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Abstract 

Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation 
models for transmission have implications in solving public and personal health challenges. The SIR model uses a compartmental 
approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed 
(recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. 
This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models 
of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical 
distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread. 
[copyright information to be updated in production process] 
 
Keywords: Lambert W function; SIR model; SEIR model; Nonlinear differential equations; Disease transmission. 

1. Introduction 

The First World War ravaged the world with death and destruction. A key contributor to the enormous death toll 
was not war, but a product of its chaotic environment; the 1918 “Spanish” Influenza. This H1N1 virus of avian origin 
spread throughout 1918-1919, infecting over 500 million individuals, and killing at least 40 million people worldwide 
[27, 18]. Lack of sanitation and resources during wartime, and no progress in the development of a vaccine, limited 
worldwide control efforts to non-pharmaceutical interventions such as isolation and use of informal disinfectants [12].  
Due to the immense, rapid spread of disease, countries were unable to suitably prepare themselves to prevent or control 
the influenza. 

Now, almost a century later, the world is rocked again by the emergence of the new strand of coronavirus disease 
(COVID-19). This novel virus was first reported in December 2019 in Wuhan, China and has since spread to pandemic 
proportions [24]. As this virus can be transmitted person to person [24], many protective measures such as masking 
and social distancing have been put in place to reduce human interactions. 

COVID-19 targets the human respiratory system, resulting in clinical findings such as high fever, dyspnea and 
invasive multilobed lesions as seen in chest radiographs [23, 16]. It has been reported that the symptoms of this virus 
start about 5 days after contracting it [24]. These symptoms tend to get progressively worse as time goes on, some 
cases leading to death, while others successfully recover [16]. This is a major public threat since thousands of 
Canadians have been hospitalized due to respiratory issues along with other flu-like symptoms after being diagnosed 
with COVID-19 with no concrete vaccine yet developed [24]. 

While the world now has the advantage of more accessible resources and a better understanding of pandemics 
compared to 1918, there are still the problems of disease prevention and control. A way to combat this is to model the 
disease over time, to better understand the gravity of the situation [5]. Epidemics play a major role in understanding 
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disease transmission by studying disease distribution, sources of diseases, causes of diseases, and methods of disease 
control [14]. Using data of epidemic curves, one can extrapolate disease data and trends to prepare for potential disease 
burden and determine public policies to mitigate risks of spread [5]. 

The Susceptible-Infected-Removed (SIR) model and its derivatives is one way to understand the transmission of 
diseases and predict future outcomes regarding COVID-19 cases. This study uses the SIR model, SIRm model, 
Susceptible-Exposed-Infected-Removed (SEIR) model, and the SEIRm to illustrate COVID-19 spread. This study 
also uses the Lambert W function to analyze the SIR and SEIR models to better understand disease spread. 

Section 2 of this paper discusses data and methods used to illustrate COVID-19 trends through different models 
such as the SIR, SIRm, SEIR and the SEIRm models. By using Canadian data to model the current trend of COVID-
19, it is possible to create graphs that depict where the individuals stand with respect to time during the spread of 
disease. Using a mixing factor m, it is possible to introduce a human-behaviour or social distancing factor into the 
situation. Section 3 presents the results of our paper and there will be simulations of Canadian COVID-19 data in 
context of the afore-mentioned models.  In Section 4, the results obtained from our analysis will be discussed. Finally, 
Section 5 of this paper presents our conclusions. 

2. Methods 

In this study, open-source COVID-19 datasets provided by Public Health Agency of Canada’s Public Health 
Infobase is used. The data ranges from January 22, 2020 to July 17, 2020, with each time series tracking an 
epidemiology statistic. The three-time series of focus are count of confirmed cases, deaths, and recovered cases 
nation-wide in Canada. 

2.1. SIR Model 

The SIR model is a representation that divides a population with respect to a disease’s impact on an individual over 
time. An individual can be categorized as susceptible (S(t)), infected (I(t)), or removed (R(t), dead or cured), denoted 
by S, I and R respectively, along an independent variable; time [25]. One of the most common SIR models is the 
classic Kermack–McKendrick Model for contagious diseases in a closed population over time. The model was created 
to illustrate the rapid changes in the number of infected patients during epidemics. It is assumed that there is a fixed 
homogeneous population size, random population mixing, instantaneous incubation period, and acute onset of disease 
[30, 31, 1]. The model variables can be represented as fractions: 

 𝑠𝑠 =
𝑆𝑆
𝑁𝑁

 (1) 

 
where s is a fractional representation of the number of susceptible individuals (S) over a selected population 

(N) over time. 

