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Abstract

The rapid finding of effective therapeutics requires the efficient use of available re-
sources in clinical trials. The use of covariate adjustment can yield statistical estimates
with improved precision, resulting in a reduction in the number of participants required
to draw futility or efficacy conclusions. We focus on time-to-event and ordinal outcomes.
When more than a few baseline covariates are available, a key question for covariate
adjustment in randomized studies is how to fit a model relating the outcome and the
baseline covariates to maximize precision. We present a novel theoretical result estab-
lishing conditions for asymptotic normality of a variety of covariate-adjusted estimators
that rely on machine learning (e.g., ℓ1-regularization, Random Forests, XGBoost, and
Multivariate Adaptive Regression Splines), under the assumption that outcome data
is missing completely at random. We further present a consistent estimator of the
asymptotic variance. Importantly, the conditions do not require the machine learning
methods to converge to the true outcome distribution conditional on baseline variables,
as long as they converge to some (possibly incorrect) limit. We conducted a simula-
tion study to evaluate the performance of the aforementioned prediction methods in
COVID-19 trials using longitudinal data from over 1,500 patients hospitalized with
COVID-19 at Weill Cornell Medicine New York Presbyterian Hospital. We found that
using ℓ1-regularization led to estimators and corresponding hypothesis tests that con-
trol type 1 error and are more precise than an unadjusted estimator across all sample
sizes tested. We also show that when covariates are not prognostic of the outcome,
ℓ1-regularization remains as precise as the unadjusted estimator, even at small sample
sizes (n = 100). We give an R package adjrct that performs model-robust covariate
adjustment for ordinal and time-to-event outcomes.
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1 Introduction

Coronavirus disease 2019 (COVID-19) has affected more than 125 million people and caused
more than 2.7 million deaths worldwide (World Health Organization 2021). Governments
and scientists around the globe have deployed an enormous amount of resources to combat
the pandemic with remarkable success, such as the development in record time of highly effec-
tive vaccines to prevent disease (e.g., Polack et al. 2020; Baden et al. 2021). Global and local
organizations are launching large-scale collaborations to collect robust scientific data to test
potential COVID-19 treatments, including the testing of drugs re-purposed from other dis-
eases as well as new compounds (Kupferschmidt and Cohen 2020). For example, the World
Health Organization launched the SOLIDARITY trial, enrolling almost 12,000 patients in
500 hospital sites in over 30 countries (WHO Solidarity Trial Consortium 2021). Other large
initiatives include the RECOVERY trial (The RECOVERY Collaborative Group 2021) and
the ACTIV initiative (Collins and Stoffels 2020). To date, there are approximately 2,400
randomized trials for the treatment of COVID-19 registered in clinicaltrials.gov.

The rapid finding of effective therapeutics for COVID-19 requires the efficient use of
available resources. One area where such efficiency is achievable at little cost is in the statis-
tical design and analysis of the clinical trials. Specifically, a statistical technique known as
covariate adjustment may yield estimates with increased precision (compared to unadjusted
estimators), and may result in a reduction of the time, number of participants, and resources
required to draw futility or efficacy conclusions. This results in faster trial designs, which
may help accelerate the delivery of effective treatments to patients who need them (and may
help rule out ineffective treatments faster).

Covariate adjustment refers to pre-planned analysis methods that use data on patient
baseline characteristics to correct for chance imbalances across study arms, thereby yielding
more precise treatment effect estimates. The ICH E9 Guidance on Statistical Methods for
Analyzing Clinical Trials (FDA and EMA 1998) states that “Pretrial deliberations should
identify those covariates and factors expected to have an important influence on the primary
variable(s), and should consider how to account for these in the analysis to improve precision
and to compensate for any lack of balance between treatment groups.” Even though its
benefits can be substantial, covariate adjustment is underutilized; only 24%-34% of trials
use covariate adjustment (Kahan et al. 2014).

We focus on estimation of marginal treatment effects, defined as a contrast between
study arms in the marginal distribution of the outcome. Many approaches for estima-
tion of marginal treatment effects using covariate adjustment in randomized trials invoke
a model relating the outcome and the baseline covariates within strata of treatment. Re-
cent decades have seen a surge in research on the development of model-robust methods for
estimating marginal effects that remain consistent even if this outcome regression model is
arbitrarily misspecified (e.g., Yang and Tsiatis 2001; Tsiatis et al. 2008; Zhang et al. 2008;
Moore and van der Laan 2009a; Austin et al. 2010; Zhang and Gilbert 2010; Benkeser et al.
2020). We focus on a study of the model-robust covariate adjusted estimators for time-
to-event and ordinal outcomes developed by Moore and van der Laan (2009a), Díaz et al.
(2019), and Díaz et al. (2016).

All potential adjustment covariates must be pre-specified in the statistical analysis plan.
At the end of the trial, a prespecified prediction algorithm (e.g., random forests, or using
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regularization for variable selection) will be run and its output used to construct a model-
robust, covariate adjusted estimator of the marginal treatment effect for the trial’s primary
efficacy analysis. We aim to address the question of how to do this in a model-robust way that
guarantees consistency and asymptotic normality, under some weaker regularity conditions
than related work (described below). We also aim to demonstrate the potential value added
by covariate adjustment combined with machine learning, through a simulation study based
on COVID-19 data.

As a standard regression method for high-dimensional data, ℓ1-regularization has been
studied by several authors in the context of covariate selection for randomized studies. For
example, Wager et al. (2016) present estimators that are asymptotically normal under strong
assumptions that include linearity of the outcome-covariate relationship. Bloniarz et al.
(2016) present estimators under a randomization inference framework, and show asymptotic
normality of the estimators under assumptions similar to the assumptions made in this paper.
Both of these papers present results only for continuous outcomes. The method of Tian et al.
(2012) is general and can be applied to continuous, ordinal, binary, and time-to-event data,
and its asymptotic properties are similar to the properties of the methods we discuss for the
case of ℓ1-regularization, under similar assumptions.

More related to our general approach, Wager et al. (2016) also present a cross-validation
procedure that can be used with arbitrary non-parametric prediction methods (e.g., ℓ1-
regularization, random forests, etc.) in the estimation procedure. Their proposal amounts to
computation of a cross-fitted augmented inverse probability weighted estimator (Chernozhukov et al.
2018). Their asymptotic normality results, unlike ours, require that that their predictor of the
outcome given baseline variables converges to the true regression function. Wu and Gagnon-Bartsch
(2018) proposed a “leave-one-out-potential outcomes” estimator where automatic prediction
can also be performed using any regression procedure such as linear regression or random
forests, and they propose a conservative variance estimator. It is unclear as of yet whether
Wald-type confidence intervals based on the normal distribution are appropriate for this
estimator. As in the above related work that compares the precision of covariate adjusted
estimators to the unadjusted estimator, we assume that outcomes are missing completely at
random (since otherwise the unadjusted estimator is generally inconsistent).

In Section 3.3, we present our main theorem. It shows that any of a large class of
prediction algorithms (e.g., ℓ1-regularization, Random Forests, XGBoost, and Multivariate
Adaptive Regression Splines) can be combined with the covariate adjusted estimator of
Moore and van der Laan (2009b) to produce a consistent, asymptotically normal estimator
of the marginal treatment effect, under regularity conditions. These conditions do not require
consistent estimation of the outcome regression function (as in key related work described
above); instead, our theorem requires the weaker condition of convergence to some (possibly
incorrect) limit. We also give a consistent, easy to compute variance estimator. This has
important practical implications because it allows the use machine learning coupled with
Wald-type confidence intervals and hypothesis tests, under the conditions of the theorem.
The above estimator can be used with ordinal or time-to-event outcomes.

We next conduct a simulation study to evaluate the performance of the aforementioned
machine learning algorithms for covariate adjustment in the context of COVID-19 trials. We
simulate two-arm trials comparing a hypothetical COVID-19 treatment to standard of care.
The simulated data distributions are generated from longitudinal data on approximately
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1,500 patients hospitalized at Weill Cornell Medicine New York Presbyterian Hospital prior
to 15 May 2020. We present results for two types of endpoints: time-to-event (e.g., time to
intubation or death) and ordinal (e.g., WHO scale, see Marshall et al. 2020) outcomes. For
survival outcomes, we present results for two different estimands (i.e., targets of inference):
the survival probability at any given time and the restricted mean survival time. For ordi-
nal outcomes we present results for the average log-odds ratio, and for the Mann-Whitney
estimand, interpreted as the probability that a randomly chosen treated patient has a better
outcome than a randomly chosen control patient (with ties broken at random).

Benkeser et al. (2020) used simulations based on the above data source to illustrate
the efficiency gains achievable by covariate adjustment with parametric models including
a small number of adjustment variables (and not using machine learning to improve effi-
ciency). In this paper we evaluate the performance of four machine learning algorithms (ℓ1-
regularization, Random Forests, XGBoost, and Multivariate Adaptive Regression Splines)
in several sample sizes, and compare them in terms of their bias, mean squared error, and
type-1 and type-2 errors, to unadjusted estimators and to fully adjusted main terms logistic
regression with all available variables included. Furthermore, we introduce a new R pack-
age adjrct (Díaz and Williams 2021) that can be used to perform model-robust covariate
adjustment for ordinal and time-to-event outcomes, and provide R code that can be used to
replicate our simulation analyses with other data sources.

2 Estimands

In what follows, we focus on estimating intention-to-treat effects and refer to study arm
assignment simply as treatment. We focus on estimation of marginal treatment effects,
defined as a contrast between study arms in the marginal distribution of the outcome. We
further assume that we have data on n trial participants, represented by n independent and
identically distributed copies of data Oi : i = 1, . . . , n. We assume Oi is distributed as
P, where we make no assumptions about the functional form of P except that treatment
is independent of baseline covariates (by randomization). We denote a generic draw from
the distribution P by O. We use the terms “baseline covariate” and “baseline variable”
interchangeably to indicate a measurement made before randomization.

We are interested in making inferences about a feature of the distribution P. We use the
word estimand to refer to such a feature. We describe example estimands, which include
those used in our simulations studies, below.

2.1 Ordinal Outcomes

For ordinal outcomes, assume the observed data is O = (W,A, Y ), where W is a vector of
baseline covariates, A is the treatment arm, and Y is an ordinal variable that can take values
in {1, . . . , K}. Let F (k, a) = P(Y ≤ k | A = a) denote the cumulative distribution function
for patients in arm A = a, and let f(k, a) = F (k, a)− F (k − 1, a) denote the corresponding
probability mass function. For notational convenience we will sometimes use the “survival”
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function instead: S(k, a) = 1− F (k, a). The average log-odds ratio is then equal to

LOR =
1

K − 1

K−1∑

k=1

log

[
F (k, 1)/{1− F (k, 1)}
F (k, 0)/{1− F (k, 0)}

]
,

and the Mann-Whitney estimand is equal to

MW =

K∑

k=1

{
F (k − 1, 0) +

1

2
f(k, 0)

}
f(k, 1).

