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Abstract

We propose a new method in which a generative adversarial network (GAN) is
used to quantify the uncertainty of forward simulations in the presence of observed
data. Previously, a method has been developed which enables GANs to make time
series predictions and data assimilation by training a GAN with unconditional
simulations of a high-fidelity numerical model. After training, the GAN can be
used to predict the evolution of the spatial distribution of the simulation states
and observed data is assimilated. In this paper, we describe the process required
in order to quantify uncertainty, during which no additional simulations of the
high-fidelity numerical model are required. These methods take advantage of the
adjoint-like capabilities of generative models and the ability to simulate forwards
and backwards in time. Set within a reduced-order model framework for efficiency,
we apply these methods to a compartmental model in epidemiology to predict the
spread of COVID-19 in an idealised town. The results show that the proposed
method can efficiently quantify uncertainty in the presence of measurements using
only unconditional simulations of the high-fidelity numerical model.

1 Introduction

Complex physical and engineering systems are usually described in terms of partial differential
equations that, for most problems of practical interest, cannot be solved analytically. Then it is
necessary to use numerical methods to solve the governing equations [13, 2]. Nonetheless, these
methods need a large number of degrees of freedom to solve the partial differential equations
accurately. This fact can generate prohibitively expensive simulations in terms of computational time
and memory demand. Furthermore, these models are built on limited information, which makes their
predictions uncertain. Therefore, it is necessary to assimilate observed data and formally propagate
the uncertainties through the numerical simulator. To that end, the purpose of prediction and data
assimilation evolved from a purely deterministic perspective (single solution) to a probabilistic one
(multiple solutions) [22, 30, 7, 4].

In this context, surrogate models are computationally appealing and have been attracting significant
attention in the last decades. Deep neural networks have become one of the most popular surrogate
models in science and engineering nowadays [39, 35, 42, 40, 33, 26]. Among them, generative

Source code and data are available at https://github.com/viluiz/gan

Preprint. Under review.

ar
X

iv
:2

10
5.

13
85

9v
2 

 [
cs

.L
G

] 
 1

8 
Ju

n 
20

21

https://github.com/viluiz/gan


adversarial networks (GAN) have been demonstrating promising results. GANs have been used to
predict spatio-temporal solutions for super-resolution fluid flow [38], carbon capture [41], incoming
waves from Hokkaido tsunami [11], and the spread of COVID-19 [29]. GANs have also been used
in the processes of data assimilation and uncertainty quantification to generate conditional models
parameters [21, 16, 28, 10]. Even though in these works they still need to simulate the high-fidelity
numerical model to predict forward in time.

In order to quantify the uncertainty of forward numerical simulations, multiple random models
conditional to measurements are required. After simulating the conditional models, an empirical
distribution of the variables of interest can be obtained [20]. The validity of the uncertainty quantifica-
tion depends on the quality of the generated conditional simulations. Nonetheless, it is often difficult
and computationally expensive to generate a single conditional model, suggesting that the task of
quantifying uncertainty must be even more difficult [20, 32]. Methods such as rejection sampling and
Markov chain Monte Carlo are unfeasible to propagate uncertainty through most practical computa-
tional models due to their computational cost [24, 20, 22, 31]. Therefore, approximate methods need
to be used. Among them, Liu et al. [20] showed that the randomized maximum likelihood (RML)
[17, 23], also called randomize-then-optimize (RTO) [5], performed better than other approximate
methods.

In this work, we propose a new method inspired by the RML in which a GAN is used to quantify the
uncertainty of forward simulations in the presence of measurements. The GAN is trained using only
unconditional simulations of the high-fidelity numerical model. After training, the GAN can be used
as a surrogate model to predict the evolution of the spatial distribution of the simulation states and
observed data can be assimilated. We describe the process required in order to quantify uncertainty,
during which no additional simulations of the high-fidelity numerical model are required. We apply
these methods to quantify the uncertainty of a compartmental model in epidemiology, that represents
the spread of COVID-19 in an idealized town. In the authors’ opinion, there is no negative societal
impact of this research. All the data generated here is synthetic and developed by the authors.

2 Method

In this section, we present a method to quantify uncertainty in the presence of observed data
using a GAN. The GAN only needs to be trained with the priors (unconditional simulations) from
the high-fidelity numerical simulation. The data assimilation and uncertainty quantification are
performed within the GAN using the newly proposed loss functions and taking advantage of automatic
differentiation. First, we demonstrate how a GAN within a reduced-order model [14, 37] framework
can be used to generate time series predictions. Secondly, the prediction is extended to account for
observed data. Finally, we present the proposed method to quantify uncertainty.

