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The estimate of the remaining time of an ongoing wave of epidemic spreading is a critical issue.
Due to the variations of a wide range of parameters in an epidemic, for simple models such as
Susceptible-Infected-Removed (SIR) model, it is difficult to estimate such a time scale. On the
other hand, multidimensional data with a large set attributes are precisely what one can use in
statistical learning algorithms to make predictions. Here we show, how the predictability of the SIR
model changes with various parameters using a supervised learning algorithm. We then estimate
the condition in which the model gives the least error in predicting the duration of the first wave of
the COVID-19 pandemic in different states in India. Finally, we use the SIR model with the above
mentioned optimal conditions to generate a training data set and use it in the supervised learning
algorithm to estimate the end-time of the ongoing second wave of the pandemic in different states
in India.

I. INTRODUCTION

Since the outbreak of the COVID-19 pandemic [1], the
estimate of a time-scale for the end of a wave of pan-
demic outbreak has undoubtedly become an outstand-
ing challenge. Nevertheless, due to the variations of a
wide range of parameters, such as the rate of spreading,
the contact network of the individuals, various mitiga-
tion measures etc., it is very difficult to make such an
estimate [2–9]. However, a multidimensional set of data
is often used in statistical learning approaches for mak-
ing predictions [10, 11]. Indeed, such predictions have
been attempted in a wide range of cases, such as finan-
cial time series, weather data, medical applications and
many other physical systems [12–15]. There have been
multiple earlier attempts in using machine learning ap-
proaches for predicting epidemic spreading in the context
of COVID-19 (see e.g., [19, 20]) as well. However, to have
a proper estimate, a large set of training data is needed
to be fed to the supervised learning algorithm. This is
often a major hurdle to overcome for a pandemic such as
the present one, the like of which is not seen in a century.
To address this issue, we first consider a simplified

model of epidemic spreading, called the Susceptible-
Infected-Removed (SIR) model [16–18] and estimate its
predictability using a supervised learning algorithm, by
varying various parameters of the SIR model. We then
find the condition under which the model is best suited
to make ‘predictions’ about the first wave of the COVID-
19 pandemic in different states in India. Since in most
of these cases, the first and the second waves are sep-
arated by a period of low infection rates, the end-time
of the first wave can be well defined. Therefore, it is
possible to make an error estimate for the ‘prediction’ of
the first wave end-time. The optimal condition of the
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model that ‘predicts’ the end of the first wave can then
be used to generate a ‘synthetic’ training data set of sub-
stantial size using the simulation data of the SIR model.
This ‘synthetic’ training data set can then be used to
make predictions for the ongoing second wave. The use
of synthetic data for enhancing prediction capability of
ML algorithms is a well known technique (see e.g., [21]).
By increasing the size of the training data set substan-
tially, this technique enables the ML algorithm to make
stable predictions.

Certainly, there are multiple issues in using the first-
wave data for the optimization of the training set. Par-
ticularly, the two wave are, of course, different in several
aspects: effects of vaccinations, changes in the norms
of travel restrictions, presence of mutant variants of the
virus, etc. One outcome of these variations would be
the changes in the maximum values of the daily infec-
tion rates between the two waves. As is evident from the
data in India [22], the peak height of the second wave
was about four times larger than the peak height of the
first wave. Therefore, we normalize the data by the peak
height, which necessarily assumes that the peak for the
second wave has passed, in each of the cases where we
make the end-time predictions.

The rest of the paper is organized as follows: First we
describe the SIR model and the machine learning meth-
ods used for making the predictions in the model (sec.
II). In sec. III we present the simulation results, describ-
ing the variations in predictability of the SIR model un-
der different conditions (testing rate, site dilution). Then
in sec. IV we use the ML algorithm to make predictions
of the end-time of the second wave of the pandemic for
some states in India. Finally we discuss and conclude in
sec. V.

http://arxiv.org/abs/2105.13288v1
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II. MODEL AND METHODS

