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Abstract

The COVID -19 pandemic has resulted in more than 166 million infections and 3.4 million deaths world-
wide. Several drug interventions targeting multiple stages of the pathogenesis of COVID -19 can significantly
reduce induced infection and thus mortality. In this study, we first develop SIV model by incorporating the
intercellular time delay and analyze the stability of the equilibrium points. The model dynamics admits
disease-free equilibrium and the infected equilibrium with their stability, based on the value of basic re-
production number R0. We then frame an optimal control problem with antiviral drugs and second-line
drugs as control measures and study their roles in reducing the infected cell count and the viral load. The
comparative study done in the optimal control problem suggests that when the first line antiviral drugs
shows adverse events, considering these drugs in reduced quantity along with the second line drug would be
highly effective in reducing the infected cell and viral load in a COVID infected patients. Later, we formulate
a time-optimal control problem with the objective to drive the system from any given initial state to the
desired infection-free equilibrium state in minimal time. Using Pontryagin’s Minimum Principle the optimal
control strategy is shown to be of bang-bang type with possibility of switches between two extreme values
of the optimal controls. Numerically, it is shown that the desired infection-free state is achieved in less time
when the higher values of both the optimal controls are chosen. The results obtained from this study can
be very helpful to researchers, epidemiologists, clinicians, and doctors who are working in this field.
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1 Introduction

Mathematical modeling of infectious diseases is one of the most important researched area today. Mathematical
epidemiology has contributed to a better understanding of the dynamical behavior of infectious diseases, its
impacts, and possible future predictions about its spreading. Mathematical models are used in comparing,
planning, implementing, evaluating, and optimizing various detection, prevention, therapy, and control pro-
grams. COVID-19 is one such contagious respiratory and vascular disease that has shaken the world today. It
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On 30 january it was declared as
a public health emergency of international concern [2]. COVID-19 has resulted in around 166 million cases and
3.4 million deaths worldwide. Several mathematical models has been developed to understand the dynamics of
the disease. Various compartment models to understand the dynamical behavior of COVID-19 can be found
in [34, 28, 38, 24, 37, 12, 39, 8, 6, 35]. The optimal control studies to examine the role of control policies such
vaccination, treatment, quarantine, isolation, and screening for controlling COVID-19 infection can be found in
[16, 25, 4, 3, 29, 13, 18].

The time-optimal control problem in SIR (Susceptible-Infected-Recovered) epidemic models is discussed,
with different control policies such as vaccination, isolation, culling, and reduction of transmission in [7]. For
all the policies investigated, the optimal control is shown to be of bang–bang type. The results of this study
suggests that when a switch occurs between the optimal control values, the optimal strategy is to delay the
control action some amount of time and then apply the control at the maximum rate for the remainder of
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the outbreak. A concept of the optimization of control measures for SARS epidemics spread, based on the
subsystem of the compartmental model is studied in [22]. Using Pontryagin’s minimum principle it is proved
that a maximum quarantine/isolation measures would reduce SARS epidemics to minimum extent in minimum
time. The treatment of Covid-19 disease can be mainly classified in two settings. The initial period consisting
of viral multiplication and body’s efforts to contain the spread of virus. In this phase there may not be any
systematic symptoms such as breathlessness or the need of hospitalization and oxygen support. This initial
period of the disease the body requires supports to fight against the infection, and therefore, mostly requires
symptomatic treatment and supportive management. As the viral multiplication is one of the initial concerns,
an antiviral drug such as the Remdesivir is the mainstay of the treatment [1].

In the later half in the view to contain and eliminate the virus the exaggerated immune response resulting
mostly the compromised body’s essential functions such as increased respiratory rate to maintain the function
of oxygenation etc. In this stage there require hospitalization and oxygen support. At this stage it is important
to suppress the exaggerated immune response which is hazardous to maintain the essential functions. Therefore,
the corticosteroids have important role to play here. Therefore, it is recommended to use dexamethasone [20],
which has proven to improve the clinical outcome among patients who are in the later phase of disease and
require oxygen support either through noninvasive ventilation or ECMO. If dexamethasone is not available the
prednisolone or methyl prednisolone is also recommended with or without the combination of antiviral agents
as there is immunosuppression due to steroids [1]. Therefore, the antivirals may be considered as first line drugs
and the corticosteroids and the anti-inflammatory drugs as second line therapeutic modality.

Patients affected by moderate to severe COVID-19 pneumonia, who failed to respond to azithromycin,
hydroxychloroquine and two doses of TCZ were evaluated in [11]. In all five patients, hydroxychloroquine and
azithromycin were immediately administered at diagnosis, whereas intravenous TCZ, 8 mg/kg, within 72 hours
from hospitalisation, and then repeated after 24 hours. None of them reported substantial benefit after anti-IL-6
treatment and one patient required ICU admission and IV. From 3 to 5 days after the first administration of
TCZ, all subjects were treated with intravenous methylprednisolone (MP) 1.5 mg/kg, slowly tapered after 5
days. It was observed that all the five patients evidenced a prompt and remarkable improvement: within 7
days, all three subjects in ICU did not require IV anymore and were awakened. [11] confirmed the evidence
about a possible synergic role of TCZ and methylprednisolone (MP) in limiting the exaggerating autoimmune
response leading to ARDS.

From the above clinical studies, it is clear that when patients fail to respond to the antiviral drugs such as
azithromycin and hydroxychloroquine, considering the second line drugs such as methylprednisolone, TCZ and
methylprednisolone (MP) after few days would be highly effective in improving the condition of the patients.
In this context, within-host mathematical modelling can be extremely helpful in understanding the efficacy of
these interventions. Modelling the within-host dynamics of Covid-19 incorporating the adverse events of the
antiviral drugs and studying the time optimal control problem, which is being attempted here is the first of its
kind for COVID-19.

In the article [10], the authors have done an extensive study on the role of antiviral drugs such as Arbidol,
Remdesivir, Lopinavir and Ritonavir and immunomodulators such as INF, and Zinc in COVID-19 infection. In
this work initially, we extend the work done in [9] by incorporating inter-cellular time delay and do the stability
analysis of the equilibrium points admitted by the model. Secondly, an optimal control problem is framed with
antiviral agents and second-line drugs as control measures incorporating the adverse events caused by antiviral
drugs and their roles in reducing the infected cell count and the viral load is studied. Lastly, a time-optimal
control problem is formulated with the objective to drive the system from any given initial state to the desired
infection-free equilibrium state in minimal time.

2 Model Without Interventions

Many within-host mathematical models have been developed to understand the dynamics of infectious diseases
such as HIV, dengue influenza, and COVID -19 [31, 27, 30, 36]. Most of these studies ignore the intercellular
delay by assuming that the infectious process is instantaneous, which may not be biologically true [21]. A
detailed study of the SIV model developed on the basis of pathogenesis dealing with COVID -19 is carried
out by the authors in [9]. In the present work, a model is developed and studied that takes into account the
intercellular time delay. This model is described by the following system of differential equations.
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dS

dt
= ω − βSV − µS (1)

dI

dt
= βS(t− τ)V (t− τ) −

(
d1 + d2 + d3 + d4 + d5 + d6

)
I − µI (2)

dV

dt
= αI −

(
b1 + b2 + b3 + b4 + b5 + b6

)
V − µ1V (3)

The meaning of each of the variables and parameters of the model is given in table 1.