2.1 GAN for time series prediction

In order to make predictions in time using a GAN, an algorithm named Predictive GAN (PredGAN)
is used here [29]. We train the GAN to produce data at a sequence of m+ 1 time steps, i.e. given
a latent vector z, the output of the generator G(z) will be data at time steps n−m to n, no matter
which point in time n represents. Then, given known solutions at m consecutive time steps, we can
perform an optimization to match the first m time levels in the output of the generator with the known
solutions. After convergence, the last time step, m+ 1, in the output of the generator is the prediction.
We now can use this last time level m+ 1 as a known solution and perform another optimization to
predict the time step m+ 2. The process continues until we predict all time steps. Figure 1 illustrates
how the PredGAN works.

In our case, after training, the output of the generator G(z) is made up of m+ 1 consecutive time
steps of compressed grid variables α (outputs of the numerical model), and model parameters µ
(inputs of the numerical model). The compressed variables are principal component analysis (PCA)
coefficients, but could also be latent variables from an autoencoder. For a GAN that has been trained

2



Figure 1: Overview of the PredGAN process.

with m+ 1 time levels, G(z) takes the following form

G(z) =


(αn−m)T , (µn−m)T

...
(αn−1)T , (µn−1)T

(αn)T , (µn)T

 (1)

where the compressed grid variables are defined as (αn)T = [αn1 , α
n
2 , · · · , αnNPCA

]. NPCA is the
number of principal components, and αni represents the ith PCA coefficient at time level n. The
model parameters are represented as (µn)T = [µn1 , µ

n
2 , · · · , µnNµ ]. Nµ is the number of model

parameters, and µni represents the ith parameter at time level n.

In each iteration of the PredGAN, one new time step is predicted. Assume we have solutions at time
levels from n −m to n − 1 for the PCA coefficients, denoted by {α̃k}n−1k=n−m, and also have the
model parameters over all time steps µ̃k, then to predict the solution at time level n we perform an
optimization defined as

zn = arg min
zn

Lp(zn),

Lp(zn) =

n−1∑
k=n−m

(
α̃k −αk

)T
Wα

(
α̃k −αk

)
+

n−1∑
k=n−m

ζµ
(
µ̃k − µk

)T
Wµ

(
µ̃k − µk

)
,

(2)

where Wα is a square matrix of size NPCA whose diagonal values are equal to the weights that
govern the relative importance of the PCA coefficients, all other entries being zero. Wµ is a square
matrix of size Nµ whose diagonal values are equal to the model parameter weights, and the scalar
ζµ controls how much importance is given to the model parameters compared to the compressed
variables. It is worth noticing that only the time steps from n−m to n− 1 are taken into account in
the functional which controls the optimization of zn. After convergence, the newly predicted time
level n is added to the known solutions α̃n = αn, and the converged latent variables zn are used to
initialize the latent variables at the next optimization to predict time step n+ 1. The process repeats
until all time levels are predicted. The gradient of Eq. (2) is calculated by automatic differentiation
[36, 19, 6], which means backpropagating the error generated by the loss function in Equation (2)
through the generator.

2.2 GAN for data assimilation

Data assimilation is a type of inverse problem that aims to incorporate observed data into mathematical
models. To perform data assimilation with GANs, Silva et al. [29] proposed the Data Assimilation
Predictive GAN (DA-PredGAN) that incorporates three main changes in the PredGAN.

1. One additional term is included in the loss function in Eq. (2) to take account of the data
mismatch between the observed data and the generated values.
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2. The aim of the data assimilation is to match the observed data and to determine the model
parameters µk (inputs of the numerical model). Therefore, they are not known a priori, as
in the prediction.

