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Abstract  
Power laws have been found to describe a wide variety of natural (physical, biological, 

astronomic, meteorological, geological) and man-made (social, financial, computational) 

phenomena over a wide range of magnitudes, although their underlying mechanisms are not 

always clear. In statistics, power law distribution is often found to fit data exceptionally well 

when the normal (Gaussian) distribution fails. Nevertheless, predicting power law phenomena is 

notoriously difficult because some of its idiosyncratic properties such as lack of well-defined 

average value, and potentially unbounded variance. TPL (Taylor’s power law), a power law first 

discovered to characterize the spatial and/or temporal distribution of biological populations and 

recently extended to describe the spatiotemporal heterogeneities (distributions) of human 

microbiomes and other natural and artificial systems such as fitness distribution in computational 

(artificial) intelligence.  The power law with exponential cutoff (PLEC) is a variant of power-law 

function that tapers off the exponential growth of power-law function ultimately and can be 

particularly useful for certain predictive problems such as biodiversity estimation and turning-

point prediction for COVID-19 infection/fatality. Here, we propose coupling (integration) of 

TPL and PLEC to offer improved prediction quality of certain power-law phenomena. The 

coupling takes advantages of variance prediction using TPL and the asymptote estimation using 

PLEC and delivers confidence interval for the asymptote. We demonstrate the integrated 

approach to the estimation of potential (dark) biodiversity and turning point of COVID-19 

fatality.  We expect this integrative approach should have wide applications given the duel 

relationship between power law and normal statistical distributions.     

 
Keywords: Taylor’s power law (TPL); Power law with exponential cutoff (PLEC); Potential 

(dark) biodiversity; Long-tail skewed distribution; Turning point of COVID-19   
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Introduction 

Taylor’s power law (TPL), first discovered by entomologist and ecologist L. R. Taylor (1961) in 

investigating the spatial distribution of insect populations more than a half century ago (Taylor & 

Taylor 1977, Taylor et al 1983, 1988, Taylor 1984, 2018, 2019), has been expanded far beyond 

its original domains of agricultural entomology and population ecology (Eisler et al. 2008, 

Fronczak & Fronczak 2010, Taylor 2019, Ma 1991, 2012, 2013, Ma & Taylor 2020). The TPL is 

one form of power laws that describe the distributions of a wide variety of natural and man-made 

phenomena over a wide range of scales (Cohen et al. 2012, Cohen & Xu 2015, Reuman et al 

2017). Power law patterns have been discovered/rediscovered in astronomy, biology, computer 

science, ecology, criminology, economics, finance, geology, mathematics, meteorology, physics, 

statistics, and especially in inter-disciplinary fields (Stumpf & Porter 2012, Eliazar 2020).  

 

A power law describes a non-linear functional relationship between two variables—one varies as 

a power of another [e.g., 

€ 

f (x) = a(x)b ] and has certain properties including scale invariance, 

lack of well-defined average value, and universality (Eisler et al. 2008, Fronczak & Fronczak 2010, 

Eliazar 2020, Stumpf & Porter 2012). The scale invariance is exhibited by a simple log-

transformation of power law into a straight-line (linear) on log-log scale {e.g., 

€ 

ln[ f (x)] = ln(a) + bln(x)}, and it also specifies that all power laws with a particular scaling 

exponent are equivalent up to constant factors, e.g., 

€ 

f (cx) = a(cx)b = cb f (x)∝ f (x) . The lack of 

well-defined average value refers to a reality that arithmetic mean or average is a poor indicator 

for majority of the power-law variables (e.g., the average income of a population including a 

billionaire). A power law usually has a well-defined mean only for certain range of its scaling 

exponents, and the variance of power law seems disproportionally large and is frequently not 

well-defined, which explains the association between power law phenomena and black swan 

behavior. This also makes many classic statistical methods that are based on normal distribution 

or based on the homogeneity of variance in applicable to data of power law phenomena. A third 

property of power law is the universality that is to do with the scale invariance or the equivalence 

of power laws with a particular scaling exponent. In dynamic systems, diverse systems with the 

same power-law scaling exponents (also known as critical exponents) can exhibit identical 

scaling behavior and share the same fundamental dynamics as they approach criticality such as 

phase transitions. Systems with the same critical exponents are classified as belonging to the 

same universality class (Eisler et al. 2008, Fronczak & Fronczak 2010, Stumpf & Porter 2012, 