Table 1: Meanings of the Variables and Parameters

Parameters/Variables Biological Meaning

S Healthy Type II Pneumocytes

I Infected Type II Pneumocytes

ω Natural birth rate of Type II Pneumocytes

V Viral load

β Infection rate

b Burst rate

µ Natural death rate of Type II Pneumocytes

µ1 Natural death rate of virus

d1, d2, d3, d4, d5, d6 Rates at which virus is removed because
the release of cytokines and chemokines IL-6
TNF-α, INF-α, CCL5, CXCL8 , CXCL10 respectively

b1, b2, b3, b4, b5, b6 Rates at which infected cell is removed because of
the release of cytokines and chemokines IL-6
TNF-α, INF-α, CCL5, CXCL8 , CXCL10 respectively

τ Inter-cellular delay
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2.1 Positivity and Boundednes

In this subsection we will show that the system (2.1)− (2.3) remains positive and bounded for all time t. Let

x =

(
b1 + b2 + b3 + b4 + b5 + b6

)

y =

(
d1 + d2 + d3 + d4 + d5 + d6

)
Positivity: We now show that if the initial conditions of the system (2.1) − (2.3) are positive, then the

solution remain positive for any future time. Using the equations (2.1)− (2.3) we get,

dS

dt

∣∣∣∣
S=0

= ω ≥ 0,
dI

dt

∣∣∣∣
I=0

= βS(t− τ)V (t− τ) ≥ 0,

dV

dt

∣∣∣∣
V=0

= bI ≥ 0.

Thus all the above rates are non-negative on the bounding planes (given by S = 0, I = 0, and V = 0) of the
non-negative region of the real space. So, if a solution begins in the interior of this region, it will remain inside
it throughout time t. This happens because the direction of the vector field is always in the inward direction on
the bounding planes as indicated by the above inequalities. Hence, we conclude that all the solutions of the the
system (2.1) − (2.3) remain positive for any time t > 0 provided that the initial conditions are positive. This
establishes the positivity of the solutions of the system (2.1)− (2.3).

Boundedness:
Let N(t) = S(t) + I(t+ τ) + V (t+ τ)
Now,

dN

dt
=
dS

dt
+
dI

dt
+
dV

dt

= ω − µS(t)− xI(t+ τ)− µI(t+ τ) + bI(t+ τ)− yV (t+ τ)− µ1V (t+ τ)

= ω − (x− b)I(t+ τ)− µ(I(t+ τ) + S(t))− yV (t+ τ)− µ1V (t+ τ)

≤ ω − k(S(t) + I(t+ τ) + V (t+ τ))

= ω − kN(t)

with the assumption that x > α and k = min(µ1, µ)
Here the integrating factor is e−kt. Therefore, after integration we get,
N(t) ≤ ω

k + ce−kt. Now as t→∞ we get,

N(t) ≤ ω

k

Thus we have shown that the system (2.1)− (2.3) is positive and bounded. Therefore, the biologically feasible
region is given by the following set,

Ω =

{(
S(t), I(t), B(t)

)
∈ R3

+ : S(t) + I(t+ τ) + V (t+ τ) ≤ ω

µ
, t ≥ 0

}
We summarize the above discussion on positivity and boundedness of the system (2.1)−(2.3) by the following

theorem.

Theorem 1. Let k = min{µ, µ1} and x > α. Then the set

Ω =

{(
S(t), I(t), V (t)

)
∈ R3

+ : S(t) + I(t+ τ) + V (t+ τ) ≤ ω

k
, t ≥ 0

}
is a positive invariant and an attracting set for system (2.1)− (2.3).

2.2 Equilibrium Points and Basic Reproduction Number (R0)

System (2.1)−(2.3) admits two equilibria namely, the infection free equilibrium E0 =

(
ω
µ , 0, 0

)
and the infected

equilibrium E1 = (S∗, I∗, V ∗) where,

4



S∗ =
(y + µ1)(x+ µ)

bβ

I∗ =
αβω − µ(y + µ1)(x+ µ)

bβ(x+ µ)

V ∗ =
bβω − µ(y + µ1)(x+ µ)

β(x+ µ)(y + µ1)

Now we calculate the basic reproduction number which is the most important quantity in any infectious
disease models. The basic reproduction number is calculated using the next generation matrix method [14] and
the expression for R0 for the system (2.1)− (2.3) is given by

R0 =
βbω

µ(x + µ)(y + µ1)
(4)

With the definition of R0, the infected equilibrium E1 can be re-written as, E1 = (S∗, I∗, V ∗) where,

S∗ =
ω

R0µ

I∗ =
ω(R0 − 1)

R0(x+ µ)

V ∗ =
µ(R0 − 1)

β

Since negative population does not make sense, the existence condition for the infected equilibrium point E1 is
that R0 > 1.

2.3 Stability Analysis

In this section we analyse the stability of equilibrium points E0 and E1 admitted by the system (2.1) − (2.3).
This is done based on the nature of the eigen values of the jacobian matrix evaluated at each of the equilibrium
point.

2.3.1 Stability of E0

The jacobian matrix of the system (2.1)− (2.3) at the infection free equilibrium E0 is given by,

JE0 =

−µ 0 −βω
µ

0 −(x+ µ) βωe−λτ

µ

0 α −(y + µ1)



The characterstic equation of JE0 is given by,

(−µ− λ)

(
λ2 + (x+ y + µ+ µ1)λ+ (x+ µ)(y + µ1)− βωbe−λτ

µ

)
(5)

One of the eigenvalue of characteristic equation (5) is −µ and the other two are the roots of the following
equation. (

λ2 + (x+ y + µ+ µ1)λ+ (x+ µ)(y + µ1)− βωbe−λτ

µ

)
(6)

when τ = 0, substituting for R0 in (2.6) we get the characterstic equation of the form,(
λ2 + (x+ y + µ+ µ1)λ− (R0 − 1)(x+ µ)(y + µ1)

)
(7)
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We see that when R0 < 1 all the eigenvalues of equation (2.7) is negative. Therefore, E0 remains locally
asymptotically stable for τ = 0 whenever R0 < 1.

Now we will examines the nature of the eigenvalues of equation (6) for the case τ 6= 0. For examining the
stability of E0 with delay we will assume that E0 is asymptotically stable for the case with τ = 0.

Let λ = µ(τ) + iω(τ) where, µ and ω are real. Since E0 is asymptotically stable for τ = 0, µ(0) < 0.
We will choose τ sufficiently close to 0 and use continuity of τ to examine the stability of E0 for τ 6= 0. Let
τ > 0 be sufficiently small, then by continuity µ(τ) < 0 and E0 will still remain stable. The stability changes
for some values of τ for which µ(τ) = 0 and ω(τ) 6= 0 that is when λ is purely imaginary. Let τ∗ be such
that µ(τ∗) = 0 and ω(τ∗) 6= 0. In this case the steady state loses stability and becomes unstable when µ(τ)
becomes positive.
By Rouche’s theorem [15] the transcendental equation (6) has roots with positive real parts if and only if it has
purely imaginary roots. Now we will assume that the characteristic equation (6) has purely imaginary roots
and then arrive at a contradiction.