The SIR model is a well studied model for epidemic
spreading [16]. Although a simple model, this and its
variants have been widely popular for epidemic spreading
studies [17, 18]. The model assumes the total population
to be divided into three groups - Susceptible: denoting
the individuals who can get infected by the virus but
are not yet infected, Infected: denoting the individuals
who are currently infected and can infect the susceptible
population and Removed: denoting the population who
were already infected by the virus and do not affect the
evolution of the spreading dynamics any more.
We consider the model on a two dimensional square

lattice, where each site represents the location of an in-
dividual who can be in one of the three states mentioned
above. An infected individual can, with certain prob-
ability, infect one of their eight neighbors (four nearest
neighbors and four diagonal neighbors) if that neighbor is
in the susceptible state. An infected individual remains
in that state for a given duration of time, during which
they can infect other susceptible individuals. Following
that duration, the infected individual enters the Removed
state, where they no longer participate in the spreading
dynamics.
In one time step of the simulation, every individual is

selected once and their states are attempted for a possible
update. The updates are done in a parallel updating
scheme, such that a given update comes into effect in the
following time step. If an individual is in the susceptible
state and one of the eight neighbors is infected, then the
susceptible individual can be infected with probability p.
If an infected individual has remained in that state for
τ time steps, then that individual is put in the removed
state. Here we keep τ = 14 and the value of p is fixed
at a randomly chosen value between 0.3 to 0.8 from a
uniform distribution for each realization of the model.
The number of infected individuals at a time t, denoted

by I(t), represents what is usually refereed to as the ‘ac-
tive cases’. The time derivative of the susceptible (S(t))
individuals, dS(t)/dt, is essentially the number of new
infections in a day (at t). Both of these quantities start
from a low value, representing the initial infected individ-
uals, which is chosen randomly and uniformly between 10
and 20 for each simulation. Both of these quantities then
increase with time, reach a peak and then eventually de-
crease to zero. The model does not show multiple waves
of infection rates, nor does it account for the effects of
vaccination or restriction imposed in interactions.
While it is straightforward to get an exact solution for

the mean field version of the model and also to numer-
ically estimate the above mentioned quantities in other
topologies (including the square lattice considered here),
the actual situation is far more complex and the avail-
able data sets are limited. Particularly, just the absence
of tests for the individuals without symptoms and/or ac-
cess to such medical facilities, would distort the data for
the number of infections and other related quantities.
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FIG. 1. The time variation of the daily infection rate (normal-
ized) and ML predictions for the time remaining before the
end of infections are shown for a single run of the SIR model.
The actual remaining time (straight line) is also shown, and
the root-mean-square deviation between the predicted and
the actual time gives the error in the prediction.

Also, the topology of a square lattice is a simplified one
and would at the very least include ‘disorder’ in terms of
unoccupied sites. We first investigate the effects of these
factors in predictability of the SIR model. For the pre-
diction, we use a supervised machine learning algorithm,
particularly the Random Forest algorithm. This is an en-
semble of decision tress and the predictions in the model
are made using the majority of the predictions of the de-
cision trees. The various attributes that we use for the
training of the algorithm are: daily infection, daily recov-
ery and the number of active cases at a particular time.
The target variable for the prediction is the remaining
time before the daily infection number goes below 5% of
the peak value. In the Random-forest, we used 1000 esti-
mators and kept the maximum depth at 15. The results
are stable with small variations around these parameters.
Following the training of the algorithm with a training set
of 200 ensembles (each ensemble represents the full time
series of the different quantities mentioned from the start
to the end of the spreading dynamics), each having a ran-
domly chosen infection rate and initial infection number,
in the way outlined above. Then the trained algorithm
is used to make predictions for a different set of 100 en-
sembles. In Fig. 1, a typical time series of the infection
rate (normalized by the peak height) is shown. The ac-
tual remaining time and the machine learning (ML) pre-
dicted remaining times, at every instance, are also shown.
The root-mean-squared fluctuations between the actual
remaining time and the predicted remaining time at ev-
ery instance, gives an estimate for the error in prediction.
In the following, we first estimate the error in predictions
i.e., the efficiency of the ML predictions under different
conditions of variable testing rate and disorder in the
SIR model. Then we use the model as training set to
make predictions for the end of the second wave of the
COVID-19 pandemic in different states in India.
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FIG. 2. The simulation results for the SIR model in two dimensional square lattice (200 × 200) for a fixed fraction v of the
population tested. (a) The time variation of the daily infection rate for a particular realization of the model is shown for
different values of v. (b) When scaled by v, the daily infection curved fall on top of each other, with a variation in fluctuations.
(c) The variation in the root-mean-squared error in prediction made by the ML algorithm (for 100 sets, after training by 200
sets) with v is shown. No significant variation is noted.