3. The forward marching in time is now replaced by forward and backward marching.

The loss function for the optimization at each iteration n of the forward march is given by

Lda,f (zn) =

n−1∑
k=n−m

(
α̃k −αk

)T
Wα

(
α̃k −αk

)
+

n−1∑
k=n−m

ζµ
(
µ̃k − µk

)T
Wµ

(
µ̃k − µk

)
+

n−1∑
k=n−m

ζobs
(
dk − dkobs

)T
W k

obs

(
dk − dkobs

)
, (3)

where the observed data at each time step k is stored in the vector dkobs of size Nobs. dk is the
generated data calculated based on the output of the generator at time step k. In or case, it represents
data at some points in the grid (high dimensional states) and it is calculated through the PCA
coefficients αk and stored eigenvectors. W k

obs is a square matrix of size Nobs whose diagonal values
are equal to the observed data weights, and the scalar ζobs direct controls how much importance is
given to the data mismatch. The values in the diagonal of W k

obs are set to zero where we have no
observation. After convergence, the new predict time level n is added to the known solutions α̃n =
αn, and different from the prediction, we also update the model parameters using the newly predicted
time step µ̃n = µn.

After the forward march, the process continues with a backward march. For the latter instead of
working forward in time as in Eq. (3), the process goes backwards in time, from the last time step to
the first. The loss function for the optimization at each iteration n of the backward march is defined
as

Lda,b(zn) =

n+m∑
k=n+1

(
α̃k −αk

)T
Wα

(
α̃k −αk

)
+

n+m∑
k=n+1

ζµ
(
µ̃k − µk

)T
Wµ

(
µ̃k − µk

)
+

n+m∑
k=n+1

ζobs
(
dk − dkobs

)T
W k

obs

(
dk − dkobs

)
, (4)

After performing a forward and backward march using Eqs. (3) and (4), respectively, the average of
the data mismatch (last term on the right of Eqs. 3 and 4) at the end of all iterations n is calculated. If
the average mismatch has not converged or the maximum number of iterations is not reached, the
process continues with a new forward and backward marches. A relaxation factor is also introduced
to stabilize the process of marching forward and backward in time as in Silva et al. [29].

Figure 2: Overview of the DA-PredGAN. Each march represents going through all time steps.

2.3 GAN for uncertainty quantification

The computation of a single model that matches the observed data is usually insufficient to quantify
risks and uncertainties. Data assimilation is generally an ill-posed inverse problem [34, 25], hence
several models can match the observed data, within some tolerance. In order to quantify uncertainty,
we propose in this paper a method named Uncertainty Quantification Predictive GAN (UQ-PredGAN).
This method is inspired by the RML as a way of sampling a posterior distribution conditioned to
observed data. In the RML, the numerical simulation is used to predict forward, and for each sample,
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an optimization (data assimilation) is performed to condition the models to the observed data. The
challenge is usually to perform the optimization, since the high-fidelity numerical simulation needs
to be run several times and usually adjoints are not present. In this work, the proposed method
UQ-PredGAN can compute uncertainties relying just on a set of unconditioned numerical simulations.
The predictions, data assimilation and uncertainty quantification are performed using the inherent
adjoint capability present on GAN, and no additional high-fidelity numerical simulations, other than
those used for training the GAN, are required.

The idea is to generate several models that match the observed data and can quantify the uncertainty
in the model states (outputs) and models parameters (inputs). To this end, we perform several data
assimilations using the DA-PredGAN algorithm with the modified loss functions

Luq,j(zn) =
∑
k

(
α̃kj −αk

)T
Wα

(
α̃kj −αk

)
+
∑
k

ζµ
(
µ̃kj − µk

)T
Wµ

(
µ̃kj − µk

)
+
∑
k

ζobs
(
dk − dkobs + εkj

)T
W k

obs

(
dk − dkobs + εkj

)
, (5)

where for the forward march k ∈ {n − m,n − m + 1, · · · , n − 1} and for the backward march
k ∈ {n + m,n + m − 1, · · · , n + 1}. Considering Ns the number of data assimilations to be
performed, then j = 1, ..., Ns. In this work, Ns = 200. The observed data error is represented by the
random vector ε, and we consider that all measurement errors are uncorrelated, thus they are sampled
from a normal distribution with zero mean and standard deviation equal to 5% of the corresponding
observed data. For each data assimilation j, we use a different prior µ̃kj with the corresponding initial
condition {α̃kj }mk=0, and a different perturbation on the observed data εkj .

The UQ-PredGAN is proposed as follows:

1. Sample the model parameters µ̃j from a normal distribution N (µ,Cµ), where Cµ is the
covariance matrix of the model parameters, and µ is the model parameter mean vector.

2. Sample the measurement error εj from a normal distribution N (0,Cd), where Cd is the
covariance matrix of the measurement error.