 𝑖𝑖 =
𝐼𝐼
𝑁𝑁

 (2) 

 

where i is a fractional representation of the number of infected individuals (I) over a selected population (N) 
over time. 

 𝑟𝑟 =
𝑅𝑅
𝑁𝑁

 (3) 

 

and r is a fractional representation of the number of removed individuals (R) over a selected population (N) over 
time.  

Overall, these equations must add to 1: 

 𝑠𝑠 + 𝑖𝑖 + 𝑟𝑟 = 1 (4) 
 
 



Using these equations, it is possible to extract three nonlinear differential equations that aid in tracking the 
illness progression. We present these equations below. 

 
The Susceptible Equation: 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑠𝑠𝑖𝑖 (5) 

 

where β represents the infection rate, the probability per day that an I-person can infect a S-person, assuming 
the absence of social distancing. The Infected Equation: 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑠𝑠𝑖𝑖 − 𝛾𝛾𝑖𝑖 (6) 

 
 
The Recovered Equation: 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑖𝑖 (7) 

 
 
where γ represents the recovery rate, the probability per day that an I-person transitions into an R-person 

(becoming non-infectious permanently).  
The ratio of S-persons transitioning into I-persons is the ratio of β to γ, referred to as the Reproduction 

Number; λ. 

 
𝜆𝜆 =

𝛽𝛽
𝛾𝛾

 (8) 

 
 
 

The higher the value of λ, the more transmittable the disease is; the infection rate eclipses the recovery rate. 
While R0 usually denotes the reproduction number, this paper uses R0 to denote the initial value of the 

Recovered variable at time t = t0. 
There is always some natural immunity, so it is reasonable to assume that r0 is greater than 0. If the population 

has been partly vaccinated, the value of r0 might even be 0.40 or more. Similarly, even without vaccination, a 
prior asymptomatic spread of the disease in the population may have resulted in r0 being perhaps 15 or 20 percent 
of the population [10]. 

Some other variables can be introduced for the SIR model for convenience of comparison with information 
reported about the course of the epidemic. The total number of cases since the beginning of the epidemic is C. 
The initial value of the total number of cases, prior to time t = t0, is C0. The number of new cases per day is J. 
The variable J is defined by: 

 
𝐽𝐽 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽
𝑆𝑆𝐼𝐼
𝑁𝑁

 (9a) 

 
 
 

Therefore, considering a closed population (N = 1) this equation becomes: 

 𝑗𝑗 = 𝛽𝛽𝑠𝑠𝑖𝑖 (9b) 
 
 
 

where j is the number of cases per day in a closed population. 
There is a possibility that some individuals may have been included in the R-group due to natural immunity 

or vaccination immunity, rather than as recovered cases. Therefore, by tracking the decline in S-persons, it is 



possible to track the increase in total cases, c, while excluding the individuals with immunity [10]. This indicates 
that s can be used as an independent variable to find i as a function of s: 

 𝑖𝑖(𝑠𝑠) = 1 − 𝑠𝑠 − 𝑟𝑟(𝑠𝑠) (10a) 
 
 
 

where r(s) can be written as 𝑟𝑟0 −
1
𝜆𝜆

ln � 𝑠𝑠
𝑠𝑠0
� 

 
 𝑖𝑖(𝑠𝑠) = 1 − 𝑠𝑠 − 𝑟𝑟0 +

1
𝜆𝜆
𝑙𝑙𝑙𝑙 �

𝑠𝑠
𝑠𝑠0
� (10b) 

 
 

 
Dividing equation (6) by equation (5) results in: 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑠𝑠

=
𝛾𝛾 − 𝛽𝛽𝑠𝑠
𝛽𝛽𝑠𝑠

 (11) 

 
 
 

The solution of this equation for i gives a Lambert W Function as implicitly seen in the expression given in 
equation (10b). This remarkable function has created a renaissance in the solution of diverse problems in 
innumerable fields of knowledge [7]. The solution is as follows: 

 𝑠𝑠 = −
1
𝜆𝜆
𝑊𝑊(−𝜆𝜆𝜆𝜆 𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝑖𝑖)) 

 

(11a) 

 
where 𝜆𝜆 = 𝑖𝑖0 + 𝑠𝑠0 −

1
𝜆𝜆

ln (𝑠𝑠0)  is the constant of integration to be determined from initial conditions by 
solving equation (11) with initial condition 𝑖𝑖(𝑠𝑠0) = 𝑖𝑖0. Since equation (11a) has a Lambert W function with an 
exponential argument, this can also be expressed as an Omega Wright function [33]. 