III. SIMULATION RESULTS

Here we describe the simulation results of the SIR
model of epidemic spreading and estimate the varia-
tions of its predictability with different parameters of the
model, using supervised machine learning algorithm.

A. ML predictability of SIR model with variable

testing

As indicated before, a major source of distortion in
the data for the pandemic is the limited testing resources
available. This was especially apparent during the first
wave of the pandemic (see e.g., [23]). Therefore, it is
useful to understand, even for this simplified model, how
does incomplete testing and/or variable testing rate af-
fect the measurements in the model so as to affect, in
turn, the predictability of the model.
We check this effect in two different ways. First we as-

sume that only a fraction (v) of the total population can
get tested. While the underlying SIR dynamics runs with
the three possible states (S, I and R) for each individual,
the measurements are made, at each time, only on the
v fraction of the total population, chosen randomly and
kept fixed in time for that realization.
Fig. 2 depicts the effect of the various values of v, be-

tween 10% (v = 0.1) to 100% (v = 1) testing. While the
(apparent) number of daily infection is very sensitive to
the value of v, when scaled by this factor (Fig. 2(b)), the
curves fall on top of each other, with a varying degree of
fluctuations. The consequent error in the predictions us-
ing the ML algorithm, however, only varies weakly (Fig.
2(c)) with v. This gives an important conclusion that
while drastically sub-sampling, the predictability remains
almost the same in the model, as long as a macroscopic
fraction of the randomly chosen population is tested.
Secondly, it is also known that the rate of testing is

not a fixed quantity over the duration of the pandemic.
Particularly, it is often dependent on the rate of positive
results obtained in daily testing. Therefore, we also look
at the variation due to a time dependent value of v. We
vary v between a lower bound vmin and an upper bound
vmax = 0.5, linearly dependent on the daily infection
rate. Other than the linear dependence of v within this
range, it is not allowed to fall below or increase above,
the fixed threshold values. The individuals are again ran-
domly selected for testing at each step, but now with a
time dependent value of v. Fig. 3 shows the results for
this case. In Fig. 3(a), the time variation of the daily
infections are shown for various values of vmin and vmax.
In Fig. 3(b) the actual data for number of testing and
the corresponding daily infections are shown for various
states in India, justifying the choice of the linear varia-
tion (indicated by the straight line). Nevertheless, there
is hardly any systematic variation in the error (hence also
the predictability) with vmin. This is also an interesting
observation that while the time dependent testing rate
can introduce fluctuations in the data, ultimately it does
not translate to a lower predictability, as long as it is
made sure that a macroscopic fraction of the individuals
are always tested.

B. ML predictability of SIR model with site

dilution

As mentioned before, topology of the contact network
of the individuals can play a crucial role in the spreading
dynamics. So far we have kept that to be very simple
fully occupied two dimensional square lattice. But such
an orderly arrangement is not realistic. As a simple way
to introduce disorder, we remove a fraction q of the sites
i.e., there are no individuals occupying that fraction of
the sites This modification, of course, introduces a fluc-
tuation that diverges near the critical point qc ≈ 0.4 of
site percolation [24] (see also [25] for percolation thresh-
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FIG. 3. The simulation results for the SIR model in two dimensional square lattice (200 × 200) for a time dependent testing
rate are shown. (a) The time variation of the daily infections (scaled by the peak value) are shown for various ranges of allowed
variations in v. The curves are of different fluctuations, but of similar nature. (b) The variations in the error in ML predictions
with the lower bound in testing fraction (vmin), showing no systematic variation in predictability. (c) The actual dependence of
the testing and daily positive cases are shown for different states in India that shows an approximate linear variation (indicated
by the straight line for a guide to the eye). This is for the justification of the choice of the linear dependence of v with daily
(apparent) infection rate in the simulations.
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FIG. 4. The simulation results for the SIR model in two dimensional square lattice (200×200) for different values of site dilution
fraction. (a) The duration for which the daily infection rate is finite, varies non-monotonically with site dilution. Therefore,
the curves, even when scaled, do not overlap with each other. (b) The relative errors for various system sizes shows a minimum
that tends towards the percolation threshold with increasing system size.