Let
λ = iω

where ω > 0 is real.
Let

s = x+ y + µ+ µ1

m = (x+ µ)(y + µ)

The expression for R0 defined in (2.4) in terms of m is given by,

R0 =
βbω

mµ

Substituting all these in (6) we get

λ2 + sλ+m(1−R0exp
−λτ ) = 0

substituting λ = iω we get
m− ω2 + isω = mR0(cosωτ − isinωτ)

Comparing the real and the imaginary part we get,

m− ω2 = mR0cosωτ

sω = −mR0sinωτ

Adding and squaring the above equations we get,

(m− ω2)2 + s2ω2 = m2R2
0

Simplifying we get,

ω4 + (s2 − 2m)ω2 +m2(1−R2
0) (8)

From the definition of s and m we see that (s2 − 2m) > 0.
Now since R0 < 1, all roots of (8) are imaginary. This contradicts the fact that ω is real. Therefore, from

Rouche’s theorem we conclude that transcendental equation (6) has all roots with negative real part. Therefore,
E0 remains asymptotically stable for all values of delay whenever R0 < 1.

When R0 = 1 then it is clear that ω = 0 is a simple root of (8). This also leads to a contradiction since ω
was assumed to be strictly positive. Therefore, with R0 = 1 all the roots of (6) has negative real parts except
λ = 0. This implies that the infection free equilibrium E0 is asymptotically stable.

Therefore, it follows from the continuity of f(λ) on (−∞,+∞) that equation f(λ) = 0 has at least one
positive root. Hence the characteristic equation (6) has atleast one positive root. Hence, the infection free
equilibrium E0 is unstable for R0 > 1. All the discussion above is summarised by the following theorem.

Theorem 2. The infection free equilibrium point E0 of system (2.1)− (2.3) is locally asymptotically stable for
any time delay τ provided R0 < 1. If R0 crosses unity E0 loses its stability and becomes unstable.
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2.3.2 Stability of E1

The jacobian matrix of the system (2.1)− (2.3) at E1 is given by,

J =

−βV ∗ − µ 0 −βS∗
βV ∗ −(x+ µ) βS∗

0 b −(y + µ1)


The characteristic equation of the jacobian J evaluated at E1 is given by,

λ3 + (s+ C)λ2 + (sC + (m− Ee−λτ ))λ+De−λτ + (m− Ee−λτ )C = 0 (9)

where
C = βV ∗ + µ

E = βbS∗

D = β2bS∗V ∗

when τ = 0 the characteristic equation (9) with the definition of R0 reduces to

λ3 +

(
p+ µR0

)
λ2 +

(
pµR0

)
λ+ qµ

(
R0 − 1

)
= 0 (10)

where p = x+ y + µ+ µ1 and q = (x+ µ)(µ1 + y).
Therefore, we see that whenever R0 > 1, all the roots of equation (2.10) is negative implying the asymptotic
stability of E1. To study the stability of E1 with for τ 6= 0, we substitute λ = iω in the characteristic equation
(9) and arrive at a contradiction in similar lines the stability of E0 discussed earlier.

Substituting λ = iω in equation (9) we get,

−(s+C)ω2 − ωEsin(ωτ)− (ω3 − (sC +m)ω+ ωEcos(ωτ))i = −mC − (D−EC)cso(ωτ) + (D−EC)sin(ωτ)i

Comparing real and imaginary part we get

−ω3 + (sC +m)ω = ωEcos(ωτ) + (D − EC)sin(ωτ)

mC − (s+ C)ω2 = ωEsin(ωτ)− (D − EC)cos(ωτ)

squaring and adding we get,

ω6 +Aω4 +Bω2 + (m2C2 − (D − EC)2 = 0 (11)

where
A = (s+ C)2 − 2(sC +m)

B = (sC +m)2 − 2mC(s+ C)− E2

If A > 0, B > 0 and m2C2 − (D − EC)2 > 0 then all the roots of (11) are all imaginary. This leads to
a contradiction. Therefore, by Rouche’s theorem all the eigenvalues of the characteristic equation (9) have
negative real parts. Hence, E1 is locally asymptotically stable for all the values of τ . Substituting m,C, s and
D in the expressions of A, B and m2C2− (D−EC)2 we see that A > 0, B > 0 and m2C2− (D−EC)2 provided
R0 > 1. Therefore, infected equilibrium point E1 is asymptotically stable for all the values of τ provided R0 > 1.
We summarize the discussion on the stability of E1 by the following theorem.

Theorem 3. The infected equilibrium point E1 of system (2.1) − (2.3) is locally asymptotically stable for all
the values of τ provided R0 > 1.

2.4 Numerical Illustrations of the stability of equilibrium points

In this section we numerically illustrate the stability of the equilibrium points admitted by the system (2.1)−
(2.3). The simulation is done using matlab software and ode solver ode23 is used to solve the system of equation.
All the parameter values used for the simulation are taken from [9]. For the parameter values from table 2, the
values of s2 − 2m, m2 − P 2 and R0 were calculated and found to be 1.9336, 0.6700 and 0.5136 respectively.
From theorem 2.2 we know that E0 remains asymptotically stable for all the values of τ whenever R0 < 1,
figure 1 is an illustration of theorem 2.2. The asymptotic stability of E0 = (20, 0, 0) for two different values of
τ is depicted in figure 1. The stability of E0 was checked for different values of the τ and it was found that the
infection free equilibrium point remained asymptotically stable for all the values of τ .
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Table 2: Parameter values for the stability of E0

ω β µ µ1 b d1 d2 d3 d4 d5 d6 b1 b2 b3 b4 b5 b6
10 0.05 .5 .1 .49 0.027 0.22 0.1 0.428 0.01 0.01 0.1 .1 0.08 .11 .1 .07

Figure 1: Figure depicting the local asymptotic stability of E0 = (20, 0, 0). for τ = 5 and τ = 15

For simulating the stability of E1 the parameter values are taken from table 3. For these parameter values,
the value of R0 and the infected equilibrium E1 was calculated to be 21.04 and E1 = (2.3760, 5.29, 4.008). Since
R0 > 1 for the choice of parameter values from table 3, E1 remains asymptotically stable for all the values of
delay (τ) according to theorem 2.3. figure 2 is an illustration of theorem 2.3. In figure 2 asymptotic stability
of E1 is illustrated for two different values of delay (τ). Similar to the case of stability of E0, here too the
stability of E1 was checked for different values of the τ and it was observed that the infected equilibrium point
E1 remained asymptotically stable for all the values of τ , whenever the value of basic reproduction number was
above unity (R0 > 1).

Table 3: Parameter values for the stability of E1

ω β µ µ1 b d1 d2 d3 d4 d5 d6 b1 b2 b3 b4 b5 b6
5 0.5 .5 .1 .49 0.027 0.22 0.1 0.428 0.01 0.01 0.1 .1 0.08 .11 .1 .07

In figure 3 we plot the viral load over the period of 50 days with different values of inter-cellular delay τ .
The parameter values are as in table 2. From this figure we observe that greater the value of inter-cellular delay
lesser is the viral load in the body. This implies that the viral load in the body will be less if time taken by the
cell to produce new virions.

