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Abstract Individual behaviors play an essential role in the dynamics of
transmission of infectious diseases, including COVID–19. This paper studies a
dynamic game model that describes the social distancing behaviors during
an epidemic, assuming a continuum of players and individual infection
dynamics. The evolution of the players’ infection states follows a variant of the
well-known SIR dynamics. We assume that the players are not sure about their
infection state, and thus they choose their actions based on their individually
perceived probabilities of being susceptible, infected or removed. The cost
of each player depends both on her infection state and on the contact with
others. We prove the existence of a Nash equilibrium and characterize Nash
equilibria using nonlinear complementarity problems. We then exploit some
monotonicity properties of the optimal policies to obtain a reduced-order
characterization for Nash equilibrium and reduce its computation to the
solution of a low-dimensional optimization problem. It turns out that, even in
the symmetric case, where all the players have the same parameters, players
may have very different behaviors. We finally present some numerical studies
that illustrate this interesting phenomenon and investigate the effects of several
parameters, including the players’ vulnerability, the time horizon, and the
maximum allowed actions, on the optimal policies and the players’ costs.
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1 Introduction

COVID–19 pandemic is one of the most important events of this era.
Until early April 2021, it has caused more than 2.8 million deaths, an
unprecedented economic depression, and affected most aspects of people’s
lives in the larger part of the world. During the first phases of the
pandemic, Non–Pharmaceutical Interventions (primarily social distancing) has
been one of the most efficient tools to control its spread [1]. Due to the
slow roll-out of the vaccines, their uneven distribution, the emergence of
SARS-CoV-2 variants, age limitations, and people’s resistance to vaccination,
social distancing is likely to remain significant in large part of the globe for
the near future.

Mathematical modeling of epidemics dates back to early twentieth century
with the seminal works of Ross [2] and Kermack and McKendrick [3]. A widely
used modeling approach separates people in several compartments according
to their infection state (e.g. susceptible, exposed, infected, recovered etc.) and
derive differential equations describing the evolution of the population of each
compartment (for a review see [4]). Individual behaviors are essential to the
description of the spread of epidemics. Thus, several game theoretic models
were developed, to study voluntary vaccination [5,6,7,8,9,10,11,12] and
voluntary implementation of Non-Pharmaceutical Interventions (NPIs) [13,14,
15,16,17,18,19,20,21,22,23]. Another closely related stream of research is the
study of the adoption of decentralized protection strategies in engineered and
social networks [24,25,26,27]. Recently, with the emergence of the COVID–19
pandemic, there is a renewed interest in modeling individual behaviors. Related
tools include dynamic game analysis of social distancing [28,29,30,31,32,33],
evolutionary game theory [34,35,36,37] and network game models [38,39].

This paper presents a game-theoretic model to describe the social
distancing choices of individuals during an epidemic. Each player has an
infection state, which can be Susceptible (S), Infected (I), or Removed (R). The
probability that a player is at each health state evolves dynamically depending
on the player’s distancing behavior, the others’ behavior, and the prevalence
of the epidemic. We assume that the players care both about their health state
and about maintaining their social contacts. The players may have different
characteristics, e.g., vulnerable vs. less vulnerable, or care differently about
maintaining their social contacts.

We assume that the players are not sure about their infection state,
and thus they choose their actions based on their individually perceived
probabilities of being susceptible, infected or removed. In contrast with
most of the literature, in the current work, players – even players with the
same characteristics – are allowed to behave differently. We first characterize
the optimal action of a player, given the others’ behavior, and show some
monotonicity properties of optimal actions. We then prove the existence of a
Nash equilibrium and characterize it in terms of a nonlinear complementarity
problem.
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Using the monotonicity of the optimal solution, we provide a simple
reduced-order characterization of the Nash equilibrium in terms of a nonlinear
programming problem. This formulation simplifies the computation of the
equilibria drastically. Based on that result, we performed numerical studies,
which verify that players with the same parameters may follow different
strategies. This phenomenon seems realistic since people facing the same risks
or belonging to the same age group often have different social distancing
behaviors.

The rest of the paper is organized as follows. Section 2 presents the game
theoretic model. In section 3, we analyze the optimization problem of each
player and prove some monotonicity properties. In Section 4, we prove the
existence of the equilibrium and provide Nash equilibrium characterizations.
Section 5 presents some numerical results. Finally, the Appendix contains the
proof of the results of the main text.

2 The Model

This section presents the dynamic model for the epidemic spread and the social
distancing game among the members of the society.

We assume that the infection state of each agent could be Susceptible (S),
Infected (I), Recovered (R), or Dead (D). A susceptible person gets infected
at a rate proportional to the number of infected people she meets with. An
infected person either recovers or dies at constant rates which depend on her
vulnerability. An individual who has recovered from the infection is immune,
i.e., she could not get infected again. The evolution of the infection state of
an individual is shown in Figure 1.

S I R

D
αi-αi

αi

Fig. 1: The evolution of the infection state of each individual.

We assume that there is a continuum of agents. This approximation is
frequently used in game–theoretic models dealing with a very large number
of agents. The set of players is described by the measure space ([0, 1),B, µ),
where B is the Borel σ-algebra and µ the Lebesgue measure. That is, each
player is indexed by an i ∈ [0, 1).

Denote by Si(t) the probability that player i ∈ [0, 1) is susceptible at time
t and by Ii(t) the probability player i is infected. The dynamics is given by:

Ṡi = −ruiSiIf

İi = ruiSiIf − αiIi
, (1)



4 I. Kodonis, A.-R. Lagos and G.P. Papavassilopoulos

where r, αi are positive constants, and ui(t) is the action of player i at time
t. The quantity ui(t) describes player i’s socialization, which is proportional
to the time she spends in public places. The quantity If , which denotes the
density of infected people in public places, is given by:

If (t) =

∫
Ii(t)ui(t)µ(di). (2)

For the actions of the players, we assume that there are positive constants
um, uM , such that ui(t) ∈ [um, uM ] ⊂ [0, 1]. The constant um describes the
minimum social contacts needed for an agent to survive and uM is an upper
bound posed by the government.

