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Abstract

Although traditional models of epidemic spreading focus on the number of infected,
susceptible and recovered individuals, a lot of attention has been devoted to integrate
epidemic models with population genetics. Here we develop an individual-based model
for epidemic spreading on networks in which viruses are explicitly represented by finite
chains of nucleotides that can mutate inside the host. Under the hypothesis of neutral
evolution we compute analytically the average pairwise genetic distance between all
infecting viruses over time. We also derive a mean-field version of this equation that can
be added directly to compartmental models such as SIR or SEIR to estimate the genetic
evolution. We compare our results with the inferred genetic evolution of SARS-CoV-2
at the beginning of the epidemic in China and found good agreement with the
analytical solution of our model. Finally, using genetic distance as a proxy for different
strains, we use numerical simulations to show that the lower the connectivity between
communities, e.g., cities, the higher the probability of reinfection.

Author summary

In this work we describe the genetic evolution of viruses in the course of an epidemic.
The viruses are described by their RNA, modeled as a finite sequence of loci with four
possible entries representing nucleotides. Viruses mutate at a fixed rate and we assume
that genetic variations do not confer differential fitness, meaning that infected
individuals acquire perfect cross immunity against all viral strains. Individuals in the
population are represented by nodes of a network of contacts. We compute the diversity
of viral population, measured by genetic distance between viral sequences, defined as
number of loci bearing different nucleotides. We derive an equation for the evolution of
the average genetic distance that depends only on epidemic variables, such as the
number of infected and recovered individuals, number of nucleotides and mutation rate.
We apply this equation to the beginning of SARS-CoV-2 epidemic in China and show
that it agrees well with the available data. We also show how the genetic variability is
affected when the virus spreads over connected communities, influencing the
probabilities of reinfection.

Introduction

In the late 2019, the world saw the emergence of a new disease, caused by a new type of
coronavirus [1] which can cause severe injures to human respiratory system. [2] Since
then, we witnessed an uninterrupted worldwide effort in the search for efficient
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treatments [2, 3], vaccines [4–6] and better understanding of the epidemic parameters
and its pathways of spread [7–10].

A great number of SARS-CoV-2 genomes has been sequenced in different countries
and regions, allowing scientists to study its genealogy and geographic origins [11].
Different strains have been characterized [12,13], revealing cases of reinfection [14,15].
Understanding the mechanisms of mutation and variability in viruses is of utmost
importance to forecast forthcoming challenges, e.g. the appearance of other infectious
strains or loss of acquired immunity. Mutation rates are usually high in RNA
viruses [16] and are important mechanisms for spillover events [16–18]. Although
mutations can have significant impact on the virus genetic machinery, leading to more
or less infectious strains [19,20], neutral mutations also occur in non-coding RNA
regions or if they result in synonymous changes, that do not alter the corresponding
protein. Counting the number of mutations and tracking their spread in the population
is important for tracing pandemic routes through communities (neighborhoods, cities, or
countries) and giving clues as to how the virus is moving [21].

Mathematical models of epidemic spreading are crucial to project how the disease
will progress and plan intervention strategies, especially in the case of COVID-19 [22–25].
The great majority of epidemic models divide the population into categories, such as
susceptible and infected individuals [26,27]. Details concerning population structure
and how different individuals respond to the infection are ignored, allowing the epidemic
spreading to be described by differential equations that can be readily interpreted and
solved numerically [28]. The SIR model, susceptible-infectious-recovered, is a classic
example of this type of simplification and has set the foundations for the development of
more detailed descriptions [26]. Important extensions include time dependent contact
rates [29] and multiple infectious stages occurring in parallel [30].

One important drawback of the SIR and other related compartmental models is their
inability to describe heterogeneity in individual behavior and response to the infection.
Some of these features can be introduced with the help of network theory, which
provides a framework for modeling explicit population structures [28]. A number of
important results were demonstrated in this context, particularly in connection with the
distribution of number of contacts among individuals [31]. The representation of
individuals as nodes of a network can also be combined with stochastic infection and
recovering processes, which might have important consequences for viral diversity [32].

More recently, efforts have been devoted to integrate models of epidemic spreading
with population genetics through coalescent theory [33]. This allowed the study of
pairwise genetic differences between viral haplotypes, estimation of the viral growth
rate [33,34] and times to most recent common ancestor [35,36]. Genetic diversity has
also been estimated by replacing birth-death models by deterministic epidemic
equations [37] or introducing population structure [38]. Multi-strain models were also
used to describe how epidemics shape pathogen diversity [39], considering different
sources of heterogeneity, such as genotype networks [40] or, as we do here, the structure
of the host’ contact network [32,41].

Here we consider an individual-based model for epidemic spreading where the
population is represented by nodes of a network and viruses are modeled explicitly by a
binary chain representing their RNA. This allows us to combine population structure
using network theory, stochastic dynamics of epidemic spreading and population
genetics into a single framework. One of the advantages of this formulation is that
important epidemic features, such as the structure of social contacts through which
contamination occurs, viral transmission rates, individual incubation and recover
periods, virus’s genome length and mutation rate can be readily included and analysed.

Although many studies have considered imperfect cross-immunity [32, 39–41], in the
present model we consider only neutral mutations, which do not alter the immune escape
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or other viral parameters. This implies that, once the host has developed an immune
response against a viral strain, it will have perfect cross immunity against all strains.
We also assume that all viruses replicating inside the same host are identical, thus they
can be modeled by a single RNA sequence. Viruses of two different hosts, however, can
be different due to the mutations that happen randomly and independently at each
nucleotide. These assumptions are justified if the periods of incubation and sickness are
much shorter than the inverse of the mutation rate and the duration of the epidemic.

We track the spreading of the virus through the population network and compute its
diversity by tracking the genetic distance between pairs of viruses along the epidemic
propagation. Within this framework, it is possible to study the viral dynamics along
different population structures, by changing only the contact network, which is suitable
for computational experiments. As an application, we show that the connectivity among
different communities (represented by modules of a larger network) changes significantly
the viral pairwise distance distribution, suggesting how reinfections could arise if
cross-immunity is lost.

Importantly, we derive a recurrence equation for computing the average genetic
distance among viruses in the population in terms of the number of susceptible and
infected individuals, length of the genome and mutation rate. We also derive a
mean-field approximation for this equation that can be added to the usual SIR or SEIR
models [42] to estimate the viral genetic evolution in homogeneous populations. Finally,
we compare the genetic distance among viruses obtained theoretically from the
recurrence equation to the SARS-CoV-2 genomic data, obtained from Chinese epidemic
data during the period from 12/23/2019 to 03/24/2020.