8



Figure 2: Figure depicting the asymptotic stability of E1 (a):τ = 5, (b): τ = 20

Figure 3: Figure depicting the viral load with different values of intercellular delay

3 Model With Intervention

Now in the model (2.1) − (2.3) we introduce control variables. We consider two control measures: the first
control measure is the antiviral drugs (also called first line drugs) such as Remdesivir, and HCQ that inhibit
viral replication in the body. This is represented by the tuple (µ11, µ21) in the model where, µ11 is the rate at
which infected cell decreases because of the administration of antiviral drug and µ21 is the rate at which viral
load decreases. The second control measure that we consider is the second line drugs such as methylprednisolone
(MP), and dexamethasone. This control is denoted by the tuple (µ12, µ22). The parameter ε1 = (1−α) denotes

9



the efficacy of the antiviral drugs with α denoting the probability of antiviral drugs showing adverse events.
When the first line antiviral drug show adverse events (0 < α < 1), it’s quantity is reduced and along with
it second line drugs are administered in a COVID infected individual. The model incorporating these control
measures is given by following system of differential equations.

dS

dt
= ω − βSV − µS (12)

dI

dt
= βS(t− τ)V (t− τ) − xI − µI − ε1µ11(t− τ1)I(t− τ1)− αµ12(t)I(t) (13)

dV

dt
= bI − ε1µ21(t− τ1)I(t− τ1)− αµ22(t)V (t)− µ1V − yV (14)

3.1 Optimal Control Problem

Let
U1 = (µ11, µ21)

U2 = (µ12, µ22)

Based on above, we now propose and define the optimal control problem, with the goal to reduce the cost
functional defined as

J(µ11, µ12, µ21, µ22) =

∫ T

0

(
I(t) + V (t) +A1(µ2

11(t) + µ2
21(t)) +A2(µ2

12(t) + µ2
22(t))

)
dt (15)

subject to the system (3.1) − (3.3) such that u = (µ11(t), µ21(t), µ12(t), µ22(t)) ∈ U where, U is the set of all
admissible controls given by
U = {(µ11, µ12, µ21, µ22) : µ11 ∈ [0, µ11max], µ12 ∈ [0, µ12max],mu21 ∈ [0, µ22max], t ∈ [0, T ]}

The upper bounds of control variables are based on the resource limitation and the limit to which these
drugs would be prescribed to the patients. Here, the cost function (15) represents the number of infected cells
and viral load throughout the observation period, and the overall cost for the implementation of each of the
interventions. The coefficients A1 and A2 represents the overall cost or effort required for the implementation of
first line and second line drugs respectively. Effectively, we want to minimize the infected cells and the viral load
in the body with the optimal medication that is also least harmful to the body. Since the drugs administered
have multiple effects, the non-linearity for the control variables in the objective become justified [23].

The integrand of the cost function (15), denoted by

L(I, V, U1, U2) = I(t) + V (t) +A1(µ11(t)2 + µ21(t2)) +A2(µ12(t)2 + µ22(t)2)

is called the Lagrangian or the running cost.
The admissible solution set for the optimal control problem (3.1)− (3.4) is given by

Ω = {(S, I, V, u) | S, I and V that satisfy (4.2), ∀ u ∈ U}

3.1.1 Existence of Optimal Controls

We will show the existence of optimal control function that minimize the cost function within a finite time span
[0, T ] by showing that the optimal control problem (3.1)− (3.4) satisfy the conditions stated in Theorem 4.1 of
[17].

Theorem 4. There exists a 4-tuple of optimal controls (µ∗11(t), µ∗21(t), µ∗12(t), µ∗22(t)) in the set of admissible
controls U such that the cost functional (3.4) is minimized i.e.,

J [µ∗11(t), µ∗21(t), µ∗12(t), µ∗22(t)] = min
(µ∗11,µ

∗
21,µ

∗
12,µ

∗
22)∈U

{
J [µ21, µ11, µ21, µ12, µ22]

}
corresponding to the optimal control problem (3.1)− (3.4).

Proof. In order to show the existence of optimal control functions, we will show that the following conditions
are satisfied :

1. The solution set for the system (3.1)− (3.3) along with bounded controls must be non-empty, i.e., Ω 6= φ.
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2. U is closed and convex and system (3.1) − (3.3) should be expressed linearly in terms of the control
variables with coefficients that are functions of time and state variables.

3. The Lagrangian L should be convex on U and L(I, V, µ11, µ12, µ21, µ22) ≥ g(µ11, µ21, µ12, µ22), where
g(µ11, µ12, µ21, µ22) is a continuous function of control variables such that |(µ11, µ12, µ21, µ22)|−1 g(µ11, µ12, µ21, µ22)→
∞ whenever |(µ11, µ21, µ12, µ22)| → ∞, where |.| is an l2(0, T ) norm.

Now we will show that each of the above conditions are satisfied :
1. From positivity and boundedness of solutions of the system (3.1) − (3.3), we know that all solutions of

the system are positive and bounded for each bounded control variable in U . To show Ω 6= φ we will first show
that RHS of (3.1)-(3.3) satisfies Lipschitz condition with respect to the state variables and use Picard-Lindelof
Theorem[26] to show Ω 6= φ.

Let

X =

SI
V


The RHS of the system (3.1)− (3.3) can be written as,

dX

dt
= AX + F (X,Xτ , Xτ1)) = G(X,Xτ , Xτ1)

where

A =

−µ 0 0
0 −(x+ µ) 0
0 b −(y + µ1)



F =

 ω − βSV
βSτVτ − εµ11τ1Iτ1 − αµ12(t)I(t)
−εµ21τ1Vτ1 −−µ22(t)V (t)


Here,

Xτ = X(t− τ)

Xτ1 = X(t− τ1)

µi1τ1 = µi1(t− τ1)

Now

|F (X1, X1τ , X1τ1)− F (X2, X2τ , X2τ1)| ≤M1|X1 −X2|+M2|X1τ −X2τ |+M3|X1τ1 −X2τ1 |

|G(X1, X1τ , X1τ1)−G(X2, X2τ , X2τ1)| ≤ |A(X1 −X2)|+M1|X1 −X2|+M2|X1τ −X2τ |+M3|X1τ1 −X2τ1 |

≤M
(
|X1 −X2|+ |X1τ −X2τ |+ |X1τ1 −X2τ1 |

)
where

M = max(|A|+M1,M2,M3)

and Mi are independent of S, I, V .
Hence,the right hand side of the system (3.1) − (3.3) satisfies Lipschitz condition with respect to state

variables. Now, using the positivity and boundedness of the solution of system (3.1)− (3.3) and Picard-Lindelof
Theorem[26], we have satisfied condition 1.

2. The contro, set U is closed and convex by definition. Also, the system (3.1)− (3.3) is clearly linear with
respect to each control variable such that coefficients are only state variables or functions dependent on time.
Hence condition 2 is satisfied.

3. Choosing g(µ11, µ12, µ21, µ22) = c(µ2
11 + µ2

21 + µ2
12 + µ2

22) such that c = min {A1, A2}, condition 3 is
satisfied.

Thus we have shown that all the conditions stated in Theorem 4.1 of [17] is satisfied. Hence there exists
optimal controls, a 4-tuple (u∗11, u

∗
12, u

∗
21, u

∗
22) ∈ U that minimizes the cost function (15) subject to system

(3.1)− (3.3).
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3.1.2 Characterization of Optimal Controls

In this section we obtain the optimal control solutions of the optimal control problem (3.1) − (3.4) using
Pontryagin’s Maximum Principle [18].