Taylor 2019, Ma & Taylor 2020, Eliazar 2020). 
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TPL, as one of the most well-known power laws in ecology and biology, share the three general 

properties of power laws mentioned above. It differs with other power laws in choosing its two 

variables: the mean and variance of population abundances (counts) (Taylor 1961, 1984, 1986, 

2019), i.e.,

€ 

V = aMb . It has also been rediscovered in many other fields beyond its original 

domain of population ecology such as epidemiology, genomics and metagenomics, and computer 

science (Cohen et al. 2012, Cohen & Xu 2015, Reuman et al 2017, Taylor 2019, Ma 2012, 2013, 

2015, Ma & Taylor 2020). It was extended to community ecology, especially the community and 

landscape ecology of human microbiomes (Ma 2015, 2021, Ma & Taylor 2020). Compared with 

other power laws, TPL has two somewhat unique characteristics. The first is that its scaling 

parameter (exponent) measures the population (community) spatial heterogeneity or temporal 

stability. This has to do with the fact that the variance to mean ratio (V/M) is a measure of 

dispersion of data points (population abundances or counts), while dispersion, aggregation and 

heterogeneity essentially characterize the same or similar system property (Ma & Taylor 2020, 

Ma 2020b). Indeed, TPL scaling parameter (b) can be used to measure heterogeneity at 

population, community and landscape levels, respectively, depending on the level the TPL model 

was built. The second characteristic of TPL is also related to the variance and mean: the 

relationship can be utilized for designing sampling schemes since the variance (level of variation 

or heterogeneity) determine the sampling efforts (sample sizes) necessary for estimating the 

population (species) abundances reliably (e.g., Taylor 2018, Ma 2020a). We take the advantages 

of TPL in this study to improve the quality of prediction/estimation because variance or standard 

deviation is the foundation for computing confidence interval of estimation.  

 

Species-area relationship (SAR) is another classic power law in ecology, which related the 

number of species (species richness: S) and the area (A) of species habitat, in the form of S=cAz. 

Ma (2018a, 2019) further extended the SAR to general diversity-area relationship (DAR) by 

replacing species number (richness) with the general diversity measured in Hill numbers. Ma 

(2018a, 2018b, 2019) further introduced PLEC (power law with exponential cutoff) model to 

describe DAR and proposed the concept of maximal accrual diversity (MAD). Based on PLEC 

model for DAR, he derived the estimation of MAD. MAD can be considered as proxy of 

potential or dark diversity, which refers to diversity that includes both local diversity and the 

portion of diversity that are absent locally but present regionally (or in regional species pools). In 

other words, potential diversity measures both visible and invisible (dark) diversities, and is of 

obvious significance for biodiversity conservation. Similar to SAR/DAR, there is so-called STR 

(species-time relationship) or DTR (diversity-time relationship) (Ma 2019). The PLEC version of 
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DTR was successfully applied to predict the inflection points (tipping points) of COVID-19 

infections (Ma 2020c).  

 

PLEC, as a variant of power law, has more general applications beyond the above-mentioned 

SAR/DAR/STR/DTR/COVID-19 predictions (Ma 2018a, 2018b, 2019, 2020c). PL behaves 

(grows or declines) exponentially, especially at late stages, and the PLEC possesses an 

exponential-cutoff parameter that ultimately taper off the unlimited growth or decline ultimately. 