old with longer than nearest neighbor connections). It
is generally known that a system with higher disorder
is relatively more predictable through machine learning,
compared to the systems having less disorder [15]. It is
also known that the distribution of population in a city
follow a fractal character [26], which will happen here
near the percolation threshold. It is, therefore, interest-
ing to study the variation of the predictability when the
SIR model is simulated in a site diluted lattice.

Fig. 4 shows the simulation results for the site di-
luted lattice. It is interesting to note that even when the
infection curves are scaled by the corresponding maxi-
mum values, they do not overlap. Indeed, there is a non-
monotonic variation in the duration upto which the dy-
namics run, with the dilution fraction. The correspond-

ing errors, scaled by the error obtained without ML i.e.,
just considering the average duration of the training set
as the predicted duration for each testing set, show a
non-monotonic variation with the dilution fraction. A
system size dependence shows that the minimum point
of the error tends towards the critical percolation thresh-
old, as the system size is increased. Therefore, we con-
jecture that the highest disorder in the model i.e., the
percolation critical point, is the maximally predictable
point as well. This is an interesting observation, since as
mentioned bore, at the percolation point, the occupied
site form a fractal structure. As mentioned bore, this
mimics the fractal nature of the population distributions
in cities [26], although with a different fractal dimension.



5

IV. APPLICATION: PREDICTIONS OF

END-TIME OF SECOND WAVE IN SOME

INDIAN STATES

So far we have discussed the predictability of the SIR
model using supervised machine learning. We have also
seen that the predictability depends on the site dilution
fraction in the model when simulated on a square lattice.
Here we attempt in using the SIR model as a training set
and then make predictions for the end-time of the second
waves in eight Indian states where the total infection has
crossed one million. These states are: Andhra Pradesh
(AP), Delhi (DL), Karnataka (KA), Kerala (KL), Ma-
harashtra (MH), Tamil Nadu (TN), Uttar Pradesh (UP)
and West Bengal (WB).
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FIG. 5. The seven day rolling average of the daily infection
from March 14, 2020 to May 20, 2021 in eight Indian states.
The inset shows the errors in ‘predicting’ the first wave using
training data from SIR model with various levels of site di-
lution. The minimum error is noted for the dilution fraction
0.55, which is then used as the training set for the predictions
of the second wave.

In Fig. 5 we see that the first and second waves are
more or less distinct in these states - separated by a low
daily infection rate. First we use the SIR model with var-
ious site dilution fractions and make ‘predictions’ about
the end-time of the first wave. Knowing the actual end-
time of the first waves in these states, it is possible to
estimate the errors in those predictions (Fig. 5(inset)).
It is seen that the error is minimum for the dilution frac-
tion 0.55. We therefore use the SIR model with dilution
fraction 0.55 to generate a training set (500 sets) and
then feed the data for the second wave to make a predic-
tion about the end-time. In doing so, one obvious issue
is with the peak height, which are very much different
between the first and the second waves and also among
the different states. We, therefore, normalize the train-
ing as well as the testing data by the corresponding peak
heights. One obvious assumption, therefore, is that the
peak for the second wave has passed, which is obvious in
many of the states and are also indicative in the rest of
the states.

We make another set of predictions by using the first
waves as the training data. It is remarkable that the two
sets of predictions are very close to each other. However,
in making the final prediction (Fig. 6, Table 1), we use
the training set of the SIR model.