The Mann-Whitney estimand can be interpreted as the probability that a randomly drawn
patient from the treated arm has a better outcome than a randomly drawn patient from
the control arm, with ties broken at random (Ahmad 1996). The average log-odds ratio is
more difficult to interpret and we discourage its use, but we include it in our comparisons
because it is a non-parametric extension of the parameter β estimated by the commonly
used proportional odds model logit{F (k, a)} = αk + βa (Díaz et al. 2016).

2.2 Time to Event Outcomes

For time to event outcomes, we assume the observed data is O = (W,A,∆ = 1{Y ≤ C}, Ỹ =
min(C, Y )), where C is a right-censoring time denoting the time that a patient is last seen,
and 1{E} is the indicator variable taking the value 1 on the event E and 0 otherwise. We
further assume that events are observed at discrete time points {1, . . . , K} (e.g., days) as is
typical in clinical trials. The difference in restricted mean survival time is given by

RMST =
K−1∑

k=1

{S(k, 1)− S(k, 0)},

and can be interpreted as a contrast comparing the expected survival time within the
first K time units for the treated arm minus the control arm (Chen and Tsiatis 2001;
Royston and Parmar 2011). The risk difference at a user-given time point k is defined as

RD = S(k, 1)− S(k, 0),

and is interpreted as the difference in survival probability for a patient in the treated arm
minus the control arm. We note that the MW and RD parameters may be meaningful for
both ordinal and time-to-event outcomes.

3 Estimators

For the sake of generality, in what follows we use a common data structure O = (W,A,∆ =

1{Y ≤ C}, Ỹ ) for both ordinal and survival outcomes, where for ordinal outcomes C = K
if the outcome is observed and C = 0 if it is missing.

Many approaches for estimation of marginal treatment effects using covariate adjustment
in randomized trials invoke a model relating the outcome and the baseline covariates within
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strata of treatment. It is important that the consistency and interpretability of the treatment
effect estimates do not rely on the ability to correctly posit such a model. Specifically, in a
recent draft guidance (U.S. Food and Drug Administration 2021), the FDA states: “Sponsors
can perform covariate adjusted estimation and inference for an unconditional treatment effect
... in the primary analysis of data from a randomized trial. The method used should provide
valid inference under approximately the same minimal statistical assumptions that would
be needed for unadjusted estimation in a randomized trial.” The assumption of a correctly
specified model is not typically part of the assumptions needed for an unadjusted analysis,
and should therefore be avoided when possible.

All estimands described in this paper can be computed from the cumulative distribution
functions (CDF) F (·, a) for a ∈ {0, 1}, which can be estimated using the empirical cumulative
distribution function (ECDF) or the Kaplan-Meier estimator. Model-robust, covariate ad-
justed estimators have been developed for the CDF, including, e.g., Chen and Tsiatis (2001);
Rubin and van der Laan (2008); Moore and van der Laan (2009b); Stitelman et al. (2011);
Lu and Tsiatis (2011); Brooks et al. (2013); Zhang (2014); Parast et al. (2014); Benkeser et al.
(2018); Díaz (2019).

We focus on the model-robust, covariate adjusted estimators of Moore and van der Laan
(2009b), Díaz et al. (2016), and Díaz et al. (2019). These estimators have at least two ad-
vantages compared to unadjusted estimators based on the ECDF or the Kaplan-Meier esti-
mator. First, with time-to-event outcomes, the adjusted estimator can achieve consistency
under an assumption of censoring being independent of the outcome given study arm and
baseline covariates (C ⊥⊥ Y |A,W ), rather than the assumption of censoring in each arm
being independent of the outcome marginally (C ⊥⊥ Y |A) required by unadjusted estima-
tors. The former assumption is arguably more likely to hold in typical situations where
patients are lost to follow-up due to reasons correlated with their baseline variables. Sec-
ond, in large samples and under regularity conditions, the adjusted estimators of Díaz et al.
(2016) and Díaz et al. (2019) can be at least as precise as the unadjusted estimator (this re-
quires that missingness/censoring is completely at random, i.e., that in each arm a ∈ {0, 1},
C ⊥⊥ (Y,W )|A = a), under additional assumptions.

Additionally, under regularity conditions, the three aforementioned adjusted estimators
are asymptotically normal. This allows the construction of Wald-type confidence intervals
and corresponding tests of the null hypothesis of no treatment effect.

3.1 Prediction algorithms

While we make no assumption on the functional form of the distribution P (except that
treatment is independent of baseline variables by randomization), implementation of our
estimators requires a working model for the following conditional probability

m(k, a,W ) = P(Ỹ = k,∆ = 1 | Ỹ ≥ k, A = a,W ).

In time-to-event analysis, this probability is known as the conditional hazard. The expres-
sion working model here means that we do not assume that the model represents the true
relationship between the outcome and the treatment/covariates. Fitting a working model
for m is equivalent to training a prediction model for m (specifically, a prediction model for
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the probability of Ỹ = k,∆ = 1 given Ỹ ≥ k, A = a,W ), and we sometimes refer to the
model fit as a predictor.

In our simulation studies, we will use the following working models, fitted in a dataset
where each participant contributes a row of data corresponding to each time k = 1 through
k = Ỹ :

• The following pooled main terms logistic regression (LR) logit{mβ(k, a,W )} = βa,0,k+
β⊤

a,1W estimated with maximum likelihood estimation. Note that this model has (i)
separate parameters for each study arm, and (ii) in each arm, intercepts for each
possible outcome level k.

• The above model fitted with an ℓ1 penalty on the parameter βa,1 (ℓ1-LR, Tibshirani
1996; Park and Hastie 2007).

• A random forest classification model (RF, Breiman 2001).

• An extreme gradient boosting tree ensemble (XGBoost, Friedman 2001).

• Multivariate adaptive regression splines (MARS, Friedman 1991).

For RF, XGBoost, and MARS, the algorithms are trained in the whole sample {1, . . . , n}.
For these algorithms, we also assessed the performance of cross-fitted versions of the esti-
mators. Cross-fitting is sometimes necessary to guarantee that the regularity assumptions
required for asymptotic normality of the estimators hold when using data-adaptive regres-
sion methods (Klaassen 1987; Zheng and van der Laan 2011; Chernozhukov et al. 2018),
and is performed as follows. Let V1, . . . ,VJ denote a random partition of the index set
{1, . . . , n} into J prediction sets of approximately the same size. That is, Vj ⊂ {1, . . . , n};⋃J

j=1 Vj = {1, . . . , n}; and Vj∩Vj′ = ∅. In addition, for each j, the associated training sample
is given by Tj = {1, . . . , n}\Vj. Let m̂j denote the prediction algorithm trained in Tj . Letting
j(i) denote the index of the prediction set which contains observation i, cross-fitting entails
using only observations in Tj(i) for fitting models when making predictions about observation
i. That is, the outcome predictions for each subject i are given by m̂j(i)(u, a,Wi). We let
η̂j(i) = (m̂j(i), π̂A, π̂C) for cross-fitted estimators and η̂j(i) = (m̂, π̂A, π̂C) for non-cross-fitted
ones. RF, XGBoost, and MARS were fit using the ranger (Wright and Ziegler 2017), xgboost
(Chen et al. 2021), and earth (Milborrow 2020) R packages, respectively. Hyperparameter
tuning was performed using cross-validation with the origami (Coyle and Hejazi 2020) R
package.

3.2 Targeted minimum loss based estimation (TMLE)

Our simulation studies use the TMLE procedure presented in Díaz et al. (2019). We will refer
to that estimator as TMLE with improved efficiency, or IE-TMLE. We will first present the
TMLE of (Moore and van der Laan 2009b), which constitutes the basis for the construction
of the IE-TMLE.

In the supplementary materials we present some of the efficiency theory underlying the
construction of the TMLE. Briefly, TMLE is a framework to construct estimators η̂j(i) that
solve the efficient influence function estimating equation n−1

∑n
i=1Dη̂j(i)(Oi) = 0, where
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Dη(O) is the efficient influence function for S(k, a) in the non-parametric model that only
assumes treatment A is independent of baseline variables W (which holds by design), defined
in the supplementary materials. TMLE enjoys desirable properties such as local efficiency,
outcome model robustness under censoring completely at random, and asymptotic normality,
under regularity assumptions.

TMLE estimator definition: Given a predictor m̂ constructed as in the previous
subsection and any k, a, the corresponding TMLE estimation procedure for F (k, a) can be
summarized in the next steps:

1. Create a long-form dataset where each participant i contributes the following row of
data corresponding to each time u = 0 through k:

(
u,Wi, Ai, 1{Ỹ ≥ u}, 1{Ỹ = u,∆ = 0}, 1{Ỹ = u,∆ = 1}

)
,

where 1{X} is the indicator variable taking value 1 if X is true and 0 otherwise.

2. For each individual i, obtain a prediction m̂(u, a,Wi) for each pair in the set {(u, a) :
a = 0, 1; u = 0, . . . , k}.

3. Fit a model πA(a,W ) for the probability P(A = a | W ). Note that, in randomized
trials, this model may be correctly specified by a logistic regression logit πA(1,W ) =
α0 + α⊤

1 W . Let π̂A(a,Wi) denote the prediction of the model for individual i.

4. Fit a model πC(u, a,W ) for the censoring probabilities P(Ỹ = u,∆ = 0 | Ỹ ≥ u,A =
a,W ). For time-to-event outcomes, this is a model for the censoring probabilities. For
ordinal outcomes, the only possibilities are that C = 0 (outcome missing) or C = K
(outcome observed); in this case we only fit the aforementioned model at u = 0 and we
set πC(u, a,W ) = 0 for each u > 0. For either outcome type, if there is no censoring
(i.e., if P (∆ = 1) = 1), then we set πC(u, a,W ) = 0 for all u. Let π̂C(u, a,Wi) denote
the prediction of this model for individual i, i.e., using the baseline variable values
from individual i.

5. For each individual i and each u ≤ k, compute a “clever” covariate HY,k,u as a function
of m̂, π̂A, and π̂C as detailed in the supplementary materials. The outcome model fit
m̂ is then updated by fitting the following logistic regression “tilting" model with single
parameter ǫ and offset based on m̂:

P(Ỹ = u,∆ = 1 | Ỹ ≥ u,A = a,W ) = logit−1 {logit m̂(u, a,W ) + εHY,k,u} .

This can be done using standard statistical software for fitting a logistic regression of
the indicator variable 1{Ỹ = u,∆ = 1} on the variable HY,k,u using offset logit m̂(u, a,W )

among observations with Ỹ ≥ u and A = a in the long-form dataset from step 1. The
above model fitting process is iterated where at the beginning of each iteration we
replace m̂ in the above display and in the definition of HY,k,u by the updated model
fit. We denote the maximum number of iterations that we allow by imax.
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6. Let m̃(u, a,Wi) denote the estimate of m(u, a,Wi) for individual i at the final itera-
tion of the previous step. Note that this estimator is specific to the value k under
consideration.

