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Abstract 
The main objective of this work is to utilize state-of-the-art deep learning approaches for the 
identification of pulmonary embolism in CTPA-Scans for COVID-19 patients, provide an initial 
assessment of their performance and, ultimately, provide a fast-track prototype solution (system). 
We adopted and assessed some of the most popular convolutional neural network architectures 
through transfer learning approaches, to strive to combine good model accuracy with fast training. 
Additionally, we exploited one of the most popular one-stage object detection models for the 
localization (through object detection) of the pulmonary embolism regions-of-interests. The 
models of both approaches are trained on an original CTPA-Scan dataset, where we annotated of 
673 CTPA-Scan images with 1,465 bounding boxes in total, highlighting pulmonary embolism 
regions-of-interests. We provide a brief assessment of some state-of-the-art image classification 
models by achieving validation accuracies of 91% in pulmonary embolism classification. 
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Additionally, we achieved a precision of about 68% on average in the object detection model for 
the pulmonary embolism localization under 50% IoU threshold. For both approaches, we provide 
the entire training pipelines for future studies (step by step processes through source code). In this 
study, we present some of the most accurate and fast deep learning models for pulmonary 
embolism identification in CTPA-Scans images, through classification and localization (object 
detection) approaches for patients infected by COVID-19. We provide a fast-track solution 
(system) for the research community of the area, which combines both classification and object 
detection models for improving the precision of identifying pulmonary embolisms. 

Keywords: Pulmonary Embolism, COVID-19, Deep Learning, CTPA-Scans, Image 
classification, Object Detection,  

1. Introduction 
The thromboembolic disease occurs as a common complication in patients with severe COVID-
19 disease leading to increased morbidity and mortality [1, 2]. Many meta-analyses have reported 
a Pulmonary Embolism (PE) rate of 16.5% in patients with severe COVID-19 infection, reaching 
24.7% in more critically ill patients hospitalized in the ICU [3, 4]. Other studies report a higher 
rate of up to 37.1% [5]. In addition, patients with COVID-19 disease have a higher incidence of in 
situ thrombosis or microvascular thrombosis [6, 7], which is why they are mainly found in 
peripheral vessels (subsegmental branches). The clinical diagnosis of PE is extremely difficult 
because there are neither specific clinical signs/symptoms nor pathognomonic laboratory tests, 
therefore the combination of Computed Tomography Pulmonary Angiography (CTPA) with 
experts' (e.g. Radiologists) inspection of the area remains the gold standard for diagnosis [8]. 
CTPA-Scans consists of hundreds of images, where each image represents one slice of the lung, 
and the identification of PE with high clinical accuracy is time-consuming and complicated, 
mainly due to a high number of false-positive results [9]. Studies have shown that there may be a 
discrepancy of up to 13% in the CTPA assessment of PE between experienced and less experienced 
radiologists in chest imaging [10, 11]. Additionally, there is a lot of pressure on hospitals to provide 
24/7 services for fast CTPA examinations and timely and accurate notification of results to the 
referring doctor [12, 13]. 

The applications of Deep Learning (DL) are promising in medical imaging on plain chest X-rays, 
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) [14] in various published 
studies [15], including COVID-19 diagnosis [16]. DL to automatically highlight PE in CTPA 
remains a major challenge compared to other radiological applications and presents many 
difficulties for various reasons [17]. The use of automated DL approaches to diagnose PE on CTPA 
could have excellent clinical application mainly because the definitive diagnosis of PE is made 
only by CT imaging and no further testing is required [18, 19]. The challenge is even greater in 
patients with COVID-19 infection due to the coexistence of multiple lung lesions that produce 
false-positive results. 
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Figure 1 depicts three different samples of CTPA-Scan images (from COVID-19 patients), by 
highlighting with red arrows the presence of important Regions-of-Interest (RoI) with PE. It is 
clearly a very challenging task for Computer Vision (CV) and Machine Learning (ML) scientists, 
because the images are low resolution, low quality and present high complexity information risen 
from a single channel (grayscale). 

 
Figure 1. CTPA-Scan image sample from patients infected by COVID-19: a) without PE, b) with PE, an easy-case 

for experts and c) with PE, a difficult-case for experts. 

By searching the literature under the umbrella terms of DL, CV, CTPA-Scans and PE we present 
some recent state-of-the-art related works, highlighting the importance and challenges of this 
research domain.  