Therefore, PLEC model is of important practical significance when prediction or estimation is 

needed. However, existing PLEC modeling can only provide point estimation, not the interval of 

estimation.  

 

The present article is aimed to integrate the TPL with PLEC model with the objective to improve 

the predictive power of PLEC model. Specifically, by harnessing the capacity of TPL in 

estimating the variance (standard deviation), we develop an approach to offering confidence 

intervals for the estimation of PLEC quantities (see Fig 1). We demonstrate our method with the 

estimations of potential gut microbiome diversity and COVID-19 fatalities.  

 

Material and Methods 

Taylor’s power law (TPL)  

TPL is one form of power laws, and it establishes the relationship between the variance and 

mean of a random variable Y (e.g., population counts or abundances of biological populations) as 

a power function: 

    

€ 

Var(Y ) =V = aMb      (1) 

where V & M are the variance and mean of random variable Y; a & b are the parameters that can 

be estimated by fitting TPL to a series of spatial or temporal samples of populations. TPL can be 

fitted by a simple log-transformation, which generates: 

    

€ 

ln(V ) = ln(a) + bln(M)     (2)  

Ma (2015) extended TPL to community level by specifying Y as species abundance, M as the 

mean species abundance (size) per species in a community, and V is the corresponding variance. 

By regressing V-M across a series of communities (samples), one obtains type-I TPLE (TPL 

extension) for community spatial heterogeneity and type-II TPLE for community temporal 

stability. Similarly, there were type-III for mixed-species spatial heterogeneity and type-IV for 

mixed species temporal stability. The four TPLEs have the exactly same mathematical form as 

the original TPL (1)-(2), but the variables and parameters are defined and interpreted differently. 
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Taylor (2019) conjectured that TPL only applied to integers such as population counts 

(abundances), and it works poorly for ratios and very poorly for bounded ratios.  

 

In this study, we take the advantages of TPL/TPLEs to estimate variance (V) corresponding to 

mean (M).  The variance or its squared root (standard deviation) provides necessary quantities 

for estimating confidence intervals of PL or PLEC models.   

 

Power law with exponential cutoff (PLEC) model 

PLEC is a variant of power law (PL) model, and it was initially used to extend another classic 

power law in ecology, i.e., the species-area relationship (SAR) (Watson 1835, Preston 1960).  

The PL model for SAR (species-area relationship) is: 

    

€ 

S = cAz       (3) 

where S is the number of species and A is the area of habitat occupied by S species.   

Ma (2018a) extended SAR to general DAR (diversity-area relationship) by replacing the species richness 

(number of species) with general diversity (in Hill numbers). 

    

€ 

qD = cAz      (4) 

where qD is diversity measured in the q-th order Hill numbers, A is area, and c & z are 

parameters.   

The PLEC model for DAR is: 

    

€ 

qD = cAz exp(dA),     (5) 

where d is a third parameter (taper-off parameter) and should be negative in DAR scaling 

models, and exp(dA) is the exponential decay term that eventually overwhelms the power law 

behavior at very large value of A. The PLEC was originally introduced to SAR modeling by 

Plotkin et al. (2000) and Ulrich & Buszko (2003) (also see Tjørve 2009), and Ma (2018a) 

extended it to DAR.   

       

Ma (2018a) further derived the asymptote of PLEC model, and termed it as the maximal accrual 

diversity or potential diversity.  

€ 

Amax = − z d       (5) 
qD may have a maximum in the following form: 

€ 

Max(qD) = c(− z
d
)z exp(−z) = cAmax

z exp(−z)  (6) 

There are similar species-time relationship (STR) and corresponding diversity-time relationship 

(DTR) (Preston 1960, Ma 2018b). STR/DTR has the exactly same PL/PLEC models as 
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SAR/DAR described previously, but the data used to fit the models are different and so do the 

model parameters (Ma 2018b). 