7. Compute the estimate of S(k, a) = 1−F (k, a) as the following standardized estimator

S̃TMLE(k, a) =
1

n

n∑

i=1

k∏

u=1

{1− m̃(u, a,Wi)}, (1)

and let the estimator of F (k, a) be 1− S̃TMLE(k, a).

This estimator was originally proposed by Moore and van der Laan (2009b). The role of

the clever covariate HY,k,u is to endow the resulting estimator S̃(k, a) with properties such
as model-robustness compared to unadjusted estimators. In particular, it can be shown
that this estimator is efficient when the working model for m is correctly specified. The
specific form of the covariate HY,k,u is given in the supplementary materials. Throughout,
the notation m̂ is used to represent the predictor constructed as in Section 3.1 and which
is an input to the above TMLE algorithm, while m̃ denotes the updated version of this
predictor that is output by the above TMLE algorithm at step 6.

IE-TMLE estimator definition: In Section 4 we will compare several machine learning
procedures for estimating m in finite samples. The estimators used in the simulation study
are the IE-TMLE of Díaz et al. (2019), where in addition to updating the initial estimator
for the outcome regression m, we also update the estimators of the treatment and censoring
mechanisms. Specifically, we replace step 5 of the above procedure with the following:

5. For each individual i construct “clever” covariates HY,k,u, HA, and HC,k,u (defined in
the supplementary materials) as a function of m̂, π̂A, and π̂C . For each k = 1, . . . , K,
the model fits are then iteratively updated using logistic regression “tilting" models:

logitmε(u, a,W ) = logit m̂(u, a,W ) + εHY,k,u

logitπγ,A(1,W ) = logit π̂A(1,W ) + γHA

logit πυ,C(u, a,W ) = logit π̂C(u, a,W ) + υHC,k,u

where the iteration is necessary because HY,k,u, HA, and HC,k,u are functions of m̂, π̂A,
and π̂C that must be updated at each step. As before, for ordinal outcomes we only
fit the aforementioned model at u = 0 and we set πC(u, a,W ) = 0 for each u > 0.

We use S̃IE−TMLE to denote this estimator. The updating step above combines ideas from
Moore and van der Laan (2009b), Gruber and van der Laan (2012), and Rotnitzky et al.
(2012) to produce an estimator with the following properties:

(i) Consistency and at least as precise as the Kaplan-Meier and inverse probability weighted
estimators;

(ii) Consistency under violations of independent censoring (unlike the Kaplan-Meier esti-
mator) when either the censoring or survival distributions, conditional on covariates,
are estimated consistently and censoring is such that C ⊥⊥ Y | W,A; and
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(iii) Nonparametric efficiency when both of these distributions are consistently estimated
at rate n1/4.

Please see Díaz et al. (2019) for more details on these estimators, which are implemented in
the R package adjrct (Díaz and Williams 2021).

Next, we present a result (Theorem 1) stating asymptotic normality of S̃TMLE using
machine learning for prediction that avoids some limitations of existing methods, and present
a consistent estimator of its variance. In Section 4 we present simulation results where
we evaluate the performance of S̃IE−TMLE for covariate adjustment in COVID-19 trials for
hospitalized patients. We favor S̃IE−TMLE in our numerical studies because, unlike S̃TMLE,
it satisfies property (i) above. The simulation uses Wald-type hypothesis tests based on the
asymptotic approximation of Theorem 1, where we note that the variance estimator in the
theorem is consistent for S̃TMLE but it is conservative for S̃IE−TMLE (Moore and van der Laan
2009b).

3.3 Asymptotically correct confidence intervals and hypothesis tests
for TMLE combined with machine learning

Most available methods to construct confidence intervals and hypothesis tests in the statistics
literature are based on the sampling distribution of the estimator. While using the exact
finite-sample distribution would be ideal for this task, such distributions are notoriously
difficult to derive for our problem in the absence of strong and unrealistic assumptions
(such as linear models with Gaussian noise). Thus, here we focus on methods that rely on
approximating the finite-sample distribution using asymptotic results as n goes to infinity.

In order to discuss existing methods, it will be useful to introduce and compare the
following assumptions:

A1. Censoring is completely at random, i.e., C ⊥⊥ (Y,W ) | A = a for each treatment arm a.

A2. Let ||f ||2 denote the L2(P) norm
∫
f 2(o)dP(o), for O = (W,A,∆ = 1{Y ≤ C}, Ỹ ). We

abbreviate m(k, a,W ) and m̂(k, a,W ) by m and m̂, respectively. Assume the estimator m̂
is consistent in the sense that ||m̂−m|| = oP (1) for all k ∈ {1, . . . , K} and a ∈ {0, 1}. We
also assume that there exists a δ > 0 such that δ < m < 1− δ with probability 1.

A3. Assume the estimator m̂ converges to a possibly misspecified limit m1 in the sense that
||m̂−m1|| = oP (1) for all k ∈ {1, . . . , K} and a ∈ {0, 1}, where we emphasize that m1 can
be different from the true regression function m. We also assume that there exists a δ > 0
such that δ < m1 < 1− δ with probability 1.

For estimators m̂ of m that use cross-fitting, the function m̂ consists of J maps (one for
each training set) from the sample space of O to the interval [0, 1]. In this case, by convention
we define ||m̂−m|| in A2 as the average across the J maps of the L2(P) norm of each such
map minus m. Convergence of ||m̂−m|| to 0 in probability is then equivalent to the same
convergence where m̂ is replaced by the corresponding map before cross-fitting is applied.
The same convention is used in A3.

There are at least two results on asymptotic normality for S̃TMLE relevant to the prob-
lem we are studying. The first result is a general theorem for TMLE (see Appendix A.1 of
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van der Laan and Rose 2011), stating that the estimator is asymptotically normal and effi-
cient under regularity assumptions which include A2. Among other important implications,
this asymptotic normality implies that the variance of the estimators can be consistently
estimated by the empirical variance of the efficient influence function. This means that
asymptotically correct confidence intervals and hypothesis tests can be constructed using a
Wald-type procedure. As stated above, it is often undesirable to assume A2 in the setting
of a randomized trial, as it is a much stronger assumption than what would be required for
an unadjusted estimator.

The second result of relevance to this paper establishes asymptotic normality of S̃(k, a)
under assumptions that include A3 (Moore and van der Laan 2009a). The asymptotic vari-
ance derived by these authors depends on the true outcome regression function m, and is
thus difficult to estimate. As a solution, the authors propose to use a conservative estimate
of the variance whose computation does not rely on the true regression function m. While
this conservative method yields correct type 1 error control, its use is not guaranteed to fully
covert precision gains from covariate adjustment into power gains.

We note that the above asymptotic normality results from related works rely on the
additional condition that the estimator m̂ lies in a Donsker class. This assumption may be
violated by some of the data-adaptive regression techniques that we consider. Furthermore,
we note that resampling methods such as the bootstrap cannot be safely used for variance
estimation in this setting. Their correctness is currently unknown when the working model
for m is based on data-adaptive regression procedures such as those described in Section 3.1
and used in our simulation studies.

In what follows, we build on recent literature on estimation of causal effects using
machine learning to improve upon the aforementioned asymptotic normality results on
two fronts. First, we introduce cross-fitting (Klaassen 1987; Zheng and van der Laan 2011;
Chernozhukov et al. 2018) to avoid the Donsker condition. Second, and most importantly,
we present a novel asymptotic normality result that avoids the above limitations of existing
methods regarding strong assumptions (specifically A2) and conservative variance estimators
(that may sacrifice power).

The following are a set of assumptions about how components of the TMLE are imple-
mented, which we’ll use in our theorem below:

A4. The initial estimator of πA(1) is set to be the empirical mean n−1
∑n

i=1Ai.

A5. For time-to-event outcomes, the initial estimator Π̂C(a, u) is set to be the Kaplan-Meier

estimator estimated separately within each treatment arm a. For ordinal outcomes, Π̂C(a, 0)

is the proportion of missing outcomes in treatment arm a and Π̂C(a, u) = 0 for u > 0.

A6. The initial estimator m̂(u, a,W ) is constructed using one of the following:

1. Any estimator in a parametric working model (i.e., a model that can be indexed by a
Euclidean parameter) such as maximum likelihood, ℓ1 regularization, etc.

2. Any data-adaptive regression method (e.g., random forests, MARS, XGBoost, etc.)
estimated using cross-fitting as described above.
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A7. The regularity conditions in Theorem 5.7 of (van der Vaart 1998, p.45) hold for the
maximum likelihood estimator corresponding to each logistic regression model fit in step (5)
of the TMLE algorithm.

Theorem 1. Assume A1 and A3–A7 above. Define the variance estimator

σ̃2 =
1

n

n∑

i=1

[Dη̃j(i)(Oi)]
2.

Then we have for all k ∈ {1, . . . , K} and a ∈ {0, 1} that

√
n{S̃TMLE(k, a)− S(k, a)}/σ̃  N(0, 1).

Theorem 1 is a novel result establishing the asymptotic correctness of Wald-type confi-
dence intervals and hypothesis tests for the covariate-adjusted estimator S̃TMLE(k, a) based
on machine learning regression procedures constructed as stated in A6. For example, the
confidence interval S̃TMLE(k, a)±1.96× σ̃/

√
n has approximately 95% coverage at large sam-

ple sizes, under the assumptions of the theorem. The theorem licenses the large sample use
of any regression procedure for m when combined with the TMLE of Section 3.2, as long as
the regression procedure is either (i) based on a parametric model (such as ℓ1-regularization)
or (ii) based on cross-fitted data-adaptive regression, and the assumptions of the theorem
hold. The theorem states sufficient assumptions under which Wald-type tests from such a
procedure will be asymptotically correct.

Assumption A3 states that the predictions given by the regression method used to con-
struct the adjusted estimator converge to some arbitrary function (i.e., not assumed to be
equal to the true regression function). This assumption is akin to Condition 3 assumed
by Bloniarz et al. (2016) in the context of establishing asymptotic normality of a covariate-
adjusted estimator based on ℓ1-regularization. We note that this is an assumption on the
predictions themselves and not on the functional form of the predictors. Therefore, is-
sues like collinearity do not necessarily cause problems. While this assumption can hold
for many off-the-shelf machine learning regression methods under assumptions on the data-
generating mechanism, general conditions have not been established and the assumption
must be checked on a case-by-case basis.

We note that assumption A1 is stronger than the assumption C ⊥⊥ Y | A = a required
by unadjusted estimators such as the Kaplan-Meier estimator. However, if W is prognos-
tic (meaning that W 6⊥⊥ Y | A = a), then the assumption C ⊥⊥ Y | A = a required by
the Kaplan-Meier estimator cannot generally be guaranteed to hold, unless A1 also holds.
Thus, our theorem aligns with the recent FDA draft guidance on covariate adjustment in
the sense that “it provides valid inference under approximately the same minimal statis-
tical assumptions that would be needed for unadjusted estimation in a randomized trial”
(U.S. Food and Drug Administration 2021).

