.00 89.92 89.80 89.60 N/A × p
Ozturk et al. [53] 2020 1125 (3 classes) 89.96 85.35 87.37 87.02 N/A × p
Mesut and [54] 2020 458 (3 classes) 98.89 98.33 98.57 99.27 N/A × p
Mahmud et al. [55] 2020 1220 (4 classes) 82.87 83.82 83.37 90.30 0.825 × p
Heidari et al. [56] 2020 2544 (3 classes) N/A N/A N/A 94.50 N/A × ×
Rahimzadeh and Attar [57] 2020 11302 (3 classes) 72.83 87.31 N/A 91.40 N/A × p
Pereira et al. [58] 2020 1144 (7 classes) N/A N/A 64.91 N/A N/A × ×
De Moura et al. [59] 2020 1616 (3 classes) 79.00 79.33 79.33 79.86 N/A × ×
Yoo et al. [60] 2020 1170 (2 classes) 97.00 99.00 97.98 98.00 0.980 × ×
Chandra et al. [61] 2020 2346 (2 classes) N/A N/A N/A 91.32 0.914 × ×
Zhang et al. [62] 2020 2706 (2 classes) 77.13 N/A N/A 78.57 0.844 × p
Shamsi Jokandan et al. [5] 2021 100 (2 classes) N/A 99.90 N/A 98.60 0.997

p ×
Ahmad [63] 2021 4200 (4 classes) 93.01 92.97 92.97 96.49 N/A × ×
Ours 2021 6432 (3 classes) 96.35 96.37 96.36 96.35 0.993

p p

VI. CONCLUSION

In this study, we have proposed a new fusion deep
learning model to accurately detect COVID-19 using CT
scan and X-Ray datasets. In order to detect the COVID-
19 accurately, we considered the uncertainty issues while

detecting the disease. Our proposed Uncer t ai nt yFuseNet
model addressed the possible uncertainties and demon-
strated stronger robustness to noise and unknown data.
In addition, a class-wise analysis procedure has been im-
plemented to obtain robust performance of the applied
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Fig. 16: Grad-CAM visualization for our proposed fusion
model without and with UQ for COVID-19 (17a and 17b),
Normal (17c and 17d), and Pneumonia (17e and 16f) using
CT scan dataset.

methods. The experimental results show that our fusion
model can achieve the best performance using both CT and
X-ray datasets. Utilizing the hierarchical feature features
in several stages of the proposed fusion model yielded
the highest detection performance compared to the other
applied deep learning methods. Also, we added different
types of noise to our model and showed that our fusion
model performed better than other two deep learning
methods. Also, the proposed fusion model handled the
uncertainty much better when the unknown data is fed
to the model. We have demonstrated the effectiveness of
the proposed Uncer t ai nt yFuseNet model using various
experiments. The limitation of our proposed fusion model
will be addressed in our future studies. In future, we
intend to: (i) expand the COVID-19 datasets and test our

True: Covid19 
 Prediction: Covid19 (99%)

(a) COVID-19 with-
out UQ

True: Covid19 
 Prediction: Covid19 (96%)

(b) COVID-19 with
UQ

True: Normal 
 Prediction: Normal (92%)

(c) Normal without
UQ

True: Normal 
 Prediction: Normal (95%)

(d) Normal with
UQ

True: Pneumonia 
 Prediction: Pneumonia (98%)

(e) Pneumonia with-
out UQ

True: Pneumonia 
 Prediction: Pneumonia (96%)

(f) Pneumonia with
UQ

Fig. 17: Grad-CAM visualization for our proposed fusion
model without and with UQ for COVID-19 (17a and 17b),
Normal (17c and 17d), and Pneumonia (17e and 17f) using
X-Ray dataset.

fusion model using multi-modal data, (ii) include attention
mechanism while fusing features, and (iii) integrate with
other fusion techniques such as decision level fusion.
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