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Dense Regression Activation Maps For Lesion
Segmentation in CT scans of COVID-19 patients

Weiyi Xie Colin Jacobs Bram van Ginneken

Abstract—Automatic lesion segmentation on thoracic CT en-
ables rapid quantitative analysis of lung involvement in COVID-
19 infections. Obtaining voxel-level annotations for training seg-
mentation networks is prohibitively expensive. Therefore we pro-
pose a weakly-supervised segmentation method based on dense
regression activation maps (dRAM). Most advanced weakly-
supervised segmentation approaches exploit class activation maps
(CAMs) to localize objects generated from high-level semantic
features at a coarse resolution. As a result, CAMs provide coarse
outlines that do not align precisely with the object segmentations.
Instead, we exploit dense features from a segmentation network
to compute dense regression activation maps (dRAMs) for pre-
serving local details. During training, dRAMs are pooled lobe-
wise to regress the per-lobe lesion percentage. In such a way,
the network achieves additional information regarding the lesion
quantification in comparison with the classification approach.
Furthermore, we refine dRAMs based on an attention module
and dense conditional random field trained together with the
main regression task. The refined dRAMs are served as the
pseudo labels for training a final segmentation network. When
evaluated on 69 CT scans, our method substantially improves the
intersection over union from 0.335 in the CAM-based weakly-
supervised segmentation method to 0.495.

Index Terms—Weakly-supervised semantic segmentation, class
activation map, dense regression activation map, COVID-19,
computed tomography, medical imaging.

I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19) has been
declared a global pandemic since March of 2020. The

total number of infected cases has reached over 83 million
worldwide, with 1.8 million deaths by 2020. Unfortunately,
both numbers are still increasing. To reduce the fatality rate,
effective diagnosis and treatment planning are essential. As
COVID-19 mainly damages the lungs of infected subjects,
chest Computed Tomography (CT) plays a critical role in
rapid diagnosis and progression monitoring of the COVID-
19 infections. Based on chest CT analysis, standardized CT
scoring systems, such as the COVID-19 Reporting and Data
System (CO-RADS) [1], were defined to quantify the degree
of suspicion of COVID-19 according to CT findings into 1-5
scores with an increasing level of suspicion. Similarly, a CT
severity scoring system [2] was designed to assess the extent
of parenchymal involvement of the disease. These scoring
systems may be applied more accurately and rapidly when the
automatic segmentation of infected areas (lesions) would be

(Corresponding author: Weiyi Xie, e-mail: weiyi.xie@radboudumc.nl)
This work was supported by the Dutch Lung Foundation under the project

5.1.17.171.
All authors are with the Radboud university medical center, Radboud

Institute for Health Sciences, Department of Medical Imaging, Nijmegen, The
Netherlands.

Fig. 1: Visualization of Class Activation Maps (CAMs) (2nd
row) and dense regression activation Maps (dRAMs) (3rd row)
in coronal views. CAMs and dRAMs were generated on the
same subject (whose CT scan was shown at the first row) from
our test set.

available. Therefore, this work aims at developing an algorithm
that can automatically segment lesions related to COVID-19
on chest CT scans.

One of the major obstacles of semantic segmentation is the
need to acquire a large amount of voxel-wise annotations for
training the networks, which is particularly challenging when
facing a new problem such as COVID-19. The lack of training
data makes state-of-the-art supervised methods impractical.
Therefore, in this work, we present a novel weakly-supervised
segmentation method that only requires lobe-wise severity
scores as the input reference for training and can produce
dense and precise localized lesion maps that can be used as
lesion segmentations.

Weakly-supervised semantic segmentation has been exten-
sively studied in recent years. In the weakly-supervised setting,
reference annotations can be provided using scribbles [3], or
surface points [4]. Both these approaches seek a trade-off
between annotation efforts and the amount of training informa-
tion provided to the network regarding shapes and locations of
target objects. However, because typical COVID-19 CT abnor-
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malities often have bilateral lung involvement with a peripheral
and diffuse distribution [5], manually annotating scribbles or
extreme points could still be very demanding. To reduce the
annotation cost further, it is favorable to use only image
or region-level labels. Early weakly-supervised segmentation
methods using image-level labels were based on multi-instance
learning frameworks [6] and expectation-maximization al-
gorithm [7]. The current state-of-the-art weakly supervised
segmentation methods using image-level labels were based on
class activation maps [8]–[11] (see recent results on PASCAL
VOC2012 benchmark). CAMs correspond to the regions re-
sponsible for distinguishing image categories in a classification
task. Because CAMs naturally only represent discriminative
regions and may not fully cover or detect all objects, iterative
approaches [11], [12] were proposed to erase already-found
object maps in the previous iteration and force the network to
discover new and complement regions at later iterations.