The construction of estimators based on A5 should be avoided if A1 does not hold. Con-
fidence that A1 holds is typically warranted in trials where the only form of right censoring
is administrative. When applied to ordinal outcomes, A1 is trivially satisfied if there is no
missing outcome data.
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Consider the case where censoring is informative such that A1 does not hold, but cen-
soring at random holds (i.e., C ⊥⊥ Y | W,A). Then consistency of the estimators S̃TMLE

and S̃IE−TMLE will typically require that at least one of two assumptions hold: (a) that
the censoring probabilities πC(u, a, w) are estimated consistently, or that (b) the outcome
regression m(u, a, w) is estimated consistently. To maximize the chances of either of these
conditions being true, we recommend the use of flexible machine learning for both of these
regressions, including model selection and ensembling techniques such as the Super Learner
(van der Laan et al. 2007). The conditions for asymptotic normality of S̃TMLE and S̃IE−TMLE

under these circumstances are much stronger than those for Theorem 1, and typically include
consistent estimation of both πC(u, a, w) and m(u, a, w) at certain rates (e.g., each of them
converging at n1/4-rate is sufficient, see Appendix A.1 of van der Laan and Rose 2011).

4 Simulation methods

Our data generating distribution is based on a database of over 1,500 patients hospitalized at
Weill Cornell Medicine New York Presbyterian Hospital prior to 15 May 2020. The database
includes information on patients 18 years of age and older with COVID-19 confirmed through
reverse-transcriptase–polymerase-chain-reaction assays. For a full description of the clinical
characteristics and data collection methods of the initial cohort sampling, see Goyal et al.
(2020).

We evaluate the potential to improve efficiency by adjustment for subsets of the following
baseline variables: age, sex, BMI, smoking status, whether the patient required supplemen-
tal oxygen within three-hours of presenting to the emergency department, number of co-
morbidities (diabetes, hypertension, COPD, CKD, ESRD, asthma, interstitial lung disease,
obstructive sleep apnea, any rheumatological disease, any pulmonary disease, hepatitis or
HIV, renal disease, stroke, cirrhosis, coronary artery disease, active cancer), number of rel-
evant symptoms, presence of bilateral infiltrates on chest x-ray, dyspnea, and hypertension.
These variables were chosen because they have been previously identified as risk factors for
severe disease (Guan et al. 2020; Goyal et al. 2020; Gupta et al. 2020), and therefore are
likely to improve efficiency of covariate-adjusted effect estimators in randomized trials in
hospitalized patients.

Code to reproduce our simulations may be found at https://github.com/nt-williams/covid-RCT-covar.

4.1 Data generating mechanisms

We consider two types of outcomes: a time-to-event outcome defined as the time from
hospitalization to intubation or death, and a six-level ordinal outcome at 14 days post-
hospitalization based on the WHO Ordinal Scale for Clinical Improvement (Marshall et al.
2020). The categories are as follows: 0, discharged from hospital; 1, hospitalized with no
oxygen therapy; 2, hospitalized with oxygen by mask or nasal prong; 3, hospitalized with
non-invasive ventilation or high-flow oxygen; 4, hospitalized with intubation and mechanical
ventilation; 5, dead. For time to event outcomes, we focus on evaluating the effect of treat-
ment on the RMST at 14 days and the RD at 7 days after hospitalization, and for ordinal
outcomes we evaluate results for both the LOR and the Mann-Whitney statistic.
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We simulate datasets for four scenarios where we consider two effect sizes (null versus pos-
itive) and two baseline variable settings (prognostic versus not prognostic, where prognostic
means marginally associated with the outcome). For each sample size n ∈ {100, 500, 1500}
and for each scenario, we simulated 5000 datasets as follows. To generate datasets where
covariates are prognostic, we draw n pairs (W,Y ) randomly from the original dataset with
replacement. This generates a dataset where the covariate prognostic strength is as observed
in the real dataset. To simulate datasets where covariates are not prognostic, we first draw
outcomes Y at random with replacement from the original dataset, and then draw covariates
W at random with replacement and independent of the value Y drawn.

For each scenario, a hypothetical treatment variable is assigned randomly for each patient
with probability 0.5 independent of all other variables. This produces a data generating
distribution with zero treatment effect. Next, a positive treatment effect is simulated for
time-to-event outcomes by adding an independent random draw from a χ2 distribution four
degrees of freedom to each patient’s observed survival time in the treatment arm. This effect
size translates to a difference in RMST of 1.04 and RD of 0.10, respectively. To simulate
outcomes being missing completely at random, 5% of the patients are selected at random
to be censored, and the censoring times are drawn from a uniform distribution between
1 and 14. A positive treatment effect is simulated for ordinal outcomes by subtracting
from each patient’s outcome in the treatment arm an independent random draw from a
four-parameter Beta distribution with support (0, 5) and parameters (3, 15), rounded to the
nearest nonnegative integer. This generates effect sizes for LOR of 0.60 and for MW of 0.46.

5 Simulation results

We evaluate several estimators. First, we evaluate unadjusted estimators based on substitut-
ing the empirical CDF for ordinal outcomes and the Kaplan-Meier estimator for time-to-event
outcomes in the parameter definitions of Section 2. We then evaluate adjusted estimator
S̃IE−TMLE(k, a) where the working models are:

LR: a fully adjusted estimator using logistic regression including all the variables listed
in the previous section,

ℓ1-LR: ℓ1 regularization of the previous logistic regression,
RF: random forests,

MARS: multivariate adaptive regression splines, and
XGBoost: extreme gradient boosting tree ensembles.

For estimators RF, MARS, and XGBoost, we further evaluated cross-fitted versions of the
working model. For all adjusted estimators the propensity score πA is estimated with an
intercept-only model (A4), and the censoring mechanism πC is estimated using a Kaplan-
Meier estimator fitted independently for each treatment arm (A5) (or equivalently for ordinal
outcomes the proportion of missing outcomes within each treatment arm).

Confidence intervals and hypothesis tests are performed using Wald-type statistics, which
use an estimate of the standard error. The standard error was estimated based on the
asymptotic Gaussian approximation described in Theorem 1. We compare the performance
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of the estimators in terms of the probability of type-1 error, power, the absolute bias, the
variance, and the mean squared error.

We compute the relative efficiency RE of each estimator compared to the unadjusted
estimator as a ratio of the mean squared errors. This relative efficiency can be interpreted
as the ratio of sample sizes required by the estimators to achieve the same power at local
alternatives, asymptotically (van der Vaart 1998). Equivalently, one minus the relative ef-
ficiency is the relative reduction (due to covariate adjustment) in the required sample size
to achieve a desired power, asymptotically; e.g., a relative efficiency of 0.8 is approximately
equivalent to needing 20% smaller sample size when using covariate adjustment.

In the presentation of the results, we append the prefix CF to cross-fitted estimators.
For example, CF-RF will denote cross-fitted random forests.

Tables containing the comprehensive results of the simulations are presented in the sup-
plementary materials. In the remainder of this section we present a summary of the results.
First, we note that the use of random forests without cross-fitting exhibits very poor perfor-
mance, failing to appropriately control type-1 error when the effect is null, and introducing
significant bias when the effect is positive. We observed this poor performance across all
simulations. Thus, in what follows we omit a discussion of this estimator.

Results for the LOR in Tables 3 and 11 show that covariate adjusted estimators have
better performance than the unadjusted estimator at small sample sizes, even when the
covariates are not prognostic. In these cases, the unadjusted estimator is unstable with large
variance due to near-empty outcome categories in some simulated datasets, which causes
division by near-zero numbers in the unadjusted LOR estimator. Some covariate adjusted
estimators fix this problem by extrapolating model probabilities to obtain better estimates
of the probabilities in the near-empty cells.

Tables 1-4 (in the web supplementary materials) display the results for the difference in
RMST, RD, LOR, and MW estimands when covariates are prognostic and there is a positive
effect size. At sample size n = 1500 all adjusted estimators yield efficiency gains, with CF-
RF offering the best RE ranging from 0.51 to 0.67 compared to an unadjusted estimator,
while appropriately controlling type-1 error. In contrast, the RE of ℓ1-LR at n = 1500 ranged
from 0.79 to 0.89.

At sample size n = 500, ℓ1-LR, CF-RF, and XGBoost offer comparable efficiency gains,
ranging from 0.29 to 0.99. As the sample size decreases to n = 100 most adjusted estimators
yield efficiency losses and the only estimator that retains efficiency gains is ℓ1-LR, with RE

from 0.86 to 0.92. (An exception is in estimation of the LOR, where the RE of ℓ1-LR was 0.1
due to the issue discussed above.)

Efficiency gains for ℓ1-LR did not always translate into power gains of a Wald-type
hypothesis test compared to other estimators (e.g. LR at n = 100), possibly due to biased
variance estimation and/or a poor Gaussian approximation of the distribution of the test
statistic. At small sample size n = 100 power was uniformly better for a Wald-type test
based on LR compared to ℓ1-LR. At sample size n = 500 a Wald-type test based on ℓ1-LR
seemed to dominate all other algorithms, whereas at n = 1500 all algorithms had comparable
power very close to one.

Results when the true treatment effect is zero and covariates are prognostic are presented
in Tables 5-8 (in the web supplementary materials). At sample size n = 1500, CF-RF
generally provides large efficiency gains with relative efficiencies ranging from 0.66 to 0.77.
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For comparison, ℓ1-LR has RE ranging from 0.88 to 0.92. As the sample size decreases
to n = 500, ℓ1-LR and CF-RF both offer the most efficiency gains while retaining type-1
error control, with RE ranging from 0.74 to 0.88. At small sample sizes n = 100, ℓ1-LR
consistently leverages efficiency gains from covariate adjustment (RE ranging from 0.73 to
0.95) but its type-1 error (ranging from 0.07 to 0.09) is slightly larger than that of the
unadjusted estimator. For estimation of LOR and MW, XGBoost has similar results at
sample size n = 100.

Tables 9-12 (in the web supplementary materials) show results for scenarios where the
covariates are not prognostic of the outcome but there is a positive effect. This case is
interesting because it is well known that adjusted estimators can induce efficiency losses
(i.e., RE > 1) by adding randomness to the estimator when there is nothing to be gained
from covariate adjustment. We found that ℓ1-LR uniformly avoids efficiency losses associated
with adjustment for independent covariates, with a maximum RE of 1.03. All other covariate
adjustment methods had larger maximum RE. At sample size n = 100, the superior efficiency
of the ℓ1-LR estimator did not always translate into better power (e.g., compared to LR) due
to the use of a Wald-test which relies on an asymptotic approximation to the distribution of
the estimator.

Results when the true treatment effect is zero and covariates are not prognostic are pre-
sented in Tables 13-16 (in the web supplementary materials). In this case, ℓ1-LR also avoids
efficiency losses across all scenarios, while maintaining a type-1 error that is comparable to
that of the unadjusted estimator.

Lastly, at large sample sizes all cross-fitted estimators along with logistic regression es-
timators yield correct type I error, illustrating the correctness of Wald-type tests proved in
Theorem 1. Our simulation results also show that Wald-type hypothesis tests based on data-
adaptive machine learning procedures fail to control type 1 error if the regressions procedures
are not cross-fitted.