3. Assimilate data using the DA-PredGAN process with the loss in Eq. (5).

After performing Ns steps of the UQ-PredGAN, accept all realizations that obtained an acceptable
level of data mismatch. It is worth mentioning that for the RML, when the case is linear it samples
the corrected posterior distribution [23, 31]. In this work, the test case is nonlinear, there is an
additional term in the loss function compared to the RML, and the weighting terms are seen as tuning
parameters. Thus, the results are an approximate sample of the posterior distribution.

2.4 Calculating the weighting terms

The weighting terms in the loss function of Eq. (5) are calculated as

ζobs = ζ̂obs

(
∆α

∆d

)2
(

m
∑NPOD
i=1 (wα)ii∑

k

∑Nc
i=1(wobs)kii

)
, (6)

where ζ̂obs is a tuning parameter and in this work it is set to 10. ∆α and ∆d are the ranges of the
compressed variables and the observed data, respectively. (wα)ii are the the terms on the diagonal of
Wα, and (wobs)

k
ii are the terms on the diagonal ofW k

obs.

ζµ = ζ̂µ

(
∆α

∆µ

)2
(∑NPOD

i=1 (wα)ii∑Nµ
i=1(wµ)ii

)
, (7)

where ∆µ represents the range of the scalar parameters, (wµ)ii are the the terms on the diagonal of
Wµ, and ζ̂µ is a tuning parameter. ζµ controls how quickly one lets the parameters µkj change within
the data assimilation method. In order to let µk change more rapidly at the beginning and more slowly
when the process is near convergence, during the data assimilation, we choose to dynamically update
ζµ. Therefore, we start with ζ̂µ = 10−4 and increase it by a factor of 1.2 after each forward-backward
iteration. For the prediction, we use ζ̂µ = 10−2.
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3 Test case description

The test case used here is the spatio-temporal variation of a virus infection in an idealized town. The
extended SEIRS model [29, 26] is a nonlinear model with compartments of susceptible (S), exposed
(E), infectious (I), and recovered (R). It extends the traditional theory of the dynamics of infectious
diseases [3, 9, 8] to account for variations not only in time but also in space.

3.1 Extended SEIRS model

The extended SEIRS model used in this work consists of four compartments (Susceptible - Exposed
- Infections - Recovered) and two people groups (Home - Mobile). Figure 3 shows the diagram of
how individuals move between compartments and groups. The model starts with some individuals in
the infectious compartments (Home-I/Mobile-I). The members of these compartment will spread the
pathogen to the susceptible compartments (Home-S/Mobile-S). Upon being infected, the members
of the susceptible compartments are moved to the exposed compartments (Home-E/Mobile-E) and
remain there until they become infectious. Infectious individuals remain in the infectious compartment
until they become recovered (Home-R/Mobile-R). Recovered people can also become susceptible
again due to the loss of immunity.

Figure 3: Diagram of the extended SEIRS model. The diagram shows how people move between
groups and compartments within the same point in space (or the same cell in the grid). The vital
dynamics and the transport via diffusion is not displayed here.

Modeling the movement of people is of the utmost importance in the spread of infectious diseases,
such as COVID-19. Therefore, the goal of the extended SEIRS model is to reproduce the daily cycle
of night and day, in which there is a pressure for mobile people to go to their homes at night, and
there will be many people leaving their homes during the day and thus joining the mobile group. To
this end, the extended SEIRS model uses a diffusion term (last term on the right of Eqs. (8)) and an
interaction term (penultimate term on the right of Eqs, (8)) to model this process:

∂Sh
∂t

= ηhNh −
Sh
∑
h′(βhh′Ih′)

Nh
+ ξhRh − νShSh −

H∑
h′=1

λShh′Sh′ +∇ · (kSh∇Sh), (8a)

∂Eh
∂t

=
Sh
∑
h′(βhh′Ih′)

Nh
− σhEh − νEh Eh −

H∑
h′=1

λEhh′Eh′ +∇ · (kEh∇Eh), (8b)

∂Ih
∂t

= σhEh − γhIh − νIhIh −
H∑

h′=1

λIh h′Ih′ +∇ · (kIh∇Ih), (8c)

∂Rh
∂t

= γhIh − ξhRh − νRh Rh −
H∑

h′=1

λRhh′Rh′ +∇ · (kRh∇Rh), (8d)

whereH represents the number of groups. Here, we have two groups of people, henceH = 2, one
representing people at home h = 1, and the second representing people that are mobile h = 2 and
outside their homes therefore. Nh represents the total number of individuals in each group, βhh′ is
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the transmission rate between groups, σh is the rate of exposed individuals becoming infectious, γh
is the recovered rate, and ξh is the rate recovered individuals return to the susceptible group due to
loss of immunity. The vital dynamics are represented by ηh and νh, where ηh is the birth rate and
νh is the death rate. The diffusion coefficient is represented by kh and describes the movement of
people around the domain. The interaction terms, λhh′ , control how people move between groups,
for example, how people that are in the mobile group move to the home group.