The present work is a follow-up of a recently proposed SEIR model designed to
study the effects of quarantine regimes [43], from which many parameters are obtained.
The paper is organized as follows: in section The Model, we describe the SEIR model on
networks and how the virus dynamics work. In Analytical Description we show how to
analytically solve this dynamics for the average genetic distance among viruses. Our
solution leads to a discrete equation, which we apply to the SARS-CoV-2 Chinese
epidemic data. Taking the continuous time limit we argue that it can be included as a
fourth equation to the classic SIR model, enabling one to infer genetic neutral evolution
along an epidemic. The mathematical technique we have used can also be implemented
in the case of more compartmentalized models. In Communities and reinfection, we
simulate epidemic spreading along a chain of linearly connected communities and
discuss how the risk of reinfection can be increased when the connectivity among them
is decreased. This indicates that pandemics are more likely to yield early reinfections
than epidemics. We discuss our conclusions in the Section Conclusions.

The Model

We consider a SEIR individual based model where individuals are divided into four
different compartments: Susceptible, individuals that can be infected; Exposed,
individuals that are infected but not infectious; Infected, which can spread the virus by
infecting others; and Recovered, who are recovered from the disease and can no longer
be infected. We model the population as a network where nodes represent individuals
and links indicate connections between them (linked nodes are also termed first
neighbors). Time is discrete and at each step all infected individuals may transmit the
disease to their susceptible first neighbors with probability pI . The infection
probability can be calculated as pI = R0/(τ0D), where τ0 is the average time duration
of symptoms, R0, is the basic reproduction number and D the average network degree.
Each exposed individual remains in this condition for a time τ distributed according to
P(τ) (see Appendix), after which it becomes infected. Every infected can recover with a
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probability pR = 1/τ0 per time step [43].
Infected and exposed individuals carry a strain of the virus, represented by a binary

chain of size 2B, where B is the number of nucleotides. Each pair of bits, b2i−1 and b2i
in the chain (i = 1, . . . , B) represents a nucleotide, given, for instance, by 00=A, 01=U,
10=C and 11=G. As long as the virus remains hosted in the individual, it can mutate
with probability of substitution µ per nucleotide at every iteration. When the virus is
passed from one host to another, it is entirely copied to the new host. When the
individual recovers, its virus’ RNA stops mutating and its final configuration is saved
for further analysis. We call this “a final virus”. Fig.1 illustrates this dynamics.

Transmission:

Cloned

Recovery:

Mutation:

Recovers

Becomes a final virus

Does not Recover

Does not Recover

Can mutate

Can mutate

a)

b)

c)

Fig 1. Model dynamics. (a) infected individuals (red) can transmit the virus to
their susceptible first neighbors (green). When transmission is successful the virus is
cloned to the new host, which is now an exposed individual (yellow) and will be able to
mutate only in the next iteration. (b) infected individuals can recover with probability
pR. When an individual recovers (blue), its virus stops mutating and becomes a “final
virus.” (c) viruses on infected (red) or exposed (yellow) individuals can mutate.

To compare the different viruses that appear during the simulation we use the
Hamming Distance dαβ , which counts the number of different nucleotides between two
viruses α and β [44, 45]. In our model the Hamming distance is given by

dαβ = B −
B∑

i=1

(
|bα2i−1 − bβ2i−1| − 1

)(
|bα2i − bβ2i| − 1

)
(1)

where bγj ∈ {0, 1} is bit j of the virus γ.
We consider a neutral model for the virus evolution and do not include mechanisms

of selection. The mutation probability is the same for all nucleotides, independent of its
location in the genome or the nitrogenous base the nucleotide changes from or to.
Additionally, once an individual recovers from infection by a strain it acquires perfect
cross immunity against all strains.

We start the simulation with a single infected individual with genome bγj = 1 for all
j. All simulation parameters, can be found in S1 Appendix, and are scaled so that the
time unit is one day.
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Analytical Description

The analysis presented here to calculate the average genetic distance between all viruses,
living and final, is suitable for compartmental models in general [42]. Although we
develop it to the SEIR model, it can be applied to other models of this type. From now
on we shall abbreviate average genetic distance by average distance for simplicity.

Single initial infection

Here we assume that the epidemic starts with a single infected individual. Our goal is
to compute the average distance dt+1 at time t+ 1 given the average distance dt at time
t. Notice that at the beginning of iteration t+ 1, there are different kinds of viruses:
those that are already final and have ceased to evolve (whose number is Rt); viruses
hosted in exposed individuals (Et), thus still evolving; and also those hosted in infected
individuals (It). During the iteration, new infections appear (xt) and some infected
individuals recover (rt), and thus do not evolve at this time step. Then, given dt, we
calculate the new average distance between each kind of virus which exists at the end of
iteration t+ 1, as well as the new average distance within each kind of virus.

Given that µ� 1, we consider that the probability that two mutations happen in
the same nucleotide in the course of the epidemic is negligible. This is a good
approximation if the epidemic duration T remains sufficiently small, µT � 1. We also
consider that each new infection in the same iteration comes from different hosts, which
is valid for R0/τ0 < 1, with τ0 the average duration of symptoms. This means that we
do not expect more than one new infection per infected individual in a single iteration.
Highly connected nodes, however, can break this assumption, giving rise to
super-spreaders. Network heterogeneity, therefore, can show deviations from our
estimation. Under these assumptions, the new average distance (at the end of iteration
t+ 1) among the Et is dt + 2Bµ, once they distanced dt at the begging of iteration t+ 1
and evolved along the iteration, each virus getting Bµ mutations. The new average
distance between the Et and the Rt is dt +Bµ, since only the Et evolved. We emphasize
that the approximations used in this section are only for simplification of the analytical
equations; the simulations in Section Results and Discussion run as previously described.

Once all average pairwise distances have been calculated, dt+1 is given by a weighted
average, where the weigths are the number of pairs sharing that distance. For instance,
the number of pairs between exposed and recovered individuals is EtRt, while the
number of pairs within exposed individuals is Et(Et − 1)/2.

All distances are calculated in S1 Appendix, and we find the recurrence equation

dt+1 =
1

Zt
(dt(Rt + Et + It)(Rt + Et + It − 1)

+xtdt

(
1 + 2Bµ

Rt
It + Et +Rt

)
(xt − 3 + 2Rt + 2It + 2Et)

+ 2Bµ(Et + It − rt)(Et + It +Rt + xt − 1)) (2)

where Zt = (Rt + Et + It + xt)(Rt + Et + It + xt − 1), rt = Rt+1 −Rt and
xt = (Et+1 − Et) + (It+1 − It) + (Rt+1 −Rt) .

Therefore, given the epidemic curves St, Et, It and Rt, respectively the Susceptible,
Exposed, Infected and Recovered at time t, we can infer the evolution of average genetic
distances. Taking the limit of continuous time between events we find the
approximation,

ḋ =
2Ṡd

(
1−BµR

(
2− 3

N−S

))

(N − S)(N − 1− S)
+ 2Bµ

(
1− R

N − S

)
(3)
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where N − S = I +R+ E and Ṡ = −(Ė + İ + Ṙ). The derivation of this limit are
described in S1 Appendix. Since this equation depends only on the continuous curves
S(t) and R(t), the initial and final compartment, it can be added to the classic SEIR
model to infer the genetic evolution, or to the SIR model, if the exposed compartment is
kept empty, meaning that all hosts are infectious. This result holds if viral evolution
occurs in the same way in every intermediate compartment and if every virus passes
through all compartments. Adding more compartments with different dynamical
behavior or changing the mutation mechanism through different compartments would
change the equations (2) and (3) but the procedure described in the begging of this
section to find dt+1 should remain the same.