One major drawback of CAMs is that they are generated
by taking high-level convolution features (at the bottom of
the convolution neural network, usually before global pooling
and linear layers) and multiplying them with class-specific
weights in the linear layer. These high-level features contain
rich semantic information but are generally at a low resolution
compared with the input. The use of low-resolution features
causes CAMs to lose local details, which is problematic
since segmentation requires dense voxel-wise predictions. In
addition, CAMs intrinsically reflect classification decisions,
which are not necessarily aligned with the object segmentation
task. Instead of using low-resolution features, BagNet [13]
resorted to features in the earlier layers of convolution neural
networks for extracting CAMs. Their method may indeed
produce fine-resolution CAMs. However, low-level features
do not suffice to represent complex objects without high-
level semantics, leading to possibly very noisy CAMs. Another
research direction is to use CAMs generated at a low resolution
only as the initial seed regions. Extra steps were needed to
refine CAMs for generating object segmentations. A seeded
region growing module was proposed in [8] to expand CAMs
towards the complete object boundaries in an iterative manner.
AffinityNet [9] exploited local inter-pixel affinities as the
transition probability matrix and applied random walks to
revise CAMs. Many of these CAM refinement methods were
implemented as post-processing steps. Therefore their hyper-
parameters were tuned separately from the neural network
training. For instance, random walks based on trained voxel-
wise affinities were executed in separate post-processing steps
to refine CAMs in AffinityNet [9].

Instead of relying on early layer features or refine CAMs
in post-processing steps, we propose to train a segmentation
network directly to generate high-resolution dense regression
activation maps (dRAMs). We present a network trained for
regressing the per-lobe lesion percentage. We used implied
lesion percentage information from the lobe-wise severity
scores, as typically provided by radiologists. When annotating
lobe-wise severity scores, radiologists measure the lesion per-
centage per lobe and assign a corresponding score if the ratio
falls in a specified range (Table I (b)). This lobe-level super-
vision limits lesion searching to lobes, which is considerably

easier than that using scan-level labels in [14]. Meanwhile,
the per-lobe lesion percentage is a richer type of information
regarding the lesion volume, and such an approach was not
used in previous CAMs-based classification approaches based
on categorical labels. Because the per-lobe lesion percentage
was defined as an interval given a lobe-wise severity score, we
propose an interval regression loss to enforce the predicted per-
centage to fall in a particular range. Furthermore, we introduce
an attention module for revising dRAMs, trained together with
the regression task. The refinement of dRAMs is necessary
because the regression target does not provide information
regarding the object boundary. Inspired by AffinityNet, we
intended to capture local voxel-wise affinities in the attention
module, which enriches object semantics using neighboring
information in revising dRAMs.

Our key contributions are as follows: 1) we propose a
lesion segmentation framework that produces fine-resolution
segmentation maps using only lobe-wise labels in training;
2) we convert the lesion segmentation problem to regression
of the per-lobe lesion percentage defined by the lobe-wise
severity score. The regression problem is solved using a
proposed interval regression loss. These ideas are generic
and can be extended to other weakly-supervised segmentation
problems if specific statistics of the object segmented are
available as the regression target; 3) we refine the dense
regression activation maps using an attention neural network
module and dense conditional random field trained together
with the main regression target.

A. Related works

There are recent works on COVID-19 lesion segmenta-
tion that attempted to reduce the demand for voxel-level
supervision in training. Fan et al. [15] proposed a semi-
supervised training strategy that requires a few labeled images
to train the initial segmentation model and leverages primarily
unlabeled data to fine-tune the model progressively. Laradji
et al. [16] proposed to use point-level labels in an active
learning schema to generate lesion segmentation maps. Yao et
al. [17] superimposed synthesized lesions on healthy CT scans
for their network to learn to separate high-intensity structures
such as vessels from possible COVID-19 lesions. Xu et al.
[18] proposed a generative adversarial learning framework to
segment COVID-19 lesions, which primarily relied on scan-
level labels and used a small amount of voxel-level labeled
data to initialize training. Wang et al. [14] proposed to train
a binary CNN classifier based on the presence of COVID-
19 on CT scans and used the classifier to generate CAMs for
lesion localization. However, without the refinement of CAMs,
their approach was limited to lesion localization rather than
segmentation.

Our approach is closely related to CAMs-based weakly
supervised segmentation approach. We differ in three gen-
eral building blocks of these methods: 1) the generation
of CAMs by training a convolution neural network, often
in a classification task. 2) regularization, as an ill-defined
problem, weakly-supervised semantic segmentation based on
image labels requires networks to localize objects, whereas
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such information is not given in the supervision. The loss
of location information may cause training to converge to a
trivial solution. Therefore, regularization is necessary. 3) CAM
refinement is needed because CAMs do not necessarily reflect
object shapes and align with the object boundaries.