The Hamiltonian for this problem is given by

H(S, I, V, U1, U2, λ) := L(I, V, U1, U2) + λ1
dS

dt
+ λ2

dI

dt
+ λ3

dV

dt

Here λ = (λ1,λ2,λ3) is called co-state vector or adjoint vector.
Now the Canonical equations that relate the state variables to the co-state variables are given by

dλ1
dt

= −∂H
∂S
− χ[0,T−τ ](t)

∂H(t+ τ)

∂S(t− τ)

dλ2
dt

= −∂H
∂I
− χ[0,T−τ1](t)

∂H(t+ τ1)

∂I(t− τ1)

dλ3
dt

= −∂H
∂V
− χ[0,T−τ ](t)

∂H(t+ τ)

∂V (t− τ)
− χ[0,T−τ1](t)

∂H(t+ τ1)

∂V (t− τ1)

(16)

Substituting the Hamiltonian in (3.5) we get the following canonical system

dλ1
dt

= λ1(βV + µ)− χ[0,T−τ ](t)λ2(t+ τ)βV

dλ2
dt

= −1 + λ2(x+ µ+ αµ12(t))− λ3b+ χ[0,T−τ1](t)λ2(t+ τ1)ε1µ11(t)

dλ3
dt

= −1 + λ1βS + λ3(µ1 + y + αµ22)− χ[0,T−τ ](t)λ2(t+ τ)βS(t) + χ[0,T−τ1](t)λ3(t+ τ1)ε1µ21(t)

(17)

along with transversality conditions λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0.
Now, to obtain the optimal controls, we will use the Hamiltonian minimization condition [18] given by

∂H

∂u(t)
+
∂H(t+ τ1)

∂u(t− τ1)
= 0 (18)

Using (3.7) and differentiating the Hamiltonian with respect to each of the controls and solving the equations,
we obtain the optimal controls as

µ∗11 = min

{
max

{
χ[0,T−τ1](t)ε1λ2(t+ τ1)I(t)

2A1
, 0

}
, µ11max

}
µ∗21 = min

{
max

{
χ[0,T−τ1](t)ε1λ3(t+ τ1)V (t)

2A1
, 0

}
, µ21max

}
µ∗12 = min

{
max

{
αλ2I(t)

2A2
, 0

}
, µ12max

}
µ∗22 = min

{
max

{
αλ3V (t)

2A2
, 0

}
, µ12max

}

3.1.3 Numerical Illustration of Optimal Control Problem

In this section, we perform numerical simulations to understand the efficacy of first line and second line drug
interventions. This is done by studying the effect of control on the dynamics of the system (3.1)−(3.3). Let there
exist a step size h > 0 and n > 0 such that T − t0 = nh and τ = m1h, and τ1 = m2h. Let m = max(m1,m2).
For programming point of view we consider m knots to left of t0 and right of T and we obtain the following
partition:

∆ =

(
t−m = −max(τ, τ1, τ2).... < t1 < t0 = 0 < t1... < tn = tf (= T ) < .... < tn+m)

)
.

Then, we have ti = t0 + ih(−m ≤ i ≤ n+m). Now we define the state S, I, V , the adjoint vectors λ1, λ2, λ3 and
controls µ11, µ21, µ12, µ22 in terms of nodal points Si, Ii, Vi , λi1, λ

i
2, λ

i
3 and µi11, µ

i
21, µ

i
12, µ

i
22. For simulation we

use combination of forward and backward difference approximations and the parameter values are taken from
[9] which is given in table 4. The value of τ is taken as 1 day [5] and the value of τ1 is approximated and
taken as 6 day [11]. The probability of antiviral drugs showing adverse events is taken as 0.6 [19]. The positive
weights chosen for objective coefficients are A1 = 500, A2 = 200. Since second line drugs (methylprednisolone

12



Table 4: Parameter Values

ω β µ µ1 b d1 d2 d3 d4 d5 d6 b1 b2 b3 b4 b5 b6 α τ τ1
10 0.05 .5 1.1 .5 0.027 0.22 0.1 0.428 0.01 0.01 0.1 .1 0.08 .11 .1 .07 0.6 1 6

or dexamethasone) are cheaper and easily available, the value of the coefficient corresponding to the second line
drug (A2) is taken lesser than that of the coefficient corresponding to antiviral drug (A1).

In figure 4, we evaluate the role of optimal drug interventions in reducing the infected cell population. The
infected cell population is plotted over 40 days considering individual role and combined role of the optimal
drug interventions. We see that the infected cell count increases exponentially when no controls are considered,
whereas the infected cell count starts decreasing as optimal controls are considered with maximum decrease
when both the first line and second line drugs are considered together. The viral population is plotted in figure
5 and compared with the no intervention case, only first line drug case, and combined first and second line
drug case. It is seen that the viral load decreases maximum when both the first line and second line drugs
are considered together. In figure 6 the profile of optimal cost generated for first line drug, and combined first
and second line drugs is plotted. We notice that when both the controls (first line and second line drugs) are
considered together, the generated cost which is the weighted sum of cost due to disease and controls is minimal
(green color curve).

The comparative study done here, simulated in figure (4, 5, 6) suggests that when the first line antiviral
drugs starts showing adverse events, considering the antiviral drugs in reduced quantity along with the second
line drug is highly effective in reducing the infected cell and viral load in a COVID infected patients than
considering only the first line drug.

Figure 4: Figure depicting the infected cell population under different optimal intervention strategy
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Figure 5: Figure depicting the viral load under different optimal intervention strategy

Figure 6: Figure depicting optimal cost under different optimal intervention strategy

3.2 Time Optimal Control Problem

In this section we formulate a time optimal control problem for the system (3.1)−(3.3). Our objective here is to
drive the system from any initial state to the desired infection free equilibrium state E0 = (ωµ , 0, 0) in minimum
time using the optimal controls.

3.2.1 Formulation of Time Optimal Control Problem and Existence of Optimal Control

Let U denote the control set given by,
U = {(µ11, µ12, µ21, µ22) : µ11 ∈ [0, µ11max], µ12 ∈ [0, µ12max], µ21 ∈ [0, µ22max], t ∈ [0, T ]}
The time optimal control problem (a Mayer problem of Optimal Control [32] ) with U as a control space is

given by,

min J(µ11, µ12, µ21, µ22) =

∫ T

0

1dt = min
u∈U

T (19)

subject to:

dS

dt
= ω − βSV − µS (20)

dI

dt
= βS(t− τ)V (t− τ) − xI − µI − ε1µ11(t− τ1)I(t− τ1)− αµ12(t)I(t) (21)

dV

dt
= bI − ε1µ21(t− τ1)V (t− τ1)− αµ22(t)V (t)− µ1V − yV (22)
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(S(0), I(0), V (0)) = (S0, I0, V0) and (S(T ), I(T ), V (T )) = (ωµ , 0, 0)

Let X(t) = (S(t), I(t), V (t)) and set A be the subset of tX-space (R1+3) ie. A ⊂ R1+3 from where we get
the state variables (S, I, V).