Multiple initial infections

Eq.(2) considers the epidemic starting with a single infected individual. To consider
m > 1 initial infections, we must include the distance among the m different lineages.

Let Dt be the average distance among all viruses at time t, d
(i)
t the average distance

among the viruses of lineage i at time t, d
(ij)
0 the distance between the initial viruses i

and j, and d
(i)
root,t the average distance at time t of lineage i to the root of lineage i.

Thus,

Dt =

[
m∑

i=1

d
(i)
t

(
R

(i)
t + E

(i)
t + I

(i)
t

)(
R

(i)
t + E

(i)
t + I

(i)
t − 1

)
/2

+

m−1∑

i=1

m∑

j=i+1

(
d
(ij)
0 + d

(i)
root,t + d

(j)
root,t

)(
R

(i)
t + E

(i)
t + I

(i)
t

)(
R

(j)
t + E

(j)
t + I

(j)
t

)



÷
[(

m∑

i=1

(
R

(i)
t + E

(i)
t + I

(i)
t

))( m∑

i=1

(
R

(i)
t + E

(i)
t + I

(i)
t

)
− 1

)
/2

]
(4)

where R
(i)
t , E

(i)
t and I

(i)
t are, respectively, the number of recovered, exposed and

infected individuals of lineage i at time t. The first sum represents the distances within
each lineage i, while the double sum is due to the distance between each pair of lineages
i and j. In this equation, we assume the µ� 1 (for coronaviruses, µ lies in the range
∼ [10−5, 10−2] per site per year [46]) so that mutations for each virus are unlikely to
occur twice at the same nucleotide.

For each lineage i, d
(i)
t can be calculated from Eq.(2) or Eq.(3) and d

(ij)
0 must be a

given matrix. The distance d
(i)
root,t can be calculated similarly as Eq.(2),

d
(i)
root,t+1 = d

(i)
root,t +

Bµ

E
(i)
t + I

(i)
t +R

(i)
t + x

(i)
t

(
E

(i)
t + I

(i)
t − r(i)t +

4x
(i)
t R

(i)
t d

(i)
root,t

E
(i)
t + I

(i)
t +R

(i)
t

)

(5)
with the continuum limit

ḋroot = Bµ

[
1− R(i)

R(i) + I(i) + E(i)

(
1− 4droot(Ė

(i) + İ(i) + Ṙ(i))

R(i) + I(i) + E(i)

)]
(6)

where R(i), I(i) and E(i) are SEIR variables for lineage (i). The details behind these
results are described in S1 Appendix.

Viral spread throughout communities

As an application of our model and computational framework, we studied the genetic
evolution of a viral spread throughout four weakly and linearly connected communities,
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i.e., a network with four modules, representing different cities. The goal is to
understand how the average genetic distance between viruses in distant communities
change if the connectivity between the intermediary communities changes.

We start by generating four independent Barabasi-Albert networks, named 1, 2, 3
and 4. Then, we connect individuals from networks i and i+ 1 with probability p in a
way they form a line of communities. The Barabasi-Albert network is chosen in order to
include heterogeneity in the contact network [43]. Finally, we analyse the average
genetic distance between viruses from cities 1 and 4 for different values of p. The
epidemic starts with a single infected individual in city 1 and spreads through the entire
network.

Although in our model we always consider that individuals acquire perfect
cross-immunity against all strains after being infected the cross-immunity could in
principle be lost if a new infecting virus were too different from the original infection.
Thus, if the distance between viruses from cities 1 and 4 is large, an infected individual
from city 4 that travels to city 1 might reinfect an already recovered individual.
Although our simulations do not include this possibility, this is an interesting way to
investigate how the risk of reinfection changes due to changes in the network topology.

Results and Discussion

Single initial infection

We ran our model for random (Erdos-Renyi) and scalefree (Barabasi-Albert) networks
and calculated the average genetic distance. We used networks of 200, 500, 1000 and
4000 nodes, and average degree of 100 nodes. The infection starts with a single infected
individual chosen at random and evolves according to the description in section 2 .
Fig.2 shows comparisons between the simulated distance and the average distance
calculated from Eq.(2) and Eq.(3). Each subfigure contains two different simulations
and the mean-field solution for that respective set of parameters. We see that that
Eq.(3) approaches Eq.(2) only for Erdos-Renyi networks, since only this topology
mimics the well-mixed hypothesis considered in mean-field models. Because each
genetic evolution curve is calculated from the corresponding epidemic curves, we cannot
average over many simulations, thus the error bars are simply the standard deviation of
the distribution of distances among all viruses that appeared at that specific simulation
time step. Another important feature of this analytical formulation is that, once it is an
average description, it does not capture the random appearance or extinction of viral
lineages, which can introduce important deviations from our analytical description.

Multiple initial infections

Fig.3 shows the evolution of epidemic in two different cities (non-connected networks of
random and scalefree types), each one starting its infection with a single infected
individual chosen at random. The evolution in each city is calculated with Eq.(2) (pink

curves), while the distance between cities 1 and 2 is d
(1,2)
t = d

(1,2)
0 + d

(1)
root,t + d

(2)
root,t,

where d
(i)
root,t is calculated with Eq.(5) (red curve) and the total average distance Dt

(green curve) is given by Eq.(4). The initial distance between the viruses that infected

each city is d
(1,2)
0 = 0 in panels (a) and (b), and d

(1,2)
0 = 5 in panels (c) and (d).

The COVID-19 epidemic in China

Eq.(2) describes the evolution of average genetic distance between viruses in a single
community and depends only on the epidemic curves. It might, therefore, be used to
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Fig 2. Evolution of average genetic distance. Blue lines and dots are,
respectively, analytical (Eq.(2)) and simulation results for different simulations.
Different shades of blue correspond to different simulations for the same set of
parameters. The red line shows the result of mean-field Eq.(3). Error bars are standard
deviation of the distance distribution in each simulation at each time.
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Fig 3. Evolution of average genetic distance in two isolated cities (sizes
indicated in the panels). In (a) and (b) the initial viruses were identical and in (c)
and (d) they differed by 5 nucleotides. Lines show the average distance within each city
(pink), between cities (red) and total average distance (green).
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estimate the genetic evolution in real cases. The beginning of COVID-19 epidemic in
China is a suitable example, considering the existence of a single patient zero. In any
other country, the epidemic may have started with more than one individual, which
would require the difficult task of tracking the lineages. The same applies to secondary
waves of infection in China.