In these three aspects, our approach generates dense class
regression maps (dRAMs) by training a segmentation network
towards a regression target, which is the major novelty of this
paper. In terms of regularization, we use entropy loss to ensure
the dRAMs differentiate foreground and background as confi-
dent as possible. Meanwhile, we use equivariant regularization
proposed in [10] to improve training consistency in a self-
supervised learning schema. The idea is to introduce an inher-
ent constrain that dRAM produced by an affine-transformed
input should be similar to affine-transformed dRAM produced
by the original input. In terms of the refinement, our method is
motivated by the use of local voxel affinities in [9], where au-
thors proposed a network to predict semantic affinities among
local pixel pairs. Then CAMs were refined by iteratively
running random-walks in which the probability transitional
matrix was derived from semantic affinities. A similar but end-
to-end solution can be found in [10] where an attention module
was designed for capturing global pixel affinities, which can be
trained together with the main classification task. The dRAMs
refinement process in our method is closely related to [10]
and [9], while the major difference is that we capture voxel
affinities via attention maps inspired by [10], but computed
within a local neighborhood similar to that in [9]. The use of
local affinities is because we intended to rely on local details
in revising dRAMs.

II. DATA

In this study, we used CT scans from patients who presented
at the emergency wards of the Radboud University Medical
Center, the Netherlands, from March to September 2020.
Patients were referred for CT imaging because of suspicion of
moderate to severe COVID-19 pneumonia. The ethical review
board approved the retrospective and anonymous collection of
this data (Radboudumc CMO2016-3045, Project 20027). All
CT scans were obtained with a low-dose thin slice protocol
without administration of contrast. Further details can be found
elsewhere [19].

Following the guidelines of the Dutch Radiollgical Society
[1], the radiology report for each scan contained CO-RADS
and lobe-wise severity scores. CO-RADS 1 is defined as a scan
that is normal or has non-infectious etiologies, and thus a very
low level of suspicion for COVID-19. CO-RADS 2 indicates
the CT-scan has features typical for infections other than
COVID-19. CO-RADS 3 indicates equivocal findings: features
compatible with COVID-19 but also with other diseases.
CO-RADS 4 and 5 indicate a high and very high level of
COVID-19 suspicion, respectively. CO-RADS 6 was given to
scans from patients that were already known to be positive
for COVID-19 with reverse transcription-polymerase chain
reaction (RT-PCR) tests at the time of reporting. Lobe-wise
severity scores indicate the extent of lobar involvement of the
COVID-19 infection. A score from 0 to 5 is assigned to each

TABLE I: The distribution of CO-RADS scores and lobe-wise
severity scores across the training and test sets in the primary
data collection. CO-RADS score 1-6 indicates the level of
suspicion for COVID-19 positive disease, ranging from very
low, low, equivocal, high, very high, and confirmed PCR
positive, respectively. Lobe-wise Severity scores indicate the
extent of lobe-wise involvement due to COVID-19 infection.

(a) CO-RADS scores

CO-RADS #subjects for training #subjects for testing

1 10 1
2 17 1
3 116 14
4 61 15
5 90 26
6 28 12
Total 322 69

(b) Lobe-wise severity scores
severity scores
(percentage per lobe)

#training
lobes

#testing
lobes

0 (0%) 410 52
1 (1-5%) 401 64
2 (5-25%) 401 114
3 (25-50%) 226 69
4 (50-75%) 131 34
5 (75-100%) 41 12
Total Lobes 1610 345
Total Scans 322 69

lobe according to the visually assessed lesion percentage of
that lobe. The total CT severity score is the summation of
lobe-wise severity scores. The mapping between lobar severity
score and lesion percentage per lobe can be found in Table
I(b). We used lobe-wise severity scores as the weak labels in
training our models.

1) Data Selection and Partitioning: For this study, we
selected 391 subjects (randomly split into 322 for training and
69 for testing). This selection included all subjects that were
available when this project started. A single scan was used for
each subject. Thirty subjects in the training set were used as
the validation set during model development to prevent over-
fitting. The distribution of CO-RADS and lobe-wise severity
scores is provided in Table I (a and b).

In addition to this primary data set, we later randomly
selected another 435 subjects not included in the primary data
collection. Their baseline CT scans were all reported with a
total severity score of 0 and CO-RADS 1. These 435 CT scans
were used as an auxiliary data collection for training our vessel
segmentation network (see Sect. III-A3).

2) Reference Standard: For evaluating our method, lesion
segmentation references on 69 test scans in the primary collec-
tion were obtained from Thirona (Nijmegen, the Netherlands),
a medical image analysis service company specializing in
chest CT analysis.

First, lung parenchyma regions with a higher attenuation
were identified by thresholding and morphologic operations.
Automatic methods were used to suppress vessels and airways.
Following the radiology report, lesion candidates in lobes
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not affected by COVID-19 were then removed. A certified
image analyst with at least one year of experience reviewed
the remaining lesion candidates and corrected segmentations
where necessary.

The analysts also labeled segmented lesions into ground-
glass, consolidation, and mixed to evaluate segmentation per-
formance for different lesion subtypes. During the annotation
process, the analyst could consult a radiologist in cases of
doubt.

