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Estimating Unknown Time-Varying Parameters in
Uncertain Differential Equation

Guidong Zhang, Yuhong Sheng*

Abstract—Uncertain differential equations have a wide range
of applications. How to obtain estimated values of unknown pa-
rameters in uncertain differential equations through observations
has always been a subject of concern and research, many methods
have been developed to estimate unknown parameters. However,
these parameters are constants. In this paper, the method of least
squares estimation is recast for estimating the unknown time-
varying parameters in uncertain differential equations. A set of
unknown time-varying parameter estimates will be obtained, and
then the unknown time-varying parameters will be obtained by
regression fitting using the estimated values. Using this method,
the uncertain differential equation of blood alcohol concentration
in human body after drinking and the uncertain differential
equation of COVID-19 are derived.

Index Terms—uncertainty theory; uncertain differential equa-
tion; time-varying parameters; parameter estimation.

I. INTRODUCTION

THe tool that people have always used to deal with
random events is probability theory. However, due to the

variability and complexity of random events, it takes a lot of
manpower, material resources and high-tech means to obtain
their distribution. In addition, whether the distribution function
is close enough to the real frequency in real life remains to be
verified, as well as Liu pointed out evolutions of some unde-
termined phenomena do not behave like randomness, he also
pointed out that when emergency arises, e.g. , war, rumour,
flood, and earthquake, we often do not have the historical data
to deal with them [1]. Under these situations, it is inappropriate
to use probability theory in dealing with some problems.
Uncertainty theory based on normality, duality, subadditivity,
and product axioms is another axiomatic mathematical system
to rationally deal with indeterminacy, which was established
by Liu [1] in 2007.

In the framework of probability theory, stochastic differen-
tial equations have been widely used in the time evolution
modeling of dynamic systems under the influence of random
noise. Accordingly, the uncertain differential equation pro-
posed by Liu [2] in 2008 is based on uncertainty theory, it
is a kind of differential equation driven by Liu processes.
Up to now, uncertain differential equation has been widely
applied to finance [3], optimal control [5], heat conduction
[6], and population model [7], etc. For more information on
uncertain differential equations, please consult Yao’s book [8].
The coefficients of these models sometimes contain unknown
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parameters, thereby, how to estimate the unknown parameters
based on the observations values is a critical problem. For the
purpose of solving this problem, Sheng et al. [9] presented a
method of least squares estimation for estimating the unknown
parameters. Yao and Liu [10] proposed a method of moment
estimation based on difference form of uncertain differential
equation, due to the moment estimation for unknown param-
eters in uncertain differential equations is the solution of a
system of equations based on moment conditions, however
with some sets of observations, this system of equations has no
solution, and the moment estimation is invalid. Following that,
Liu [11] proposed a generalized moment estimation method
with the idea of solving the optimal value to solve this kind
of problem. Lio and Liu [12] rewrote the moment estimation
method to estimate the parameters. In addition, Lio et al.
[13] proposed the method of uncertain maximum likelihood
to estimate the unknown parameters. Later, Yang et al. [14]
proposed a method to estimate the unknown parameters of
uncertain differential equation from the discretely sampled
data via the α-path. Sheng and Zhang [15] introduced three
parameter estimation methods based on different forms of so-
lutions. Some achievements have also been made in parameter
estimation of some special uncertain differential equations.
Zhang and Sheng [16] used the least square estimation method
to estimate the unknown parameters of the uncertain delay
differential equation. Zhang et al. [17] also estimated the pa-
rameters of high-order uncertain differential equation. For all
of these methods, the unknown parameters are constants. How
to estimate the parameters of uncertain differential equations
based on observed data when the parameters are time-varying,
this is the problem of time-varying parameter estimation.

Estimating the unknown parameters of uncertain differential
equations under the observations is a topic that everyone
is keen on. On the one hand, because uncertain differential
equations have a wide range of applications, it is necessary
to obtain its specific form; on the other hand, the parameters
themselves can also be deeply studied. Hence, time-varying
parameters are proposed, parameters change over time are
more consistent with the actual situation in real life, so the
estimation of time-varying parameters is useful and is also the
content of this paper. In this paper, we find the new method
for uncertain differential equation to estimate time-varying
parameters. The rest of this paper is organized as follows.
In Section 2, we introduce some basic concepts and theorems
about uncertain variables and uncertain differential equations.
In Section 3, the method of least squares estimation will be
recast for estimating the time-varying parameters. In Section 4,
we will introduce several commonly used regression functions,
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give the evaluation criteria, and use the least squares estimation
method to get the unknown parameters in the regression func-
tion, and finally get the time-varying parameters. In Section
5, we apply the proposed estimation method in two numerical
examples. Finally, a concise conclusion is given in Section 6.