 

Ma (2020c) adapted STR/DTR model to predict the inflection points of COVID-19, in which 

maximal accrual or potential diversity is equivalent to maximal infection numbers. In STR/DTR 

modeling, a convention is to use parameter w in place of the z of SAR/DAR as diversity-time 

scaling parameter.   

 

In the present study, we use the PLEC-DAR model to demonstrate the prediction of gut 

microbiome diversity, and PLEC-DTR model to demonstrate the prediction of COVID-19 

fatalities, both augmented by TPL model to get their confident intervals, as outline below: 

 

Coupling TPL and PLEC models for predicting the interval of COVID-19 fatalities  

Step (i) Use PLEC model (eqn. 5), adapted for fitting the FTR (fatality-time relationship) 

datasets as follows, i.e., 

     

€ 

F = cTw exp(dT),     (7) 

where T is the time in day, and F is the fatality, c, w and d are PLEC-FTR parameters. The taper-

off effects of parameter d is usually rather weak before the fatality numbers reach peak, it is 

reasonable to treat z as an approximation to the fatality growth rate, and c as an approximation to 

the initial fatality number. To fit PLEC-FTR model (eqn. 7), we adopted a nonlinear 

optimization algorithm implemented as an R function “nlsLM” in R package “minpack.lm” 

(https://www.rdocumentation.org/packages/minpack.lm/versions/1.2-1/topics/nlsLM). Since Tmax>0 is a 

necessary condition for the PLEC model to be biomedically sound, a constraint d<0 was imposed 

for the non-linear fitting of the PLEC-FTR model.    

Step (ii) Compute maximal accrual fatality number (MAF) using eqn. (5) & (6), adapted as: 

€ 

Fmax = c(− w
d
)w exp(−w) = cTmax

w exp(−w)  (8) 

  

€ 

Tmax = −w d    (w>0, d<0)   (9) 

Step (iii) Use TPL model (eqn. 1) for fitting the spatiotemporal aggregation (heterogeneity) of 

fatality numbers, i.e., adapting the original TPL (eqn. 1) as the following TPL for fatality 

aggregation:   

    

€ 

V = aF b       (10)  

where 

€ 

F  is the mean fatality number of COVID-19 and V is the corresponding variance; a & b 

are the parameters. Parameters a & b are estimated by fitting eqn. (10) to spatiotemporal data of 
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COVID-19 fatality, using the same scheme/procedures as used for fitting TPL to COVID-19 

infection numbers (Ma 2020).   

Step (iv) Compute the variance (V) and standard deviation (

€ 

V ) based on eqn. (10) for fatality 

(F) (eqn. 7) or maximal accrual fatality (Fmax) (eqn. 8).  

Step (v) Compute the lower and upper limits of 95% confidence interval of COVID-19 fatality 

with the following pair of equations: 

    

€ 

lower = F −1.96 × V /n                                        (11a) 

    

€ 

lower = Fmax −1.96 × Vmax /n                                    (11b) 

                                                

€ 

upper = F +1.96 × V /n                                            (12a) 

    

€ 

upper = Fmax +1.96 × Vmax /n                                    (12b) 

where n is the number of time points that correspond to F or Fmax in (eqn. 10). 

 

With eqns.(11a) and (12a), one can obtain the confidence interval of COVID-19 fatalities at any 

time (day) points; alternatively, with eqns.(11b) and (12b), one can obtain the confidence interval 

of maximal accrual of COVID-19 fatality.  

 

When Fmax cannot be predicted (too early to predict), the PL (power law) model for FTR can be 

used to complete the above procedures for estimating the intervals of F, i.e., by setting d=0, there 

is PL model for 

€ 

F = cTw exp(dT) = cTw . 

 
Coupling TPL and PLEC models for predicting the gut microbiome diversity  

Similar to the previous integration of TPL and PLEC for estimating the confidence intervals of 

COVID-19 fatalities, here we specify the procedures for predicting the confidence intervals of 

gut microbiome diversity.  