6 Recommendations and future directions

In our numerical studies we found that ℓ1-regularized logistic regression offers the best trade-
off between type-I error control and efficiency gains across sample sizes, outcome types, and
estimands. We found that this algorithm leverages efficiency gains when efficiency gains
are feasible, while protecting the estimators from efficiency losses when efficiency gains are
not feasible (e.g., adjusting for covariates with no prognostic power). A direction of future
research is the evaluation of bootstrap estimators for the variance and confidence intervals of
covariate-adjusted estimators, especially for cases where the Wald-type methods evaluated
in this manuscript did not perform well (e.g., ℓ1-LR at n = 100).

We also found that logistic regression can result in large efficiency losses for small sample
sizes, with relative efficiencies as large as 1.17 for the RMST estimand, and as large as 7.57
for the MW estimand. Covariate adjustment with ℓ1-regularized logistic regression solves this
problem, maintaining efficiency when covariates are not prognostic for the outcome, even at
small sample sizes. However, Wald-type hypothesis tests do not appropriately translate the
efficiency gains of ℓ1-regularized logistic regression into more powerful tests. This requires
the development of tests appropriate for small samples.
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We recommend against using the LOR parameter since it is difficult to interpret and
the corresponding estimators (even unadjusted ones) can be unstable at small sample sizes.
Covariate adjustment with ℓ1-LR, CF-MARS, CF-RF, or CF-XGBoost can aid to improve
efficiency in estimation of the LOR parameter over the unadjusted estimator when there are
near-empty cells at small sample sizes. This improvement in efficiency did not translate into
an improvement in power when using Wald-type hypothesis tests, due to poor small-sample
Gaussian approximations or poor variance estimators.

We discourage the use of non-cross-fitted versions of the machine learning methods eval-
uated (i.e., RF, XGBoost, MARS) for covariate adjustment. Specifically, we found in simu-
lations that non-cross-fitted random forests can lead to overly biased estimators in the case
of a positive effect, and to anti-conservative Wald-type hypothesis tests in the case of a null
treatment effect. We found that cross-fitting the random forests alleviated this problem
and was able to produce small bias and acceptable type-1 error at all sample sizes. This
is supported at large sample sizes by our main theoretical result (Theorem 1) which estab-
lishes asymptotic correctness of cross-fitted procedures under regularity conditions. In fact,
we found that random forests with cross-fitting provided the most efficiency gains at large
sample sizes.

Based on the results of our simulation studies, we recommend that cross-fitting with
data-adaptive estimators such as random forests and extreme gradient boosting be consid-
ered for covariate selection in trials with large sample sizes (n = 1500 in our simulations).
In large sample sizes, it is also possible to consider an ensemble approach such as Super
Learning (van der Laan et al. 2007) that allows one to select the predictor that yields the
most efficiency gains. Traditional model selection with statistical learning is focused on the
goal of prediction, and an adaptation of those tools to the goal of maximizing efficiency in
estimating the marginal treatment effect is the subject of future research.

The conditions for asymptotic normality and consistent variance estimation of S̃TMLE(k, a)
established in Theorem 1 may be restrictive if censoring is informative. In that case, consis-
tency of the S̃TMLE(k, a) and S̃IE−TMLE(k, a) estimators requires that censoring at random
holds (i.e., C ⊥⊥ Y | W,A), and that either the outcome regression or censoring mechanism is
consistently estimated. Thus, it is recommended to also estimate the censoring mechanism
with machine learning methods that allow for flexible regression. Standard asymptotic nor-
mality results for the S̃TMLE(k, a) and S̃IE−TMLE(k, a) require consistent estimation of both
the censoring mechanism and the outcome mechanism at certain rates (e.g., both estimated
at a n1/4 rate is sufficient). The development of estimators that remain asymptotically nor-
mal under the weaker condition that at least one of these regressions is consistently estimated
has been the subject of recent research (e.g., Díaz and van der Laan 2017; Benkeser et al.
2017; Díaz 2019).
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A Auxiliary covariates for estimation algorithm

Denote the survival function for Y at time k ∈ {1, . . . ,K} conditioned on study arm a and baseline
variables w by

S(k, a, w) = P (Y > k | A = a,W = w). (2)

Similarly, define the following function of the censoring distribution:

G(k, a, w) = P (C ≥ k | A = a,W = w). (3)

Under the assumption C ⊥⊥ (Y,W ) | A = a for each treatment arm a, we have Y ⊥⊥ C | A,W and
therefore S(k, a, w) and G(k, a, w) have the following product formula representations:

S(k, a, w) =
k∏

u=1

{1−m(u, a,w)}; ΠC(k, a, w) =
k−1∏

u=0

{1− πC(u, a,w)}. (4)

At each iteration of the estimation algorithm, the auxiliary covariates fr S̃TMLE and S̃IE−TMLE

are constructed as follows:

HY,k,u =− 1{A = a}
π̂A(a,W )Π̂C(u, a,W )

Ŝ(k, a,W )

Ŝ(u, a,W )

HA =
S(k, a,W )

πA(a,W )
,

HC,k,u =− 1{A = a}
π̂A(a,W )

Ŝ(k, a,W )

Ŝ(u, a,W )

1

Π̂C(u+ 1, a,W )
,

where π̂A, Ŝ, and Π̂C are the estimates in the current step of the iteration.
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B Efficiency theory

Before proving Theorem 1 given in the paper, we introduce some notation and efficiency theory for
estimation of S(k, a). We will use the notation of Díaz et al. (2019). First, we encode a single par-
ticipant’s data vector O = (W,A,∆ = 1{Y ≤ C}, Ỹ = min(C, Y )) using the following longitudinal
data structure:

O = (W,A,R0, L1, R1, L2 . . . , RK−1, LK), (5)

where Ru = 1{Ỹ = u,∆ = 0} and Lu = 1{Ỹ = u,∆ = 1}, for u ∈ {0, . . . ,K}. The sequence
R0, L1, R1, L2 . . . , RK−1, LK in the above display consists of all 0’s until the first time that either
the event is observed or censoring occurs, i.e., time u = Ỹ . In the former case Lu = 1; otherwise
Ru = 1. For a random variable X, we denote its history through time u as X̄u = (X0, . . . ,Xu). For
a given scalar x, the expression X̄u = x denotes element-wise equality. The corresponding vector
(5) for participant i is denoted by (Wi, Ai, R0,i, L1,i, R1,i, L2,i . . . , RK−1,i, LK,i).

Define the following indicator variables for each u ≥ 1:

Iu = 1{R̄u−1 = 0, L̄u−1 = 0}, Ju = 1{R̄u−1 = 0, L̄u = 0}.
The variable Iu is the indicator based on the data through time u − 1 that a participant is at
risk of the event being observed at time u; in other words, Iu = 1 means that all the variables
R0, L1, R1, L2..., Lu−1, Ru−1 in the data vector (5) equal 0, which makes it possible that Lu = 1.
Analogously, Ju is the indicator based on the outcome data through time u and censoring data
before time u that a participant is at risk of censoring at time u. By convention we let J0 = 1.

The efficient influence function for estimation of S(k, a) (see Moore and van der Laan 2009) is
equal to:

Dη(O) =
k∑

u=1

Iu ×HY (u,A,W ) {Lu −m(u, a,W )} + S(k, a,W )− S(k, a), (6)

where we have explicitly added the dependence of the auxiliary covariate HY on (u,A,W ) to the
notation, and have denoted the nuisance parameters with η = (m,πA, πC). In what follows we
will use θ = S(k, a), and will use θ(η1) to refer to the target parameter evaluated at a specific
distribution implied by η1. We will denote Pf =

∫
f(o)dP(o), and Ph(t, a,W ) =

∫
h(t, a, w)dP(w)

for functions f and h. The efficient influence function has important implications for estimation
of S(k, a). First, the variance of Dη(O) is the non-parametric efficiency bound, meaning that it
is the smallest possible variance achievable by any regular estimator (Bickel et al. 1997). Second,
the efficient influence function characterizes the first order bias of a plug-in estimator based on
data-adaptive regression. Correction for this first order bias will allow us to establish normality of
the estimators. Specifically, for any estimate η̂ we have the following first order expansion around
the true parameter value θ(η), proved in Lemma 1 in the Supplementary materials of Díaz et al.
(2018):

θ(η̂)− θ(η) = −PDη̂ + Rem1(η̂), (7)

where Rem1 is a second order remainder term given by

Rem1(η̂) = −
k∑

u=1

∫
Ŝ(k, a, w)

Ŝ(u, a, w)
S(u− 1, a, w){m(u, a, w)− m̂(u, a, w)}

{
πA(a, w)ΠC(u, a, w)

π̂A(a, w)Π̂C(u, a, w)
− 1

}
dP(w),

and θ(η̂) is the substitution estimator

θ(η̂) =
1

n

n∑

i=1

k∏

u=1

{1− m̂(u, a,Wi)}.
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The following proposition establishing the robustness of Dη to misspecification of the model m will
be useful to prove consistency of the estimator.

Proposition 1. Let η1 = (m1, πA,1, πC,1) be such that either m1 = m or (πA,1, πC,1) = (πA, πC).
Then PDη1 = 0.

Recall the cross-fitting procedure described in the main document as follows. Let V1, . . . ,VJ

denote a random partition of the index set {1, . . . , n} into J prediction sets of approximately the
same size. That is, Vj ⊂ {1, . . . , n}; ⋃J

j=1 Vj = {1, . . . , n}; and Vj ∩Vj′ = ∅. In addition, for each j,
the associated training sample is given by Tj = {1, . . . , n} \ Vj. Let m̂j denote the prediction algo-
rithm trained in Tj. Letting j(i) denote the index of the validation set which contains observation i,
cross-fitting entails using only observations in Tj(i) for fitting models when making predictions about
observation i. That is, the outcome predictions for each subject i are given by m̂j(i)(u, a,Wi). Since
only m̂ and not (π̂A, π̂C) is cross-fitted, we let η̂j(i) = (m̂j(i), π̂A, π̂C) and η̃j(i) = (m̃j(i), π̂A, π̂C).

C Proof of Theorem 1

In what follows we let Pn,j denote the empirical distribution of the prediction set Vj, and let Gn,j

denote the associated empirical process
√

n/J(Pn,j − P). Let Gn denote the empirical process√
n(Pn − P). We use E(g(O1, . . . , On)) to denote expectation with respect to the joint distribution

of (O1, . . . , On), and use an . bn to mean an ≤ cbn for universal constants c. The following lemmas
will be useful in the proof of the theorem.

Lemma 1. Assume A1, A4, and A5 . Then we have ΠC(k, a, w) does not depend on w, and

πA(a,w) does not depend on w. Furthermore, we have

√
n{Π̂C(k, a) −ΠC(k, a)} = Gn∆k,a + oP (1),√

n{π̂A(a)− πA(a)} = GnΛa + oP (1),

for mean-zero functions ∆k,a(Oi) and Λa(Oi) of (k, a) and Oi that do not depend on Wi.