To continue, it is possible to use r as an independent variable as well. The expressions of s can be found with 
respect to r: 

 𝑠𝑠(𝑟𝑟) = 𝑠𝑠0exp [−𝜆𝜆(𝑟𝑟 − 𝑟𝑟0)] (12a) 
If an R-curve graph shows a continued increase, it would indicate an increase in number of removed 

individuals [3].  
Equation (12a) can then be substituted into the equation: 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑟𝑟

=
𝛽𝛽𝑠𝑠 − 𝛾𝛾
𝛾𝛾

= 𝜆𝜆𝑠𝑠 − 1 (12b) 

 
 
 

to give: 
 𝑑𝑑𝑖𝑖

𝑑𝑑𝑟𝑟
= 𝑠𝑠0𝑒𝑒𝑒𝑒𝑒𝑒[−𝜆𝜆(𝑟𝑟 − 𝑟𝑟0)] (12c) 

 
 
 

This equation (12c) can be integrated to provide an equation that illustrates i as a function of r: 
 



 𝑖𝑖(𝑟𝑟) = 𝑖𝑖0 + 𝑠𝑠0{1 − 𝑒𝑒𝑒𝑒𝑒𝑒[−𝜆𝜆(𝑟𝑟 − 𝑟𝑟0)]} − (𝑟𝑟 − 𝑟𝑟0) (13a) 
 
 

 𝑖𝑖(𝑟𝑟) = 1 − 𝑟𝑟 − 𝑠𝑠0𝑒𝑒𝑒𝑒𝑒𝑒[−𝜆𝜆(𝑟𝑟 − 𝑟𝑟0)] (13b) 
 
 
 

If there are very few infectious people, the I-group becomes a very small fraction of the population, therefore 
s + r ≈ 1. In addition, peak infections occur when = 0, the time when the I-group is the largest, assuming t = t1 
at Imax, it is possible to rework the Infection Equation as: 
 

 𝛽𝛽𝑠𝑠(𝑑𝑑1)𝑖𝑖(𝑑𝑑1) = 𝛾𝛾(𝑑𝑑1)𝑖𝑖(𝑑𝑑1) (14a) 
 
 
 

 𝛽𝛽𝑠𝑠(𝑑𝑑1) = 𝛾𝛾 (14b) 
 
 
 

 𝑠𝑠(𝑑𝑑1) =
𝛾𝛾
𝛽𝛽

=
1
𝜆𝜆

 (14c) 

 
 
 

Therefore, the lower the value of λ, the larger the number of people entering the R-group. This is as the 
recovery rate will overpower the rate of individuals entering the I-group. 

When λ < 1; γ > β. This indicates that the s(t) curve will decrease past r(t) curve, which will increase. When 
λ = 1, the ratios of s(t) and r(t) are equal and will inverse after the point of equivalence. When λ < 1, the ratio of 
s(t) was greater than r(t). This demonstrates that the i(t) value was increasing as the infection rate, β, is greater 
than the recovery rate, γ. A point of inflection occurs in the i(t) curve at Imax = t1 which illustrates that as the 
ratios inverse between the s(t) and r(t) curves. The λ value decreases, indicating a lower β value; implying a 
decrease in members in the I-group and a descending i(t) curve. 

The value of the inflection points can be found using the second derivative of s with respects to t: 
 

 𝑑𝑑2𝑠𝑠
𝑑𝑑𝑑𝑑2

= −𝛽𝛽
𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑠𝑠𝑖𝑖] (15) 

 
 
 

As the epidemic dies out, the number of infectious people approaches zero, so an asymptotic limit is formed; 
t →∞, and therefore, s + r = 1. Inflection points will be discussed in greater detail in Section 4.2. 

2.1.1 SIRm Model 
 

The SIRm model, as derived from the SIR model, focuses on the relationship between disease transmission 
and the effect of public health measures. Consider a situation in which public health guidelines are introduced to 
slow the frequency, duration and - contact distance between S-people and I-people. This can be represented by 
making the value of the parameter β vary with time. However, a conceptually simpler way to describe such public 
health measures is to keep β constant and multiply it by a time-varying mixing factor m to reflect changes in 
social distancing. In the present section, we assume that β is constant, and develop the equations and 
approximations for the standard SIR model by setting all m values to 1. 