We obtained Chinese data from the Wolfram Data Repository [47], and corrected it
as in reference [48]. Because of the existence of undetected cases, we estimated the real
number of cases considering references [48,49]. Because the number of exposed
individuals is not directly available we choose to consider the simpler SIR model in this
case. Notwithstanding, because the cases notification started only in January while the
epidemic started in December, we extrapolated the data to previous dates, in order to
calculate the genetic evolution since patient zero, as we have made in Fig.2. All these
data corrections and considerations are described in the supporting information.

To compare the result of Eq.(2) with the real genetic evolution, we used carefully
selected 55 real genomes sequenced and collected in China, also available in the
Wolfram Data Repository [50]. The Hamming distance between each pair of genome
was obtained by first aligning every two genomes with the Needleman-Wunsch
algorithm with score matrix +1 for match and −1 for mismatch [45]. Then, we
considered the Hamming distance between a given pair of genomes as the number of
mismatches that are not indels, i.e., we considered only nucleotide substitutions. The
algorithm to estimate the distance evolution is explained in S1 Appendix, as we also
detail the informations of the used genetic data.

Fig.4 shows the result obtained from Eq.(2) (brown line) and the estimated genetic
evolution (blue dots). The interval around the brown line is an error of ±10% on the
product µB, which is the only parameter in the equation (2). Despite all corrections to
the epidemic data and the small number of real genomes we used to infer the real genetic
evolution, except for a few points, all the inferred average genetic distances between
RNA sequences lie in the predicted interval given by our theoretical model. Because
the epidemic in China was readily contained, the average distance dt saturated.
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Fig 4. The genetic evolution of SARS-CoV-2 in China. Blue dots are the
genetic distance among SARS-CoV-2 inferred from data collected in China between
12/23/2019 and 03/24/2020. The error bars are standard deviation of pairwise
distance propagated through the equations. The brown line shows the genetic distance
estimated with Eq.(2) and the Chinese epidemic data. The interval around the brown
curve is a ±10% error interval on the value Bµ, which we considered to be
Bµ = 29900× 0.001/365.

Communities and reinfection

In this section, we consider the spread of the epidemic through four communities,
representing cities, connected linearly as in Fig.5. Fig.5 shows an example of the contact
network. From left to right, we number the communities, or cities, from 1 to 4. The
epidemic starts with a single infection in city 1 and spread through the entire network.
Fig.5 also shows the Infection curves obtained from a simulation. The infection peak
delay from one city to other is responsible for the plateau-type curve of total infections.

To analyse the genetic evolution in this system we simulated the dynamic until the
epidemic was over and calculated the Hamming distance between every pair of final
genomes α and β, constructing the distance matrix dαβ (Fig.6). Viruses are ordered
according to their position in the line, i.e., first the genomes from city 1, then those
from the city 2, and so on. We calculated the average distances Di−j between the final
genomes from cities i and j and compared with Di−i, the average distance within city i.

As a null model, we run the epidemic over a single Barabasi-Albert network wih the
total size of the 4 cities. City i, in this case, means the i-th quarter of the infected
nodes. We plot the results of the null model as p = 0 in Fig.7 and Fig.8 for comparison.
The single network behaves very differently from the four module network, not showing
the same interesting results we find for the communities.

Fig.7 shows the ratio D4−4/D4−1 as a function of the connection probability p. The
results are averages over 20 different simulations for 7 different values of p. When p is
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Fig 5. Contact network of four communities on a line and infection curves.
Communities are Barabasi-Albert networks with 1000 nodes. The infection starts with a
single infected individual in the first community (red node indicated with the red
arrow). The epidemic parameters are in S1 Appendix
.

small, D4−4/D4−1 < 1, meaning that the viruses from city 4 are, in average, closer to
each other than they are to the viruses from city 1. When p increases, the ratio
D4−4/D4−1 approaches 1, indicating that the viruses from city 4 are so close to each
other as they are to viruses from city 1.

In order to understand the origin of this effect we analyse the infection trees in each
case (Fig.7, left). Each node in the trees represents a recovered individual and is
connected upwards with whoever infected it. Colors represent cities and it is possible to
count how many initial infections each city had along the epidemic, i.e., how many
lineages has infected each city. When p is small, very few lineages were responsible for
infecting city 4 but for higher values of p, this number increases. This is expected,
since more connected communities should have more infection gates. This result is a
consequence of the founder effect, i.e., only a few individuals, “the founders”, give rise
to a new population in the new location [12,51]. However, the system passes through a
non-trivial bistable point. When p = 0.0015, the values of D4−4/D4−1 accumulate
around two different values, one above 1 and another below 1. In this case the average
is not a good descriptor of the actual system behaviour and there is a competition
between different lineages infecting city 4. In simulations where D4−4/D4−1 > 1, many
lineages were successful in infecting the city 4, whereas when D4−4/D4−1 < 1, only a
few did so successfully.

Fig.8 shows the values D4−4 and D4−1 obtained in each simulation. The average over
simulations of the average distance within the forth city D4−4 (highlighted blue circles)
does not change considerably with p (around D ≈ 21 nucleotides). Under a neutral
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𝐷11 𝐷12 𝐷13 𝐷14

𝐷22 𝐷23 𝐷24

𝐷33 𝐷34

𝐷44

Fig 6. Hamming distance between pairs of viruses. The distance matrix is
sorted by the city. Diagonal blocks show the distance between the viruses from a single
city, while the non-diagonal blocks are the distances between the viruses from different
cities.

evolutionary perspective, viruses will belong to different strains if they differ by more
than G nucleotides, where G is a parameter whose value depends on the virus [44,52].
If D > G, viruses in city 4 would belong, on average, to different strains when compared
to city 1. As an example, if G = 26 new strains would arise, on average, in city 4 for
0 < p ≤ 0.0010, allowing a recovered individual from city 1 to be reinfected by an
infected individual from city 4 if they are put in contact with each other (by travelling,
for instance). Therefore, there is an increased risk of reinfection due to low connectivity
among communities. In this sense, pandemics are more likely to originate new strains
than epidemics, as they affect far more distant (therefore less connected) communities.
One confirmed case of reinfection by COVID-19 in Hong-Kong had the virus differing
by 24 nucleotides from the first infecting virus [14]. This distance matches a value for G
for which the network connectivity would strongly influence the rise of reinfections.

Conclusions

We have introduced an individual based model to describe the genetic evolution of a
RNA-virus epidemic spreading . We used the SEIR model with four compartments on
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Fig 7. Ratio between the average distance in city 4 and the average
distance between cities 1 and 4. Right panels show infection trees for the
simulations highlighted with red circles. Open circles show results for individual
simulations, the star is the average over 20 simulations and error bars are standard
deviations. p = 0 represents a single Barabasi-Albert network with 4000 nodes (see
text). Nodes in infection trees represent infected individuals, colored according to its
city. City 4 (cyan) in panel (a), where D4−4/D4−1 < 1, was almost entirely infected by
a single viral lineage, while in panel (b) where D4−4/D4−1 > 1, it was infected by many
different viral lineages.

networks, but the evolutionary dynamics can be implemented in more
compartmentalized epidemic models. We provided an analytical description that can be
generalized for models with more compartments. An important result of this study is
the mean-field approximation, Eq.(3), for the evolution of the average genetic distance,
which can be added directly to the mean-field SIR or SEIR models.