II. PRELIMINARY

In this section, we introduce some concepts and useful
theorems about uncertain variables and uncertain differential
equations. The following symbol is used this paper:

∞∧
i=1

xi : min
1≤i≤∞

xi.

Definition 1. (Liu [1], [4]) Let Ł be a σ-algebra on a nonempty
set Γ. A set function M : Ł → [0, 1] is called an uncertain
measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M{Γ} = 1 for the universal set
Γ.
Axiom 2: (Duality Axiom) M{Λ}+M{Λc} = 1 for any event
Λ.
Axiom 3: (Subadditivity Axiom) For every countable sequence
of events Λ1,Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M {Λi} .

Axiom 4: (Product Axiom) Let (Γk,Łk,Mk) be uncertainty
spaces for k = 1, 2, · · · , Then the product uncertain measure
M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=0

Mk{Λk}

where Λk are arbitrarily chosen events from Łk for k =
1, 2, · · · , respectively.

Definition 2. (Liu [1]) An uncertain variable ξ is a measurable
function from an uncertain space (Γ, Ł, M) to the set of real
numbers, i.e., for any Borel set B, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Definition 3. (Liu [1]) Let ξ be an uncertain variable. Then
its uncertainty distribution is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

An uncertain variable ξ is called normal if it has an
uncertainty distribution

Φ(x) =

(
1 + exp

(
π(µ− x)√

3σ

))−1

, x ∈ <.

Denoted by N(µ, σ). If µ = 0 and σ = 1, then ξ is called
a standard normal uncertain variable. The inverse uncertainty
distribution of a standard normal uncertain variable is

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1).

Definition 4. (Liu [1]) Let ξ be an uncertain variable, and k
be a positive integer. Then the k-th moment of ξ is defined by

E[ξk] =

∫ +∞

0

M
{
ξk ≥ r

}
dr −

∫ 0

−∞
M
{
ξk ≤ r

}
dr

provided that at least one of the two integrals is finite.

Liu [1] proved that if ξ has an inverse uncertainty distribu-
tion Φ−1(α), then

E[ξk] =

∫ 1

0

(
Φ−1(α)

)k
dα.

When k = 1, this is the expected value. And the variable of
ξ is defined by

V [ξ] = E[(ξ − E[ξ])2].

An uncertain process is a sequence of uncertain variables
indexed by the time. As an uncertain counterpart of Wiener
process, Liu process is one of the most frequently used
uncertain processes.

Definition 5. (Liu [4]) An uncertain process Ct is called a
Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz contin-
uous,
(ii) Ct has stationary and independent increments,
(iii) the increment Cs+t −Cs has a normal uncertainty distri-
bution

Φt(x) =

(
1 + exp

(
− πx√

3t

))−1

, x ∈ <.

Let Xt be an uncertain process. Then the uncertain integral
of Xt with respect to the Liu process Ct is∫ b

a

XtdCt = lim
∆→0

k∑
i=1

Xti · (Cti+1
− Cti)

provided that the limit exists almost surely and is finite for any
partition of closed interval [a, b] with a = t1 < t2 < · · · <
tk+1 = b and

∆ = max
1≤i≤k

|ti+1 − ti|.

Definition 6. (Liu [4]) Suppose that Ct is a Liu process, and
f and g are two measurable real functions. Then

dXt = f(t,Xt)dt+ g(t,Xt)dCt (1)

is called an uncertain differential equation.

An uncertain process Xt is called the solution of the
uncertain differential equation (1) if it satisfies

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dCs.

A real-valued function Xα
t is called the α-path of the uncertain

differential equation (1) if it solves the corresponding ordinary
differential equation

dXα
t = f(t,Xα

t )dt+ |g(t,Xα
t )|Φ−1(α)dt

where

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ (0, 1)
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is the inverse uncertainty distribution of a standard normal
uncertain variable.

Definition 7. (Chen and Liu [24]) Let u1t, u2t, v1t, v2t

be integrable uncertain processes. Then the linear uncertain
differential equation

dXt = (u1tXt + u2t)dt+ (v1tXt + v2t)dCt

has a solution

Xt = Ut

(
X0 +

∫ t

0

u2s

Us
ds+

∫ t

0

v2s

Us
dCs

)
where

Ut = exp

(∫ t

0

u1sds+

∫ t

0

v1sdCs

)
.