Rucco et al. [20] introduced the Neural Hypernetwork, an integrative approach based on Q-
analysis with ML. The main objective of the approach is to improve PE diagnosis, while reducing 
the number of CTPA-Scans required for confirming the diagnosis. The experimental phase 
involved data from 28 diagnostic features of 1427 people considered to be at risk of PE and reached 
a satisfactory recognition rate of 94%. Huang et al. proposed PENet [18], a scalable deep-learning 
model for automated diagnosis of PE using volumetric CT imaging. The model consists of 77 3D 
convolutional neural layers and is pretrained on the Kinetics-600 dataset and fine-tuned on a 
retrospective CTPA-Scans dataset collected from an academic institution. PENet’s performance 
was evaluated on data provided from two distinct institutions: one as a hold-out dataset from the 
same institution and one collected from another institution to evaluate the model’s generalizability 
to an unrelated population dataset. It achieved an AUROC (Area Under Receiver operating 
characteristic Curve) of 0.84 with a false positive rate standard deviation of 2±0.02 on detecting 
PE on the hold out internal test-set and 0.85 standard deviation of 2±0.03 on external data. Rajan 
et al. [21] propose a two-stage detection pipeline designed exclusively using 2D CNNs, wherein 
the candidate generation state utilizes a novel context-augmented U-Net and the classifier stage 
employs a simple 2D Conv-LSTM model coupled with multiple instance learning. Within the first 
stage, CT volumes are processed to produce a mask that identifies candidate regions that are likely 
to correspond to embolism regions, while in the latter one, those masked regions are utilized to 
perform the actual detection. The approach achieves AUC scores of 0.94 on the validation set and 
0.85 on the test-set, while the proposed approach has produced, even with a substantially smaller 
number of parameters and with no pre-training state-of-the-art detection, positive results on a 
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challenging and large-scale real-world dataset. Tajbakhsh et al. [22] investigated the possibility of 
a unique PE representation, coupled with CNNs, that led to an accuracy increase of PE CAD 
system for PE CT classification.  

Through studying the aforementioned related works and many other publications, it is highlighted 
that there is a lack of systems/algorithms that not only classify an image of a patient with PM, but 
also localize the suspect positions/RoI, under the noise (image quality affect) of COVID-19. This 
issue can be considered as the main motivation of this work with huge scientific and social impact. 
Differentiating from previous related works, the main contributions of our work are: 

• The development of a dataset composed of multiple CTPA-Scan images of COVID-19 
patients for classification experiments 

• The annotation of RoIs in the CTPA-Scan images, with bounding boxes for the 
determination of the locations of the suspect RoI of PE, for Object Detection (OD) 
experiments. 

• A short assessment of some state-of-the-art deep learning classification model, through 
Transfer Learning (TL) approaches, for the determination of the most accurate one in 
classification of CTPA-Scan images presenting PE. 

• The utilization of one of the most fast and accurate OD model for the localization of the 
RoI of PE in CTPA-Scan images. 

• Very accurate DL models for the identification of PE, achieving about 91% classification 
validation accuracy and about 68% Average Precision (AP) for the OD.  

• The development of a fast-track prototype solution (system) for the research community of 
the area, which combines both classification and OD models for more precise identification 
of the PE. 

2. Materials and methods 
In this section, we present and analyze the new images/dataset risen from CTPA-Scans and also 
the two adopted DL approaches (two stages of experiments) for classification and localization of 
the PE in CTPA-Scan images. The source code for the training of DL models is provided through 
a source code management repository1. 

2.1 Dataset description  
Nowadays, there are not many CTPA-Scan datasets presenting PE [9] and almost none of these 
datasets come from COVID-19 patients and neither are annotated with bounding boxes, 

 
1 https://tinyurl.com/pulemb-ctscans-code 
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highlighting the RoIs of PE, for localization/OD studies. For this reason, we created an original 
dataset and annotated the images based on the requirements of state-of-the-art OD models. 