V. DISCUSSIONS AND CONCLUSIONS

We have reported the variations in the predictability
of the SIR model of epidemic spreading with different pa-
rameters of the model, using supervised machine learning
algorithm. It is interesting to note that the predictions
for the end-time in the model is remarkably stable, even
when only a small fraction (10%) of the individuals are
tested for the infection. The predictions are also sta-
ble when the testing rate vary with time - linearly with
the positivity rate of the testing within a given range.
However, the predictability changes substantially when
a disorder is introduced in terms of site dilution in the
model i.e., some positions are not occupied by any in-
dividual. Particularly, the relative predictability of the
model is the highest (error in prediction is the lowest)
when the site dilution fraction approaches the percola-
tion critical point (see Fig. 4). In that case, the un-
derlying lattice structure approaches a fractal and the
fluctuations in the cluster size diverges with system size
[24]. It is seen before that the predictability using ML
approaches increases with the increase in the disorder in
the system (see e.g., [15]). Indeed, the fluctuations in the
time series of the various attributes used for the ML al-
gorithm have richer characteristics and consequently the
training of the algorithm is better. Also, it is interest-
ing to note that the spatial distribution of population
in cities are fractal in nature [26], although not neces-
sarily of the same fractal dimension as that of the site
percolation. Nevertheless, the fluctuations introduced in
the daily infection rate and other related quantities due
to the delayed spreading of the infections in marginally
connection regions, would introduce qualitatively similar
effects in any fractal geometry.
We then use the model and the ML approach to make

predictions of the end-time of the ongoing second wave
of the COVID-19 pandemic in eight Indian states, where
the total number of infections are over one million (see
Table 1). In doing so, we first need to overcome the lack
of training data for the ML algorithm. We first note that
the first and second waves of the pandemic in India are
somewhat separated by a relatively low daily infection
rates. Therefore, we take the data for the first wave
and make ‘predictions’ about its end-time using the SIR
model as the training set. As the predictability of the
SIR model is already shown to be sensitive to the lattice
dilution, we estimate the dilution fraction for which the
error in the ‘predictions’ for the first wave is minimum.
We then use the SIR model with that dilution fraction to
generate the training data set for making predictions of
the end-time of the ongoing second wave. This approach
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States Andhra
Pradesh

Delhi Karnataka Kerala Maharashtra Tamil Nadu Uttar
Pradesh

West
Bengal

End-time July 16 May 28 July 1 August 12 July 13 July 26 May 27 September
2

Errors -16
days,+28
days

- 2 days, +2
days

-6 days, +5
days

-14 days,
+14 days

-7 days, +7
days

-17 days , +
33 days

-2days, + 3
days

-30 days, +
30days

TABLE I. The predicted end-dates for the second wave in different states and the corresponding errors. The errors are higher
for the states where the infection rates are close to the peak (data as of May 20, 2021 [22]).

assumes that the statistical nature of the fluctuations in
the first and second waves would be similar once those
are scaled by the respective peak infection rate. This
in turn necessarily assumes that the peak infection for
the second wave has already past, which indeed seems to
be the case (see Fig. 5). It also does not consider the
effects of vaccinations, new mutant variants of the virus
and changes in the travel restriction norms. Nevertheless,
use of this ‘synthetic’ training data set enables the ML
algorithm to make predictions for the end-time, which is
otherwise difficult to do due to the lack of training data
sets.

In conclusion, we note that the epidemic spreading in
the SIR model on a two dimensional square lattice can
be well predicted by supervised machine learning algo-
rithms. The predictability of the model is sensitive to
the site dilution fraction of the model and becomes the
highest near the percolation critical point. An optimal
condition for predictability can be obtained by tuning
the site dilution fraction in the model that minimizes the
prediction errors for the first wave of the COVID-19 pan-
demic. The optimized model can then be used to make
predictions of the end-times for the ongoing second wave
of the pandemic in different states in India.
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FIG. 6. The predicted end-time for the second wave in the eight Indian states, where the total infection has crossed one
million. The errors are also indicated, which are estimated from the least squared fit of the straight lines of the final points of
prediction. In cases where the infection rates are very close to the peak, the predictions are less accurate. The green dots are
the predictions using SIR model as training set and the purple dots are the predictions using the first wave data as the training
set.
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