III. METHODS

A. Weakly-supervised segmentation framework

The overview of the proposed weakly-supervised lesion
segmentation framework is shown in Fig. 2. We first trained
a regression network to predict the lesion percentage per lobe
and in the process we generate the dense regression activation
maps (dRAMs). Since the lobe-wise severity scores (Table
I (b)) represent a lesion percentage per lobe in a range (a
severity score 1 indicates the percentage of lesion involvement
in the lobe is within the range of 1%-5%, e.g.), we propose an
interval regression loss for training the regression network. In
addition to the regression, dRAMs are refined in an auxiliary
training task that employs a dense conditional random field
and an attention mechanism. Also, an independently trained
vessel segmentation model was used in the refinement process
to suppress false detected vessels. Moreover, regularization
techniques were used to stabilize the regression training.
Finally, we used the refined dRAMs as pseudo segmentation
references for training a segmentation network from scratch.
The following subsections elaborate on each of these steps.

1) Generation of dense regression activation maps: The
dense regression activation map is generated by training a
regression network for predicting the lesion percentage per
lobe. We used standard 3D U-Net [20] as the regression
network (detailed parameters in Fig. 2 (a)) because of its
simplicity and robustness in various medical segmentation
tasks. The 3D U-Net has three down-sampling layers in the
encoding path, and each layer consists of two convolutions
and a max-pooling operation. Following the down-sampling
path, two more convolutions are used to double the number of
convolution filters. In the up-sampling path, three layers are
used to reconstruct the resolution, and each contains one tri-
linear interpolation, followed by two convolutions to reduce
the interpolation artifacts. Before the final one, convolution
kernels have 3 × 3 × 3 kernel size, a stride of 1 voxel, and
zero-padding. The last convolution is a 1× 1× 1 convolution
to squeeze features to have a single channel before applying
sigmoid activation. The network takes an 80×80×80 chunked
image as the input, which is cropped around each segmented
lobe and resized. The segmentation of pulmonary lobes was
done using a publicly-available algorithm [21]. The input and
the output size of the 3D U-Net are identical as we used zero-
padding. For each lobe chunk input, the region outside the
lobe of interest was set to zero. The output of this network is
referred to as the dense regression activation map (dRAM).

The lobe chunk image as the input allowed us to compute
the lesion percentage for the given lobe by simply averaging

the dRAM over all voxels within the lobe (lobe-wise mean
pooling). The reference for regression training was the lobe-
wise severity score reflecting only a particular interval of the
per-lobe lesion percentage (see Table I (b) for the mapping
between lobe-wise severity scores and lesion percentage per
lobe). Therefore, we propose an interval regression loss that
enforces the predicted percentage fall into a corresponding
predefined range. Denoting the predicted lesion percentage as
ŷ, the lower bound and the upper bound of the percentage
range defined by the severity score as rl and ru, we defined
the interval regression loss function to minimize as

max(0, (ŷ–0.5 ∗ (rl + ru))2 −K),
where K = (0.5 ∗ (rl–ru))2.

(1)

This can also be interpreted as the quadratic version of the
piecewise linear loss function that minimizes |ŷ–rl| + |ŷ −
ru| − |ru − rl|. The interval regression loss is weighted on
each instance (a lobe image chunk) by the reverse frequency
of the corresponding severity score in the training set.

2) Regularization techniques for regression training: Train-
ing on weak labels may converge to a trivial solution because
information on the location of objects or, in our case, abnormal
regions, is not available. Therefore, regularization techniques
are commonly used to stabilize training. Wang et al. [10]
introduced an implicit equivariant constraint for training their
weakly supervised segmentation networks based on class
activation maps (CAMs). Their basic idea was to enforce
CAMs produced by an affine-transformed input be similar to
the affine-transformed CAMs produced by the original input.

Denote the 3D U-Net for regression training as F (·), a
predefined spatial affine transformation as A(·), and an input
image to the network as I . Then F (I) represents the dRAM.
Equivariant regularization can be formulated as

RER = ||F (A(I))−A(F (I))||1. (2)

Equivariant regularization can also be interpreted as a way to
introduce the self-supervising correspondences between affine-
transformed objects. The affine transformations used in this
paper are resizing and rotation at a random scale or angle.

Additionally, we introduce entropy regularization to reduce
uncertainty in the generated dRAM. Given dRAM as F (I),
which is already rescaled into a probability distribution by
a sigmoid activation before lobe-wise average pooling, we
introduce an entropy regularization term that minimizes

RE = −F (I)∗log(F (I))−(1.0−F (I))∗log(1.0−F (I)). (3)

3) Vessel segmentation: During our initial experiments, we
observed that raw dRAMs may erroneously include vessels,
possibly caused by the interval regression target since this
only defines a range of acceptable per-lobe lesion percentages.
To suppress vessels in our framework, we trained a separate
3D U-Net segmentation network (using the same architecture
as our regression network) on the auxiliary data collection
of 435 CT scans without COVID-19 CT signs (details in
II-1) for segmenting vessels. Here the training references
were generated by applying Otsu’s threshold [22] on vessel
maps generated by a Frangi filter [23]. Using this model, we
generated vessel segmentations for all 322 training scans in the