Proof. This lemma follows by application of the Delta method to the non-parametric maximum
likelihood estimators π̂A and Π̂C .

Lemma 2. For two sequences a1, . . . , am and b1, . . . , bm we have

m∏

t=1

(1− at)−
m∏

t=1

(1− bt) =
m∑

t=1

{[
t−1∏

k=1

(1− ak)

]
(bt − at)

[
m∏

k=t+1

(1− bk)

]}
.

Proof. Replace (bt − at) by (1− at)− (1− bt) in the right hand side and expand the sum to notice
it is a telescoping sum.

The proof of Theorem 1 proceeds as follows.

Proof. Since censoring is completely at random by A1, we have θ = S(k, a) =
∫
S(k, a, w)dP(w).

Let θ̃ = S̃TMLE(k, a). Define σ2 = Var[Dη1(O)], where η1 = (m1, πA, πC), and let

Θ̃n =
√
n(θ̃ − θ)/σ̃

Θ̌n =
√
n(θ̃ − θ)/σ

Θn = GnDη1/σ.

3



First, note that Θn  N(0, 1) by the central limit theorem. We will now show that |Θ̃n − Θn| =
oP (1), which would yield the result in the theorem. First, note that

|Θ̃n −Θn| = |(Θ̌n −Θn)(σ/σ̃) + Θn(σ − σ̃)/σ̃|
≤ |Θ̌n −Θn| |σ/σ̃|+ |Θn| |σ/σ̃ − 1|
. |Θ̌n −Θn|+ oP (1),

where the last inequality follows because |σ/σ̃ − 1| = oP (1) (which follows by Lemma 1 and A3)
and because |Θn| = OP (1) by the central limit theorem. We will now show that |Θ̌n−Θn| = oP (1).

An application of (7) with η̂ = η̃ yields

√
n(θ̃ − θ) = −√

nPDη̃ +
√
nRem1(η̃)

=
√
n(Pn − P)Dη̃ +

√
nRem1(η̃)

= GnDη1 + Gn(Dη̃ −Dη1) +
√
nRem1(η̃),

where the second equality follows because PnDη̃ = 0 by definition of η̃ (see Díaz et al. 2019). This
implies

Θ̌n −Θn = Bn,2 +Bn,1,

where Bn,2 = Gn(Dη̃ −Dη1) and Bn,1 =
√
nRem1(η̃).

We first tackle the case of A6.2, where the estimators for m are cross-fitted. Note that

Bn,2 =
1√
J

J∑

j=1

Gn,j(Dη̃j −Dη1),

and that Dη̃j depends on the full sample through the estimate of the parameter ε of the logistic
tilting model. To make this dependence explicit, we introduce the notation Dη̂j ,ε̂ = Dη̃j . Let ε1
denote the probability limit of ε̂, which exists and is finite by Assumption A7. We can find a
deterministic sequence δn → 0 satisfying P (|ε̂− ε1| < δn) → 1. Let F j

n = {Dη̂j ,ε −Dη1 : |ε − ε1| <
δn}. Because the function η̂j is fixed given the training data, we can apply Theorem 2.14.2 of
van der Vaart and Wellner (1996) to obtain

E

{
sup
f∈Fj

n

|Gn,jf |
∣∣∣∣ Tj

}
. ‖F j

n‖
∫ 1

0

√
1 +N[ ](α‖F j

n‖,F j
n, L2(P))dα, (8)

where N[ ](α‖F j
n‖,F j

n, L2(P)) is the bracketing number and we take F j
n = supε:|ε−ε1|<δn |Dη̂j ,ε−Dη1 |

as an envelope for the class F j
n. Theorem 2.7.2 of van der Vaart and Wellner (1996) shows

logN[ ](α‖F j
n‖,F j

n, L2(P)) .
1

α‖F j
n‖

.

This shows

‖F j
n‖

∫ 1

0

√
1 +N[ ](α‖F j

n‖,F j
n, L2(P))dα .

∫ 1

0

√

‖F j
n‖2 +

‖F j
n‖
α

dα

≤ ‖F j
n‖+ ‖F j

n‖1/2
∫ 1

0

1

α1/2
dα

≤ ‖F j
n‖+ 2‖F j

n‖1/2.
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Since Dη̂j ,ε̂ → Dη1 and δn → 0, ‖F j
n‖ = oP (1). The above argument shows that sup

f∈Fj
n
|Gn,jf | =

oP (1) for each j, conditional on Tj. Thus |Bn,2| = oP (1).
In the case of A6.1, where the estimators for m are not cross-fitted but belong in a parametric

family, standard empirical process theory such as Example 19.7 of van der Vaart (1998) shows that
Dη̃ takes values in a Donsker class. Therefore, an application of Theorem 19.24 of van der Vaart
(1998) yields |Bn,2| = oP (1).

We now show that |Bn,1| = oP (1). First, Lemma 1 along with the Delta method show that

√
n

{
πA(a,w)ΠC (u, a,w)

π̃A(a,w)Π̃C (u, a,w)
− 1

}
= GnΓk,a + oP (1),

for some function Γk,a(O) not depending on W . Thus

Bn,1 = −
k∑

u=1

∫
S̃(k, a, w)

S̃(u, a,w)
S(u− 1, a, w){m(u, a,w) − m̃(u, a,w)} {GnΓk,a + oP (1)} dP(w)

= −GnΓk,a

k∑

u=1

∫
S̃(k, a, w)

S̃(u, a,w)
S(u− 1, a, w){m(u, a,w) − m̃(u, a,w)}dP(w) + oP (1)

= GnΓk,a

∫
{S(k, a, w) − S̃(k, a, w)}dP(w) + oP (1),

where the last equality follows from Lemma 2. Expression (7) together with the assumptions of the
theorem and Proposition 1 show that the estimator θ̃ is consistent, and thus

∫
{S(k, a, w) − S̃(k, a, w)}dP(w) = oP (1).

The central limit theorem shows that GnΓk,a = OP (1), which yields |Bn,1| = oP (1), concluding the
proof of the theorem.
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D Tables with simulation results

D.1 Results for simulations with a positive effect and where the covariates are

prognostic of the outcome

Table 1: Simulation results for the RMST of time to intubation or death at day 14 under a positive
effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 1.04 0.26 83.22 83.07 0.04 1.29
CF-RF 100 1.04 0.24 71.13 71.13 0.00 1.10
CF-XGBoost 100 1.04 0.23 70.33 70.33 0.00 1.09
ℓ1-LR 100 1.04 0.28 58.49 58.47 0.02 0.90
LR 100 1.04 0.34 66.61 66.61 0.00 1.03
MARS 100 1.04 0.27 70.14 69.26 0.09 1.09
RF 100 1.04 0.62 51.07 44.94 0.25 0.79
Unadjusted 100 1.04 0.25 64.64 64.64 0.01 1.00
XGBoost 100 1.04 0.27 64.07 64.06 0.01 0.99

CF-MARS 500 1.04 0.85 61.36 61.35 0.00 0.93
CF-RF 500 1.04 0.85 60.10 60.10 0.00 0.91
CF-XGBoost 500 1.04 0.82 64.70 64.69 0.01 0.98
ℓ1-LR 500 1.04 0.87 58.00 58.00 0.00 0.88
LR 500 1.04 0.87 60.49 60.49 0.00 0.92
MARS 500 1.04 0.86 58.01 57.95 0.01 0.88
RF 500 1.04 0.97 66.02 55.76 0.14 1.00
Unadjusted 500 1.04 0.82 65.85 65.85 0.00 1.00
XGBoost 500 1.04 0.88 58.13 58.08 0.01 0.88

CF-MARS 1500 1.04 1.00 60.51 60.50 0.00 0.93
CF-RF 1500 1.04 1.00 47.88 47.88 0.00 0.74
CF-XGBoost 1500 1.04 1.00 61.51 61.50 0.00 0.95
ℓ1-LR 1500 1.04 1.00 58.15 58.14 0.00 0.89
LR 1500 1.04 1.00 57.15 57.15 0.00 0.88
MARS 1500 1.04 1.00 60.15 60.15 0.00 0.92
RF 1500 1.04 1.00 61.29 50.61 0.08 0.94
Unadjusted 1500 1.04 1.00 65.07 65.06 0.00 1.00
XGBoost 1500 1.04 1.00 56.24 55.91 0.01 0.86
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Table 2: Simulation results for the RD of time to intubation or death at day 7 under a positive
effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.10 0.27 0.74 0.73 0.00 1.23
CF-RF 100 0.10 0.25 0.64 0.64 0.00 1.08
CF-XGBoost 100 0.10 0.25 0.64 0.64 0.00 1.07
ℓ1-LR 100 0.10 0.28 0.55 0.55 0.00 0.92
LR 100 0.10 0.32 0.60 0.60 0.00 1.01
MARS 100 0.10 0.28 0.64 0.63 0.01 1.07
RF 100 0.10 0.50 0.56 0.52 0.02 0.94
Unadjusted 100 0.10 0.26 0.60 0.60 0.00 1.00
XGBoost 100 0.10 0.28 0.60 0.60 0.00 1.01

CF-MARS 500 0.10 0.85 0.57 0.57 0.00 0.92
CF-RF 500 0.10 0.85 0.56 0.56 0.00 0.91
CF-XGBoost 500 0.10 0.84 0.59 0.59 0.00 0.96
ℓ1-LR 500 0.10 0.87 0.54 0.54 0.00 0.89
LR 500 0.10 0.86 0.57 0.57 0.00 0.92
MARS 500 0.10 0.85 0.56 0.55 0.00 0.90
RF 500 0.10 0.94 0.66 0.58 0.01 1.07
Unadjusted 500 0.10 0.83 0.61 0.61 0.00 1.00
XGBoost 500 0.10 0.87 0.55 0.55 0.00 0.90

CF-MARS 1500 0.10 1.00 0.58 0.58 0.00 0.96
CF-RF 1500 0.10 1.00 0.47 0.47 0.00 0.77
CF-XGBoost 1500 0.10 1.00 0.56 0.56 0.00 0.94
ℓ1-LR 1500 0.10 1.00 0.56 0.56 0.00 0.93
LR 1500 0.10 1.00 0.55 0.55 0.00 0.92
MARS 1500 0.10 1.00 0.57 0.57 0.00 0.94
RF 1500 0.10 1.00 0.61 0.54 0.01 1.01
Unadjusted 1500 0.10 1.00 0.60 0.60 0.00 1.00
XGBoost 1500 0.10 1.00 0.54 0.53 0.00 0.89
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Table 3: Simulation results for the LOR of the modified WHO scale at day 14 under a positive effect
and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.60 0.35 73.00 70.25 0.17 0.13
CF-RF 100 0.60 0.36 37.97 36.75 0.11 0.07
CF-XGBoost 100 0.60 0.36 34.80 34.30 0.07 0.06
ℓ1-LR 100 0.60 0.45 57.23 54.57 0.16 0.10
LR 100 0.60 0.48 472.16 392.98 0.89 0.81
MARS 100 0.60 0.45 192.05 176.11 0.40 0.33
RF 100 0.60 0.48 32.02 32.01 0.01 0.05
Unadjusted 100 0.60 0.42 582.27 441.29 1.19 1.00
XGBoost 100 0.60 0.41 49.81 49.47 0.06 0.09