Our analytical description of the average genetic distance between viruses is neutral
and depends only on the epidemic curves. This allows us to project the evolutionary
scenario without using the actual genome sequences. Deviations from these predictions
in genetic data could reveal the strength of selection or network effects. We compared
our prediction using only fifty complete genomes sequenced and collected in China and
found good agreement.

We have also analysed the genetic evolution of the epidemic when it spreads over
different communities. By changing the connection probability p between 4 linearly
arranged communities we investigated how different the viruses infecting city 4 would
be from their ancestors in city 1. Our simulations showed that when p is sufficiently
small, the genetic difference between these viruses can be quite large, spanning 30 loci.
This could allow an infected individual from city 4 to reinfect a recovered individual
from city 1. This is a consequence of the founder’s effect, which is stronger if p is small
as it decreases the number of infection gates of a community. Therefore, we expect
increased risk of reinfection from contacts between travelling individuals living in
distant territories.

Although the computational framework we described for the viral evolution is
neutral, it can be adapted to including other evolutionary aspects, such as differential
fitness for mutations in certain genome regions or loss of cross-immunity. These and
other features are important topics to be added and studied in future works.
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Fig 8. Average genetic distances within cities 1 and 4. Open blue circles are
average distance between the viruses of city 4 from a single simulation, and the filled
blue circle is average of these values. Light red stars are average distances between
viruses from cities 1 and 4 and the dark red star is the average of these values. We ran
20 simulations for each value of connection probability.

Supporting information

S1 Appendix Simulation parameters, analytical calculations, real genetic evolution
algorithm and Chinese epidemic data corrections.

S1 Table All Chinese genome sequences. All genomes registered in Wolfram
Repository “Genetic Sequences for the SARS-CoV-2 Coronavirus” with complete
NucleotideStatus and human Host from China (data accessed 19/08/2020).

S2 Table Included sequences sorted by Collection Date. All informations
according to S1 Table.

S3 Table Genome information used to calculate points in Fig.4. We have
used a 14 days time window, i. e., every sequenced genome within an interval of 14 days
were considered as infected ones, while the previous were considered to be recovered.

Acknowledgments
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1 Appendix A: Simulation parameters 1

The network simulations follow the model proposed in reference [1], and the parameters 2

are displayed in Table 1. 3

Parameter Value

R0 2.4 [2]
Average Symptoms Duration τ0 14 days [3, 4]
Networks Average Degree D * 100 [1]

Incubation Time Distribution P(τ) Γ(6.25, 25/26) [5]
Mutation Rate µ 0.001 substitution per base, per year [6, 7]
Genome Size B 29900 bases [2]

Table 1. Simulation Parameters. The number of nodes in each simulation is
described properly.
*This is the input average degree for the networks construction, but the actual value for
each realization fluctuates. For the communities simulations, this is the parameter for
constructing each isolated network, as also for the control case p = 0.

For the numerical solution of mean-field approaches, following the SEIR model 4

Ṡ = −βSI/N
Ė = βSI/N − σE
İ = σE − γI
Ṙ = γI

(A1)

we have used the following parameters: R0 = 2.4, γ = 1/14 day−1; β = R0γ and 5

σ = 1/〈ti〉, where 〈ti〉 is the mean period of incubation, averaged over the distribution 6

from Table 1 [1]. 7

2 Appendix B: Analytical calculations 8

Our goal is to derive a recurrence equation for the average genetic distance, i.e., given 9

the distance dt at time t, we aim to calculate the distance dt+1 at time t+ 1. The idea 10

is to calculate dt+1 as a weighted average, where the weights are the number of pairs 11

that are distanced by a certain amount. In a SEIR model, every iteration starts with a 12

given number of recovered (Rt), infected (It) and exposed (Et) individuals. When an 13

individual recovers, its infecting virus stops to spread and to evolve, and we call it a 14
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final virus. There are Rt final viruses at the beginning of a given iteration. Viruses 15

infecting Exposed individuals can mutate during this iteration. However, viruses in 16

Infected individuals can either evolve and mutate in this time step or not, since their 17

hosts might recover. The latter become final and are counted as rt. Infected individuals 18

can also spread the virus, which replicate before evolving or becoming final. Such 19

offspring (xt) increase the number of viruses in Exposed individuals in the next 20

iteration, when they will be allowed to evolve. 21

At the beginning of iteration t+ 1, there are (Rt +Et + It)(Rt +Et + It − 1)/2 pairs 22

of viruses sharing an average distance equal to dt, but along the iteration some of the 23

distances may increase by a certain amount to be calculated, as also new viruses may 24

arise. Therefore, 25

dt+1 =
1

Z ′t

(
dt

(Rt + Et + It)(Rt + Et + It − 1)

2
+ Increases + Offspring

)
, (A2)

where Z ′t is a normalization factor, which counts the total number of pairs at the end of 26

iteration t+ 1, 27

Z ′t =
(Rt + Et + It + xt)(Rt + Et + It + xt − 1)

2
. (A3)

If the mutation rate is zero and no new infections occur (xt = 0) the “Increases” term 28

and the “Offspring” term are equal to zero, and dt+1 = dt, as expected. 29

In the following two subsections, we shall calculate the “Increases” term and the 30

“Offspring” term, which accounts for the evolution and for the spread, respectively. 31

2.1 Increases 32

Genetic distances between evolving viruses increase over time. In order to calculate how 33

much these distances increase we first consider that mutations occurring in the same 34

locus of different genomes are unlikely, as well as more than one mutation per locus on a 35

single genome. This approximation holds as long as the epidemic duration T remains 36

sufficiently small, µT � 1. Thus, after one time step, an evolving genome acquires, on 37

average, Bµ mutations. The distance between two evolving genomes will increase, on 38

average, by 2Bµ nucleotides after one time step. The distance between viruses in 39

exposed individuals, for example, increases by 2Bµ and because there are Et(Et − 1)/2 40

pairs of exposed individuals, their evolution along the iteration t+ 1 contributes 41

2BµEt(Et − 1)/2 to the Increases term. On the other hand, the distance between 42

viruses in an exposed and a recovered individual, or an infected individual that recovers, 43

is only Bµ, because the latter two do not evolve. There are Et(Rt + rt) pairs among 44

these viruses, and thus their contribution to Increases is Et(Rt + rt)Bµ. We recall that 45

the updates in our model occur in the order “Transmission”, “Attempt to Recovery” 46

and lastly, “Genome Evolution”. Thus, if an infected individual recovers its virus does 47

not have the chance to mutate. 48

Therefore, in order to compute the Increases term, we must calculate the average 49

increase in distance between all pairs of viruses and how many pairs of these viruses 50

exist. Table 2 summarizes this information. We obtain 51

Increases =EtRtBµ+ EtrtBµ+ (It − rt)rtBµ+ (It − rt)RtBµ+ (It − rt)Et2Bµ

+
Et(Et − 1)

2
2Bµ+

(It − rt)(It − rt − 1)

2
2Bµ. (A4)
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Table 2. Increases in average distance and number of pairs of viruses.