As such, the differential equations in population fraction notation are: 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝛽𝛽𝑠𝑠𝑖𝑖 (16) 



 
 
 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝑠𝑠𝑖𝑖 − 𝛾𝛾𝑖𝑖 (17) 

 
 
 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑖𝑖 (18) 

 
 
 

 𝑠𝑠 + 𝑖𝑖 + 𝑟𝑟 = 1 (19) 
 
 
 

Dividing equation (17) by equation (16) results in: 
 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑠𝑠

=
−𝛽𝛽𝛽𝛽𝑠𝑠 + 𝛾𝛾
𝛽𝛽𝛽𝛽𝑠𝑠

 (20a) 

 
 
 
  

The solution of equation of (20a) is given as: 
 

 𝑠𝑠 = −
1
𝜆𝜆𝛽𝛽

𝑊𝑊(−𝜆𝜆𝛽𝛽𝜆𝜆 𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝛽𝛽𝑖𝑖)) (20b) 

 
 
 

where 𝜆𝜆 = 𝑖𝑖0 + 𝑠𝑠0 −
1
𝜆𝜆𝜆𝜆

ln (𝑠𝑠0)  is the constant of integration to be determined from initial conditions by 
solving equation (20a), with initial condition 𝑖𝑖(𝑠𝑠0) = 𝑖𝑖0.   

This equation is in terms of the Lambert W function, which is defined after equation (27) below.  
The equations for total cases per day, j, and the total cumulative cases, C are [29]: 

 
 

𝑗𝑗 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (21a) 

 
or 

 𝑗𝑗 = 𝛽𝛽𝛽𝛽𝑠𝑠𝑖𝑖 (21b) 
and 

 
𝑑𝑑 = 𝑑𝑑0 + � 𝑗𝑗(𝜏𝜏)

𝑡𝑡

0
𝑑𝑑𝜏𝜏 (22a) 

 
 

or 



 
𝑑𝑑 = 𝑑𝑑0 + 𝛽𝛽� 𝛽𝛽(𝜏𝜏)𝑠𝑠(𝜏𝜏)𝑖𝑖(𝜏𝜏)

𝑡𝑡

0
𝑑𝑑𝜏𝜏 (22b) 

 

2.2. SEIR Model 

The SIR model can be extended using the Susceptible-Exposed-Infected-Removed (SEIR) variant. This model 
also considers the susceptible, infected and removed populations but unlike the SIR model it also considers the 
exposed population; those who are incubating the virus but are not infectious or infected [19]. The SEIR model adds 
another layer of complexity to the SIR model, by allowing the analysis of conditions of susceptible and infected 
populations during an epidemic outbreak [9]. 

The SEIR model’s governing equations are: 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= −𝜌𝜌𝛽𝛽𝑠𝑠𝑖𝑖 (23) 

 
 

 𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝛽𝛽𝑠𝑠𝑖𝑖 − 𝛼𝛼𝑒𝑒 (24) 

 
 
 

 𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑒𝑒 − 𝛾𝛾𝑖𝑖 (25) 

 
 
 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑖𝑖 (26) 
 
where the parameters are defined as [4, 21]: 
α: incubation rate from the exposed group to the infected group,  
β: infection rate, 
γ: removal rate from the infected group to removed group, 
ρ: the reduced spread rate factor (0 ≤ ρ < 1). 

The equations have been modified to properly reflect a closed population. 
This study examines the use of the Lambert W function in conjunction with the SIR and SEIR models, the 

multivalued inverse of the function w → wew [7]. In the 18th century, scientist Johann Lambert gave a solution to a 
trinomial equation, upon which further work by Euler and Sir Edward Wright led to the now modern definition of 
Lambert’s original work [28]. Their function, named to honour Lambert, is as follows: 
 

 𝑊𝑊(𝑧𝑧)𝑒𝑒𝑊𝑊(𝑧𝑧) = 𝑧𝑧 (27) 
 

The Lambert W function is implicitly elementary in that it is defined by an equation composed of only 
elementary functions but is not an elementary function itself. It has applications in a variety of fields ranging from 
quantum physics, black holes to even the spread of disease [11]. 

Corless et al.’s article regarding the Lambert W function further studied the function’s applicability in epidemics. 
Let us assume in a population of n people, everyone has the same contact with α random others [7]. If γ is the weak 
connectivity of this random net, and disease spreads through transitivity to those in close contact with the infected 
individual, the total infected population is approximated as γn for large n, where: 
 

 𝛾𝛾 = 1 − 𝑒𝑒−𝛼𝛼·𝛾𝛾 (28) 
 

This formula can also be applied for conditions where α is a fixed integer, as well as when α is an expected 



value in that it is not fixed for all individuals and may not be an integer [26, 1]. Re-writing the above formula we 
obtain the following: 

 𝛼𝛼𝑒𝑒𝛼𝛼 = 𝛼𝛼(1 − 𝛾𝛾)𝑒𝑒𝛼𝛼(𝛾𝛾−1) (29a) 
 

One can determine: 
 

𝛾𝛾 = 1 − 𝑇𝑇
(𝛼𝛼𝑒𝑒−𝛼𝛼)
𝛼𝛼

= 1 −𝑊𝑊
(−𝛼𝛼𝑒𝑒−𝛼𝛼)

𝛼𝛼
 (29b) 

 
where α ≥ 1, using the principal branch of T (of the Tree function) and W (of the Lambert W function) [7]. 
 