III. PARAMETER ESTIMATION

In this section, we present a new parameter estimation
method based on least square estimation to estimate the pa-
rameters varying with time in an uncertain differential equation
based on some discrete observations.

dXt = f(t,Xt;µt)dt+ g(t,Xt;σt)dCt (2)

where µt and σt are unknown time-varying parameters to
be estimated. We use a method, the means of least squares
estimation will be recast as follows.

First, we have N observations xti (i = 1, 2, · · · , N), let us
estimate µtm , σtm , (m = 1, 2, · · · , N −n+ 1) by applying n
observed data xtm , xtm+1

, · · · , xtm+n−1
. A frequently used

numerical approximation to the equation (2) is the Euler
approximate

Xti+1
= Xti + f(ti, Xti ;µtm) · (ti+1 − ti)

+ g(ti, Xti ;σtm) · (Cti+1 − Cti) (3)

which could be equivalent to the following form

Xti+1 −Xti − f(ti, Xti ;µtm) · (ti+1 − ti)

= g(ti, Xti ;σtm) · (Cti+1
− Cti). (4)

According to the method of least squares estimation, note that
the right term in the equation (4) is usually regarded as the
noise, which should be as small as possible. Hence, give the
observed data (ti, xti ), (i = m,m + 1, · · · ,m + n − 1), the
estimate of µtm solves the following optimization problem

min
µtm

m+n−2∑
i=m

(xti+1
− xti − f(ti, xti ;µtm) · (ti+1 − ti))2. (5)

Let µ̃tm denote the estimate of µtm obtained from the
optimization problem (5). Then, the estimate of σtm solves
the following equation:

E

[
m+n−2∑
i=m

(
g(ti, xti ;σtm) · (Cti+1

− Cti)
)2]

=

m+n−2∑
i=m

(
xti+1

− xti − f(ti, xti ; µ̃tm) · (ti+1 − ti)
)2

where Ct is a Liu process, and the increment Cti+1 − Cti
is a normal uncertain variable with an expected value 0 and
variance (ti+1 − ti)2, we have

E

[
m+n−2∑
i=m

(
g(ti, xti ;σtm) · (Cti+1

− Cti)
)2]

=

m+n−2∑
i=m

E
[(
g(ti, xti ;σtm) · (Cti+1 − Cti)

)2]

=

m+n−2∑
i=m

g(ti, xti ;σtm)2 · E
[
(Cti+1 − Cti)2

]

=

m+n−2∑
i=m

g(ti, xti ;σtm)2 · (ti+1 − ti)2

therefore, the estimate of σtm is a solution of the following
equation

m+n−2∑
i=m

g(ti, xti ;σtm)2 · (ti+1 − ti)2

=

m+n−2∑
i=m

(xti+1
− xti − f(ti, xti ; µ̃tm) · (ti+1 − ti))2. (6)

We have the estimate (µ̃tm , σ̃tm), as an analogy, we can get
the estimate values (µ̃tm+1

, σ̃tm+1
), (µ̃tm+2

, σ̃tm+2
), · · · ,

(µ̃tN−n+1
, σ̃tN−n+1

), where µ̃tm = (µ̃1tm , µ̃2tm , · · · , µ̃j1tm)
and σ̃tm = (σ̃1tm , σ̃2tm , · · · , σ̃j2tm). Through the above
analysis, we get a set of observations by means of least
squares estimation, the following we just need to fit this set
of observations to get the specific form of µt and σt.

Example 1. Consider the uncertain differential equation

dXt = µtXtdt+ σtXtdCt

the estimate µ̃tm solves the optimization problem

min
µtm

m+n−2∑
i=m

(
xti+1

− xti − µtm · xti(ti+1 − ti)
)2

that is

µ̃tm =

(
m+n−2∑
i=m

(xti+1
− xti)(ti+1 − ti)xti

)
×

(
m+n−2∑
i=m

x2
ti(ti+1 − ti)2

)−1

the estimate µ̃tm+1
solves the optimization problem

min
µtm+1

m+n−1∑
i=m+1

(xti+1
− xti − µtm+1

· xti(ti+1 − ti))2

that is

µ̃tm+1
=

(
m+n−1∑
i=m+1

(xti+1
− xti)(ti+1 − ti)xti

)
×
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(
m+n−1∑
i=m+1

x2
ti(ti+1 − ti)2

)−1

we have the estimate values µ̃tm+2
, µ̃tm+3

, · · · , µ̃tN−n+1
. Then,

the parameter σ̃tm satisfies
m+n−2∑
i=m

σ2
tm · x

2
ti(ti+1 − ti)2

=

m+n−2∑
i=m

(xti+1
− xti − µ̃tm · xti(ti+1 − ti))2

this is equivalent to

σ̃tm =

( ∑m+n−2
i=m (xti+1

− xti)2∑m+n−2
i=m x2

ti(ti+1 − ti)2
− µ̃2

tm

) 1
2

the same

σ̃tm+1 =

( ∑m+n−1
i=m+1 (xti+1

− xti)2∑m+n−1
i=m+1 x

2
ti(ti+1 − ti)2

− µ̃2
tm+1

) 1
2

we have the estimate values σ̃tm+2 , σ̃tm+3 , · · · , σ̃tN−n+1
.