Viruses Number of Pairs Average Distance Increase

(Et) and (Rt) EtRt Bµ
(Et) and (rt) Etrt Bµ

(It − rt) and (rt) (It − rt)rt Bµ
(It − rt) and (Rt) (It − rt)Rt Bµ
(It − rt) and (Et) (It − rt)Et 2Bµ

(Et) and (Et) Et(Et − 1)/2 2Bµ
(It − rt) and (It − rt) (It − rt)(It − rt − 1)/2 2Bµ

(Rt) and (Rt) Rt(Rt − 1)/2 0
(rt) and (rt) rt(rt − 1)/2 0
(rt) and (Rt) rtRt 0

2.2 Offspring 52

The contribution of the new infections to the average distance dt+1, the Offspring term, 53

is more tricky. To simplify matters we will assume that an infected individual infects 54

only one susceptible per time step, which is a good assumption if the basic reproduction 55

number R0 is small compared to the average duration of symptoms. Thus, xt is also the 56

number of individuals who infected a susceptible within the time step t+ 1, which will 57

be called ancestors from now on. Let D1 be the average distance between ancestors and 58

the other viruses at time t, and D2, the distance between the exposed and the other 59

viruses. Note that an ancestor may recover and, therefore, not mutate in this time step. 60

The Offspring term is a sum of different contributions between offspring and the other 61

viruses in the population, as explained in detail below. 62

1. Genetic distance between offspring and recovered. The number of pairs is xtRt. 63

Because offspring do not evolve in the time step they appear, their average 64

distance is D1. Then, its contribution to the Offspring term is xtRtD1. 65

2. Genetic distance between offspring and exposed. The number of pairs is xtEt. 66

Because the exposed evolve, these pairs contribute with xtEt(D2 +Bµ) to the 67

Offspring term. 68

3. Genetic Distance between offspring of an infected (ancestor) that does not recover 69

(there are (It − rt) of these individuals) and infected : 70

(a) The distance between an offspring and its ancestor is Bµ, since the ancestor 71

evolves. There are xt(It − rt)/It new infections of this type, contributing 72

with xt((It − rt)/It)Bµ to the distance. 73

(b) For each offspring there are It − rt − 1 infected individuals that did not 74

recover and are not its ancestral. The distance between the offspring and 75

these individuals is (D1 +Bµ), adding 76

xt((It − rt)/It)(It − rt − 1)(D1 +Bµ) to the Offspring term. 77

(c) The distance between the offspring and individuals that recover is D1, 78

because neither of these viruses evolve in this time step. There are 79

xt((It − rt)/It)rt pairs of these viruses, adding xt((It − rt)/It)rtD1 to the 80

Offspring term. 81

4. Genetic distance between offspring of infected (ancestor) that recover in this 82

iteration (there are rt of these individuals) and infected : 83
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(a) The distance between offspring and its ancestor is zero, because none of 84

them evolve. 85

(b) The distance between the offspring and the other viruses of type is D1. 86

There are xtrt/It new infections of this type, contributing 87

(xtrt/It)(rt − 1)D1 to the Offspring term. 88

(c) The distance between offspring and the other infected individuals is 89

(xtrt/It)(It − rt)(D1 +Bµ), since the other infected viruses evolve.. 90

5. Genetic distance between offspring. Because each ancestor gives rise to only one 91

new infection, this distance equals D1, and once there are xt(xt − 1)/2 pairs of 92

offspring, this contribution is (xt(xt − 1)/2)D1. 93

6. By summing everything up, we get

Offspring = xtRtD1 + xtEt(D2 +Bµ)

+ x
(It − rt)

It
Bµ+ xt

(It − rt)
It

(It − rt − 1)(D1 +Bµ) + xt
(It − rt)

It
rtD1

+ xt
rt
It

0 + xt
rt
It

(rt − 1)D1 + xt
rt
It

(It − rt)(D1 +Bµ)

+
xt(xt − 1)

2
D1. (A5)

Putting all these terms together and defining Zt ≡ 2Z ′t we obtain

dt+1 =
1

Zt
(dt(Rt + Et + It)(Rt + Et + It − 1)

+xtD1(xt − 3 + 2Rt + 2It + 2EtD2/D1)

+ 2Bµ(Et + It − rt)(Et + It +Rt + xt − 1)) . (A6)

The reason for assigning the distance D1 between infected and other viruses, instead 94

of dt, is that infected individuals represent only a fraction of the viruses in the 95

population, and the distance between them and other viruses grows over time, therefore 96

being above the average dt. The same holds for the exposed individuals. 97

Although we were not able to analytically find an expression for D1 and D2, we can 98

approximate them as follows. First we assume that D2 ≈ D1. When the epidemic 99

begins, all viruses are infected, so that D1 = dt. However, the ratio between infected 100

and recovered individuals decreases to zero along the epidemic, making D1 larger than 101

dt. Thus, to first order, it is possible to approximate D1 ≈ dt(1 + ε), with ε a function 102

of the number of recovered individuals, Rt/(It + Et +Rt) and the average number of 103

mutations Bµ. Our simulations showed that the linear function 104

D1 = dt(1 + 2BµRt/(It +Et +Rt)) works well (considering the parameters in Appendix 105

A), leading to the theoretical result expressed by Eq.(2) from the main text. 106

2.3 Continuum Limit 107

To achieve the continuum limit we start by substituting rt = Rt+1 −Rt and
xt = Et+1 −Et + It+1 − It +Rt+1 −Rt in Eq.(2) from the main text and subtracting dt
from both sides of this equation:

dt+1 − dt =
1

Zt
{2dt (Et+1 − Et + It+1 − It +Rt+1 −Rt)×

×
[
−1 +Bµ

Rt

It + Et +Rt
(Rt+1 +Rt + It+1 + It + Et+1 + Et − 3)

]

+ 2Bµ (Et + It +Rt −Rt+1) (Et+1 + It+1 +Rt+1 − 1)} (A7)
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with

Zt = (Et+1 + It+1 +Rt+1)(Et+1 + It+1 +Rt+1 − 1). (A8)

Then, we consider the first order approximations

ft ≈ f(t)

ft+1 ≈ f(t) + ḟ(t)∆t,

and once Bµ in the last line of Eq.(A7) is the number of mutations per time step, we
replace it by Bµ∆t

ḋ(t)∆t = (A9)