This epidemic problem is closely tied to a phenomenon described by Erdös and Rényi in which the epidemic 
problem is related to the size of the ‘giant component’ in a random graph [8]. Essentially, when a graph on n 
vertices with  edges is randomly chosen, it is almost certain it has a connected component with 
approximately γn vertices (for γ given by equation (2)) when α ≥ 1 [7]. 

2.2.1. SEIRm Model 
 

The SEIRm model is a derivation of the SEIR model. The SEIRm model trials demonstrate various stabilities of 
the COVID-19 virus situation, based on an unpublished report and private communications by Ken Roberts [22]. By 
observing the value of m, the severity of the situation can be determined. A higher m value would indicate high 
infectivity which not only affects the volume of patients in the hospital, but various other aspects related to COVID-
19 [20]. If the m value is lower, then that would demonstrate a more manageable situation [22]. This once again puts 
an emphasis on the importance of social distancing in order to maintain a lower m value. Two very important aspects 
that would be affected by the reported COVID-19 cases are the development of a vaccine for COVID-19 and medical 
equipment for patients and hospital staff. In SEIRm model trials, COVID-19 data for Ontario is used and α = 0.20 and 
γ = 0.20, which gives β = 0.81 and λ ≈ 4 [22]. 

2.3. Planck Blackbody Distribution 

While analyzing several SIR models of disease, it was observed that some of the infection curves looked like 
Planck’s blackbody distribution curves due to the realistic asymmetry of the infection data curves [20]. Keeping this 
in perspective, it was decided this study would simulate infection curves using an asymmetric function rather than a 
purely symmetric one.  Max Planck theorized that mode energies of the blackbody are not continuously distributed 
but are quantized. He devised a law for blackbody radiation as follows [2]: 

 
𝐵𝐵𝑣𝑣(𝑇𝑇) = 𝐴𝐴

�2·ℎ·𝜈𝜈
𝛼𝛼
𝑐𝑐2� �

𝑒𝑒
ℎ·𝜈𝜈

𝑘𝑘𝑘𝑘� −1
, α=3 (30) 

 
where the parameters are defined as: 
𝐵𝐵𝑣𝑣: spectral radiance,  
h: Planck’s constant,  
c:  speed of light in a vacuum,  
k: Boltzmann constant, 
ν: frequency of the electromagnetic radiation, 
T: absolute temperature of the body, 
α: any value other than 3 to run Planck-like simulations in other situations.  

Therefore, this formula represents the spectral-energy distribution of radiation emitted by a blackbody. 
The similarity of the SIR model infection curve suggests that it may be reasonable to model the infection 

curve for a few different values of α like in a Planck Blackbody Distribution function with an appropriate 
definition of the constants C1 and C2 [28]. 



In this paper, two adjusted formulas inspired from the Planck-like Blackbody Distribution are proposed to 
model infection as a function of time. 

 
𝐼𝐼(𝑑𝑑) =

(𝑑𝑑2 · 𝑑𝑑𝛼𝛼)
𝑒𝑒𝐶𝐶1·𝑡𝑡 − 1

 (31) 

where α can be any positive integer.  

3. Results 

The figures below display the results of the all models (SIR, SIRm, SEIR) fitted onto the given Canadian COVID-
19 dataset by parametrically solving the system numerically using ParametricNDSolve from Wolfram Mathematica 
(version 12.3).  The respective model parameters were derived by using NonlinearModelFit to fit the data to β and 𝛾𝛾 
for the first 177 Days. The solid print lines refer to predicted trends, while the dotted lines refer to the Canadian data. 
During this study, it was found that none of the models were able to fully capture disease spread using one general 
approach–as such, it was found that parameters had to be fitted separately for two separate time windows for the SIR 
and SEIR models as recommended in [4] and varied for SIRm model in order to best capture disease spread. In the 
tables, the P-value signifies the probability of finding the modeled results least extreme to the observations under the 
assumption of the null hypothesis. Hence, the smaller the p-value is, the less likely it is to violate the null hypothesis 
and the result is deemed significant. The t-statistic is the ratio of the departure of the estimated value of a parameter 
from observations to its standard error. It is generally the case that when these values are greater than 2 or less then -
2, the model fit is better. 