Example 2. Consider the uncertain differential equation

dXt = (µ1t + µ2tXt)dt+ σtdCt

where µ1t, µ2t, and σt > 0 are parameters to be estimated.
According to (5), the estimates µ̃1tm and µ̃2tm solve the
optimization problem

min
µ1tm
µ2tm

m+n−2∑
i=m

(xti+1
− xti − (µ1tm + µ2tmxti) · (ti+1 − ti))2

that is

[
µ̃1tm

µ̃2tm

]
=


m+n−2∑
i=m

(ti+1 − ti)2
m+n−2∑
i=m

xti(ti+1 − ti)2

m+n−2∑
i=m

xti(ti+1 − ti)2
m+n−2∑
i=m

x2
ti(ti+1 − ti)2


−1

×


m+n−2∑
i=m

(xti+1
− xti)(ti+1 − ti)

m+n−2∑
i=m

xti(xti+1
− xti)(ti+1 − ti)


the estimates µ̃1tm+1

and µ̃2tm+1
solve the optimization prob-

lem

min
µ1tm+1
µ2tm+1

m+n−1∑
i=m+1

(xti+1−xti−(µ1tm+1+µ2tm+1xti)·(ti+1 − ti))2

that is

[
µ̃1tm+1

µ̃2tm+1

]
=


m+n−1∑
i=m+1

(ti+1 − ti)2
m+n−1∑
i=m+1

xti(ti+1 − ti)2

m+n−1∑
i=m+1

xti(ti+1 − ti)2
m+n−1∑
i=m+1

x2
ti(ti+1 − ti)2


−1

×


m+n−1∑
i=m+1

(xti+1
− xti)(ti+1 − ti)

m+n−1∑
i=m+1

xti(xti+1 − xti)(ti+1 − ti)


we have the estimate values µ̃1tm+2 , µ̃2tm+2 , µ̃1tm+3 , µ̃2tm+3 ,
· · · , µ̃1tN−n+1

, µ̃2tN−n+1
. Then, according to (6), the param-

eters σ̃tm satisfies

m+n−2∑
i=m

σ2
tm · (ti+1 − ti)2

=

m+n−2∑
i=m

(xti+1
− xti − (µ̃1tm + µ̃2tmxti) · (ti+1 − ti))2

that is
σ̃tm

=


m+n−2∑
i=m

(xti+1
− xti − (µ̃1tm + µ̃2tmxti) · (ti+1 − ti))2

m+n−2∑
i=m

(ti+1 − ti)2


1
2

the parameters σ̃tm+1
satisfies

m+n−1∑
i=m+1

σ2
tm+1

· (ti+1 − ti)2

=

m+n−1∑
i=m+1

(xti+1 − xti − (µ̃1tm+1 + µ̃2tm+1xti) · (ti+1 − ti))2

that is
σ̃tm+1 =
m+n−1∑
i=m+1

(xti+1
− xti − (µ̃1tm+1

+ µ̃2tm+1
xti) · (ti+1 − ti))2

m+n−1∑
i=m+1

(ti+1 − ti)2


1
2

we have the estimate values σ̃1tm+2
, σ̃2tm+2

, σ̃1tm+3
, σ̃2tm+3

,
· · · , σ̃1tN−n+1

, σ̃2tN−n+1
.

Example 3. Consider the uncertain differential equation

dXt = (µ1t + µ2tXt)dt+ (σ1t + σ2t)XtdCt

where µ1t, µ2t, σ1t > 0 and σ2t > 0 are parameters to be
estimated. According to (5), the estimates µ̃1tm and µ̃2tm solve
the optimization problem

min
µ1tm
µ2tm

m+n−2∑
i=m

(xti+1
− xti − (µ1tm + µ2tmxti) · (ti+1 − ti))2

that is

[
µ̃1tm

µ̃2tm

]
=


m+n−2∑
i=m

(ti+1 − ti)2
m+n−2∑
i=m

xti(ti+1 − ti)2

m+n−2∑
i=m

xti(ti+1 − ti)2
m+n−2∑
i=m

x2
ti(ti+1 − ti)2


−1
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×


m+n−2∑
i=m

(xti+1
− xti)(ti+1 − ti)