CF-MARS 500 0.60 0.90 30.48 30.27 0.02 0.54
CF-RF 500 0.60 0.93 16.15 16.13 0.01 0.29
CF-XGBoost 500 0.60 0.92 18.88 18.86 0.01 0.34
ℓ1-LR 500 0.60 0.93 18.74 18.68 0.01 0.33
LR 500 0.60 0.92 32.86 32.53 0.03 0.59
MARS 500 0.60 0.93 32.10 32.07 0.01 0.57
RF 500 0.60 0.99 15.84 15.10 0.04 0.28
Unadjusted 500 0.60 0.86 56.01 55.76 0.02 1.00
XGBoost 500 0.60 0.95 16.29 15.42 0.04 0.29

CF-MARS 1500 0.60 1.00 17.71 17.71 0.00 0.88
CF-RF 1500 0.60 1.00 12.28 12.24 0.01 0.61
CF-XGBoost 1500 0.60 1.00 15.28 15.27 0.00 0.76
ℓ1-LR 1500 0.60 1.00 17.90 17.89 0.00 0.89
LR 1500 0.60 1.00 17.12 17.04 0.01 0.85
MARS 1500 0.60 1.00 16.72 16.71 0.00 0.83
RF 1500 0.60 1.00 9.93 9.21 0.02 0.49
Unadjusted 1500 0.60 1.00 20.20 20.20 0.00 1.00
XGBoost 1500 0.60 1.00 11.21 10.81 0.02 0.55
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Table 4: Simulation results for the MW estimand of the modified WHO scale at day 14 under a
positive effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.46 0.24 0.66 0.66 0.00 2.52
CF-RF 100 0.46 0.17 0.24 0.24 0.00 0.90
CF-XGBoost 100 0.46 0.15 0.24 0.24 0.00 0.92
ℓ1-LR 100 0.46 0.18 0.23 0.23 0.00 0.86
LR 100 0.46 0.45 1.68 1.66 0.01 6.40
MARS 100 0.46 0.23 0.49 0.49 0.00 1.85
RF 100 0.46 0.22 0.20 0.19 0.01 0.76
Unadjusted 100 0.46 0.14 0.26 0.26 0.00 1.00
XGBoost 100 0.46 0.19 0.21 0.21 0.00 0.81

CF-MARS 500 0.46 0.51 0.52 0.51 0.01 2.01
CF-RF 500 0.46 0.56 0.20 0.20 0.00 0.79
CF-XGBoost 500 0.46 0.53 0.23 0.22 0.00 0.87
ℓ1-LR 500 0.46 0.53 0.21 0.21 0.00 0.82
LR 500 0.46 0.54 0.24 0.24 0.00 0.92
MARS 500 0.46 0.51 0.26 0.26 0.00 1.02
RF 500 0.46 0.76 0.14 0.14 0.00 0.55
Unadjusted 500 0.46 0.44 0.26 0.26 0.00 1.00
XGBoost 500 0.46 0.59 0.20 0.20 0.00 0.76

CF-MARS 1500 0.46 0.93 0.23 0.22 0.00 0.86
CF-RF 1500 0.46 0.99 0.15 0.14 0.00 0.57
CF-XGBoost 1500 0.46 0.97 0.19 0.18 0.00 0.73
ℓ1-LR 1500 0.46 0.93 0.23 0.22 0.00 0.86
LR 1500 0.46 0.94 0.23 0.21 0.00 0.85
MARS 1500 0.46 0.94 0.21 0.21 0.00 0.80
RF 1500 0.46 1.00 0.11 0.11 0.00 0.40
Unadjusted 1500 0.46 0.88 0.27 0.26 0.00 1.00
XGBoost 1500 0.46 0.99 0.14 0.13 0.00 0.52
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D.2 Results for simulations with null treatment effect and where the covariates

are prognostic of the outcome

Table 5: Simulation results for the RMST of time to intubation or death at day 14 under null
treatment effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.10 126.72 121.56 0.23 1.44
CF-RF 100 0.00 0.05 88.87 88.81 0.02 1.01
CF-XGBoost 100 0.00 0.05 90.87 90.84 0.02 1.03
ℓ1-LR 100 0.00 0.07 82.16 82.14 0.01 0.93
LR 100 0.00 0.09 86.83 86.82 0.01 0.99
MARS 100 0.00 0.09 88.35 87.88 0.07 1.00
RF 100 0.00 0.30 51.79 51.78 0.01 0.59
Unadjusted 100 0.00 0.06 87.92 87.85 0.03 1.00
XGBoost 100 0.00 0.05 78.09 78.09 0.01 0.89

CF-MARS 500 0.00 0.05 80.81 80.76 0.01 0.95
CF-RF 500 0.00 0.05 75.68 75.68 0.00 0.89
CF-XGBoost 500 0.00 0.05 83.71 83.70 0.00 0.98
ℓ1-LR 500 0.00 0.05 73.05 73.03 0.01 0.86
LR 500 0.00 0.06 79.64 79.63 0.00 0.94
MARS 500 0.00 0.05 78.44 78.44 0.00 0.92
RF 500 0.00 0.29 48.37 48.37 0.00 0.57
Unadjusted 500 0.00 0.05 85.12 85.10 0.01 1.00
XGBoost 500 0.00 0.07 72.98 72.98 0.00 0.86

CF-MARS 1500 0.00 0.05 73.18 73.18 0.00 0.85
CF-RF 1500 0.00 0.05 56.36 56.35 0.00 0.66
CF-XGBoost 1500 0.00 0.05 80.36 80.36 0.00 0.94
ℓ1-LR 1500 0.00 0.05 75.52 75.51 0.00 0.88
LR 1500 0.00 0.06 75.39 75.38 0.00 0.88
MARS 1500 0.00 0.05 76.55 76.51 0.00 0.89
RF 1500 0.00 0.30 27.65 27.64 0.00 0.32
Unadjusted 1500 0.00 0.05 85.87 85.83 0.00 1.00
XGBoost 1500 0.00 0.07 64.40 64.40 0.00 0.75
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Table 6: Simulation results for the RD of time to intubation or death at day 7 under null treatment
effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.09 1.00 0.96 0.02 1.36
CF-RF 100 0.00 0.05 0.75 0.75 0.00 1.02
CF-XGBoost 100 0.00 0.05 0.75 0.75 0.00 1.03
ℓ1-LR 100 0.00 0.07 0.69 0.69 0.00 0.95
LR 100 0.00 0.09 0.72 0.72 0.00 0.98
MARS 100 0.00 0.08 0.72 0.72 0.01 0.99
RF 100 0.00 0.26 0.51 0.51 0.00 0.70
Unadjusted 100 0.00 0.06 0.73 0.73 0.00 1.00
XGBoost 100 0.00 0.05 0.66 0.66 0.00 0.90

CF-MARS 500 0.00 0.05 0.69 0.68 0.00 0.95
CF-RF 500 0.00 0.04 0.63 0.63 0.00 0.88
CF-XGBoost 500 0.00 0.04 0.70 0.70 0.00 0.98
ℓ1-LR 500 0.00 0.05 0.63 0.63 0.00 0.88
LR 500 0.00 0.06 0.69 0.69 0.00 0.95
MARS 500 0.00 0.06 0.68 0.68 0.00 0.94
RF 500 0.00 0.25 0.45 0.45 0.00 0.62
Unadjusted 500 0.00 0.05 0.72 0.72 0.00 1.00
XGBoost 500 0.00 0.06 0.62 0.62 0.00 0.86

CF-MARS 1500 0.00 0.04 0.62 0.62 0.00 0.86
CF-RF 1500 0.00 0.05 0.49 0.49 0.00 0.67
CF-XGBoost 1500 0.00 0.05 0.68 0.68 0.00 0.94
ℓ1-LR 1500 0.00 0.05 0.64 0.64 0.00 0.89
LR 1500 0.00 0.05 0.65 0.65 0.00 0.90
MARS 1500 0.00 0.05 0.65 0.65 0.00 0.90
RF 1500 0.00 0.25 0.26 0.26 0.00 0.36
Unadjusted 1500 0.00 0.05 0.72 0.72 0.00 1.00
XGBoost 1500 0.00 0.07 0.56 0.56 0.00 0.78

11



Table 7: Simulation results for the LOR of the modified WHO scale at day 14 under null treatment
effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.07 21.27 21.27 0.00 0.55
CF-RF 100 0.00 0.06 16.93 16.93 0.01 0.44
CF-XGBoost 100 0.00 0.07 18.12 18.12 0.00 0.47
ℓ1-LR 100 0.00 0.09 28.01 28.01 0.00 0.73
LR 100 0.00 0.11 111.68 111.61 0.03 2.89
MARS 100 0.00 0.09 60.09 60.08 0.01 1.56
RF 100 0.00 0.13 21.91 21.90 0.01 0.57
Unadjusted 100 0.00 0.06 38.60 38.60 0.00 1.00
XGBoost 100 0.00 0.10 18.97 18.96 0.01 0.49

CF-MARS 500 0.00 0.05 14.70 14.70 0.00 0.88
CF-RF 500 0.00 0.05 12.57 12.57 0.00 0.75
CF-XGBoost 500 0.00 0.06 14.07 14.06 0.00 0.84
ℓ1-LR 500 0.00 0.06 13.51 13.51 0.00 0.81
LR 500 0.00 0.06 13.76 13.75 0.00 0.82
MARS 500 0.00 0.05 12.75 12.75 0.00 0.76
RF 500 0.00 0.14 7.34 7.34 0.00 0.44
Unadjusted 500 0.00 0.05 16.74 16.74 0.00 1.00
XGBoost 500 0.00 0.08 11.07 11.07 0.00 0.66

CF-MARS 1500 0.00 0.05 13.35 13.35 0.00 0.82
CF-RF 1500 0.00 0.05 8.36 8.36 0.00 0.51
CF-XGBoost 1500 0.00 0.05 11.03 11.03 0.00 0.68
ℓ1-LR 1500 0.00 0.05 12.87 12.87 0.00 0.79
LR 1500 0.00 0.05 13.27 13.27 0.00 0.81
MARS 1500 0.00 0.05 12.52 12.52 0.00 0.77
RF 1500 0.00 0.15 4.56 4.56 0.00 0.28
Unadjusted 1500 0.00 0.05 16.30 16.29 0.00 1.00
XGBoost 1500 0.00 0.16 6.37 6.37 0.00 0.39
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Table 8: Simulation results for the MW estimand of the modified WHO scale at day 14 under null
treatment effect and covariates with prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.50 0.11 0.54 0.54 0.00 1.95
CF-RF 100 0.50 0.07 0.23 0.23 0.00 0.84
CF-XGBoost 100 0.50 0.07 0.25 0.25 0.00 0.92
ℓ1-LR 100 0.50 0.07 0.22 0.22 0.00 0.80
LR 100 0.50 0.48 2.14 2.14 0.00 7.77
MARS 100 0.50 0.12 0.43 0.43 0.00 1.58
RF 100 0.50 0.13 0.16 0.16 0.00 0.57
Unadjusted 100 0.50 0.06 0.28 0.28 0.00 1.00
XGBoost 100 0.50 0.09 0.21 0.21 0.00 0.75