This research was conducted in a public tertiary care hospital in Greece and it has been approved 
by the Institutional Review Board of Sismanogleio General Hospital. All patients’ CTPA images 
used in this research study were anonymized and reviewed by two experienced radiologists (with 
14 years and 23 years respective experience in thoracic imaging) for the presence of PE, from the 
Picture Archiving and Communication System (PACS) of the Radiology Department. All COVID-
19 patients were diagnosed based on RT-PCR testing. The dataset included 19 patients diagnosed 
with COVID-19 with PE presence, 3 non-COVID-19 patients with PE presence, and 10 patients 
with COVID-19 with the absence of PE. For the classification of the PE, we used 673 images on 
each class (PE presence, “Yes” class / absence of PE, “No” class) total 1346 images. The dataset 
for the localization (object detection) training of the PE detection included 573 CTPA-Scan images 
from 22 patients with 1239 bounding boxes ranging from 1 to 8 bounding boxes/image with an 
average of 2.16 bounding boxes/image. Additionally, the test dataset for the localization process 
comprises of 100 CTPA images with 226 bounding boxes ranging from 1 to 7 bounding 
boxes/image and with an average 2.26 bounding boxes/image. In total, the dataset for PE detection 
included 673 images with 1465 bounding boxes with an average of 30.59 images/patient. The 
images from a CTPA-Scan of a patient are selected by expert radiologists, who checked to ensure 
that between images of the same patient there was an estimated difference of at least about 20% in 
visible morphology of the PE. 

At this point, it should be highlighted that the creation of such dataset is a very difficult and time-
consuming process and especially during the COVID-19 pandemic, where all medical experts who 
work in hospitals are under incredible pressure. 

2.2 Image-based identification of pulmonary embolism  
The scope of this experiment is to identify images from a CTPA-Scan of a patient with the 
existence of PE, through a classification approach. To get a more accurate model, with faster 
training, we adopted TL methods through fine-tuning approaches [23]. Within the fine-tuning 
process, a pre-trained model is used without its top layers, which are replaced by new ones, more 
appropriate for the new task, and the model is re-trained on the new dataset. In Figure 2 we present 
the underlying architecture, which has produced state-of-the-art results in various other domains 
[24, 25, 26]. The red-colored block represents the input layer of the model (batch-size, image-
width, image-height, image-channels). The dashed red block represents the image augmentation 
layers which are considered an essential part of the input layer. The blue-colored block depicts the 
pre-trained stack of layers of the popular architectures (pre-trained on ImageNet [27]), which are 
mainly responsible for the feature extraction. The green-colored block depicts the top layers that 
are selected according to the new task and the two small yellow blocks represent the output of the 
model. 
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Figure 2. Adopted transfer learning architecture for the classification experiments. 

In this context, our experimental methodology relies on a fine-tuning approach exploiting widely 
used DL models, which were pre-trained on the ImageNet dataset [28]. Within our first-stage 
experiment we investigated the performance of the following models/architectures: VGG16 [29], 
DenseNet121 [30], MobileNetV2 [31], ResNet50 [32], InceptionV3 [33], NasNet [34], 
InceptionResNet [35], as well as the EfficientNet [36].  

At this point, it should be highlighted that we use the same hyperparameter configuration for all 
models, in order to more fairly assess their effectiveness in CTPA-Scan images. Specifically, we 
have used a 224𝑥224𝑥1 tensor for each image as input size for training and evaluation of the 
model. For training, we have chosen Adam as the optimization algorithm [37] with a learning rate 
of 0.0001. For the top-layers, we used a dense layer with 512 neurons followed by the output layer 
that holds two outputs. The output layer presents probabilities for two classes, a) “Yes” the image 
presents PE with ŷ!(%) accuracy and b) “No” the image does not present PE with ŷ"(%) accuracy. 
We approached the problem as a multiclass classification problem in order to not restrict the 
prediction of the model to a binary True-False state and to provide more flexibility to the medical 
experts to reach their decision based on the probability of each output (class). For this reason, we 
use the SoftMax activation function for the output layer. Moreover, we added a Dropout layer [38] 
(with a 0.4 ratio) and L2 Regularization [39] (with 0.005) to reduce overfitting of the models and 
to keep the training progress smooth. Due to the challenging nature of the data (grayscale low-
resolution images with high complexity information in their gray shades), a small number of 
augmentation techniques was exploited, such as: rotation by 10o in random orientation, width and 
height shift by 5%, zoom by 30%, horizontal flipping and shearing by 20%. 

2.3 Localization of pulmonary embolism CTPA-Scan images 

Localization and OD are some of the most important core applied research tasks in CV and ML 
science, which focus, not only in the classification of an image to a specific class, but also in the 
spatial localization of the various entities depicted in the image. Simply put, localization is the 
approach of finding the position of the classified object in an image and highlighting it with a 
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bounding box, while OD is the process of the detecting and localizing multiple objects (from the 
same or from multiple different classes) in an image and providing a confidence accuracy for each 
one. Nowadays, there are many different object detection models which can be categorized into 
two categories [40]: 

• Two-stage detectors: in the first stage, the model proposes important features and in the 
second stage the model classifies and localizes all important features one by one. The most 
representative models are R-CNN [41] and its variations/improvements [42, 43].  