m+n−2∑
i=m

xti(xti+1
− xti)(ti+1 − ti)


the estimates µ̃1tm+1

and µ̃2tm+1
solve the optimization prob-

lem

min
µ1tm+1
µ2tm+1

m+n−1∑
i=m+1

(xti+1−xti−(µ1tm+1+µ2tm+1xti)·(ti+1 − ti))2

that is

[
µ̃1tm+1

µ̃2tm+1

]
=


m+n−1∑
i=m+1

(ti+1 − ti)2
m+n−1∑
i=m+1

xti(ti+1 − ti)2

m+n−1∑
i=m+1

xti(ti+1 − ti)2
m+n−1∑
i=m+1

x2
ti(ti+1 − ti)2


−1

×


m+n−1∑
i=m+1

(xti+1 − xti)(ti+1 − ti)

m+n−1∑
i=m+1

xti(xti+1
− xti)(ti+1 − ti)


we have the estimate values µ̃1tm+2 , µ̃2tm+2 , µ̃1tm+3 , µ̃2tm+3 ,
· · · , µ̃1tN−n+1

, µ̃2tN−n+1
. Then, according to (6), the param-

eters σ̃1tm and σ̃2tm satisfy
m+n−2∑
i=m

((σ1tm + σ2tm)xti)
2 · (ti+1 − ti)2

=

m+n−2∑
i=m

(xti+1
− xti − (µ̃1tm + µ̃2tmxti) · (ti+1 − ti))2

this is equivalent to

(σ̃1tm + σ̃2tm)2 = M1

where

M1 =

m+n−2∑
i=m

(xti+1
− xti − (µ̃1tm + µ̃2tmxti) · (ti+1 − ti))2

m+n−2∑
i=m

(xti(ti+1 − ti))2

in order to get σ̃1tm and σ̃2tm , if there exist weights ω11 and
ω12, (ω11, ω12 ∈ [0, 1]) we have

σ̃1tm = ω11M
1
2

1 , σ̃2tm = ω12M
1
2

1

where ω11 + ω12 = 1. The parameters σ̃1tm+1
and σ̃2tm+1

satisfy
m+n−1∑
i=m+1

((σ1tm+1 + σ2tm+1)xti)
2 · (ti+1 − ti)2

=

m+n−1∑
i=m+1

(xti+1 − xti − (µ̃1tm+1 + µ̃2tm+1xti) · (ti+1 − ti))2

this is equivalent to

(σ̃1tm+1
+ σ̃2tm+1

)2 = M2

where
M2 =

m+n−1∑
i=m+1

(xti+1
− xti − (µ̃1tm+1

+ µ̃2tm+1
xti) · (ti+1 − ti))2

m+n−1∑
i=m+1

(xti(ti+1 − ti))2

we have

σ̃1tm+1 = ω21M
1
2

2 , σ̃2tm+1 = ω22M
1
2

2

where ω21 + ω22 = 1. We have the estimate values σ̃1tm+2 ,
σ̃2tm+2

, σ̃1tm+3
, σ̃2tm+3

, · · · , σ̃1tN−n+1
, σ̃2tN−n+1

. At this
point, the estimates of the two time-varying parameters at
different times are estimated.

IV. REGRESSION ANALYSIS

We know that the unknown time-varying parameters µt and
σt are functions of time, and a set of estimated values of
µt = (µ1t, µ2t, · · · , µj1t) and σt = (σ1t, σ2t, · · · , σj2t) can
be obtained through the above process. In this part, linear
fitting and nonlinear fitting are introduced, several common
nonlinear regression models will be presented.
(I) Linear regression equation:

µjt = β̂j0 + β̂j1t. (j = 1, 2, · · · , j1)

(II) Exponential regression function:

µjt = β̂j0 exp(−β̂j1t).

(III) Logical growth curve function:

µjt = K/(1 + β̂j0 exp(−β̂j1t)).

First, we make the scatter diagram, and then choose the
appropriate regression function to fit according to the scat-
ter diagram, to evaluate the significance of these models,
we consider the coefficient of determination R2

j with data
(tm, µ̃tm) m = 1, 2, · · · , N − n + 1, the total sum of
squares is SSTj =

∑N−n+1
m=1 (µ̃jtm − µ̄j)

2 where µ̄j =
1

N−n+1

∑N−n+1
m=1 µ̃jtm , the return to the sum of squares is

SSRj =
∑N−n+1
m=1 (µ̂jtm−µ̄j)2 where µ̂jtm is the fitted value,

and the coefficient of determination R2
j is R2

j =
SSRj
SSTj

. The
larger the R2

j , the better the curve fitting, where in the best
case R2

j = 1.
For the above parameters β̂ji (i = 0, 1), we also use the

least squares estimate min
β̂ji

∑N−n+1
m=1 (µ̃jtm − µ̂jtm)2.