One important factor in dynamics of infectious diseases is the basic reproduction number (R0), it
represents the expected number of new cases caused by a single infectious member in a completely
susceptible population [12, 15]. TheR0 controls how rapidly the disease could spread and for each
group it is define as

R0h =
σh

(σh + νh)

βhh
(γh + νh)

, (9)

where we assume βhh′ = 0 when h 6= h′ because people in their homes never directly meet mobile
people (who are outside their homes). For this case, we can also calculate an effectiveR0 representing
theR0 seen by the whole population at an specific time. It can be calculated as

∑
h ShR0h.

3.2 Problem set up

The idealized town occupies an area of 100km by 100km as shown in Figure 4. This area is divided
in 25 regions, where those labelled as 1 are regions where people do not travel, the region labelled as
2 is where homes are located, and regions from 2 to 10 are where people in the mobile group can
travel. Thus people in the home group stay in the region 2. The aim is that most people move from
home to mobile group in the morning, travel to locations in regions 2 to 10, and return to the home
group later on in the day.

1 1 6 1 1

1 1 10 1 1

3 8 4 9 5

1 1 7 1 1

1 1 2 1 1

Figure 4: Idealized town (100km × 100km) showing the different regions. The two plots on the right
show the number of people in each cell of the grid, for one simulation, and at two times in the day.

To generate the high-fidelity numerical simulations, the domain in Figure 4 is discretized on a regular
grid of 10 × 10 control volume cells. Therefore, each region in Figure 4 comprises four control
volumes. We start the simulation with 2000 people in each control volume of region 2 and belonging
to the home group. All other fields are set to zero. The initial condition is that 0.1% of people at home
have been exposed to the virus and will thus develop an infection. The epidemiological parameters
used in this work are chosen to be consistent with those of COVID-19, and are described in [29, 26].
Further information about the discretization and solution methods of the high-fidelity numerical
simulation can be also found in [29, 26].

4 Dataset and training process

For the training process 40 high-fidelity numerical simulations were performed in order to generate
the training dataset. Each simulation consists of two different R0h, one for people at home and
another for mobile people. We divide the whole region in Figure 4 in a regular grid of 10 × 10
(100 cells) for the numerical simulation. Considering that each type of people (people at home and
mobile) has the four quantities of the extended SEIRS model (Susceptible, Exposed, Infectious and
Recovered), there will be eight variables for each cell in the grid per time step, which gives a total
number of 100 × 8 = 800 variables per time step. Principal component analysis is performed in
the 800 variables, in order to work with a low dimensional space in the GAN. The first 15 principal
components were chosen and they capture > 99.9999% of the variance held in the time snapshots.
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Hence the GAN is trained to generate the 15 PCA coefficients (αn) and the two R0h (µn) over a
sequence of 10 time steps. We choose this time length because it represents a cycle (one day) in the
results.

The GAN architecture is based on DCGAN [27] and is implemented using TensorFlow [1] (Apache
2.0 license). We train the generator and discriminator over 5, 000 epochs, and we choose the size of
the latent vector z to be 100. The networks receive/generate the 10 time levels as a two-dimensional
array ("an image") with 10 rows and 17 columns. Each row represents a time level and each column
comprises the 15 PCA coefficients and the two R0h. We choose this configuration, instead of a
linear representation, to exploit the time dependence in the two-dimensional array. We also carried
out initial tests using a linear representation of the time level outputs and a multi-layer perceptron
as a generator and discriminator. However, it generated worse results than the two-dimensional
representation. The success of the convolutional neural network (CNN) suggests correlations between
the successive principal components that the CNN can exploit.