Step (i) Use PLEC model (eqn. 5) for fitting the DAR (diversity-area relationship) datasets, i.e., 

     

€ 

qD = cAz exp(dA),     (13) 

where A is the number of individuals, and qD is the diversity in Hill numbers, c, z and d are 

PLEC-DAR parameters. To fit the PLEC-DAR model, we use the same non-linear optimization 

procedures as described previously.     

Step (ii) Compute maximal accrual diversity number (MAD) using eqn. (5) & (6). 

Step (iii) Use TPL model (eqn. 1) for fitting the mean diversity and variance relationship:   

    

€ 

V = aD b       (14)  
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where

€ 

D  is the mean diversity (Hill numbers) of COVID-19 and V is the corresponding variance; 

a & b are the parameters. Parameters a & b are estimated by fitting eqn. (10) to spatiotemporal 

data of Hill numbers, using the same scheme/procedures as described above for COVID-19 

fatality.  

Step (iv) Compute the variance (V) and standard deviation (

€ 

V ) based on eqn. (10) for diversity 

(D) (eqn. 5) or maximal accrual diversity (Dmax) (eqn. 6).  

Step (v) Compute the lower and upper limits of 95% confidence interval of diversity with the 

following pair of equations: 

    

€ 

lower = D −1.96 × V /n                                        (15a) 

    

€ 

lower = Dmax −1.96 × Vmax /n                                    (15b) 

                                                

€ 

upper = D+1.96 × V /n                                            (16a) 

    

€ 

upper = Dmax +1.96 × Vmax /n                                    (16b) 

where n is the number of samples corresponding to D or Dmax (eqn. 14). With eqns.(15a) and 

(16a), one can obtain the confidence interval of diversity at any diversity accrual points; 

alternatively, with eqns.(16a) and (16b), one can obtain the confidence interval of maximal 

accrual of diversity in Hill numbers.  

 

When Dmax cannot be predicted (too early to predict), the PL model for DAR can be used to 

complete the above procedures for estimating the intervals of D, i.e., by setting d=0, there is PL 

model for 

€ 

D = cTz exp(dA) = cAz . 

 
Fig 1. A diagram illustrating the coupling of TPL and PLEC models: for predicting COVID-19 
fatality (A: the left block) and gut microbiome diversity (B: the right block)   
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Results 
 
Coupling TPL and PLEC-FTR for predicting the intervals of COVID-19 fatalities  

The worldwide COVID-19 fatality numbers are available from the following website 

(https://github.com/CSSEGISandData/COVID-19) managed by John Hopkins University. Since 

the objective of this study is to demonstrate the feasibility of the coupling power law approach, 

we only extracted continent level data for demonstrative purpose. For the country-level 

predictions, which are too extensive to cover in this article, we have another separate report.    

 

Fig 1A illustrated the procedures to predict COVID-19 fatality and Table 1 listed the predictions 

for six continents and the whole world. The PLEC modeling succeeded in all continents and the 

world, except for the Asia. The failure in Asia should be that the new wave of outbreak in India 

is still too early to foresee the fatality turning point, as discussed in Ma (2020) for the similar 

prediction of COVID-19 infections.  

 

In Table 1, the first five columns are self-evident given they are simply the PLEC-FTR 

parameters. The next three columns are the predictions by the PLEC model, the maximal accrual 

fatality (number) (Fmax) and the days (Tmax) (Julian days or Calendar date) at which Fmax occurs. 

The next column is the actual fatality numbers at May 21st, which happened to be the date we 

had completed the modeling work of this study, and which was listed to allow for a quick and 

rough reality-check.  The next column is the “completion level”—the percentage of past fatality 

over maximal accrual fatality (Fmax). The last two columns are the novel contribution of this 

study, i.e., the lower and upper limits of predicted fatality numbers, which are not possible 

without the coupling of both the power laws (TPL and PLEC-FTR models).  