The set of all admissible solutions to the time optimal control problem is given by,

Ω = {(X(t), u(t)) |X satisfies system (3.9)− (3.11) ∀u ∈ U}
Now from the admissible solution set Ω, we wish to find a solution that minimizes the time to reach the

terminal state (S(T ), I(T ), V (T )) from any given initial state (S0, I0, V0). In the following theorem we prove
the existence of an optimal control using Filippov’s existence theorem.

Theorem 5. There exists an optimal controls (µ∗11, µ
∗
12, µ

∗
21, µ

∗
22) that drives the system from any given initial

state (S0, I0, V0) to the desired infection free state (S(T ), I(T ), V (T )) in minimum time for the time optimal
control problem (3.8)− (3.11) provided Ω 6= φ.

Proof. For proving the existence of an optimal controls using Filippov’s existence theorem it is enough to show
that the following conditions are satisfied:

1. The set A is compact
2. U is compact and convex
3. The set of boundary points B = {0, S0, I0, V0, T, S(T ), I(T ), V (T )} is compact and objective function is

continuous on B.
We will now show that all the above conditions are satisfied by the time optimal control problem (3.8)−(3.11).
(i). From the positivity and boundedness section we know that if the initial values of the state variables are

positive then all the solutions of the system with each bounded controls remains positive and bounded for all
time. This proves that the set A is compact.

(ii). By the definition the control set U is compact and convex.
(iii). Condition 3 is satisfied by the definition of B = {0, S0, I0, V0, T, S(T ), I(T ), V (T )} and the definition

of the objective function J = T .

3.2.2 Characterization of Optimal Controls

Given the time optimal control problem (3.8)− (3.11) we apply Pontryagin’s Minimum Principle for the char-
acterization of the optimal controls.

Theorem 6. (Pontryagin’s Minimum Principle for linear control problem ([33, 18])) Suppose that
U∗ = (µ∗11, µ

∗
12, µ

∗
21, µ

∗
22) is a minimizer for the time optimal control problem (3.8) − (3.11) and X(t)∗ =

(S(t)∗, I(t)∗, V (t)∗) denote the optimal solution of the system (3.9) − (3.11). Then there exists a piecewise
C1 vector function λ∗(t) = (λ∗1(t), λ∗2(t), λ∗3(t)) 6= 0 such that

dλ∗

dt
= −∂H

∂X
− χ[0,T−τ ](t)

∂H(t+ τ)

∂X(t− τ)
− χ[0,T−τ1](t)

∂H(t+ τ1)

∂X(t− τ1)

where H is the Hamiltonian function defined as H(X,U, λ) = 1 + λ1
dS
dt + λ2

dI
dt + λ3

dV
dt and:

1. the function H(X∗, u, λ∗) attains a minimum on U

H(X∗, u∗, λ∗) ≤ H(X∗, u, λ∗)∀u ∈ U

2. the Hamiltonian is constant equal to zero along the optimal solution:

H(X∗, u∗, λ∗) = 0

where u∗ = (µ∗11, µ
∗
12, µ

∗
21, µ

∗
22)

The Hamiltonian for the problem (3.8)− (3.11) is given by

H(S, I, V, U1, U2, λ) := 1 + λ1
dS

dt
+ λ2

dI

dt
+ λ3

dV

dt

Using Minimum Principle we have the following Canonical equations that relate the state variables and the
co-state variables

dλ1
dt

= λ1(βV + µ)− χ[0,T−τ ](t)λ2(t+ τ)βV

dλ2
dt

= λ2(x+ µ+ αµ12(t))− λ3b+ χ[0,T−τ1](t)λ2(t+ τ1)ε1µ11(t)

dλ3
dt

= λ1βS + λ3(µ1 + y + αµ22)− χ[0,T−τ ](t)λ2(t+ τ)βS(t) + χ[0,T−τ1](t)λ3(t+ τ1)ε1µ21(t)

(23)
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Now from condition 1 of Theorem 3.3 (Hamiltonian Minimization condition) we have

H(X∗, u∗, λ∗) ≤ H(X∗, u, λ∗)∀u ∈ U

The optimal Hamiltonian function is given by,

H(X,u, λ) = 1 + λ1(t)

(
ω − βSV − µS

)
+ λ2(t)

(
βS(t− τ)V (t− τ) − xI − µI − ε1µ11(t− τ1)I(t− τ1)− αµ12(t)I

)
+ λ3(t)

(
bI(t)− ε1µ21(t− τ1)V (t− τ1)− αµ22(t)V − µ1V − yV

)
From these Hamiltonian equation we see that the minimization of Hamiltonian function depends on the

extreme values of the control functions and the sign of λ2I(t− τ1), λ3V (t− τ1), λ2I(t) and λ3V (t). Therefore,
we conclude that the optimal controls might be of bang-bang type provided singular solution does not exists.
The optimal control functions would like:

µ∗11 =



0, if ε1λ2(t)I(t− τ1) < 0

µ11max, if ε1λ2(t)I(t− τ1) > 0

?, if ε1λ2(t)I(t− τ1) = 0

(24)

µ∗21 =



0, if ε1λ3(t)V (t− τ1) < 0

µ21max, if ε1λ3(t)V (t− τ1) > 0

?, if ε1λ3V (t− τ1) = 0

(25)

µ∗12 =



0, if αλ2(t)I(t) < 0

µ12max, if αλ2(t)I(t) > 0

?, if αλ2(t)I(t) = 0

(26)

µ∗22 =



0, if αλ3(t)V (t) < 0

µ22max, if αλ3(t)V (t) > 0

?, if αλ3(t)V (t) = 0

(27)

Now in order to show that the optimal controls are of bang-bang type we must show that the solution does
not exhibit singular arc in some interval B ⊂ [0, T ]. Now in the following we will show that solution does not
exhibit singular arc in interval B ⊂ [0, T ]. Since α > 0 and ε1 > 0, the maximum or minimum value of the
optimal controls depends on the sign of λ2(t)I(t) and λ3(t)V (t).
Let

φ1(t) = λ2(t)I(t)

φ2(t) = λ3(t)V (t)

φ(t) = (φ1(t), φ2(t))

The derivative of φ1(t) and φ2(t) is given by,

φ̇1(t) = λ2(t)İ(t) + λ̇2(t)I(t)

φ̇2(t) = λ3(t)V̇ (t) + λ̇3(t)V (t)

Now let’s assume that singular solution exists, that is φ(t) = 0 on interval B ⊂ [0, T ]. This would mean
φ1(t) = 0 and φ2(t) = 0 on interval B ⊂ [0, T ]. This implies that λ2(t) and λ3(t) both are zero in B since I(t) > 0
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and V (t) > 0 ∀t ∈ [0, T ]. Now φ1(t) = 0 and φ2(t) = 0 on interval B implies that φ
′

1(t) = 0 and φ
′

2(t) = 0. From
the definition of the derivative of φ

′

2(t), φ
′

2(t) = 0 would imply that λ
′

3(t) = 0 in B. Substituting λ
′

3(t) = 0 in
the canonical equations (3.12) we find that λ1(t) = 0 in B. Therefore, in interval B ⊂ [0, T ] we see that the
adjoint vector λ = (λ1, λ2, λ3) = 0. This is a contradiction with Theorem 3.3, as adjoint variables λ1, λ2 and
λ3 cannot vanish simultaneously. Therefore, the switching functions φ1(t) and φ2(t) vanishes only at isolated
points. As a consequences, the controls can assume two values: 0 and maximum value. The switching times
are defined as the time instants at which the switching functions φ1(t) and φ2(t) changes its sign. Therefore,
two types of switch can occur: one when the optimal control changes its value from zero to maximum and the
other when optimal control changes its value from maximum to zero.