The cost function for player i is given by:

J i = Gi(1− Si(T ))− si
∫ T

0

ui(t)ũ(t)dt− si
∫ T

0

κui(t)dt, (3)

where T is the time horizon. The first term of (3) corresponds to the disutility
a player experiences if she gets infected and the parameter Gi > 0 depends on
the vulnerability of the player. The second term corresponds to the utility a
player derives from the interaction with the other players, whose mean action
is denoted by ũ(t):

ũ(t) =

∫
ui(t)µ(di). (4)

Finally, the third term indicates the interest of a person to go outside. The
relative magnitude of this desire is modeled by a positive constant κ.

Considering the auxiliary variable ū(t):

ū(t) = κ+ ũ, (5)

and computing S(T ) by solving (1), the cost can be written equivalently as:

J i = Gi
(

1− Si(0)e−r
∫ T
0
ui(t)If (t)dt

)
− si

∫ T

0

ui(t)ū(t)dt. (6)

Assumption 1(Finite number of types): There are M types of players.
Particularly, there are M + 1 values 0 = ī0 < · · · < īM = 1 such that the
functions Si(0), Ii(0), Gi, si, αi : [0, 1) → R are constant for i ∈ [̄i0, ī1), i ∈
[̄i1, ī2), . . . , i ∈ [̄iM−1, īM ). Denote by mj = µ([̄ij−1, īj)) the mass of the
players of type j. Of course m1 + · · ·+mM = 1.

Remark 1 The finite number of types assumption is very common in many
applications dealing with a large number of agents. For example, in the
current COVID–19 pandemic, people are grouped based on their age and/or
underlying diseases to be prioritised for vaccination. Assumption 1, combined
with some results of the following section, is convenient to describe the
evolution of the states of a continuum of players using a finite number of
differential equations.
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Assumption 2(Piecewise–constant actions): The interval [0, T ) can be
divided in subintervals [tk, tk+1), with t0 = 0 < t1 < · · · < tN = T , such that
the actions of the players are constant in these intervals.

Remark 2 Assumption 2 indicates that people decide only a finite number of
times (tk) and follow their decisions for a time interval [tk, tk+1). A reasonable
length for that time interval could be 1 week.

The action of player i in the interval [tk, tk+1) is denoted by uik.

Assumption 3(Measurability of the actions): The function u·k : [0, 1) →
[um, uM ] is measurable.

Under Assumptions 1–3, there is a unique solution to differential equations
(1), with initial conditions S·(0), I ·(0), and the the integrals in (2), (4) are
well-defined (see Appendix A.1). We use the following notation:

ūk =

∫ tk+1

tk

ūdt, and Ifk =

∫ tk+1

tk

If (t)dt.

For each player we define an auxiliary cost, by dropping the fixed terms of
(6) and dividing by si:

J̃ i(ui) = −bi exp

[
−r

N−1∑
k=0

uikI
f
k

]
−
N−1∑
k=0

uikūk, (7)

where bi = Si(0)Gi/si, and ui = [ui0, . . . , u
i
N−1]T . Denote by U = [um, uM ]N ,

the set of possible actions for each player. Observe that ui minimizes J i over
the feasible set U if and only if it minimizes the auxiliary cost J̃ i. Thus, the
optimization problem for player i is equivalent to:

minimize
ui∈U

J̃ i(ui). (8)

Assumption 4: For a player i of type j denote bj = bi. Assume that the
different types of players have different bj ’s. Without loss of generality assume
that b1 < b2 < · · · < bM .

Assumption 5: Each player i has access only to the probabilities Si and
Ii and the aggregate quantities ū and If , but not the actual infection states.

Remark 3 This assumption is reasonable in cases where the test availability
is very sparse, so the agents are not able to have a reliable feedback for their
estimated health states.

In the rest of the paper we suppose that Assumptions 1–5 are satisfied.
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3 Analysis of the Optimization Problem of Each Player

In this section, we analyze the optimization problem for a representative player
i, given ūk and Ifk > 0, for k = 0, . . . , N − 1.

Let us first define the following composite optimization problem:

minimize
A

{
−bie−A + f(A)

}
, (9)

where:

f(A) = inf
ui∈U

{
−
N−1∑
k=0

uikūk :

N−1∑
k=0

uikI
f
k = A/r

}
. (10)

The following proposition proves that (8) and (9) are equivalent and
expresses their solution in a simple threshold form.

Proposition 1 (i) If ui is optimal for (8), then ui ∈ Ũ = {um, uM}N .
(ii) Problems (8) and (9) are equivalent, in the sense that they have the same

optimal values, and ui minimizes (8) if and only if there is an optimal A
for (9) such that ui attains the minimum in (10).

(iii) Let Am = rum
∑N−1
k=0 Ifk and AM = ruM

∑N−1
k=0 Ifk . For A ∈ [Am, AM ],

the function f is continuous, non-increasing, convex and piecewise affine.
Furthermore, it has at most N affine pieces and f(A) = ∞, for A 6∈
[Am, AM ].

(iv) There are at most N + 1 vectors ui ∈ U that minimize (8).

(v) If ui is optimal for (8), then there is a λ′ such that ūk/I
f
k ≤ λ′ implies

uik = um, and ūk/I
f
k > λ′ implies uik = uM .

Proof See Appendix A.2

Remark 4 The fact that the optimal value of a linear program is a convex
function of the constraints constants is known in the literature (e.g., see [40]
chapter 2). Thus, the convexity of the function f is already known from the
literature.