 

Table 2 listed the fatality prediction for the Asia based on the PL-FTR model, for which the 

PLEC model failed. The predictions of PL model should be treated with caution, and are only of 

rough reference value. As explained previously, when the PLEC-FTR modeling efforts fails, it is 

usually that the outbreak is still in early stage and there is not yet sufficiently long time-series 

datasets to allow for the fitting of PLEC model. Although PL-FTR model can be fitted in these 

cases, the predictions from the PL model are not sufficiently reliable.  

 

Similar to the predictions of COVID-19 infections, there are some standard pre-processing 

procedures to take before fitting the PLEC-FTR to the fatality-time (day) datasets. For example, 

proper selection of starting point by truncating early data points (possibly including whole 
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previous pandemic waves) could be necessary for successful model fitting. In fact, the fitting 

results presented in Table 1 were obtained by setting the starting date for modeling on March 

21st, 2021 (until May 21st 2021). As discussed in detail in Ma (2020), the selection of starting 

points does not influence the correctness of prediction since the infection (or death) numbers 

before truncation points are accumulated and treated as the new starting infection (fatality) 

numbers for model-building.  

 
Fig 2 displays the fitting of TPL model to the COVID-19 fatality datasets, and the TPL 

parameters are used to compute the confidence intervals for the fatality number prediction from 

PLEC-FTR model. Fig 3 displays the predicted COVID-19 fatalities based on the results listed in 

Table 1.  

 
 
Table 1. The PLEC-FTR model (Power Law with Exponential Cutoff for Fatality-Time Relationship) 
model fitted with nonlinear optimization for daily cumulative counts of COVID-19 fatality, augmented 
with TPL to obtain the 95% confidence intervals  

Continent z d c R2 Tmax 
Tmax 

 (Date) 
Fmax 

Observed 
(May 21) 

Completion 
Level 
(%) 

Lower 
Limit  
(95%) 

Upper 
Limit  
(95%) 

Africa 1.150 -0.002 180.452 1.000 501 3-Aug-2022 182,643 127,983 70.1 169,865 195,420 

Asia 1.876 0.000 97.019 0.999 NA NA NA 636,068 NA NA NA 

Europe 1.301 -0.012 1734.846 1.000 113 11-Jul-2021 1,100,080 1,060,982 96.5 929,517 1,270,643 

North 
America 1.185 -0.009 983.515 0.999 129 28-Jul-2021 875,359 854,545 97.6 749,159 1,001,560 

South 
America 1.323 -0.007 1504.372 1.000 193 29-Sep-2021 952,175 762,185 80.0 839,676 1,064,675 

Oceania 1.413 -0.007 0.514 0.989 197 1-Oct-2021 1,191 1,095 92.0 1,075 1,306 

World# 1.248 -0.003 4957.140 1.000 485 19-Jul-2022 5,917,523 3,442,873 58.2 5,452,899 6,382,148 

*Using fatality-time (date) data from March 21st to May 21st 2021.  
  
 
 
Table 2. The PL-FTR model (Power Law for Fatality-Time Time Relationship) fitted for the daily 
cumulative counts of COVID-19 fatality, augmented with TPL to obtain the 95% confidence intervals 

Continent/ 
World z ln(c) R P-value Observed 

(May 21) 

Predicted 
(May 21)  

Predicted 
(June 21) 

Predicted 
(July 21) 

Predicted 
(Aug 21) Start date 

Asia 2.072 0.498 0.994 0.000 636,068 
606,878 
[562,269 
651,487] 

687,070 
[637,883 
736,257] 

772,420 
[718,484 
826,356] 

862,949 
[804,096 
921,802] 