We summarize the above discussion in the following result.

Theorem 7. The optimal control solution for the time optimal control problem (3.8) − (3.11) is a bang-bang
type with possibility of switches occurring in the optimal trajectory. The optimal controls is given by,

µ∗11 =


0, if λ2(t)I(t− τ1) < 0

µ11max, if λ2(t)I(t− τ1) > 0

(28)

µ∗11 =


0, if λ3(t)V (t− τ1) < 0

µ21max, if λ3(t)I(t− τ1) > 0

(29)

µ∗12 =


0, if λ2(t)I(t) < 0

µ12max, if λ2(t)I(t) > 0

(30)

µ∗22 =


0, if λ3(t)V (t) < 0

µ22max, if λ3(t)V (t) > 0

(31)

In the context of time optimal control problem (3.8)− (3.11), we wish to reach the desired terminal state (
which is the infection free equilibrium state in our case) from a given initial state in minimal time. The following
results gives the existence of optimal solution and the characterisation of optimal controls at the terminal time.
In the following lemma we show that at the terminal time the optimal controls assumes its maximum value and
later using this lemma we prove that the optimal control is maximum on the entire [0, T ] with some condition
on the control variables.

For the sake of simplicity let us denote all the control variable by a vector u(t) that is, u(t) = (µ11(t), µ12(t), µ21(t), µ22(t))

Lemma 1. Let V̇ (T ) = −y where, y > 0. The time optimal control problem (3.8) − (3.11) with (S(T ) =
ω
µ , I(T ) = 0, V (T ) = 0) admits an optimal solution. Moreover uopt(T ) = umax provided 0 < λ3(T ) < 1

y

Proof. From subsection 3.1.1, we know that the right hand side of the system (3.9)− (3.11) satisfies Lipschitz
condition with respect to state variables and also the solutions of system (3.9)−(3.11) are positive and bounded.
Therefore, solution exists for the system (3.9) − (3.11) for each bounded control variables [26]. This implies
that the admissible solution set Ω 6= φ and thus using existence theorem we conclude that the optimal control
problem (3.8)− (3.11) with (S(T ) = ω

µ , I(T ) = 0, V (T ) = 0) admits an optimum.

Now from condition 2 of Pontryagin’s Minimum Principle (Theorem 3.3) we have,

H(S(T ), I(T ), V (T ), u∗, λ(T )) = 0

substituting the definition of H in the above equation we get,

λ2(T )
dI

dt
+ λ3(T )

dV

dt
= −1 (32)

since the initial values of I(t) and V (t) are both positive and I(T ) and V (T ) are both zero, we have İ(T ) < 0
and V̇ (T ) < 0. Now from equation (3.21) we get,

λ2(T ) =
−1− λ3(T )V̇ (T )

İ(T )

Let İ(T ) = −x and V̇ (T ) = −y where x > 0 and y > 0. Assuming 0 < λ3(T ) < 1
y we have λ2(T ) > 0. Hence

at the terminal time we have uopt(T ) = umax.
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From the definition of the switching function we have, φ = (φ1(t), φ2(t)) = (λ2(t)I(t), λ3(t)V (t)). At t = T
we have (φ1(T ), φ2(T )) = (0, 0) because (I(T ), V (T )) = (0, 0). Since the final state has been already reached at
t = T , the values of the optimal controls are not significant at this time. From equation (3.11) we see that at
t = T we have,

V̇ (T ) = −ε1µ21(T − τ1)I(T − τ1) = −y

With this V̇ (T ), the condition 0 < λ3(T ) < 1
y of the above lemma 3.1 can be re-written as

0 < µ21(T − τ1) <
1

ε1λ3(T )I(T − τ1)

Therefore, uopt(T ) = umax if the control µ21(T − τ1) is chosen such that

µ21(T − τ1) <
1

ε1λ3(T )I(T − τ1)

.
Now using the above lemma we prove the following result which gives the stronger property of the optimal

strategy.

Theorem 8. Let lemma 3.1 hold. If µmax
12 > λ3(T )−λ2(T )(µ+x)

αλ2(T ) then uopt(T ) = umax for all t in [0, T ]

Proof. Let us assume that lemma 3.1 holds and µmax
12 > λ3(T )−λ2(T )(µ+x)

αλ2(T )

Now from the canonical equations (3.12) we have,

dλ1
dt

∣∣∣∣
t=T

= λ1(T )µ

dλ2(t)

dt

∣∣∣∣
t=T

= λ2(T )(µ+ x+ αµ12(T ))− λ3(T )b

dλ3(t)

dt

∣∣∣∣
t=T

= λ1(T )βS(T ) + λ3(T )(αµ22(T ) + y + µ)

Now since λ1(T ) is arbitrary from lemma 3.1. Let λ1(T ) > 0. We also know that λ3(T ) > 0, therefore,

dλ3(t)

dt

∣∣∣∣
t=T

> 0

Using the continuity of λ3(t), there exists ε > 0 such that λ3(t) > 0 for t ∈ [T − ε, T ]. As long as λ1(T ) > 0, we

have 0 < λ3(t) < λ3(T ) for t ∈ [s, T ]. Similarly since µmax
12 > λ3(T )−λ2(T )(µ+x)

αλ2(T ) we have,

dλ2(t)

dt

∣∣∣∣
t=T

> 0

Using the continuity of λ2(t), we have 0 < λ2(t) < λ2(T ) for t ∈ [s, T ]. Therefore, in the interval [s, T ] we have
uopt(T ) = umax.

Now we will show that s = 0. Let us assume that s 6= 0 and λ1(s) = 0 for 0 < s < T . Since λ1(T ) > 0,
using the continuity of λ1(t) over [0, T ] we get,

dλ1(t)

dt

∣∣∣∣
t=s

> 0

But from the canonical equation (3.12) we have at t = s

dλ1(t)

dt

∣∣∣∣
t=s

= −χ[0,T−τ ]λ2(s+ τ1)βV (s)

Since λ2(t) > 0 and V (t) > 0 on [s, T ] we get

dλ1(t)

dt

∣∣∣∣
t=s

< 0

This leads to a contradiction. Hence s = 0 and uopt(T ) = umax on [0, T].
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3.2.3 Numerical Simulation of Time Optimal Control Problem

In this section we numerically illustrate the theory discussed in the previous sections and this is done using
MATLAB software. The figures in this section display the optimal trajectory of the state variables, switching
functions, co-state variables and the optimal control functions. The initial and the terminal state are fixed and
using parameter values from table 4 and the terminal state of the system (3.9)− (3.11) we obtain the optimal
value of the control at the terminal state u∗(T ) = (µ∗11(T ), µ∗12(T ), µ∗21(T ), µ∗22(T )). Using this we fix the range
of the control variable [0, umax]. Then with the objective of reaching the terminal state from the given initial
state, we obtain the initial values of the co-state variables with various combination of trial-error guesses by
ensuring that the Hamiltonian function H = 0 along the optimal trajectory. The Runge-kutta method of 4th

order is used to simulate the system (3.9)− (3.11) and the canonical equation (3.12). The optimal control value
switches between 0 and maximum value depending on the sign of the switching functions given in (3.17)−(3.20).
The time to reach the terminal state is calculated for each of the cases considered. The Hamiltonian function
is monitored throughout the process. The step size for the simulation is taken to be h = 0.01 and based on this
the time to reach the desired infection free equilibrium state is re-scaled by multiplying T × 10−2.