3.1. SIR Model 

For the SIR model, β is estimated to be 0.19626 and γ is estimated to be 0.08345 (refer to Table 1). The 
population (N) considered is 3,759,000, and initial infection, 𝑖𝑖0 = 1. The SIR model predicted the infected and 
removed case counts accurately for the first 70 days. After which, the predicted trends fail to capture the rise of 
infected and removed case counts as fast as they had occurred (Figure 1). From days 101-177, the predicted trends 
linearly trace the infected and removed case counts. The predicted trend for removed cases do not accurately track 
the case data that was observed (Figure 2). In contrast, the predicted trend for infected cases faithfully tracks the 
actual infected cases from day 148 onwards (Figure 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Fig.1. SIR model prediction of infected and removed cases with respect to data for Canada for days 1-100 
 
 

Fig. 2. SIR model prediction of infected and removed cases with respect to data for Canada for days 101-177 
 
 
 
 
 



Table 1. SIR and SIRm model parameters used in Figures 1-4 
Days Parameter Estimate Standard Error t-Statistic P-Value 
1-100 β 0.19626 0.0052631 37.2899 1.28271 𝑒𝑒 10−84 

γ 0.0834452 0.00549364 15.1894 1.16729 𝑒𝑒 10−33 
101-177 β 0.0297597 0.000343304 86.6863 2.54249 𝑒𝑒 10−131 

γ 0.0293381 0.000431199 68.0386 9.82261 𝑒𝑒 10−116 
 

3.1.1. SIRm Model 

For the SIRm model, the m value used is 1.05 to modify β and 𝑒𝑒(𝑑𝑑)  =  1 −  0.004𝑑𝑑 as a variation in γ (refer to 
Table 1). The variation of the SIR model parameters as a function of time was recently recommended in [34] as 
well. The SIRm model faithfully predicts the infected and removed case counts for the first 70 days. The predicted 
trends then rise faster in case counts when compared to the actual numbers of infected and removed cases seen 
(Figure 3). From days 101-177, the predicted trend for infected cases is generalized as a plateau, underestimating 
case counts until day 141, after which the trend overestimates case count. From days 101-177, the predicted trend 
for removed cases underestimate actual case counts until 154, after which they overestimate cases.  

Fig. 3. SIRm model prediction of infected and removed cases with respect to data for Canada for days 1-100  
(The orange curve and datapoints refer to the removed cases while, the blue refer to the infected) 



 

Fig. 4. SIRm model prediction of infected and removed cases with respect to data for Canada for days 101-177 
 

3.2. SEIR Model 

For the SEIR model, it is assumed that ρ = 1 to produce the classic SEIR model results. In this model, α is 
estimated to be 0.0267402, β is estimated to be 0.309797 and γ is estimated to be 0.039089 (refer to Table 2). Note 
that ρ = 0 implies everyone in the society is quarantined, while ρ = 1 implies no social distancing. The SEIR model 
is able to follow the general trend of the actual case counts for the first 100 days. It is important to note that for the 
first 100 days, the predicted trend for the infected underestimated the actual case counts until day 95 and then breaks 
away from the real data. The predicted trend for removed cases overestimates the actual cases observed for the first 
100 days (Figure 5). From days 101-177, the predicted trends for both infected and removed follow the general 
linear trends. However, it is important to note that from day 145 onwards the infected real data very accurately 
follows the predicted trend but, from day 158 onwards the removed real data underestimates the predicted trend 
(Figure 6). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig.5. SEIR model prediction of infected and removed cases with respect to data for Canada for days 1-100 
 

 
Fig. 6. SEIR model prediction of infected and removed cases with respect to data for Canada for days 101-177 

 
 
 



 
Table 2. SEIR model parameters used in [Figures 5-6] 

Days Parameters Estimate Standard Error  t-Statistic  P-value 
1-100 α 0.0267402 0.00396713 6.74045 2.2902 x10-10 

β 0.309797 0.0470421 6.58553 5.29441 x10-10 

γ 0.039089 0.00159929 24.4415 7.67106 x10-58 

101-177 α 0.820113 0.0102798 79.7794 2.37222 𝑒𝑒 10−125 
β 0.022746 0.000620057 36.6837 4.21413 𝑒𝑒 10−77 
γ 0.0265887 0.000348606 76.2714 1.79093 𝑒𝑒 10−122 

 

3.3. Planck-Like Blackbody Function 

Figure 7 displays the results of the predicted infected curves after conducting a non-linear fit of the parameters 
C1 and C2. The parameters C1 and C2 were estimated to be 0.0693891 and 2.7832 x 10-11 respectively (see Table 3). 
Several trials of different α values were run, and it was determined that an α value of 9 yielded the best fit for 
modelling COVID-19 data (Figure 7) getting a good estimation of the peak number of infected cases.  