If we use the linear regression function to fit, then we get
β̂j0 and β̂j1 as follows
β̂j1 =

(N−n+1)
∑N−n+1
m=1 tmµ̃jtm−

∑N−n+1
m=1 tm

∑N−n+1
m=1 µ̃jtm

(N−n+1)
∑N−n+1
m=1 t2i−(

∑N−n+1
m=1 ti)2

β̂j0 = µ̄j − β̂j1t̄

where t̄ = 1
N−n+1

∑N−n+1
m=1 tm, then, we can get

µjt = β̂j0 + β̂j1t.
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If we use nonlinear regression model to fit, Gauss-Newton
algorithm is needed, and the algorithm steps are as follows:

Step 1. According to the fitting object, a more appropriate
nonlinear fitting function µj(β̂ji, t), (i = 0, 1) is selected.

Step 2. The partial derivative of the fitting function
µj(β̂ji, t) is ∂µj(β̂ji,t)

∂β̂ji
.

Step 3. The initial value β̂ji(0) of the fitting coefficient is
given.

Step 4. Calculate the matrix A and vector B, where

A =

[
aj00 aj01

aj10 aj11

]
B = (bj0, bj1)T

where

ajik =
∑

(
∂µj0(β̂ji, tm)

∂β̂ji
)(
∂µj0(β̂jk, tm)

∂β̂jk
) (k = 0, 1)

bji =
∑

(
∂µj0(β̂ji, tm)

∂β̂ji
)(µ̃jtm − µj0(β̂ji, tm))

µj0(β̂ji, tm) = µj(β̂j0(0), β̂j1(0), tm).

Step 5. Solve δβ̂ji according to the normal equation A ×
C = B, where

C = (δβ̂j0, δβ̂j1)T.

Step 6. Determining whether |δβ̂ji| is less than the prede-
termined decimal ε. If condition max |δβ̂ji| < ε is true, the
iterative calculation will end. Otherwise, Step 7 will be carried
out.

Step 7. Assign β̂ji(0) + δβ̂ji to β̂ji(0), return to Step 4.
Through the above algorithm, β̂j0 and β̂j1 can be obtained,
and µjt can be obtained.

V. NUMERICAL EXPERIMENTS

In this section, we will use observed data to illustrate the
method of least square estimation in uncertain differential
equations with unknown time-varying parameters.

Example 4. Consider the example of a person’s blood al-
cohol concentration when drinking alcohol. First we derive
the uncertain differential equation, suppose a person drinks
alcohol with µt amount of alcohol in their stomach, alcohol is
absorbed by the blood at a rate of k0 and consumed at a rate
of k1, then the blood alcohol concentration with an uncertain
disturbance term can be expressed as,

Xti+1
−Xti = (k0µt − k1Xti)(ti+1 − ti) + σt(Cti+1

− Cti)

generally, during a time interval [0, t] with a partition 0 =
t0 < t1 < · · · < tn = t, we have

Xt−X0 =

n−1∑
i=0

(Xti+1
−Xti) =

n−1∑
i=0

(k0µti−k1Xti)(ti+1−ti)

+

n−1∑
i=0

σti(Cti+1 − Cti)

TABLE I
OBSERVED DATA IN EXAMPLE 4

i 1 2 3 4 5
ti 0 0.25 0.3 0.35 0.4
xti 0 30 39 46 52
i 6 7 8 9 10
ti 0.45 0.5 0.55 0.6 0.7
xti 60 68 70 72 74
i 11 12 13 14 15
ti 0.75 1 1.5 2 3
xti 75 80 80 77 68
i 16 17 18 19 20
ti 3.5 4 4.5 5 6
xti 58 51 50 45 38
i 21 22 23 24 25
ti 7 8 9 10 11
xti 32 25 18 15 12
i 26 27 28 29 30
ti 12 13 14 15 16
xti 10 7 7 7 6

with
max

1≤i≤n−1
| ti+1 − ti |→ 0.

That is,

Xt −X0 =

∫ t

0

(k0µs − k1Xs)ds+

∫ t

0

σsdCs.