In figure (7, 8) we plot the optimal trajectory of the state variables, switching functions, co-state variables and
the optimal control functions over time. The figure depicts the possibility of driving the system (3.9) − (3.11)
from given initial state (1000, 80, 60) to the desired infection free equilibrium state (20, 0, 0). The minimum
values of the controls (µ∗11, µ

∗
12, µ

∗
21, µ

∗
22, ) are taken as zero and the maximum values are taken as 2 and the

values of other fixed parameters for the simulation is taken from table 4. The final time taken by the system
(3.9) − (3.11) to reach the desired terminal state is calculated to be T = 1947 × 10−2 = 19.47 units of time.
This example is a case with one switch. It is observed that optimal control functions µ∗11 and µ∗12 switches its
values from maximum (i.e. 2) to minimum (i.e. 0) whereas, the optimal control functions µ∗21 and µ∗22 switches
its values from minimum to maximum. The nature of these switches in the values of optimal controls depends
on the sign of the switch function φ1 and φ2 as discussed in theorem 3.4. This example is applicable in the
context of eliminating the virus particle from the body and we see from the figure that the infected cell increases
initially for a certain period of time owing to the presence of virus particles and then decreases and comes down
to zero as viral load decreases with the administration of higher quantity of the controls.

19



Figure 7: Figure depicting the optimal trajectory of the time optimal control problem (3.8)-(3.11) from the
initial state (1000, 80, 60) to the desired terminal state E0 = (20, 0, 0) with the parameter values from table 4.
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Figure 8: Figure depicting the trajectory of optimal control functions of the time optimal control problem
(3.8)-(3.11).

In figure (9, 10) we plot the optimal trajectory of the state variables, switching functions, co-state variables
and the optimal control functions over time. The figure depicts the possibility of driving the system (3.9)−(3.11)
from given initial state (1000, 80, 60) to the desired infection free equilibrium state (20, 0, 0). The minimum
values of the controls (µ∗11, µ

∗
12, µ

∗
21, µ

∗
22, ) are taken as zero, same as in the previous example but the maximum

values are now taken to be 2.5 and the values of other fixed parameters are from table 4. This example is a
case without any switch in the values of optimal controls. This case is an illustration of theorem 3.5 where,
λ2(t) > 0 and λ3(t) > 0 ∀t ∈ [0, T ] and µ∗11(t) = µmax, µ∗21(t) = µmax, µ∗12(t) = µmax and µ∗22(t) = µmax

∀t ∈ [0, T ]. In this case the time to reach the desired infection free equilibrium state is calculated to be
T = 1606 × 10−2 = 16.06 units of time which is lesser than the previous example. This example illustrates
that the infection free equilibrium state could be achieved by the system in much lesser time maintaining the
administration of the controls at maximum levels throughout the observation period.

21



Figure 9: Figure depicting the optimal trajectory of the time optimal control problem (3.8) − (3.11) from the
initial state (1000, 80, 60) to the desired terminal state E0 = (20, 0, 0) with the parameter values from table 4.
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Figure 10: Figure depicting the trajectory of optimal control functions of the time optimal control problem
(3.8)-(3.11).

3.3 Discussions and Conclusions

The outbreak of novel coronavirus in Wuhan, China marked the introduction of a virulent coronavirus into
human society. It has resulted in around 154 million cases and 3.22 million deaths worldwide. With several
research teams working together several mathematical as well as clinical works are being done to better under-
stand the disease dynamics and examine the efficacies of various interventions. Although a lot of research is
being done, effective approaches to treatment and epidemiological control are still lacking.

Since COVID-19 outbreak, researchers have suggested many agents that could have potential efficacy against
COVID-19. There is no specific, effective treatment or cure for coronavirus disease 2019 (COVID-19) like
SARS-CoV and MERS-CoV. In these situation certain antiviral drugs like chloroquine, hydroxychloroquine,
lopinavir/ritonavir, and remdesivir and certain immunomodulators such as INF and Zinc supplements are being
used in the treatment. Mathematical models are known to provide useful information in short period of time
and more importantly in the non-invasive way. Therefore, in this context, within-host mathematical modelling
studies can be extremely helpful in understanding the natural history of this new disease, role and efficacies of the
antiviral drugs (remdesivir, hydroxychloroquine etc.) and second line drugs (methylprednisolone ) individually
and in combination. A SAIU compartmental mathematical model that explains the transmission dynamics of
COVID-19 is developed in [34]. The role of some of the control policies such as treatment, quarantine, isolation,
screening, etc. are also applied to control the spread of infectious diseases [16, 25, 4].

In this study initially, we extended the work done in [9] by incorporating inter-cellular time delay and
studied the stability analysis of the equilibrium points. Secondly, to study the role and efficacies of the first and
second line drugs an optimal control problem was framed. Fillipov existence theorem and Pontryagin Minimum
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Principle was used for proving the existence and obtaining the optimal solutions. Lastly, a time optimal control
problem was formulated with the objective of driving the system from any given initial state to the desired
infection free equilibrium state in minimal time. Using Pontryagin Minimum Principle the optimal controls
were shown to be of bang-bang type with possibility of switches occurring in the optimal trajectory.

Findings from the stability analysis of the equilibrium points suggested that the infection free equilibrium
point denoted by E0 remained asymptotically stable for all the values of inter-cellular delay (τ) provided the
value of basic reproduction number R0 was less than unity. As the value of R0 crossed unity the infected
equilibrium point E1 was found to be asymptotically stable for all values of inter-cellular delay as discussed in
theorem 2.3.

From the comparative study done in the optimal control problem section 3.1, we find that when the first line
antiviral drugs starts showing adverse events (α > 0) , considering first line antiviral drugs in reduced quantity
along with the second line drug could be highly effective in reducing the infected cells and viral load in a COVID
infected patients and this alternative also proved to be cost effective compared to the first line drug only case
(figure (4, 5, 6)).

In subsection 3.2 time optimal control problem was framed with the objective of driving the system from
any given initial state to the desired infection free equilibrium state E0 in minimum time with varying values
of the first line and second line drugs. Using Pontryagin’s Minimum Principle it was shown that the optimal
strategy is of bang-bang time with possibility of switches between two extreme values of the optimal controls
depending on the sign of switch functions. The findings from the time optimal control study indicates that
with higher values of first line and second line drugs the time to reach the desired infection free state decreases
(numerical illustration of theorem 3.5). This would imply that the infected cells and viral load in the body of
a COVID infected individual becomes zero in short period of time with the higher values of the first line and
second line drugs.

The within-host optimal control studies to evaluate the efficacies of the anti viral drugs without considering
the adverse events of these drugs has been done in [9] but within-host time optimal control studies in COVID-19
is first of its kind studied here and the results obtained from this can be helpful to researchers, epidemiologists,
clinicians and doctors working in this field.
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