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 0, MONTH 2021 5

Fig. 2: Overview of the proposed weakly-supervised segmentation framework. (a) Our architecture is similar to a 3D U-net,
but not trained with segmentation masks, only performing a regression task, i.e., predicting the percentage of lesions per lobe.
At the end of the network, a dense regression activation map (dRAM) is generated, corresponding to the lesion segmentation.
(b) Depicts the attention module for dRAM refinement, according to a synthetic refinement reference generated by applying
dense conditional random field on the raw dRAM and vessel suppression. (c) We train an independent segmentation network
using scan-level pseudo labels gathered from the lobe-wise refined dRAMs and vessel segmentation.

primary data collection, taking voxels with confidences above
0.7 as vessels from the model prediction. The predicted vessels
were used as object cues in our framework to suppress false
lesions. Such low-level features were commonly exploited
in weakly-supervised semantic segmentation. As an example,
Wei et al. [24] used saliency maps based on low-level image
features to train convolutional segmentation networks in the
weakly supervised settings in a progressive manner.

4) Refinement of dense regression activation maps: As
dRAMs were obtained by training on a regression target
and in this process, no voxel-wise supervision was provided,
raw dRAMs may not suffice to delineate lesions accurately.
To alleviate this issue, we proposed to refine dRAMs using
an auxiliary training objective. We post-processed dRAMs
by suppressing vessels using vessel segmentations (III-A3)
and applying dense conditional random field (denseCRF) on
dRAMs. The post-processed dRAMs were used as the training
target to provide voxel-wise supervision in the refinement step.
As shown in Fig. 3, vessels were suppressed in the dRAM,
and dense conditional random field helped to refine the lesion
borders in the refinement target (the 4th row). We used a
bootstrapping loss [25] for the refinement training because
both dRAMs and vessel segmentations were generated by
automatic methods and may contain noise. The bootstrapping

loss function minimizes∑L
k=0[βtk + (1− β)zk]log(qk)

zk = 1[k = argmax(qi)], i = 0, 1, .., L
(4)

where L is the number of classes (3 in our case, including
background, vessel, and lesion), for the class label k, tk is
one-hot encoding pseudo reference and zk is the bootstrapping
reference. qk is the softmax probability of assigning a voxel
into the class k. β is set to 0.8. Note that we detached the
computation of the bootstrapping reference zk in the gradient
back-propagation. The idea of this loss is to leverage the
knowledge learned by the network during training to provide
hints for the true labels.

To further improve the dRAM refinement, we added an
attention module on top of the generated dRAMs from the
regression training. This module calculated local affinities us-
ing low-level convolution features from the regression network
and image intensities. First, the input image was concatenated
with convolution features before pooling at the first and second
layers of the regression network (up-scaled to the same size
as the input image). This concatenation is for capturing the
low-level information, including raw voxel intensities. We de-
tached these concatenated features out of the back-propagation
computation. We then reduced the concatenated features to
have eight channels via a 1× 1× 1 convolution filter to save
computational memory.
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Fig. 3: The generation of the refinement target. The top row
shows a lobe chunk image. The second and third-row visualize
the dRAM and dense CRF result after the suppression of
vessels, respectively. The fourth row shows the synthesised
target labels for the refinement step, including foreground

and background . The bottom row shows the vessel
segmentation.

Denote this reshaped feature map as x, x ∈ RD×W×H×8.
The affinity a(xi, xj) between two locations i and j in x can
be computed in an embedded Gaussian function a(xi, xj) =

e(Wθxi)
T (Wφxj), where Wθ and Wφ are linear transformations

without changing dimensions of the input. Local affinities for
a location i were measured by computing pairwise a(xi, xj)
between i and surrounding locations j in a 3 × 3 × 3 spatial
window taking i as the center with a connectivity of 2,
resulting in total 19 neighboring pairs including the self-
connection. Computing local affinities for all locations in x
resulted in a attention map A, A ∈ RD×W×H×19. Local
affinities for location i were normalized over neighboring
locations Ωj of i. The normalizing factor ζ(x) was simply
a summation ζ(x) =

∑
j∈Ωj a(xi, xj). In matrix form, this

normalization is equivalent as applying softmax function over
the last dimension on A. To revise dRAM y, we first project
dRAM into a subspace by g(y) implemented as the linear
projection WT

g y, and apply matrix multiplication between
the projected dRAM and the attention map A. This matrix
multiplication can be seen as each location in dRAM selec-
tively collecting information from its local neighbors. The

impact from local neighbors in updating a dRAM location was
determined by their pairwise affinities. This is very similar to
propagate messages from local neighbors using random-walks
for refining CAMS in [9].