Thus we obtain a model of human blood alcohol concentration
based on an uncertain differential equation

dXt = (k0µt − k1Xt)dt+ σtdCt

where µt and σt are parameters to be estimated. And just to
keep things simple, we assume k0 = 0.7, k1 = 0.2. Assume
that we have N = 30 groups of observed data shown in Table
I. Let t1, t2, · · · , t30 represent the time for people to observe
the blood alcohol concentration after drinking, for example,
t2 represents observation after 0.25 hours after drinking, let
x0, x0.25, · · · , x16 represent the blood alcohol concentration.
First of all, let is set m = i = 1, then t1 = 0, so

Xti+1
−Xti − f(ti, Xti ;µ0) · (ti+1 − ti)

= g(ti, Xti ;σ0) · (Cti+1
− Cti).

According to the equation (5), without loss of generality let
n = 10, the estimate µ̃0 solves the optimization problem

min
µ0

9∑
i=1

(
xti+1

− xti − (k0µ0 − k1xti)(ti+1 − ti)
)2

which gives

µ̃0 =

(
9∑
i=1

(xti+1 − xti + k1xti(ti+1 − ti)) · (ti+1 − ti)

)
×

(
9∑
i=1

k0(ti+1 − ti)2

)−1

from the observational data

µ̃0 = 160.7381.
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TABLE II
ESTIMATED VALUES FOR µtm AND σtm IN EXAMPLE 4

m 1 2 3 4 5
tm 0 0.25 0.30 0.35 0.40
µ̃tm 160.7381 129.2143 70.4127 34.1437 25.0147
σ̃tm 35.9460 61.4496 38.0270 22.1365 16.6541
m 6 7 8 9 10
tm 0.45 0.50 0.55 0.60 0.70
µ̃tm 14.6400 11.0753 9.2512 9.4430 8.3679
σ̃tm 9.5265 8.6240 8.5882 7.9862 7.6481
m 11 12 13 14 15
tm 0.75 1 1.5 2 3
µ̃tm 6.7920 5.1905 3.1973 1.7262 0.3452
σ̃tm 6.6699 4.8444 3.7815 3.4547 2.5632
m 16 17 18 19 20
tm 3.5 4 4.5 5 6
µ̃tm 0.6455 0.7714 0.1732 0.3810 0.2857
σ̃tm 2.0422 1.8642 1.2220 1.2365 1.1547
m 21
tm 7
µ̃tm 0.0952
σ̃tm 1.0499

Then according to the equation (6), the parameter σ̃0 satisfies

9∑
i=1

σ2
0 · (ti+1 − ti)2

=

9∑
i=1

(
xti+1 − xti − (k0µ̃0 − k1xti)(ti+1 − ti)

)2
that is,

σ̃2
0 =

(
9∑
i=1

(
xti+1

− xti − (k0µ̃0 − k1xti)(ti+1 − ti)
)2)×

(
9∑
i=1

(ti+1 − ti)2

)−1

which gives
σ̃0 = 35.9460.

We can get the estimate values (µ̃0.25, σ̃0.25), (µ̃0.30, σ̃0.30),
· · · , (µ̃7, σ̃7), shown in Table II. Use MATLAB software
to make µ̃tm scatter diagram of tm, as shown in Figure 1.
According to the trend of the scatter plot, we may employ

Fig. 1. A scatter plot of µ̃ with respect to tm

Gaussian fitting function,

µt = β̂0 exp(−((t− β̂1)/β̂2)2)

where β̂0, β̂1, β̂2 are unknown parameters. The nonlinear
fitting results are shown in Figure 2, where R2 = 0.9849, by

Fig. 2. Gaussian fitting diagram

applying nonlinear least squares estimation, we get the time-
varying parameters, β̂0 = 225.3, β̂1 = 0.1074, β̂2 = 0.1853,
then

µt = 225.3 exp(−((t− 0.1074)/0.1853)2).

And we get the σt,

σt = 71.03 exp(−((t− 0.1584)/0.1949)2).

The uncertain differential equation,

dXt = (157.71 exp(−((t− 0.1074)/0.1853)2)− 0.2Xt)dt

+71.03 exp(−((t− 0.1584)/0.1949)2)dCt.