 
Fig..7 Blackbody distribution fit of infected cases using a Planck Function (α=9) with respect to data in Canada from days 0-177 

 
Table 3. Parameters for Planck Blackbody. 

Parameter Estimate Standard Error t-Statistic P-Value 
C1 0.0693891 0.00024041 288.628 8.17177 𝑒𝑒 10−232 
C2 2.7832 𝑒𝑒 10−11 8.85294 𝑒𝑒 10−13 31.4382 5.61764 𝑒𝑒 10−73 

 



4. Discussion 

4.1. Model Interpretations  

Social distancing is the practice of reducing physical contact to reduce opportunity for spread of 
transmissible diseases [6]. Common practices include social isolation, self-quarantine and cancellation of mass 
gatherings. Matrajt and Leung used a mathematical model to illustrate how implementing social distancing 
measures earlier in an epidemic will delay the epidemic curve while interventions started later will flatten the 
curve. The model also illustrated that the epidemic would rebound when interventions are suspended, 
indicating the importance of maintaining social distancing practices for the safety of the population [17].  

In this study, the SIR and SIRm models demonstrate that while initially a good fit for modelling disease 
spread, it veers away from actual data as time passes since it fails to account for several anthropological factors 
such as adherence to prevention methods. The implication that β and γ values vary in the model to best fit the 
results suggest that models that vary these parameters would better fit the actual data, and therefore be able to 
better predict the disease spread.  Overall, the SEIR model was able to predict disease trends better, but it also 
fails to fully capture the impact of anthropological factors. One way to combat this problem would be to focus 
on models that incorporate the addition of other factors such as public compliance and mixing factor. In recent 
work, the SEIRm model results displayed that the mixing factor, m, decreased rapidly to 0.2 levels over 
approximately the first 150 days since April 10, 2020 [22]. The m factor then proceeds to increase to 0.3779 by 
September 16, 2020 [22].  

The m factor in the SEIRm model plays a crucial part in the significance of this model. The values of the m 
factor indicate the severity of the situation regarding COVID-19 case numbers. As indicated earlier, the greater 
the value of m, the more severe the situation. Regarding COVID-19, if a greater m value was seen, this would 
indicate that numbers are rising which then puts greater pressure on hospitals due to a rapid increase in 
patients. A higher m value would not only affect hospitals but would also impact equipment manufacturing 
companies and companies that are working to develop a vaccine for COVID-19. Alternatively, a lower m value 
would indicate a more controlled or lower number of COVID-19 cases. This lessens the strain on hospitals, 
personal protection equipment manufacturers, and labs working on vaccine development. Moreover, the m 
value also allows for a hypothetical timeline to be developed. A timeline would be a very useful aid in creating 
a plan for various areas in order to properly control the spread of COVID-19. 

This study’s results on various modified disease spread models illustrate the importance of social distancing 
and its effects on the rise of infections during a pandemic. The ability of a population to adhere to social 
parameters set by the government can greatly influence and control the spread of an infection. The m factor 
presents a good representation of adherence to social parameters however, it is important to note that many 
other factors can be introduced to better reflect these anthropological variables which are subject to change.  

4.2. SIR Model Inflection Points 

An important aspect of disease modelling is understanding the peak of infection. An inflection point in the 
curve would suggest the peak of infection has been reached which may not be visible using the variable, time 
(t), in the earlier stages of the spread. For this reason, it is important to be able to use the s, i, and r variables 
independently to derive the inflection point without depending on time (t) as a variable.  