10-Feb-2020 
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 Fig 2. TPL (Taylor’s power law) model fitted to the cumulative counts of COVID-19 fatalities: 
 the variance corresponding to the fatality (F) is used to compute the standard error and width of 
 confidence interval  
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Fig 3. Predicted fatality number (solid curve), lower and upper bounds (dashed lines), and observed 
fatality number (solid cycles) for five continents and the world: Africa, Europe, North America, South 
America, Oceania, and World.  
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Coupling TPL and PLEC-DAR for predicting the intervals of gut microbiome diversity   

Fig 1B showed the procedures for integrating the TPL and PLEC-DAR power law models for 

estimating the confidence intervals of biodiversity. Table 3 exhibited the results from 

implementing the coupled TPL and PLEC-DAR modeling analysis. The first five columns in 

Table 3 are simply the parameters of fitted PLEC-DAR model for the AGM (American gut 

microbiome) datasets, and the last four columns are simply the predicted maximal accrual 

diversity (species richness) of the AGM, including the Dmax (maximal accrual species richness), 

as well as the lower and upper limits of Dmax.  Amax is the number of individuals (sample sizes) at 

which the Dmax is reached. Given that the samples of 1473 individuals are used to build the 

PLEC-DAR model, and the Amax implies that 533 (2006-1473) additional individuals are required 

to accumulate the maximal accrual species richness in the AGM cohort or population.  Fig 4 

illustrated the fitting of TPL model, which helps the estimation of the 95%-level confidence 

intervals of Dmax. Fig 5 illustrated the predicted species richness (Dmax) (the solid curve in red 

color) and its confidence interval (dashed lines), and the observed species richness (the solid dots 

in blue color).  

 
Table 3. The PLEC-DAR model (Power Law with Exponential Cutoff for Diversity-Area Relationship) 
fitted with 1000 times of re-sampling of the AGP datasets of 1473 American gut microbiome samples, 
augmented with TPL to obtain the 95% confidence intervals 

Dataset  z d ln(c) R Amax Dmax 
Lower 
Limit 
(95%) 

Upper 
Limit 
(95%) 

AGP Microbiome 
Species Richness  0.386 -0.0002 6.598 0.995 2006 9414 9310 9518 
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Fig 4. TPL (Taylor’s power law) model fitted to the cumulative species richness of AGP data set (The 
100 times of re-sampling were used to fit 100 PL-models, and here is one example; for each time of re-
sampling, there are 1473 pairs of variance/mean of species richness, computed for each step of DAR 
accumulation).   
 

 
Fig 5. Predicted species richness (solid curve) of AGM (American gut microbiome) including lower and 
upper bounds (dashed lines) and observed species richness (solid cycles) 
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Conclusions and Discussion  
The following findings can be summarized from previous sections:  

(i) Coupling of TPL (Taylor’s power law) and PLEC (power-law with exponential cutoff) 

models, the two power laws from classic ecological theories with applications beyond their 

original domain of ecology and biology, offers a feasible solution for some important prediction 

problems. We demonstrate the approach with two examples.  

(ii) For the COVID-19 prediction problem, the PLEC-FTR (fatality-time relationship) is able to 

predict the turning (inflection) points of fatality in the form of (Fmax, Tmax), i.e., the maximal 

accrual fatality number and corresponding date at which Fmax is reached. In a previous study, we 

have demonstrated that the PLEC model successfully predicted the turning points of COVID-19 

infections (Ma 2020). Both fatality and infection prediction problems are essentially the same, 

and therefore, prediction of fatality is undoubtedly feasible. An issue with our previous infection 

prediction is the lack of confidence interval. Thanks to the coupling with TPL model, the PLEC-

FTR is able to deliver the confidence interval for Fmax by leveraging the capability of TPL in 

predicting variance (standard deviation) at different fatality level. This is because the TPL in the 

case of fatality prediction can be harnessed to establish the power-function relationship between 

mean fatality number and corresponding variance. With the variance (standard deviation), 

estimation of confidence intervals is then a trivial statistical exercise. Obviously, the coupling 

approach is equally applicable to the prediction of COVID-19 infections, although it was not 

proposed (Ma 2020).  This example also suggests that the TPL-PLEC coupling approach may be 

applied to other similar predictive problems in epidemiology and public health.  