Corollary 1 There is a simple way to solve the optimization problem (8)
using the following steps:

1. Compute Λ = {ūk/Ifk : k = 0, . . . , N − 1} ∪ {0}.
2. For all λ′ ∈ Λ compute uλ

′
with:

uλ
′

k =

{
uM if ūk/I

f
k > λ′

um if ūk/I
f
k ≤ λ′

,

and J i(uλ
′
).

3. Compare the values of J i(uλ
′
), for all λ′ ∈ Λ and choose the minimum.

We then prove some monotonicity properties for the optimal control.
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Proposition 2 Assume that for two players i1 and i2, with parameters bi1

and bi2 , the minimizers of (9) are A1 and A2 respectively and ui1 and ui2 are
the corresponding optimal actions. Then:

(i) If bi1 < bi2 , then A1 ≥ A2.
(ii) If bi1 < bi2 , then ui2k ≤ u

i1
k , for k = 0, . . . , N − 1.

(iii) If bi1 = bi2 , then either ui2k ≤ u
i1
k for all k, or ui1k ≤ u

i2
k for all k.

Proof See Appendix A.3.

Remark 5 Proposition 2.(ii) expresses of the fact that if (a) a person is more
vulnerable, i.e., she has large Gi, or (b) she derives less utility from the
interaction with the others, i.e., she has smaller si, or (c) it is more likely
that she is not yet infected, i.e., she has larger Si(0), then she interacts less
with the others. It is probably interesting that small differences in Si(0) can
be amplified.

4 Nash Equilibrium Existence and Characterization

4.1 Existence and NCP characterization

In this section, we prove the existence of a Nash equilibrium and characterize
it in terms of a Nonlinear Complementarity Problem (NCP).

We consider the set Ũ = {um, uM}N , defined in Proposition 1. Let
v1, . . . , v2N be the members of the set Ũ , and pjl be the mass of players of

type j following action vl ∈ Ũ . Let also pj = [pj1, . . . , p
j
2N ] be the distribution

of actions of the players of type j and π = [p1, . . . , pM ] be the distribution of
the actions of all the players.

Denote by:

∆j = {pj ∈ R2N

: pjl ≥ 0,

2N∑
l=1

pjl = mj}, (11)

the set of possible distributions of actions of the players of type j and by
Π = ∆1 × · · · ×∆M the set of all possible distributions.

Finally, let F : Π → R2N ·M be the vector function of auxiliary costs, that
is, the component F(j−1)2N+l(π) is the auxiliary cost of the players of type j

playing a strategy vl, as introduced in (7), when the distribution of actions is
π. We denote F j(π) = [F(j−1)2N+1(π), ..., Fj2N (π)] the vector of the auxiliary

costs of the players of type j playing vl, l = 1, . . . , 2N .
Let us recall the notion of a Nash equilibrium for games with a continuum

of players (e.g. [41]).

Definition 1 A distribution of actions π ∈ Π is a Nash equilibrium if for all
j = 1, . . . ,M and l = 1, . . . , 2N :

π(j−1)2N+l > 0 =⇒ l ∈ arg min
l′

F(j−1)2N+l′(π) (12)
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Let δj(π) be the value of problem (8), i.e., the minimum value of the
auxiliary cost of an agent of type j. This value depends on π, through the
terms If and ū. Define Φj(π) = F j(π)−δj(π) and Φ(π) = [Φ1(π)...ΦM (π)]. We
then characterize a Nash equilibrium in terms of a Nonlinear Complementarity
Problem (NCP):

0 ≤ π ⊥ Φ(π) ≥ 0, (13)

where π ⊥ Φ(π) means that πTΦ(π) = 0.

Proposition 3 (i) A distribution π ∈ Π corresponds to a Nash equilibrium if
and only if it satisfies the NCP (13).

(ii) A distribution π ∈ Π corresponds to a Nash equilibrium if and only if it
satisfies the variational inequality:

(π′ − π)TF (π) ≥ 0, for all π′ ∈ Π (14)

(iii) There exists a Nash equilibrium.

Proof See Appendix A.4.

Remark 6 In principle, we can use algorithms for NCPs to find Nash equilibria.
The problem is that the number of decision variables grows exponentially with
the number of decision steps. Thus, we expect that such methods would be
applicable only for small values of N .

4.2 Structure and Reduced Order Characterization

In this section, we use the monotonicity of the optimal strategies, shown
in Proposition 2, to derive a reduced order characterization of the Nash
equilibrium.

The actions on a Nash equilibrium have an interesting structure. Assume
that π is a Nash equilibrium and:

V = {vl ∈ Ũ : ∃j : π(j−1)2N+l > 0} ⊂ Ũ , (15)

is the set of actions used by a set of players with a positive mass. Let us define
a partial ordering on Ũ . For v1, v2 ∈ Ũ , we write v1 � v2 if v1

k ≤ v2
k for all

k = 1, . . . , N . Proposition 2.(iii) implies that V is a totally ordered subset of
Ũ (chain).

Lemma 1 There are at most N ! maximal chains in Ũ , each of which has
length N + 1. Thus, at a Nash equilibrium, there are at most N + 1 different
actions in V.

Proof See Appendix A.5.



Dynamic Games of Social Distancing during an Epidemic 9

k

ρ
0

ρ
1

ρ
2

ρ
3

ρ
4

m1

m1+m2

0 1 2 3 4
0

1

=i1

=i2

Fig. 2: In this example, N = 5 and there are M = 3 types of players, depicted
with different colors. The mass of players below each solid line play uM and
the mass of players above the line play um. Example 1 computes π from ρ.