• One-stage detectors: these propose predicted bounding boxes (objects localization) and 
their confidence accuracy for each object, directly, without the regional proposal step. The 
most representative models are YOLO [44] and SSD [45]. 

Recently, two-stage detectors were considered to provide high localization and object recognition 
accuracy, whereas the one-stage detectors achieved high inference speed [40]. In 2020 an 
improvement of the YOLO was proposed, the YoloV4 [46] and its variations [47], which are 
considered to be the fastest and most accurate object detector on the MS COCO dataset2 [48]. In 
addition, they provide variation of the anchor boxes for better detection of small objects, which is 
very important for the detection of the PE in CTPA-Scan images. 

During the training of the model, we exploited some default parameters of the configuration and 
setup of the YOLOv4. We trained the model with 10,000 iterations, a 0.001 learning rate, a 0.949 
momentum and an image size of 416 × 416 × 1 (grayscale). It should be highlighted that we 
adopted pretrained weights of YOLOv4 to increase the accuracy and the training speed. After 
many fine-tuning tests, the aforementioned setup produced the best model at a 50% Intersection 
over Union (IoU)3. 

3. Results  
This section presents the main outcomes of the two aforementioned experimental stages, which 
are based on DL approaches. In the first stage, classification of CTPA-Scans images, into two 
different classes, one for images presenting PE and one for not presenting PE. The validation 
accuracy curves of each model are depicted in Figure 3, where the predominance of the MobileNet 
model is clear with the smoothest curve and the highest accuracy, of about 0.91. 

 
2 One of the most popular benchmark datasets in object detection tasks. https://cocodataset.org/ 
3 Intersection over Union (IoU) is a metric used in CV science, especially for objects localization in images/videos, 
where it is calculated the prediction precision by dividing the Intersection area per the Union area of the predicted and 
base-line bounding boxes. If the IoU of a predicted object is above X, then the prediction is considered as True Positive. 



 8 

 
Figure 3. The validation accuracy curves of the assessed models/architectures  

Based on the validation accuracy curves (of Figure 3) we ranked all the model in terms of 
decreasing accuracy. By taking into account and averaging the accuracies of the last 20 epochs of 
each model, we present their rankings in Table 1. Due to the high fluctuation in the evolution of 
some curves (e.g. EfficientNet), this approach is considered to produce accurate model ranking. 
Once again, the predominance of MobileNet is highlighted, followed by the InceptionResNet with 
a difference of ~7,28%. Although the VGG16 has been ranked in the fifth position, examining the 
curves in Figure 3 reveals that its evolution is smoother compared to the three models that 
performed better in terms of accuracy (InceptionResNet, InceptionV3 and ResNet50). At this point 
it should be highlighted that the best performing model has the fewest learning parameters. 

Table 1. The ranking table of the adopted state-of-the-art models/architectures. 

Ranking Model Parameters 
(million) 

Validation accuracy 
(%) 

1 MobileNet 3.0 91.63 

2 InceptionResNet 55.2 84.36 

3 InceptionV3 22.9 83.52 

4 ResNet50 24.7 83.45 

5 VGG166 15.0 82.65 

6 DenseNet 7.6 80.80 

7 NasNet 87.0 77.35 

8 EfficientNetB2 9.1 66.29 

9 EfficientNetB3 12.3 61.40 
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In the second experimental stage, localization of the suspect RoI of PE into CTPA-Scan images is 
examined through an OD approach. We achieved an AV of 68% at 50% IoU, with a quite smooth 
evolution and a very low Loss, of about 0.065 at the 8,200th epoch. In that epoch, we kept the best 
model, because the model started overfitting after that point. The training progress of the model is 
depicted in Figure 4, while in Figure 5 we also present the AP, the average IoU of the predictions 
and the F1 scores of the model at various IoU thresholds Figure 5. The F1 scores follow the AP 
scores, with a smooth downhill progress during the increase of the IoU threshold. Also, the AVG 
IoU curve flattening is clear, per various IoU thresholds for percentages less than 50%, 
highlighting the need for further training data with more complex patterns. On the other hand, we 
note an AP score increase of about 9%, in 40% IoU threshold. In many cases this approach could 
be considered as inappropriate (low overlapping of the predicted area over the ground-truth), 
however in this scenario it is very important to highlight any suspect RoI, since the ultimate 
decision will be upon the domain experts (such as Radiologists etc), and the proposed system is 
developed to assist the domain experts towards the achievement of a more accurate PE diagnosis. 
To sum-up, the proposed model uses an IoU threshold of 50% as per the literature [49].  