Since the updated dRAM is in a subspace, we projected
it back using a linear transformation r(·) or Wr in the form
of matrix multiplication. The whole process of using local
affinities to refine dRAM y in the location i can be formulated
as follows

ŷi = r(
1

ζ(x)

∑
Ωj

a(xi, xj)g(yj)) + yi. (5)

The use of residual connections allows gradients to flow
through a network directly if the dRAM already provided
a good segmentation. Note that dRAM refinement branch
in Fig. 2 (b) and the segmentation branch in Fig. 2 (a)
were trained simultaneously along with the regularization
loss terms. The total loss is the weighted average of the
regression term, regularization terms, and the refinement term.
The weight for the main regression target was set to 2.0, and
the rest of the learning objectives were weighted by 1.0.

5) Context aggregation: In this step, a lesion segmentation
network was trained from scratch using pseudo lesion and
vessel labels. This segmentation network is a standard 3D U-
Net, the same as the regression network. This step is necessary
because the regression network may overlook features across
lobes due to the use of lobe chunk images as the network
input. Therefore, this step constructs a scan-level dRAM by
filling lobe-wise refined dRAMs back to the scan from which
the lobe chunks were cropped. The scan-level dRAM was used
as the pseudo lesion label. We re-sampled scans and pseudo
labels into an isotropic spacing of 1.5 millimeters to set the
receptive field of the network to 132 millimeters (88 voxels in
the 3D U-Net). The input to the network is a mini-batch of two
132 × 132 × 132 3D image chunks, randomly cropped from
the scan during training, and the corresponding output chunks
in size of 44× 44× 44 due to valid-padding in convolutions
(this is the only difference compared to what we use in the
regression network).

The pseudo vessel and lesion labels were stacked together
channel-wise, where 0 indicates background, 1 denotes the
vessels, and 2 indicates lesions. Due to the possible noise
in the pseudo labels, the final segmentation training adopted
the bootstrapping loss function (Eq. 4). Because the final
segmentation network was trained in a patch-based fashion,
the softmax probabilities of all 3D output chunks are tiled
together by sliding over the entire scan without overlap to
build up a scan-level probability map. The lesion prediction
was assigned if a maximum probability was found on the 2nd
channel in the softmax probability map.

6) Lesion segmentation in different subcategories: Given
the lesion segmentation results, we further labeled each con-
nected component in the segmentation into one of three
subcategories: ground-glass, consolidation, and mixed. We
adopted a non-parametric approach based on Kullback–Leibler
divergence (KLD) for the similarity measurements. We had
analysts manually segment and label COVID-19 lesions in six
selected CT scans from the validation set in our main data
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TABLE II: Segmentation results of the proposed weakly
supervised segmentation framework (dRAM) in comparison
with the baseline approach (CAM) and the fully supervised
segmentation framework (nn-UNet) on the test set in the main
data collection. Weakly-supervised methods are denoted by
W, fully supervised methods as F. The best weakly supervised
method is shown in bold, evaluated by a Wilcoxon signed-rank
test (p <0.01 with Bonferroni correction)

a) Segmentation performance

Method IoU
Overall Consolidation GGO Mixture

CAM (W) 0.335 0.527 0.049 0.165
dRAM (W) 0.495 0.710 0.182 0.273
nnU-Net (F) 0.619 0.782 0.276 0.409

b) Ablation study

Method Ablation IoU

nnU-Net (F) - 0.619

CAM (W) raw 0.222
+refine 0.336

dRAM (W)

raw 0.395
+regularizer 0.435

+refine 0.452
+attention 0.469

+vessel suppression 0.475
+context 0.495

collection, including lesions with all three subcategories. We
performed connected component analysis for these reference
scans using the segmentation references and computed the
mean and standard deviation for all the components. For each
test scan, the same connected component analysis was applied
to the segmentation map of our method. Moreover, we looped
through all test components to compute the mean and standard
deviation. Assuming that intensity values were Gaussian dis-
tributed for each component, we can compute pairwise KLDs
between a test component and all components in the labeled
six segmentation references to measure the similarity between
components. Due to the impact of the component size in
computing the statistics, we first shortlisted K components in
the references with the smallest differences in lesion volumes
(K=10) to a test component. Among shortlisted components
in the references, components with the smallest N KLD
were selected for weighted label voting (N=5). Weights were
determined by their rankings in their KLD similarities to the
test component. KLD for two Gaussians is defined as:

KLD(p, q) = log(
σ2

σ1
) +

σ2
1 + (µ1 − µ2)2

2σ2
− 1

2
, (6)

where q and p are distributed under N(µ1, σ1) and N(µ2, σ2),
respectively.

IV. RESULTS

A. Training and testing details

Training, validation, and testing of each experiment were
carried out on a machine with an NVidia TitanX GPU with 12
GB memory. The methods were implemented using Python 3.6
and the Pytorch 1.1.0 library [26]. The trainable parameters of
each method were initialized using Kaiming He initialization

[27] and were optimized using stochastic gradient descent with
a momentum of 0.9, and the initial learning rate is set to 10−5.
Dense conditional random field was implemented using the
Pydensecrf python library [28]1.