For each time step k, denote by ρk the fraction of players who play uM ,
that is, ρk = µ({i : uik = uM}). Given any vector ρ = [ρ1 . . . ρN ] ∈ [0, 1]N , we
will show that there is a unique π ∈ Π, such that the corresponding actions
satisfies the conclusion of Proposition 2.(iii) and induces the fractions ρ. An
example of the relationship between π and ρ is given in Figure 2.

Let us define the following sets:

Ik = {i ∈ [0, 1) : uik = uM}, Kk = {k′ : ρk′ ≥ ρk}, k = 0, . . . , N − 1.

Let k1, . . . , kN be a reordering of 0, . . . , N−1 such that ρk1 ≤ ρk2 ≤ · · · ≤ ρkN .
Consider also the set Ṽ = {v̄1, . . . , v̄N+1} of N + 1 actions v̄n with:

v̄nk =

{
uM if k ∈ Kkn

um otherwise
, n = 1, . . . , N, (16)

and v̄N+1
k = um, for all k. Observe that v̄n+1 � v̄n. The following proposition

shows that the set V, defined in (15) is subset of the set Ṽ.

Proposition 4 Assume that (uik)i∈[0,1),k=0,...,N−1, with ui ∈ Ũ , be a set of
actions satisfying the conclusions of Proposition 2. Then:

(i) For k 6= k′, either Ik ⊂ Ik′ or Ik′ ⊂ Ik.
(ii) If for some k, k′, it holds ρk = ρk′ then µ–almost surely all the players have

the same action on k, k′, i.e., µ({i : uik = uik′}) = 1.
(iii) Up to subsets of measure zero, the following inclusions hold:

Ik1 ⊂∼ Ik2 ⊂∼ · · · ⊂∼ IkN ,
Kk1 ⊃ Kk2 ⊃ · · · ⊃ KkN ,

where Ikn ⊂∼ Ikn+1 indicates that µ(Ikn rIkn+1) = 0. Furthermore, µ(Ik) =
ρk.



10 I. Kodonis, A.-R. Lagos and G.P. Papavassilopoulos

(iv) For µ–almost all i ∈ Ikn+1rIkn the action ui is given by v̄n+1, for µ–almost
all i ∈ Ik1 , ui = v̄1, and for µ–almost all i ∈ [0, 1) r IkN , uik = v̄N+1.

Proof See Appendix A.6.

Corollary 2 The mass of players of type j with action v̄n is given by:

µ(i : i is of type j, ui = v̄n) = µ([̄ij−1, īj) ∩ [ρkn−1
, ρkn)), (17)

where we use the convention that ρk0 = 0, and ρkN+1
= 1. Thus:

π(j−1)2N+l =

{
µ([̄ij−1, īj) ∩ [ρkn−1

, ρkn)) if vl = v̄n

0 otherwise
(18)

Proof The proof follows dirrectly from of Proposition 4 and Proposition 2.(ii).

Remark 7 There are at most M + N + 1 combinations of j, l such that
π(j−1)2N+l > 0.

Let us denote by π̃(ρ) the value of vector π computed by (18).

Example 1 As an example, we compute the vector π = π̃(ρ) for the vector
of fractions ρ of Figure 2. Using Corollary 2, we find that the possible
actions are v̄0 = [uM , uM , uM , uM , uM ], v̄1 = [uM , uM , um, uM , uM ], v̄2 =
[uM , uM , um, um, uM ], v̄3 = [uM , um, um, um, uM ], v̄4 = [uM , um, um, um, um],
v̄5 = [um, um, um, um, um]. The mass of the players of each type following each
action is described in the following table.

Type 1 1 2 2 2 2 3 3
Mass ρ2 ī1 − ρ2 ρ3 −m1 ρ1 − ρ3 ρ4 − ρ1 ī2 − ρ4 ρ0 − ī2 1− ρ0

Action v̄0 v̄1 v̄1 v̄2 v̄3 v̄4 v̄4 v̄5

Type 1 corresponds to blue, type 2 corresponds to pink and type 3 to yellow in
Figure 2

Proposition 5 The fractions ρ0, . . . , ρN−1 correspond to a Nash equilibrium
if and only if:

H(ρ) =

M∑
j=1

N+1∑
n=1

µ([̄ij−1, īj) ∩ [ρkn−1
, ρkn))(F̄j,v̄n(π̃(ρ))− δj(π̃(ρ))) = 0, (19)

where F̄j,v̄n(π) is the cost of action v̄n, for a player of type j. Furthermore,
H(π) is continuous and non-negative.

Proof See Appendix A.7.

Remark 8 The computation of an equilibrium has been reduced to the
calculation of the minimum of an N−dimensional function. We exploit this
fact in the following section to proceed with the numerical studies.
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5 Numerical Examples

In this section, we give some numerical examples of Nash equilibria
computation. Subsection 5.1 presents an example with a single type of players
and 5.2 an example with many types of players. Subsection 5.3 studies the
effect the maximum allowed action uM on the strategies and the costs of the
players1.

5.1 Single type of players

In this subsection, we study the symmetric case, i.e., all the players have the
same parameter bi. The parameters for the dynamics are r = 0.4 and a = 1/6
which correspond to an epidemic with basic reproduction number R0 = 2.4,
where an infected person remains infectious for an average of 6 days (these
parameters are similar with [37] which analyzes COVID–19 epidemic). We
assume that um = 0.4 and that there is a maximum action uM = 0.75, set
by the government. The discretization time intervals are 1 week and the time
horizon T is approximately 3 months (13 weeks). The initially infected players
are I0 = 0.01. We chose this time horizon to model a wave of the epidemic,
starting at a time point where 1% of the population is infected. We assume
that κ = 3.