5 Results and discussion

In this section, we apply the UQ-PredGAN to quantify uncertainty in the extended SEIRS model
considering the presence of measurements. The model represents the spread of COVID-19 in an
idealized town. We generate the observed data from a high-fidelity numerical simulation (R0 1 = 7.7,
R0 2 = 17.4) that was not included in the training set. Observed data was collected at five points
of the domain in Figure 4, bottom-left corner of regions 2, 3, 4, 5 and 6. In order to make the case
more realistic, the measurements are available every two days and we measure only infectious and
recovered people. TheR0h are not used as observed data. For generating the priors (unconditional
simulations) 200 model parametersR0h were sampled from a normal distribution with a mean of 10
and standard deviation of 4. The mean was chosen in accordance with Kochańczyk et al. [18]. The
200 model parameters and their corresponding initial conditions were used to start the UQ-PredGAN
process. For each of the model parameters, one data assimilation was performed as described in
Section 2.3. After the data assimilation, 104 realizations were accepted based on their data mismatch
error. It is worth noting that for the whole uncertainty quantification process using the UQ-PredGAN,
we required only 40 high-fidelity numerical simulations (for training the GAN).

Figure 5 shows the UQ-PredGAN results for each group and compartment at one point in space
(bottom-left corner of region 2 in Figure 4). The priors (gray lines) are the first forward march of
each data assimilation, and the posteriors (blue lines) are the last forward march of the accepted
realizations. The posterior mean (black line) is also shown in the plots. We can see from these figures
that the conditional simulations (posteriors) generated by the UQ-PredGAN match the observed data,
within some tolerance (we considered a measurement error of 5%), and the uncertainty is propagated
through the simulation time. The high frequency oscillation presented in the results corresponds
to a daily cycle, when mobile people leave their homes during the day and return to them at night.
Comparable results were observed at other points in domain, hence they are not presented here.

In order to quantify the uncertainty at specific times, we generated a probability density function
(PDF) of the number of people in each group and compartment. Figure 6 shows these plots at day
12 (last day with observed data). The results demonstrate that the proposed method can predict the
evolution of the number of people in each group and compartment and generate the corresponding
uncertainties conditioned to measurements. Figure 7 shows the PDF of theR0h and effectiveR0 for
the priors and posteriors. The result shows that the UQ-PredGAN was able to reduce the uncertainty
in the model parameters approaching the true values used to generate the observed data. Note that the
data assimilation is an inverse and usually ill-posed problem, hence different values ofR0h could
match the measurements within some tolerance. We can also notice that for the mobile group the
posterior PDFs do not match the observed data and the ground truth as well as for the home group.
This can be because the number of mobile people is one order of magnitude smaller than the number
of people at home, which gives the latter more importance during the data assimilation process, and
the relative rate of change of the number of people in the mobile group is much greater than in the
home group, thus small perturbations in the former can cause huge relative deviations.
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Figure 5: Results of the UQ-PredGAN applied to the spread of COVID-19 in an idealized town. In
each plot, the red dots represent the observed data (measurements), the gray lines the unconditional
simulations (before data assimilation), the blue lines the conditional simulations (after the data
assimilation), and the black line the posterior mean.

Figure 6: Probability density function of each group and compartment at day 12.

Figure 7: Probability density functions of theR0h and effectiveR0 at day 12.
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6 Conclusion

In this work, we proposed a novel use of a generative adversarial network (UQ-PredGAN) that is able
to quantify uncertainty in time series predictions, considering the presence of measurements. The aim
is to generate a surrogate model of the high-fidelity numerical simulation, that can assimilate observed
data and generate the corresponding uncertainties. We applied the proposed method to an extended
SEIRS model that represents the spread of COVID-19 in an idealized town. The results show that
the UQ-PredGAN accurately matches the observed data and efficiently quantifies uncertainty in the
model states (groups and compartments) and model parameters (basic reproduction numbers). The
method used only a few unconditional simulations of the high-fidelity numerical model to train the
network. The UQ-PredGAN is not limited to the underlying physics of this application: it is a general
framework for time series prediction, data assimilation and uncertainty quantification.
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[18] M. Kochańczyk, F. Grabowski, and T. Lipniacki. Super-spreading events initiated the exponen-
tial growth phase of COVID-19 withR0 higher than initially estimated. Royal Society Open
Science, 7(9):200786, 2020.

[19] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical Mathemat-
ics, 16(2):146–160, 1976.

[20] N. Liu, D. S. Oliver, et al. Evaluation of monte carlo methods for assessing uncertainty. SPE
Journal, 8(02):188–195, 2003.

[21] L. Mosser, O. Dubrule, and M. J. Blunt. Deepflow: history matching in the space of deep
generative models. arXiv preprint arXiv:1905.05749, 2019.