 
Figure 4. Object detection loss and average precision curves for the localization (object detection) of pulmonary 

embolism. 
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Figure 5. Average precision, F1 score and average IoU of the bounding boxes in different IoU thresholds, in the 

validation of the DO model. 

Figure 6 depicts the results from two different CTPA-Scan image samples, one easy-case for the 
identification of PE (Figure 6a) and one difficult-case (Figure 6b) for radiologist experts. In Figure 
6a, both classification and localization models give very high accuracies. In Figure 6b, the 
localization of the first RoI of the PE (the smallest one, left-side of the image) is localized with 
low accuracy (about 0.52) and could generate some confusion in the final decision. However, the 
existence of PE can be easily confirmed by the combination of the high confidence for the second 
RoI (0.94 confidence) of the suspect PE and the almost perfect classification accuracy. 

 
Figure 6. Localization of RoI of PE and identification of PE: a) an easy-case for experts and b) a difficult-case for 

experts. Figure 6b is the same with Figure 1c. 
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4. Discussion  
The short assessment of the classification models highlights that DL approaches with relatively 
low architecture complexity and low number of learning parameters, such as MobileNet, 
performed very well in CTPA-Scan images, in contrast to very complex architectures, such as the 
NasNetLarge or EfficientNet, which achieved lower accuracy in PE identification. This may be 
due to the fact that this challenge has low number of classes (just two), or due to the nature of the 
images (low resolution/quality and gray scale). Although this outcome may contradict with the 
capabilities of those state-of-the-art architectures, which are designed for large scale datasets 
composed of color images with tens of classes, the adoption of TL methods is considered to be a 
vital approach for fast-track solutions, instead of developing custom models/architectures, which 
is a complex and time-consuming process. By observing the outcomes of the OD model, it is clear 
that the proposed approach provides very good localizations of the PE RoI; this was also confirmed 
by the Radiology team of the Sismanogleio General Hospital. Even with an AP of 68%, which can 
be considered as a very accurate approach, the introduced OD model cannot provide perfect 
overlapping of the predicted area over the ground-truth one. However, as we mentioned earlier, 
our main goal is to provide a strong suggestion to experts of the area towards utilising these 
techniques to assist them in making more thoughtful decisions for more accurate identification of 
PE.  

Both classification and OD models provide quite high accuracy and AP respectively. As far as we 
know (based on the limited existing related literature), this is the first approach of the localization 
of the RoI of PE in CTPA-Scan images through DL and OD technologies, which achieved 68% 
AP at 50% IoU. In contrast to related works, we provide to the research community an easy-to-use 
prototype system (tool)4 with many future perspectives, which combines both classification and 
OD models towards more accurate predictions and localization of PE. In addition to that, the 
system, its training pipelines, the prediction algorithms and the weights of both models (neural 
networks) are publicly available through a source code management repository, to assist 
researchers within this domain. 

One of the important limitations of the training approach is that we used CTPA-Scans from a single 
CT-Scan system (software and hardware) and, as we noticed, the quality of CTPA-Scans may vary 
from system to system. Since, all the included CTPA-Scans had no artifacts or technical 
deficiencies, our models may present low accuracy in CTPA images that are not of similar quality 
or produced under the similar protocol. Moreover, as in some samples the two models may slightly 
disagree over their predictions, the proposed system is aimed at experts of the area (Radiologists 
etc.) who are expected to use it mainly for experimentation and not for production/fielding 
purposes. 

 
4 https://tinyurl.com/pulemb-ctscans 
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In conclusion, we propose a novel prototype tool, which combines DL and CV technologies that 
achieves high classification accuracy and high AP in the localization of PE RoI in CTPA-Scan 
images for COVID-19 patients. Moreover, we provide all the sources (models, code, experimental 
pipelines etc) of this project to actively boost the research of the domain. As a future direction we 
plan to increase the size of the dataset, test other ML approaches and to provide a more flexible 
integrated system (interface) to the research community. 
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