(iii) For the biodiversity prediction of American gut microbiomes, the coupling of TPL and 

PLEC-DAR models are able to predict the maximal accrual species richness (Dmax) of American 

gut microbiomes, which can be considered as potential or ‘dark’ species richness of gut 

microbiomes in the American cohort (population). The potential or dark biodiversity refers to the 

total diversity that includes the portion that may be absent locally but is present in regional 

species pool (and therefore is able to colonize local communities through dispersal/migration) 

(Ma 2019). In the case of human gut microbiome, the potential diversity can be considered as a 

cohort or population level characteristic of gut microbiome. In the case of this study, it can 

represent the potential species richness of the American population, given the datasets were 

obtained from sampling 1473 Americans, a sufficiently large sample size.  

 

In perspective, we expect that the power-law coupling approach possesses great promises for a 

wide range of important problems whenever both TPL and PLEC models can be successfully 



 18 

applied. The precondition that both power law models must be reliably built also reminds us that 

the approach cannot be a silver-bullet solution. For example, in the case of PLEC-DAR modeling 

for the gut microbiome diversity, we only presented the results for species richness (i.e., the Hill 

numbers when diversity order q=0). The reason was that TPL failed to fit the mean and variance 

of the Hill numbers at other diversity orders. This made it infeasible to estimate the confidence 

intervals for other diversity orders. TPL has been found applicable in many natural and man-

made systems; however, there are situations it may fail. Taylor (2019) conjectured that TPL 

might work poorly for ratios and very poorly for bounded ratios. The Hill number at diversity 

q=0 (i.e., species richness) is integer, but at other diversity orders such as q=1, 2, or 3, the Hill 

numbers are indeed bounded ratios. Taylor (2019) conjecture may explain the limitation of TPL 

in fitting the mean-variance relationship in biodiversity measurements.  

 

Finally, the universality property of power laws hints great promises for our coupling approach, 

although there have been occasional debates on proving universally in practical data fitted to 

power laws (e.g., Stumpf  & Porter 2012). The universality refers to the equivalence of power 

laws with a particular scaling parameter (exponent), such as b in TPL, z in SAR (DAR), or w in 

STR (DTR), which are termed critical exponents.  Critical exponents are termed so because the 

power law distributions of certain quantities are associated with phase transitions in dynamic 

systems as they approach to criticality. The hallmark of universality is therefore the sharing of 

dynamics, and the systems with precisely the same critical exponents are said to belong to the 

same universality class. In the field of TPL, the transitions between aggregated (heterogeneous), 

random (Poisson), and uniform distribution of biological population or species abundance 

distribution can be characterized by the population aggregation critical density (PACD) (Ma 

1991) or community heterogeneity critical diversity (CHCD) (Ma 2005), which could be 

generated by self-organizations in the ecosystems (e.g., population or community). Different 

from physics, the processes such as self-organization in biology and ecology are difficult to 

prove vigorously. Nevertheless, there are indeed observations of the equivalence of TPL scaling 

exponents, such as the apparent invariance (constancy) of TPL scaling parameter (b) of global 

hot spring microbiomes across wide ranges of pH-values and temperatures (Li & Ma 2018). If 

these observations are found general in ecosystems, then the predictions based on our coupling 

approach of power laws can be not only feasible but also reliable. Unlike the events that are 

governed by the normal (Gaussian) distribution, the events governed by the highly skewed power 

law distribution are particularly challenging to predict. In particular, some power-law governed 

events are often lack of well-defined average value, but with potentially unbounded variance, 
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tend to be black-swan and/or catastrophic; this also makes our proposed coupling method 

particularly valuable potentially.   
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