[22] D. S. Oliver and Y. Chen. Recent progress on reservoir history matching: a review. Computa-
tional Geosciences, 15(1):185–221, 2011.

[23] D. S. Oliver, N. He, and A. C. Reynolds. Conditioning permeability fields to pressure data.
In ECMOR V-5th European conference on the mathematics of oil recovery, pages cp–101.
European Association of Geoscientists & Engineers, 1996.

[24] D. S. Oliver, L. B. Cunha, and A. C. Reynolds. Markov chain monte carlo methods for
conditioning a permeability field to pressure data. Mathematical geology, 29(1):61–91, 1997.

[25] D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum reservoir characterization
and history matching. Cambridge University Press, 2008.

[26] C. Quilodrán-Casas, V. S. Silva, R. Arcucci, C. E. Heaney, Y. Guo, and C. C. Pain. Digital
twins based on bidirectional lstm and gan for modelling the covid-19 pandemic. arXiv preprint
arXiv:2102.02664, 2021.

[27] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

11



[28] S. M. Razak and B. Jafarpour. History matching with generative adversarial networks. In
ECMOR XVII, volume 2020, pages 1–17. European Association of Geoscientists & Engineers,
2020.

[29] V. L. Silva, C. E. Heaney, Y. Li, and C. C. Pain. Data Assimilation Predictive GAN (DA-
PredGAN): applied to determine the spread of COVID-19. arXiv preprint arXiv:2105.07729,
2021.

[30] V. L. S. Silva, A. A. Emerick, P. Couto, and J. L. D. Alves. History matching and production
optimization under uncertainties–application of closed-loop reservoir management. Journal of
Petroleum Science and Engineering, 157:860–874, 2017.

[31] A. S. Stordal and G. Nævdal. A modified randomized maximum likelihood for improved
bayesian history matching. Computational Geosciences, 22(1):29–41, 2018.

[32] B. Sudret, S. Marelli, and J. Wiart. Surrogate models for uncertainty quantification: An overview.
In 2017 11th European conference on antennas and propagation (EUCAP), pages 793–797.
IEEE, 2017.

[33] M. Tang, Y. Liu, and L. J. Durlofsky. Deep-learning-based surrogate flow modeling and
geological parameterization for data assimilation in 3d subsurface flow. Computer Methods in
Applied Mechanics and Engineering, 376:113636, 2021.

[34] A. Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM,
2005.

[35] R. K. Tripathy and I. Bilionis. Deep uq: Learning deep neural network surrogate models for
high dimensional uncertainty quantification. Journal of computational physics, 375:565–588,
2018.

[36] R. E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,
7(8):463–464, 1964.

[37] D. Xiao, C. E. Heaney, L. Mottet, F. Fang, W. Lin, I. M. Navon, Y.-K. Guo, O. K. Matar, A. G.
Robins, and C. C. Pain. A reduced order model for turbulent flows in the urban environment
using machine learning. Building and Environment, 148:323–337, 2019.

[38] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A temporally coherent, volumetric
GAN for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[39] C. Yang, X. Yang, and X. Xiao. Data-driven projection method in fluid simulation. Computer
Animation and Virtual Worlds, 27(3-4):415–424, 2016.

[40] V. Zantedeschi, D. De Martini, C. Tong, C. S. de Witt, A. Kalaitzis, M. Chantry, and D. Watson-
Parris. Towards data-driven physics-informed global precipitation forecasting from satellite
imagery. In Proceedings of the AI for Earth Sciences Workshop at NeurIPS, 2020.

[41] Z. Zhong, A. Y. Sun, and H. Jeong. Predicting CO2 Plume Migration in Heterogeneous
Formations using Conditional Deep Convolutional Generative Adversarial Network. Water
Resources Research, 55(7):5830–5851, 2019.

[42] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris. Physics-constrained deep learning
for high-dimensional surrogate modeling and uncertainty quantification without labeled data.
Journal of Computational Physics, 394:56–81, 2019.

12


	1 Introduction
	2 Method
	2.1 GAN for time series prediction
	2.2 GAN for data assimilation
	2.3 GAN for uncertainty quantification
	2.4 Calculating the weighting terms

	3 Test case description
	3.1 Extended SEIRS model
	3.2 Problem set up

	4 Dataset and training process
	5 Results and discussion
	6 Conclusion