Example 5. We known COVID-19 spread model based on
uncertain differential equation,

dXt = µtXtdt+ σtXtdCt

where µt and σt are parameters to be estimated. We used
N = 35 observations from COVID-19 shown in Table III. Let
t1, t2, · · · , t35 represent the dates from February 13 to March
18, let x1, x2, · · · , x35 represent the cumulative numbers on
dates t1, t2, · · · , t35, respectively. According to the equation
(5), the same n = 10, the estimate µ̃1 solves the optimization
problem

min
µ1

9∑
i=1

(
xti+1

− xti − µ1xti · (ti+1 − ti)
)2

according to the example 1, we get that the estimate of µ1 is(
9∑
i=1

(xti+1
− xti)(ti+1 − ti)xti

)
·

(
9∑
i=1

x2
ti(ti+1 − ti)2

)−1

which gives
µ̃1 = 0.0198.
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TABLE III
OBSERVED DATA IN EXAMPLE 5

i 1 2 3 4 5
ti 1 2 3 4 5
xti 63851 66492 68500 70548 72436
i 6 7 8 9 10
ti 6 7 8 9 10
xti 74185 74576 75465 76288 76936
i 11 12 13 14 15
ti 11 12 13 14 15
xti 77150 77658 78064 78497 78824
i 16 17 18 19 20
ti 16 17 18 19 20
xti 79251 79824 80026 80151 80270
i 21 22 23 24 25
ti 21 22 23 24 25
xti 80389 80516 80591 80632 80668
i 26 27 28 29 30
ti 26 27 28 29 30
xti 80685 80699 80708 80725 80729
i 31 32 33 34 35
ti 31 32 33 34 35
xti 80733 80737 80738 80739 80739

Then according to the example 1, the parameter σ̃1 satisfies
9∑
i=1

σ2
1 · x2

ti(ti+1 − ti)2

=

14∑
i=1

(
xti+1 − xti − µ̃1xti · (ti+1 − ti)

)2
which gives

σ̃1 = 0.0113.

We can also get the estimate values (µ̃2, σ̃2), (µ̃3, σ̃3), · · · ,
(µ̃26, σ̃26), shown in Table IV. Use software to plot a scatter
plot of µ̃tm with respect to tm, as shown in Figure 3.

Fig. 3. A scatter plot of µ̃ with respect to tm

Next, the fitting regression was carried out for µ̃tm (m =
1, 2, · · · , 26) in Table IV. According to the trend of the scatter
plot, we may employ logistic decay model,

µt =
0.0198

1 + β̂0 exp(β̂1t)

where β̂0 and β̂1 are unknown parameters, the nonlinear
fitting results are shown in Figure 4, we get the time-varying

TABLE IV
ESTIMATED VALUES FOR µtm AND σtm IN EXAMPLE 5

m 1 2 3 4 5
tm 1 2 3 4 5
µ̃tm 0.0198 0.0158 0.0134 0.0109 0.0088
σ̃tm 0.0113 0.0102 0.0093 0.0078 0.0058
m 6 7 8 9 10
tm 6 7 8 9 10
µ̃tm 0.0067 0.0067 0.0062 0.0053 0.0045
σ̃tm 0.0029 0.0028 0.0022 0.0018 0.0018
m 11 12 13 14 15
tm 11 12 13 14 15
µ̃tm 0.0044 0.0038 0.0034 0.0029 0.0025
σ̃tm 0.0020 0.0020 0.0021 0.0021 0.0021
m 16 17 18 19 20
tm 16 17 18 19 20
µ̃tm 0.0020 0.0012 0.0009 0.0008 0.0006
σ̃tm 0.0019 0.0007 0.0006 0.0006 0.0005
m 21 22 23 24 25
tm 21 22 23 24 25
µ̃tm 0.0005 0.0003 0.0002 0.0001 0.0001
σ̃tm 0.0005 0.0003 0.0002 0.0001 0.0001
m 26
tm 26
µ̃tm 0.0001
σ̃tm 0.0001

Fig. 4. Logical decline model fitting

parameters, β̂0 = 0.2190, β̂1 = 0.2745, then

µt =
0.0198

1 + 0.2190 exp(0.2745t)

And we get the σt,

σt =
0.0113

1 + 0.0894 exp(0.4471t)

therefore, the COVID-19 spread model based on uncertain
differential equation,

dXt =
0.0198Xtdt

1 + 0.2190 exp(0.2745t)
+

0.0113XtdCt
1 + 0.0894 exp(0.4471t)

.

VI. CONCLUSIONS

Parameter estimation of uncertain differential equations is
a very important problem. The method of the least squares
estimation was employed in this paper to estimate the time-
varying parameters in uncertain differential equation. Based
on the least square estimation method, the paper first obtains
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the value of the parameters at a fixed time, then obtains a
set of parameter estimates as time goes on, and then gets
the estimation equation of the time-varying parameters by
regression analysis fitting. Using this method, the propagation
model of COVID-19 based on uncertain differential equations
is obtained. There remain many research problems in this area,
for example, how to estimate the time-varying parameters in
uncertain differential equations by means of maximum likeli-
hood estimation, by means of generalized moment estimation,
by means of the discretely sampled data via the α-path.
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