We then compute the Nash equilibrium using a multi start local search
method for (19). Figure 3 shows the fractions ρ, for several values of b, and
Figure 4 presents the evolution of the total mass of infected players for the
same values of b. We observe that, for small values of b, which correspond to
less vulnerable or very sociable agents, the players do not engage in voluntary
social distancing. For intermediate values of b the players engage voluntary
social distancing, especially when there is a large epidemic prevalence. For large
values of b, there is an initial reaction of the players which reduces the number
of infected people. Then the actions of the players return to intermediate levels
and keep the number of infected people moderate. In all the cases, voluntary
social distancing ‘flattens the curve’ of infected people mass.

We then present some results for the case where bi = 200. Figure 5
illustrates the evolution of Si(t) and Ii(t), for the players belonging to different
intervals (ρk, ρk+1) and thus following different strategies. We observe that the
trajectories of Si’s do not intersect. What is probably interesting is that the
trajectories of Ii may intersect. This indicates that, towards the end of the
time horizon, it is probable for a person who was less cautious, i.e., she used
higher values of ui, to have a lower probability of being infectious.

1 Data availability: The datasets generated during and analysed during the current study
are available from the corresponding author on reasonable request.
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Fig. 3: The fractions ρk, for k = 1, . . . , 13, for b =
100, 125, 150, 200, 250, 300, 350.

5.2 Many Types of Players

We then compute the Nash equilibrium for the case of multiple types of players.
We assume that there are six types of players with vulnerability parameters
G1 = 100, G2 = 200, G3 = 400, G4 = 800, G5 = 1600, G6 = 3200. The
sociability parameter si is equal to 1, for all the players. The masses of these
types are m1 = 0.5 and m2 = · · · = m6 = 0.1. The initial condition is for all
the players I0 = 0.0001 and the time horizon is 52 weeks (approximately a
year). Here we assume that the maximum action is uM = 0.8. The rest of the
parameters are as in the previous subsection.

Figure 6 shows the fractions ρ and Figure 7 presents the evolution of
the probability of each category of players to be susceptible and infected.
Let us note that the analysis of Subsection 4.2 simplifies a lot the analysis.
Particularly, the set Π has (252 − 1)6 ' 8.3 · 1093 dimensions, while Problem
(19) only 52.
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Fig. 4: The evolution of the number of infected people under the computed Nash
equilibrium, for b = 100, 125, 150, 200, 250, 300, 350.

5.3 Effect of uM

We then analyze the case where the types of the players are as in subsection
5.2, the initial condition is I0 = 0.005 for all the players, for various values of
uM . The time horizon is 13 weeks.

Figure 8 illustrates the equilibrium fractions ρk, for the various values of
uM . We observe that as uM increases, the fractions ρk decrease. Figure 9
shows the evolution of the mass of infected players, for the different values
of the maximum action uM . We observe that, as uM increases, the mass of
infected players decreases. Figure 10 presents the cost of the several types
of players, for the different value of the maximum action uM . We observe
that players with low vulnerability (G = 100) prefer always a larger value of
uM , which corresponds to less stringent restrictions. For vulnerable players
(e.g. G = 3200) the cost is an increasing function of uM , that is they prefer
more stringent restrictions. For intermediate values of G, the players prefer
intermediate values of uM . The mean cost in this example is minimized for
uM = 0.6.
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Fig. 5: The evolution of the probabilities Si and Ii, for players following
different strategies, for b = 200.

6 Conclusion

This paper studied a dynamic game of social distancing during an epidemic,
giving an emphasis on the analysis of asymmetric solutions. We proved the
existence of a Nash equilibrium and derived some monotonicity properties
of the agents’ strategies. The monotonicity result was then used to derive
a reduced–order characterization of the Nash equilibrium, simplifying its
computation significantly. Through numerical experiments, we show that both
the agents’ strategies and the evolution of the epidemic depend strongly on
the agents’ parameters (vulnerability, sociality) and the epidemic’s initial
spread. Furthermore, we observed that agents with the same parameters could
have different behaviors, leading to rich, high–dimensional dynamics. We also
observe that more stringent constraints on the maximum action (set by the
government) benefit the more vulnerable players at the expense of the less
vulnerable. Furthermore, there is a certain value for the maximum action
constant that minimizes the average cost of the players.
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Time step: k

Fig. 6: The fractions ρk

There are several directions for future work. First, we can study more
general epidemics models than the SIR. Second, we can investigate different
information patterns, including the cases where the agents receive regular or
random information about their health state. Finally, we can compare the
behaviors computed analytically with real-world data.

A Appendix: Proof of the Results of the Main Text

A.1 Existence of Solution to (1)

For any i ∈ [0, 1), if [Si(t), Ii(t)] solve the differential equations (1), with initial condition
(Si(0), Ii(0)) ∈ [0, 1]2, then (Si(t), Ii(t)) remain in [0, 1]2. Thus, we consider the solution of
the differential equations:

Ṡi = satB(−ruiSiIf (t))

İi = satB(ruiSiIf (t)− αiIi)
, (20)

where satB(z) = max(min(z,B),−B), and B = ru2
M + maxj αj .

Consider the Banach space X = L1([0, 1),R2), and let x0 = (S·(0), I·(0)) : [0, 1)→ R2.
Then, under Assumptions 1,3, it holds x0 ∈ X. For each interval [tk, tk+1), the differential
equations (20) with the corresponding initial conditions can be written as:

ẋ = fk(x), x(tk) = xk0 , (21)

where for x : i 7→ [Si, Ii]T , the value of fk(x) ∈ X is given by:

fk(x) : i 7→ [satB(−ruikS
iMkx), satB(ruikS

iMkx− αiIi)]T ,
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Fig. 7: The probability of a class of people to be susceptible and infected.
The colored lines correspond to the probabilities of being susceptible Si(t) and
infected Ii(t), for the several classes of players. The bold black line represents
the mass of susceptible and infected persons

where Mk : X → R is a linear bounded operator with Mkx =
∫
Iiuikµ(di). For the initial

condition it holds x0
0 = x0, and xk0 = x(tk) is computed from the solution of (21) on the

interval [tk−1, tk), for k ≥ 1. For all k, fk is Lipschitz and thus there is a unique solution
to (21) (e.g. Theorem 7.3 of [42]). Furthermore, both I·(t) and u·(t) are measurable and
bounded. Thus, the integrals in (4), (2) are well-defined.