In this case, the condition to determine an inflection point are as follows, recalling that equation (5) states 
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

= −𝛽𝛽𝑠𝑠𝑖𝑖: 
 

 
𝑠𝑠" =

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑑𝑑2

 (32a) 

 
For an inflection point to occur, s” = 0 and si are constant 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑
𝑖𝑖 +

𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑
𝑠𝑠 = 0 (32b) 

 
 



 𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑠𝑠𝑖𝑖 − 𝛾𝛾𝑖𝑖 (32c) 

 
Equation (32c) can be rewritten as: 

 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑
𝑖𝑖 = −𝑠𝑠

𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝑠𝑠𝑖𝑖(𝛽𝛽𝑠𝑠 − 𝛾𝛾) (32d) 

 

Factoring out i, we have a simplification, 
 𝑑𝑑𝑠𝑠

𝑠𝑠
= −(𝛽𝛽𝑠𝑠 − 𝛾𝛾)𝑑𝑑𝑑𝑑 (32e) 

or 
 𝑑𝑑𝑠𝑠

𝑠𝑠(𝛽𝛽𝑠𝑠 − 𝛾𝛾) = −𝑑𝑑𝑑𝑑 → ∫ �
1
𝑠𝑠
−

𝛽𝛽
𝛽𝛽𝑠𝑠 − 𝛾𝛾

� 𝑑𝑑𝑠𝑠 = 𝛾𝛾∫ 𝑑𝑑𝑑𝑑 (32f) 

 
 log(𝑠𝑠) − log(𝛽𝛽𝑠𝑠 − 𝛾𝛾) = 𝛾𝛾𝑑𝑑 → log �

𝑠𝑠
𝛽𝛽𝑠𝑠 − 𝛾𝛾

� = 𝛾𝛾𝑑𝑑 (32g) 

 
 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 =
log(𝑠𝑠) − log(𝛽𝛽𝑠𝑠 − 𝛾𝛾)

𝛾𝛾
 (32h) 

 

4.3. Planck–Like Blackbody Distribution and Infectivity 

When analyzing several SIR models of disease, it was observed that the infection curve can resemble the Planck-
like Blackbody function curves. The Planck’s Blackbody Distribution is known to have two dependents: wavelength 
and temperature. While the SIR models illustrate singular dependence, the SIRm model introduces a second 
anthropological factor that, much like how the temperature factor in a blackbody affects the peak of the intensity, 
can affect the rise of infections according to time and change the peak’s position on the graph. 

A blackbody is a physical phenomenon that absorbs all incidence of radiation while emitting a continuous 
spectrum dependent on its thermal conditions. The higher the temperature of the blackbody, the higher the peak of 
re-emission intensity at a lower wavelength [35]. 

This can be compared to the infection curve in the SIRm model. The mixing factor, referred to as the m factor, is 
much like the temperature factor of the blackbody. If the population of a country is akin to the blackbody, a high m 
factor value of a population will allow for a maximum peak of infection to occur earlier during the pandemic. This is 
similar to the temperature variable in a blackbody, which can induce a maximum peak of the intensity at a lower 
wavelength. This allows the m factor to present a measure of how much a population obeys social distancing 
measures provided by the government. 

This comparison presents a good approach as to how the infection rate of a virus can depend on both time and 
compliance attributes of a population. 

5. Conclusions 

The equations used in the SIR model were time dependent [1]. This study examined not only the time dependent 
equations but also derived the different variable relationships to one another. Specifically, this study derived the 
equation for the number of infected cases depending on the number of susceptible individuals, which in turn was 
found with respect to removed individuals. These equations allow for the study of infection in relation to 
transmission. That is, using these models, one can now mathematically study the relationship between infected, 
susceptible and removed individuals in epidemic models. 

With the SEIR model, this study wanted to examine the impact of protective procedures on reducing disease 
spread. The equations were modelled to account for the effect of social distancing on the SEIR model - particularly, 
the exposed and infected groups by the variable ρ [32]. While the feasibility of complete adherence is difficult, these 
results support ideas of protective measures in reducing exposure - therefore, infection - of disease. The models 
discussed in this study have a good range of variability and applicability – but they are not perfect. It is important to 
note that these models assume ideal conditions so they may not truly reflect the actual situations when 



anthropological factors such as interventions are considered.  
To our knowledge, no other study has examined COVID-19 transmission with respect to the SIR model 

using specific variable related derivations, the SEIR model with focus on impact of social distancing and the 
similarities of the infection curves to Planck-like blackbody functions. This study presented several 
mathematical approaches for the modelling of disease transmission using methodologies ranging from the SIR 
model to the SEIR model, and simulations by the Planck blackbody function. Specifically, it demonstrated 
practical applications of these models by comparing their results fitted onto the Canadian COVID-19 cases 
data. Through the predicted values from each model, meaningful inferences about the behaviour and trajectory 
of the COVID-19 pandemic were drawn. 

The results of this study can be used to better understand - or help confirm - the trends of COVID-19 
transmission in a Canadian context. Further studies can use this data to further investigate the efficacy of using 
these mathematical models in extrapolating COVID-19 transmission trends. 
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