1

Zt

{
2d(t)∆t

(
Ė(t) + İ(t) + Ṙ(t)

)
×

×
[
−1 +Bµ

R(t)

I(t) + E(t) +R(t)

(
2R(t) + 2I(t) + 2E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 3

)]

+ 2B∆tµ
(
E(t) + I(t)− Ṙ(t)∆(t)

)(
R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 1

)}

(A10)

with

Zt = (R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t)))×
× (R(t) + I(t) + E(t) + ∆t(Ė(t) + İ(t) + Ṙ(t))− 1). (A11)

Finally, by taking the limit ∆t→ 0 we obtain the continuous time equation. 108

2.4 Multiple Infections 109

The average distance d
(i)
root,t between viruses from a lineage and its root is calculated

using the same technique discussed above, however it is much simpler, once we only
need to calculate the average distance from a kind of virus and the root (a single virus
which does not evolve). Using the same notation, but now with a super-index to denote
the lineage, we obtain

d
(i)
root,t+1 =

1

Zt

[(
R

(i)
t + E

(i)
t + I

(i)
t

)
d
(i)
root,t + E

(i)
t Bµ+

(
I
(i)
t − r(i)t

)
Bµ+ x

(i)
t D

(i)
1,root

]

(A12)

with Zt = (E
(i)
t + I

(i)
t +R

(i)
t + x

(i)
t ) and D

(i)
1,root being the average distance between 110

infected and the root, which is given (similarly to D1) by 111

D
(i)
1,root = d

(i)
root,t

(
1 + 4Bµ

R
(i)
t

E
(i)
t + I

(i)
t +R

(i)
t

)
.

The factor 4 is a fit from numerical investigations. The continuum limit is obtained by 112

subtracting d
(i)
root,t from both sides of Eq.(6) from the main text, applying the 113

continuous approximation for each epidemic curve and taking the limit ∆t→ 0. 114

3 Appendix C: Real genetic evolution algorithm 115

In order to estimate the real (from genetic data) genetic evolution, we used 55 complete 116

genome sequences collected in China [8]. First, these sequences were ordered and 117
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numbered by its collection date and a matrix of genetic distances dij between genomes i 118

and j has been constructed. Each pair of sequences were alligned with the 119

Needleman-Wunsch algorithm, with score +1 for match and −1 for mismatch [9]. Then, 120

the distance between two genomes was computed counting the number of substitutions 121

between the sequences, neglecting indels. 122

We defined a time window τW = 14 = τ0 days. Thus, every genome collected within 123

τW are considered infected, and the genomes collected before this time window are 124

considered recovered. Now, we calculate the average distance among the infected dI,t, 125

recovered dR,t and among infected and recovered dIR,t at the time t. Fig.1 shows an 126

example of a distance matrix with a specific time window. Finally, the average distance 127

at time t can be computed as 128

dt =
dI,tIt(It − 1) + 2dIR,tItRt + dR,tRt(Rt − 1)

(Rt + It)(Rt + It − 1)
(A13)

where It and Rt are respectively given by I(t) and R(t) described evaluated in the 129

supplemental material. 130

With this algorithm, we obtained 20 non-overlapping sets of infected genomes. One 131

of these sets contained only one sequence and was not usable; a second set was too far 132

from all other data and was also discarded. Thus, we were able to calculate 18 points 133

(that appear in Fig.4 from the main text) with error bars given by the standard 134

deviation of each set of distances (between infected, recovered and between infected and 135

recovered) at each time t. 136
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Fig 1. Example of distance matrix to illustrate the algorithm to infer the
genetic evolution. Every genome collected within a time window τW is considered to
belong to an infected individual. The red block shows distances between these viruses.
The blue block shows viruses that appeared before the present time window, whose
individuals are considered to have recovered. Green blocks are distances between
infected and recovered individuals. The remaining entries are distances from viruses
that have not appeared yet at that considered time, i.e., they appeared after the
considered time window.

4 Appendix D: The COVID-19 data from China 137

We got the Chinese epidemic data from the dataset “Epidemic Data for Novel 138

Coronavirus COVID-19” from Wolfram data repository [10]. Unfortunately, this dataset 139

starts on 22 January (going up to 18 August by the date of our analysis), lacking the 140

previous data. Another concern is about the change in the notification protocols 141

adopted by the Chinese government. On 13 February, the Hubei province started to 142

report not only the positive laboratory tests, but also the clinically diagnosed cases as 143

infected too, appearing a sudden increase in infected curve [11]. We also need to correct 144

the data by including undetected cases. 145

Firstly, in order to correct the notification problem, we smoothly distribute the 146

sudden increase number of cases among the previous dates. Following reference [11], the 147
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corrected accumulated number of cases Ia,c(t) is given by 148

Ia,c(t) = Ia(t) + 15133

∑t
i=22 Jan Ia(t)

∑13 Feb
i=22 Jan Ia(t)

(A14)

for t ∈ {22 Jan, . . . , 12 Feb}, where Ic(t) is the accumulated number of cases at date t, 149

and 15133 = Ia(13 Feb)− Ia(12 Feb) is the sudden increase due to the changes in the 150

notification protocol. 151

Now, the undetected cases in China were estimated in reference [12], and also 152

following reference [11], we get 153

Ia,c′(t) =
Ia,c(t)

1− θ(t) (A15)

for the estimated total number of cases at time t, where θ is the undetected fraction, 154

θ(t) =





0.86, for t ≤ 24 Jan
linear decrease, for 24 Jan ≤ t ≤ 08 Feb
0.31, for t ≥ 08 Feb

(A16)

This correction is also applied to the recovered curve. However, the Wolfram data 155

distincts recovered Rec(t) from deaths Dea(t), while our theory does not differentiates 156

these numbers. Thus, the number of recovered individuals we must consider is 157

R(t) =
Rec(t) +Dead(t)

1− θ(t) (A17)

and the infected curve is now given as 158

I(t) = Ia,c′(t)−R(t) (A18)

Fig.2 shows the curves after these corrections. Once we do no have directly access to 159

exposed data, we did not consider exposed individuals, meaning, at this point, that we 160

are dealing with a SIR model without any prejudice to the present theory. However, 161

bad data is an important source of error. 162

Infected

Recovered

Fig 2. Chinese epidemic curves after corrections. The left chart shows the
cumulative number of infections in China. The blue curve is the reported number of
cases before the smoothness procedure of Eq.(14) and the orange curve is the result of
this procedure. The right charts are the recovered and infected curves R(t) and I(t).
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Finally, we fit an exponential curve to a few initial data points of I(t) and R(t) and 163

extrapolate it to previous dates. For the I-curve, we have adjusted the exponential 164

ea(t−t0), with fit parameters a and t0, on the first nI = 10 data points and extrapolated 165

it up to the first case t0 days before. With this approach, we found t0 = 11 Dec, which 166

is close to the first case reported by WHO, 08 Dec [13]. For the R(t)-curve, we have 167

used the first nR = 13 data points. The numbers nI and nR were chosen in order to 168

make the exponential extrapolation makes sense according to WHO estimates of the 169

first case, as also to make R(t) < I(t) in a plausible way. 170

Now, the curves R(t) and I(t) can be implemented in the recurrence equation and 171

the distance evolution can be estimated, with the first distance d0 equalling zero. 172
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S2 Table. Included sequences sorted by Collection Date. All informations according to S1 Table.