Note that from Assumption 1, we only used the fact that S·(0), I·(0) : [0, 1) → R are
measurable and not the piecewise constant property.

A.2 Proof of Proposition 1

(i) Since, rIfk > 0 and bi > 0, the cost (7) is strictly concave, with respect to uik. Thus, the

minimum with respect to uik is either um or uM .

(ii) Since U is compact and J̃ is continuous, there is an optimal solution for (8). Denote by
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Fig. 8: The fractions ρk, for the several values of the maximum action uM .

ui,? this solution. Further, denote by V1 = J̃i(ui,?), and V2 = infA{−bie−A + f(A)} the

values of problems (8) and (9) respectively. Then, for A? =
∑N−1
k=0 rui,?k Ifk , we have

V2 ≤ −bie−A
?

+ f(A?) ≤ −bi exp

[
−r

N−1∑
k=0

ui,?k Ifk

]
−
N−1∑
k=0

ui,?k ūk = J̃i(ui,?) = V1,

where the first inequality is due to the definition of V2 and the second inequality is due to
the definition of f(A?). To contradict assume that V2 < V1. Then, there is some A and an
ε > 0 such that:

−bie−A + f(A) < V1 − 2ε. (22)

Thus, there is a ũi such that A =
∑N−1
k=0 rũikI

f
k and

∑N−1
k=0 ũikūk < f(A) + ε. Combining

with (22) we get J̃i(ũ) < V1 − ε, which contradicts the definition of V1.

For ui,? minimizing (8), the problem (9) is minimized for A? =
∑N−1
k=0 rui,?k Ifk and ui,?

attains the minimum in (10). To see this, observe that otherwise we would have V2 < V1.
On the other hand, assume that A minimizes (9) and ui attains the minimum in (10). Then,
V2 = −be−A + f(A) = Ji(ui). Furthermore, since V2 = V1, it holds Ji(ui) = V1, and thus
ui minimizes Ji.
(iii) The set

{
ui ∈ U :

∑N−1
k=0 uikI

f
k = A/r

}
is nonempty if and only if A ∈ [Am, AM ]. Thus,

the f(A) is finite if and only if A ∈ [Am, AM ].

For A ∈ [Am, AM ], there exists an optimal solution ui that attains the minimum in
(10). Since, (10) is a feasible linear programming problem, there is a Lagrange multiplier λ
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Fig. 9: The mass of infected people as a function of time, for the different
values of the maximum action uM .

(e.g. Proposition 5.2.1 of [43]), and ui minimizes the Lagrangian:

L(ui, λ) = −
N−1∑
k=0

ūku
i
k + λ

N−1∑
k=0

Ifku
i
k − λA/r. (23)

Thus, uik = um, if ūk/I
f
k < λ and uik = uM , if ūk/I

f
k > λ. To compute f(A), we reorder k,

using a new index k′, such that ūk′/I
f
k′ is non-increasing. Let:

k′A = max{k̄′A :

k̄′A−1∑
k′=0

uM I
f
k′ +

N−1∑
k′=k̄′

A

umI
f
k′ ≤ A/r}.

Then:
Σk′

A
+ ui

k̄′
A
If
k̄′
A

= A/r.

where Σk′
A

=
∑k̄′A−1

k′=0
uM I

f
k′ +

∑N−1
k′=k̄′

A
+1

umI
f
k′ . Thus:

f(A) = −
k′A−1∑
k′=0

ūk′uM −
N−1∑

k′=k′
A

+1

ūk′um −
ūk′

A

If
k′
A

(A/r −Σk′
A

),

for A/r ∈ [Σk′
A

+ umI
f
k′
A
, Σk′

A
+ uM I

f
k′
A

]. It holds:

Σk′
A

+ uM I
f
k′
A

= Σk′
A

+1 + umI
f
k′
A

+1
.
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the players.

Therefore, f is continuous and piecewise affine. Furthermore, since ūk′/I
f
k′ is non-increasing

with respect to k′, the slope of f is non-decreasing, i.e., it is convex. Thus, f is differentiable

in all (Am, AM ) except of the points A = Σk′ + uM I
f
k′ with ūk′/I

f
k′ > ūk′+1/I

f
k′+1

. The

linear parts of f are at most N .
(iv) Since −bie−A is strictly concave in A, there are at most N + 1 possible minima of
−bie−A + f(A), which correspond to the points of non-differentiability of f in (Am, AM )
and the points Am and AM . Observe that for A = Am or A = AM , there is a unique ui

minimizing (10).
We then show that for all the non-differentiability points A of f there is a unique

ui minimizing (10). If A is a non-differentiability point, there is a k′0 such that A/r =∑k′0
k′=0

If
k′uM +

∑N−1
k′=k′0+1

If
k′um and ūk′0

/If
k′0
> ūk′0+1/I

f
k′0+1

. We then show that the the

unique minimizer in (10) is given by ui
k′ = uM for k′ ≤ k′0 and ui

k′ = um for k′ > k′0.

Indeed, ui is feasible and if u′ 6= ui is another feasible point it holds:

k′0∑
k′=0

(uM − u′k′ )I
f
k′ +

N−1∑
k′=k′0+1

(um − u′k′ )I
f
k′ = 0.