During training and testing, CT scans were standardized
by clamping intensity values to the [−1200 ∼ 300] range
before re-scaling into [0 ∼ 1]. We segmented lobes using an
automated algorithm proposed in [21] on all the CT scans,
used for masking out regions outside the lobes during the
training and the testing.

We applied random flip, resampling, and contrast stretching
as data augmentation methods during all methods training.

We resampled input scans into an isotropic spacing of
1.2 millimeters (with a small random jittering) by tri-linear
interpolation for training regression networks. Input chunk
images were rescaled using tri-linear interpolation by a factor
of 0.8, 1.0, 1.2, and 1.5 when running the regression network
at a test time to generate multi-scale dRAMs. These dRAMs
were merged by averaging.

For training the final segmentation network, we resampled
the scans and pseudo labels into a fixed isotropic spacing of
1.5 millimeters by tri-linear interpolation for both training and
testing. Not using multi-scale input images and test ensembles
guarantied the runtime efficiency of our final model.

B. Evaluation Metrics

The Intersection over Union (IoU), also known as the Jac-
card index, between predictions and segmentation references,
was used to evaluate segmentation performance. The IOU
between two binary masks X,Y is defined as:

IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

. (7)

C. Methods in comparison

1) The fully-supervised method: To evaluate the segmen-
tation performance of a model trained on voxel-wise labels,
analysts annotated lesions on 108 scans from our training
set in the main data collection using the same protocol as
defined in II-2. We trained a 3D U-Net based on the nn-UNet
[29] framework, which has shown superior performance in
many medical image segmentation challenges. The framework
itself is an implementation of U-Net but took advantage of
model ensembles (2D, 3D, and Cascading U-Nets), rich data
augmentation techniques, and the combination of state-of-the-
art segmentation loss functions. In their framework, all of these
configurations are automatically adapted during training to
data at hand. We resampled scans into 1.5 millimeters isotropic
spacing by tri-linear interpolation for training and testing the
nn-UNet.

2) Weakly supervised methods: We used the standard
CAM-based weakly-supervised segmentation as the baseline
approach, where the network is only the down-sampling path
of the 3D U-Net. During training, CAMs were generated by
applying the fully-connected layer on the lowest resolution
features before the global average pooling. The network was

1https://github.com/lucasb-eyer/pydensecrf
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trained to classify each lobe chunk image into two classes:
positive if lesions are present and negative if not. Training
and testing hyperparameters (data augmentation, resampling
of input images, test ensembles and model initialization, e.g.)
were the same as those used in the proposed method. During
testing, lobe-wise CAMs were tiled back to become a scan-
level CAM, which was rescaled into [0 ∼ 1] by subtracting the
minimum and dividing the maximum. The lesion segmentation
was obtained by binarizing the rescaled scan-level CAM using
Otsu’s threshold. Because of using features at a low resolution,
results from raw CAMs were far from the segmentation
expectation.

To obtain a reasonable performance, we applied Otsu’s
segmentation method within the lung area to obtain high-
attenuation in the lung as the lesion proposal after excluding
vessels predicted by the trained vessel segmentation network
(see Sect. III-A3). Then CAMs were refined by excluding
regions outside the lesion proposal. The result from the refined
CAMs was denoted as CAM in Table IV (a). Results from both
raw and refined CAMs can be found in the ablation study in
Table IV (b). The baseline result refers to the result using
refined CAMs.

To evaluate the effectiveness of each component in the
proposed weakly supervised segmentation framework based
on dRAMs, we conducted the following ablation study. Raw
dRAMs (denoted as raw in Table IV(b)) were trained using
only the regression loss. This demonstrates the benefits of
using fine resolution features from a segmentation network
and training towards the regression target rather than the
classification training using CAMs. The importance of proper
regularization was measured by adding entropy and equivariant
losses (denoted as regularizer) to raw dRAMs training. On
top of using regularizers, refinement steps with or without
attention module were both evaluated. Additional advantages
of using vessel suppression in the refinement step were also
assessed on top of the contribution of the attention module.
Finally, we reported the performance of the proposed method,
which was the segmentation model in context aggregation
step trained using pseudo lesion and vessel labels (denoted
as context in Table IV (b) and dRAM in Table IV (a)). A
Wilcoxon signed-rank test was employed to assess whether the
performance difference was statistically significant (p <0.01
with Bonferroni correction). The best weakly-supervised ap-
proach was significantly better than all ablated alternatives and
is shown in bold in Table IV (b).