Number Accession Number Collection Date Length Geographic Location

#1 MT019529 23 Dec 2019 29899 Wuhan, Hubei
#2 MN908947 26 Dec 2019 29903 Wuhan, Hubei
#3 MT291829 30 Dec 2019 29774 Wuhan, Hubei
#4 MT291826 30 Dec 2019 29807 Wuhan, Hubei
#5 MT291830 30 Dec 2019 29807 Wuhan, Hubei
#6 MN996527 30 Dec 2019 29825 Wuhan, Hubei
#7 MN996529 30 Dec 2019 29852 Wuhan, Hubei
#8 MN996530 30 Dec 2019 29854 Wuhan, Hubei
#9 MN996531 30 Dec 2019 29857 Wuhan, Hubei
#10 MT291827 30 Dec 2019 29858 Wuhan, Hubei
#11 MT291828 30 Dec 2019 29858 Wuhan, Hubei
#12 MN996528 30 Dec 2019 29891 Wuhan, Hubei
#13 MT019533 01 Jan 2020 29883 Wuhan, Hubei
#14 MN988668 02 Jan 2020 29881 Wuhan, Hubei
#15 MN988669 02 Jan 2020 29881 Wuhan, Hubei
#16 MT034054 03 Jan 2020 29885 Beijing
#17 MN938384 10 Jan 2020 29838 Shenzhen, Guangdong
#18 MT259226 10 Jan 2020 29868 Wuhan, Hubei
#19 MN975262 11 Jan 2020 29891 Wuhan, Hubei
#20 MT049951 17 Jan 2020 29903 Yunnan
#21 MT039873 20 Jan 2020 29833 Hangzhou, Zhejiang
#22 MT253710 21 Jan 2020 29781 Hangzhou, Zhejiang
#23 MT407650 22 Jan 2020 29821 Zhejiang
#24 MT407651 22 Jan 2020 29822 Zhejiang
#25 MT407649 22 Jan 2020 29833 Zhejiang
#26 MT039874 22 Jan 2020 29858 Hangzhou, Zhejiang
#27 MT079843 22 Jan 2020 29915 Wuhan, Hubei
#28 MT291831 24 Jan 2020 29872 Beijing
#29 MT291832 25 Jan 2020 29828 Beijing
#30 MT259231 25 Jan 2020 29865 Wuhan, Hubei
#31 MT259230 25 Jan 2020 29866 Wuhan, Hubei
#32 MT407652 26 Jan 2020 29835 Zhejiang
#33 MT407653 26 Jan 2020 29835 Zhejiang
#34 MT534630 26 Jan 2020 29845 Changzhou, Jiangsu
#35 MT259228 26 Jan 2020 29861 Wuhan, Hubei
#36 MT259227 26 Jan 2020 29863 Wuhan, Hubei
#37 MT259229 26 Jan 2020 29864 Wuhan, Hubei
#38 MT291835 27 Jan 2020 29834 Beijing
#39 MT123292 27 Jan 2020 29923 Guangzhou, Guangdong
#40 MT291833 28 Jan 2020 29821 Beijing
#41 MT291834 28 Jan 2020 29865 Beijing
#42 MT135044 28 Jan 2020 29903 Beijing
#43 MT291836 29 Jan 2020 29860 Beijing
#44 MT123293 29 Jan 2020 29871 Guangzhou, Guangdong
#45 MT123291 29 Jan 2020 29882 Guangzhou, Guangdong
#46 MT121215 02 Feb 2020 29945 Shanghai
#47 MT446312 05 Feb 2020 29879 Guangzhou, Guangdong
#48 MT123290 05 Feb 2020 29891 Guangzhou, Guangdong
#49 MT281577 10 Mar 2020 29903 Fuyang, Anhui
#50 MT407658 24 Mar 2020 29770 Zhejiang
#51 MT407657 24 Mar 2020 29776 Zhejiang
#52 MT407654 24 Mar 2020 29817 Zhejiang
#53 MT407655 24 Mar 2020 29817 Zhejiang
#54 MT407659 24 Mar 2020 29828 Zhejiang
#55 MT407656 24 Mar 2020 29835 Zhejiang

1



S3 Table. Genome information used to calculate points in Fig.5. We have used a 14 days time
window, i. e., every sequenced genome within an interval of 14 days were considered as infected ones,
while the previous were considered to be recovered.

Point Number* Infected Genomes Recovered Genomes Date Interval

#1 #03 → #19 #1 → #02 30 Dec 2019 → 12 Jan 2020
#2 #13 → #19 #1 → #12 01 Jan 2020 → 14 Jan 2020
#3 #14 → #19 #1 → #13 02 Jan 2019 → 15 Jan 2020
#4 #16 → #19 #1 → #15 03 Jan 2019 → 16 Jan 2020
#5 #17 → #27 #1 → #16 10 Jan 2019 → 23 Jan 2020
#6 #19 → #28 #1 → #18 11 Jan 2019 → 24 Jan 2020
#7 #20 → #45 #1 → #19 17 Jan 2019 → 30 Jan 2020
#8 #21 → #46 #1 → #20 20 Jan 2019 → 02 Feb 2020
#9 #22 → #46 #1 → #21 21 Jan 2019 → 03 Feb 2020
#10 #23 → #46 #1 → #22 22 Jan 2019 → 04 Feb 2020
#11 #28 → #48 #1 → #27 24 Jan 2019 → 06 Feb 2020
#12 #29 → #48 #1 → #28 25 Jan 2019 → 07 Feb 2020
#13 #32 → #48 #1 → #31 26 Jan 2019 → 08 Feb 2020
#14 #38 → #48 #1 → #37 27 Jan 2019 → 09 Feb 2020
#15 #40 → #48 #1 → #39 28 Jan 2019 → 10 Feb 2020
#16 #43 → #48 #1 → #42 29 Jan 2019 → 11 Feb 2020
#17 #46 → #48 #1 → #45 02 Feb 2019 → 15 Feb 2020
#18 #47 → #48 #1 → #46 05 Feb 2019 → 18 Feb 2020
#19** #49 → #49 #1 → #48
#20† #50 → #55 #1 → #49 24 Mar 2019 → 06 Apr 2020

*In Fig.4 from the main text, points are numbered from left to right.
**Since there is only one genome in this time window, we cannot estimate a distance among the infected
population, so genome #49 was not used.
† This point was not included in Fig.5 because it is lacking more than one month of genetic information
between points #18 and #19, therefore the distance among the recovered population cannot be well
inferred.
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