Multiplying by ūk′0
/If
k′0

we get:

k′0∑
k′=0

(uM − u′k′ )
If
k′ ūk′0

If
k′0

+

N−1∑
k′=k′0+1

(um − u′k′ )
If
k′ ūk′0

If
k′0

= 0.
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Then, using that uM−u′k′ ≥ 0, um−u′k′ ≤ 0, and that for k′ ≤ k′0 it holds ūk′/I
f
k′ ≥ ūk′0/I

f
k′0

and for k′ > k′0 it holds ūk′/I
f
k′ < ūk′0

/If
k′0

we have:

−
N−1∑
k′=0

u′k′ ūk′ −
[
−
N−1∑
k′=0

uik′ ūk′

]
=

k′0∑
k′=0

(uM − u′k′ )
If
k′ ūk′

If
k′

+

N−1∑
k′=k′0+1

(um − u′k′ )
If
k′ ūk′

If
k′

≥ 0,

and the inequality is strict if for some k′ > k′0, u′
k′ 6= um. Therefore, ui is optimal and if u′

is also optimal then it should satisfy u′
k′ = um for all k′ > k′0. Combining this with the fact

that
∑N−1
k′=0

u′
k′I

f
k′ = A/r and If

k′ > 0, we get u′ = ui.

(v) We have shown that if ui is optimal then there is a k′0 such that ui
k′ = uM for k′ ≤ k′0

and ui
k′ = um for k′ > k′0. Then, using the original index k, the optimal control can be

expressed as:

uik =

{
uM if ūk/I

f
k ≥ λ

′

um if ūk/I
f
k < λ′

,

where λ′ = ūk′0
/If
k′0

.

A.3 Proof of Proposition 2

(i) Since A1 is optimal for bi1 and A2 is optimal for bi2 it holds:

−bi1e−A1 + f(A1) ≤ −bi1e−A2 + f(A2),

−bi2e−A2 + f(A2) ≤ −bi2e−A1 + f(A1).

Adding these equations and reordering, we get:

(bi2 − bi1 )e−A2 ≥ (bi2 − bi1 )e−A1 .

And since bi2 > bi1 , we get A1 ≥ A2

(ii) Using (v) of Proposition 1, and A1 ≥ A2 we get:

A1/r =

N−1∑
k=0

ui1k I
f
k =

N−1∑
k=0

(
um + (uM − um)hλ′1

(ūk/I
f
k )
)
Ifk ≥

≥
N−1∑
k=0

(
um + (uM − um)hλ′2

(ūk/I
f
k )
)
Ifk =

N−1∑
k=0

ui2k I
f
k = A2/r

where hλ(·) is the Heaviside function, i.e., hλ′ (x) = 1 if x ≥ λ′ and hλ′ (x) = 0 otherwise.
Therefore, λ′1 ≤ λ′2.

(iii) Assume that for k1 6= k2, ui1k1
= ui2k2

= um and ui2k1
= ui1k2

= uM . Then, using (v) of

Proposition 1 we have:

λ′2 <
ūk1

Ifk1

≤ λ′1, λ′1 ≤
ūk2

Ifk2

< λ′2,

which is a contradiction.
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A.4 Proof of Proposition 3

(i) Assume that a π ∈ Π satisfies (13) and fix a j ∈ {1, . . . ,M}. For any l such
that π(j−1)2N+l > 0, it holds Φ(j−1)2N+l(π) = 0, that is F(j−1)2N+l(π) = δj(π) =

minl′ F(j−1)2N+l′ (π). Thus, π ∈ Π is a Nash equilibrium.

Conversely, assume that π ∈ Π is a Nash equilibrium and fix a j ∈ {1, . . . ,M}. There is
an l such that π(j−1)2N+l > 0. Since π is a Nash equilibrium, it holds F(j−1)2N+l(π) = δj(π)

and for all other l′ it holds F(j−1)2N+l′ (π) ≥ F(j−1)2N+l(π) = δj(π), which implies (13).

(ii) Assume that π is a Nash equilibrium and π′ ∈ Π. Then,
∑2N

l=1 π(j−1)2N+l =∑2N

l=1 π
′
(j−1)2N+l

= mj . Since π is a Nash equilibrium it holds:

2N∑
l=1

(π′
(j−1)2N+l

− π(j−1)2N+l)
TF(j′−1)2N+l(π) ≥ 0.

Thus, (14) holds.
Conversely, assume that (14) holds, for some π ∈ Π. If π is not a Nash equilibrium, then

there is a j, l such that π(j−1)2N+l > 0 and F(j−1)2N+l > δj(π). Then, if l′ is such that

F(j−1)2N+l′ = δj(π). Taking π′ = π+ π(j−1)2N+le(j−1)2N+l′ − π(j−1)2N+le(j−1)2N+l, we

get (π′ − π)TF (π) < 0, which is a contradiction.

(iii) With a slight abuse of notation we write Ifk (π), ūk(π) to describe the quantities Ifk , ūk
when the distribution of actions is π and J̃j(v

l, π) to describe the auxiliary cost of a player
of type j who plays action vj when the distribution of the actions is π.

Lemma 2 The quantities Ifk (π), ūk(π), J̃j(v
l, π), are continuous on π.

Proof The state of the system evolves according to the set of M2N+1 + 1 differential
equations:

Ṡj,v
l

= −rvlkS
j,vlIf ,

İj,v
l

= rvlkS
j,vlIf − αjIj,v

l
,

ż = If ,

where j = 1, . . . ,M , l = 1, . . . , 2N , k : t ∈ [tk, tk+1), and:

If =

M∑
j=1

2N∑
l=1

π(j−1)2N+lI
j,vlvlk.