D. Quantitative Results

From the results in Table IV, the proposed method reaches
0.495 overall IoU compared with 0.336 IoU achieved by the
baseline method in weakly-supervised settings trained using
only lobe-wise severity scores. This performance improvement
can also be seen in the segmentation of all lesion sub-
categories. Meanwhile, both weakly-supervised segmentation
methods are outperformed by the nnU-Net method trained on
voxel-wise labels because of the rich semantic information em-
bedded in voxel labels. The ablation study demonstrates that
adding regularizers improves the performance dramatically

from 0.395 to 0.435, benefiting from self-supervised training
and entropy minimization. The refinement auxiliary training
task further improves the performance to 0.452, which is
caused by the refinement of lesion borders under the guidance
of dense conditional random field. The attention module in
the refinement process further boosts the performance to 0.469
by learning voxel-wise affinities. Vessel suppression provided
additional improvement by reducing false lesions, forcing the
regression training to discover other regions associated with
the per-lobe lesion percentage. Finally, the context aggregation
step recollects contextual features across lobes in a patch-
based training, resulting in an IoU of 0.495.

E. Prediction of the CT Severity Score

Based on the segmentation prediction of abnormal regions
in each lobe, the algorithm can output the lesion percentage
per lobe, which can be translated into lobe-wise severity scores
via the mapping in Table II-1(b). We computed linear weighted
kappa scores for the baseline method, the proposed method,
and the nnU-Net method trained with voxel-wise labels against
the lobe-wise severity scores assigned by the radiologist. The
kappa scores were categorized as slight, fair, moderate, good,
or excellent based on k values of 0.20 or less, 0.21–0.40,
0.41–0.60, 0.61–0.80, and 0.81 or higher, respectively, fol-
lowing [30]. The k value was 0.392 (95% CI: 0.334, 0.449)
for the baseline method, 0.461 (95% CI: 0.399, 0.524) for
the proposed, and 0.514 (95% CI: 0.459, 0.570) for the nnU-
Net method. There was a moderate agreement between the
predicted scores by the proposed method and manual scores,
but a fair agreement between the scores predicted by the
baseline method and manual scores.

F. Qualitative Results

As shown in Fig.4, the result from raw CAMs often exhib-
ited from substantial over-segmentation (1st row). This is be-
cause CAMs were computed from the low-resolution features
and resampled to the original resolution by interpolation. The
baseline method (2nd row) using refined CAMs often missed
lesions (4th and fifth columns) due to the difficulties of finding
optimal thresholds in post-processing CAM refinement steps.
The proposed method (4th row) generally performed well on
lesion segmentation. Compared with the nn-UNet results, the
proposed method produced more false positives in regions near
vessels with low attenuation. One reason is that the lobe-wise
severity scores only represent an interval of the per-lobe lesion
percentage, and not the precise percentage, which potentially
allows the network to tolerate certain mistakes. This can also
cause the method to be less precise for small ground glass
lesions (see the subpleural region of the left upper lung in
the 5th column). On the other hand, the regions near vessels
appeared in a similar intensity range as the ground-glass
opacities and were possibly related to inflammation caused
by COVID-19. In general, ground-glass opacities may create
challenges in visual recognition. This challenge may also
cause measurement errors for radiologists in labeling severity
scores, further contributing to confusion regarding ground-
glass opacities in our method.
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Fig. 4: Segmentation results for six representative test cases represented in columns. The 1st row shows six scans represented
in a coronal slice. At the same slice, the 2nd, 3rd, 4th, and 5th rows show the segmentation results of the raw CAM, the
baseline (refined CAM), the proposed and nnU-Net method, respectively. The last row shows the segmentation reference.
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V. DISCUSSION AND CONCLUSION

We proposed a novel weakly-supervised segmentation
method. This method is able to train a segmentation network
using only severity scores provided for individual lobes, where
these scores correspond to a range of percentages of affected
regions in these lobes. The use of such visually assessed
percentages of affected regions is common in radiological
scoring systems. From only these lobe scores, the network is
able to generate dense regression activation maps (dRAMs).
These dRAMs were refined by aligning with the outputs from
dense conditional random fields. We also proposed an attention
module that enriches the semantic representation at each voxel
based on its local neighbors (affinities). Pseudo labels were
generated based on refined dRAMs and an additional step
to remove false responses on vessels. The final segmentation
was trained from scratch based on the pseudo labels using
a bootstrapping loss to handle possible noise in the pseudo
labels.

The proposed method achieved significant improvements
in segmentation performance compared with the baseline
approach. In terms of the prediction of lobe-wise severity
scores, the proposed method reached a moderate agreement
with the scores assigned by the radiologist, while the baseline
method only reached a fair agreement. As we showed in
our results, the proposed model sometimes produced false
positives in the regions near vessels and may miss small
ground glass lesions. However, as weak labels are cheap to
collect, more advanced approaches can be built upon our
model using our methods as the initial seed for interactive
(e.g., adaptive learning scenarios) or iterative refinement (e.g.,
knowledge distillation).

The proposed method is generic and can be easily adapted to
other weakly-supervised segmentation problems if specific ob-
ject statistics are given and can be used as the regression target.
We believe that the proposed weakly-supervised segmentation
framework can be used for many segmentation problems in
medical imaging, where automatic segmentation is often used
for quantification analysis. In these scenarios, visually assessed
quantification results from radiological scoring systems can be
directly used in our framework as the regression target.
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