The initial conditions are Sj,v
l
(0) = Sj(0), Ij,v

l
(0) = Ij(0), (Assumption 1) and z(0) = 0.

The right-hand side of the differential equations depend continuously on π through the

term If . Furthermore, Sj,v
l
(t), Ij,v

l
(t) remain in [0, 1] for all j, vl. Thus, the state space

of the system remains in [0, 1]M·2
N × R the right-hand side of the differential equation

is Lipschitz. Thus, Theorem 3.4 of [44] applies and Sj,v
l
(t), Ij,v

j
(t) and z(t) depend

continuously on π. Thus, Ifk = z(tk + 1)−z(tk) depends continuously on π. Furthermore, ūk
is continuous (linear) on π. Finally, the auxiliary cost Jj(v

l, π), due to its form (7), depends
continuously π.

To complete the proof observe that F (π) is continuous and Π is compact and convex.
Thus, the existence is a consequence of Corollary 2.2.5 of [45].

Remark 9 An alternative would be to use Theorem 1 of [46] or Theorem 1 of [41], combined
with Lemma 2 to prove the existence of a mixed Nash equilibrium and then use Assumption
1, to construct a pure strategy equilibrium. However, the reduction to an NCP is useful
computationally.
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A.5 Proof of Lemma 1

Every maximal chain begins with the least element [um, . . . , um] and ends at the greatest
element [uM , . . . , uM ]. Every two consecutive elements of a maximal chain vl, vl+1 differ at
exactly one point, otherwise there exists a vector v′: vl � v′ � vl+1 and thus the chain is
not maximal.

Thus, beginning from [um, . . . , um] and changing at each step one point from um to uM
we get a sequence of N + 1 ordered vectors. So, every maximal chain has length N + 1.

Then, we prove that the number of such chains is N ! using induction.
For N = 2 it is easy to verify that we have two chains of 3 elements.
Let for N = n we have n! maximal chains of n + 1 elements. Then for N = n + 1 we

consider one of the previous chains v1 � v2 � · · · � vN and at each of its elements we add
an extra bit: ṽi = [vi, βi]. We observe that if βi = uM then for all j > i it should hold
βj = uM , in order for the new vectors to remain ordered under �.

Denote by ic the point that βi change from um to uM . For each choice of ic : βj =
um, j < ic and βj = uM , j > ic we take two ordered vectors ṽic1 = [vic , um] and

ṽic2 = [vic , uM ] in the new chain, so we have two βic . Thus, we have N+1 possible choices for
the β = [βi] ∈ {um, uM}N+1. This way we observe that from each chain in ({um, uM}N ,�)
we can construct N + 1 chains in ({um, uM}N+1,�).

Remark 10 The fact that V has at most N + 1 elements is also a consequence of Corollary
1.

A.6 Proof of Proposition 4

(i) To contradict assume that Ik 6⊂ Ik′ and Ik′ 6⊂ Ik. Then, there is a pair of players i1, i2
such that ui1k = ui2

k′ = uM and ui2k = ui1
k′ = um, which contradicts Proposition 2.(iii).

(ii) Without loss of generality assume that Ik ⊂ Ik′ . Then:

µ(Ik) = ρk = ρk′ = µ(I′k) = µ(Ik) + µ(Ik′ r Ik′ ).

Thus, µ(Ik′ r Ik) = 0. Combining with Ik ⊂ Ik′ and the definition of Ik, Ik′ we get
µ({i : uik = ui

k′}) = 1.
(iii) The equality µ(Ik) = ρk, is immediate from the definition of ρk. Consider a pair

Ikn , Ikn+1
. There are two cases, ρkn < ρkn+1

and ρkn = ρkn+1
. In the first case, we cannot

have Ikn+1
⊂ Ikn . Thus, from (i) we have Ikn ⊂ Ikn+1

. If ρkn = ρkn+1
, then Ikn ⊂∼ Ikn+1

from part (ii).
The inclusion Kkn ⊃ Kkn+1

is immediate from the definition.

(iv) Let i ∈ Ikn+1
r Ikn . Then, since i 6∈ Ikn ui

k′n
= um for n′ ≤ n. On the other hand,

µ-almost all i ∈ Ikn+1
satisfy i ∈ Ikn′ , for n′ > n. Thus, for µ-almost all i ∈ Ikn+1

r Ikn ,

the action ui is given by (16). The proof is similar for i ∈ Ik1 , and i ∈ [0, 1) r IkN .

A.7 Proof of Proposition 5

If ρ corresponds to a Nash equilibrium, then combining (13) and (18) we conclude that
H(ρ) = 0. Conversely, since all the terms of (19) are nonnegative, H(ρ) = 0 implies that
if µ([̄ij−1, īj) ∩ [ρkn−1

, ρkn )) > 0, then F(j−1)2N+n(π̃(ρ)) = δj(π̃(ρ)). Combining this with

(18), we conclude that if for some j, l, π(j−1)2N+l > 0 then F(j−1)2N+l(π) = δj(π), where

π = π̃(ρ). That is, π is a Nash equilibrium.
From (18), we observe that π(ρ) is continuous with respect to ρ, since µ(·) is the Lebesque

measure. Moreover, (19) can be expressed as:

H(ρ) = π(ρ)TΦ(π(ρ)).
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The fact that H(ρ) is nonnegative is a result of (13). Furthermore, from Lemma 2,
F(j−1)2N+n(π) = J̃j(v

n, π) is continuous with respect to π. Additionally, δj(π), which

is the minimum of F(j−1)2N+l(π) = J̃j(v
l, π) for all vl, is continuous with respect to

π as the minimum of continuous functions. So, Φ(π) = F (π) − δ(π) is continuous with
respect to π and H(ρ) is continuous with respect to ρ as composition of continuous functions.
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