CF-MARS 500 0.50 0.06 0.28 0.28 0.00 1.07
CF-RF 500 0.50 0.05 0.20 0.20 0.00 0.74
CF-XGBoost 500 0.50 0.06 0.22 0.22 0.00 0.85
ℓ1-LR 500 0.50 0.05 0.21 0.21 0.00 0.80
LR 500 0.50 0.08 0.79 0.79 0.00 2.98
MARS 500 0.50 0.06 0.27 0.27 0.00 1.01
RF 500 0.50 0.14 0.13 0.13 0.00 0.48
Unadjusted 500 0.50 0.05 0.27 0.27 0.00 1.00
XGBoost 500 0.50 0.08 0.18 0.18 0.00 0.69

CF-MARS 1500 0.50 0.05 0.22 0.22 0.00 0.84
CF-RF 1500 0.50 0.05 0.13 0.13 0.00 0.52
CF-XGBoost 1500 0.50 0.06 0.18 0.18 0.00 0.71
ℓ1-LR 1500 0.50 0.05 0.21 0.21 0.00 0.81
LR 1500 0.50 0.06 0.22 0.22 0.00 0.84
MARS 1500 0.50 0.05 0.22 0.22 0.00 0.84
RF 1500 0.50 0.16 0.20 0.20 0.00 0.78
Unadjusted 1500 0.50 0.05 0.26 0.26 0.00 1.00
XGBoost 1500 0.50 0.15 0.11 0.11 0.00 0.43
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D.3 Results for simulations with a positive effect and where the covariates are

not prognostic of the outcome

Table 9: Simulation results for the RMST of the time to intubation or death at day 14 under a
positive effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 1.04 0.25 94.58 94.56 0.01 1.46
CF-RF 100 1.04 0.21 77.13 77.13 0.00 1.19
CF-XGBoost 100 1.04 0.23 77.43 77.41 0.01 1.20
ℓ1-LR 100 1.04 0.24 64.21 64.21 0.01 0.99
LR 100 1.04 0.30 75.60 75.55 0.02 1.17
MARS 100 1.04 0.25 73.38 72.61 0.09 1.14
RF 100 1.04 0.58 68.20 64.12 0.20 1.06
Unadjusted 100 1.04 0.25 64.64 64.64 0.01 1.00
XGBoost 100 1.04 0.26 66.74 66.74 0.01 1.03

CF-MARS 500 1.04 0.81 67.36 67.36 0.00 1.02
CF-RF 500 1.04 0.77 74.08 74.06 0.01 1.12
CF-XGBoost 500 1.04 0.77 73.22 73.21 0.00 1.11
ℓ1-LR 500 1.04 0.83 66.61 66.61 0.00 1.01
LR 500 1.04 0.83 68.06 68.04 0.01 1.03
MARS 500 1.04 0.82 64.56 64.54 0.01 0.98
RF 500 1.04 0.91 81.56 79.70 0.06 1.24
Unadjusted 500 1.04 0.82 65.85 65.85 0.00 1.00
XGBoost 500 1.04 0.83 63.75 63.70 0.01 0.97

CF-MARS 1500 1.04 1.00 65.62 65.61 0.00 1.01
CF-RF 1500 1.04 1.00 73.92 73.91 0.00 1.14
CF-XGBoost 1500 1.04 1.00 70.56 70.55 0.00 1.08
ℓ1-LR 1500 1.04 1.00 65.55 65.54 0.00 1.01
LR 1500 1.04 1.00 65.55 65.55 0.00 1.01
MARS 1500 1.04 1.00 65.68 65.67 0.00 1.01
RF 1500 1.04 1.00 74.73 74.72 0.00 1.15
Unadjusted 1500 1.04 1.00 65.07 65.06 0.00 1.00
XGBoost 1500 1.04 1.00 66.71 66.69 0.00 1.03
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Table 10: Simulation results for the RD of the time to intubation or death at day 7 under a positive
effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.10 0.26 0.83 0.83 0.00 1.39
CF-RF 100 0.10 0.22 0.68 0.68 0.00 1.14
CF-XGBoost 100 0.10 0.26 0.70 0.70 0.00 1.17
ℓ1-LR 100 0.10 0.26 0.60 0.60 0.00 1.00
LR 100 0.10 0.30 0.67 0.67 0.00 1.13
MARS 100 0.10 0.27 0.67 0.67 0.01 1.13
RF 100 0.10 0.51 0.71 0.68 0.02 1.18
Unadjusted 100 0.10 0.26 0.60 0.60 0.00 1.00
XGBoost 100 0.10 0.27 0.62 0.62 0.00 1.03

CF-MARS 500 0.10 0.82 0.61 0.61 0.00 1.00
CF-RF 500 0.10 0.79 0.66 0.66 0.00 1.08
CF-XGBoost 500 0.10 0.79 0.66 0.66 0.00 1.07
ℓ1-LR 500 0.10 0.83 0.61 0.61 0.00 0.99
LR 500 0.10 0.83 0.62 0.62 0.00 1.02
MARS 500 0.10 0.83 0.59 0.59 0.00 0.96
RF 500 0.10 0.89 0.79 0.77 0.01 1.28
Unadjusted 500 0.10 0.83 0.61 0.61 0.00 1.00
XGBoost 500 0.10 0.83 0.60 0.59 0.00 0.97

CF-MARS 1500 0.10 1.00 0.61 0.61 0.00 1.01
CF-RF 1500 0.10 1.00 0.67 0.67 0.00 1.11
CF-XGBoost 1500 0.10 1.00 0.63 0.63 0.00 1.05
ℓ1-LR 1500 0.10 1.00 0.60 0.60 0.00 0.99
LR 1500 0.10 1.00 0.60 0.60 0.00 0.99
MARS 1500 0.10 1.00 0.60 0.60 0.00 0.99
RF 1500 0.10 1.00 0.69 0.69 0.00 1.14
Unadjusted 1500 0.10 1.00 0.60 0.60 0.00 1.00
XGBoost 1500 0.10 1.00 0.61 0.61 0.00 1.01
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Table 11: Simulation results for the LOR of the modified WHO scale at day 14 under a positive
effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.60 0.35 67.15 64.59 0.16 0.12
CF-RF 100 0.60 0.37 62.46 58.98 0.19 0.11
CF-XGBoost 100 0.60 0.40 76.06 72.37 0.19 0.13
ℓ1-LR 100 0.60 0.44 95.99 90.49 0.23 0.16
LR 100 0.60 0.41 392.58 330.71 0.79 0.67
MARS 100 0.60 0.41 187.85 167.51 0.45 0.32
RF 100 0.60 0.45 61.04 59.51 0.12 0.10
Unadjusted 100 0.60 0.42 582.27 441.29 1.19 1.00
XGBoost 100 0.60 0.43 132.91 124.69 0.29 0.23

CF-MARS 500 0.60 0.87 31.28 31.16 0.02 0.56
CF-RF 500 0.60 0.87 23.06 23.05 0.00 0.41
CF-XGBoost 500 0.60 0.88 25.83 25.62 0.02 0.46
ℓ1-LR 500 0.60 0.87 24.01 23.98 0.01 0.43
LR 500 0.60 0.86 53.78 53.45 0.03 0.96
MARS 500 0.60 0.87 39.20 39.04 0.02 0.70
RF 500 0.60 0.91 33.77 33.77 0.00 0.60
Unadjusted 500 0.60 0.86 56.01 55.76 0.02 1.00
XGBoost 500 0.60 0.89 22.54 22.54 0.00 0.40

CF-MARS 1500 0.60 1.00 20.98 20.98 0.00 1.04
CF-RF 1500 0.60 1.00 20.93 20.92 0.00 1.04
CF-XGBoost 1500 0.60 1.00 22.14 22.09 0.01 1.10
ℓ1-LR 1500 0.60 1.00 20.81 20.80 0.00 1.03
LR 1500 0.60 1.00 20.27 20.26 0.00 1.00
MARS 1500 0.60 1.00 20.16 20.15 0.00 1.00
RF 1500 0.60 1.00 20.51 20.48 0.00 1.02
Unadjusted 1500 0.60 1.00 20.20 20.20 0.00 1.00
XGBoost 1500 0.60 1.00 20.48 20.44 0.01 1.01
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Table 12: Simulation results for the MW of the modified WHO scale at day 14 under a positive
effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.46 0.18 0.54 0.54 0.00 2.05
CF-RF 100 0.46 0.15 0.29 0.29 0.00 1.11
CF-XGBoost 100 0.46 0.15 0.29 0.29 0.00 1.10
ℓ1-LR 100 0.46 0.16 0.26 0.26 0.00 1.00
LR 100 0.46 0.44 1.69 1.67 0.01 6.43
MARS 100 0.46 0.18 0.43 0.43 0.00 1.63
RF 100 0.46 0.19 0.24 0.23 0.01 0.91
Unadjusted 100 0.46 0.14 0.26 0.26 0.00 1.00
XGBoost 100 0.46 0.18 0.26 0.26 0.00 1.00

CF-MARS 500 0.46 0.44 0.50 0.49 0.00 1.93
CF-RF 500 0.46 0.44 0.28 0.28 0.00 1.09
CF-XGBoost 500 0.46 0.46 0.27 0.27 0.00 1.04
ℓ1-LR 500 0.46 0.46 0.26 0.26 0.00 1.02
LR 500 0.46 0.46 0.29 0.28 0.00 1.10
MARS 500 0.46 0.44 0.30 0.30 0.00 1.16
RF 500 0.46 0.51 0.24 0.24 0.00 0.93
Unadjusted 500 0.46 0.44 0.26 0.26 0.00 1.00
XGBoost 500 0.46 0.47 0.26 0.25 0.00 0.98

CF-MARS 1500 0.46 0.87 0.28 0.27 0.00 1.04
CF-RF 1500 0.46 0.88 0.27 0.27 0.00 1.03
CF-XGBoost 1500 0.46 0.88 0.28 0.27 0.00 1.06
ℓ1-LR 1500 0.46 0.88 0.27 0.26 0.00 1.00
LR 1500 0.46 0.89 0.26 0.25 0.00 0.98
MARS 1500 0.46 0.88 0.27 0.26 0.00 1.03
RF 1500 0.46 0.91 0.26 0.26 0.00 0.98
Unadjusted 1500 0.46 0.88 0.27 0.26 0.00 1.00
XGBoost 1500 0.46 0.89 0.27 0.26 0.00 1.01
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D.4 Results for simulations with null treatment effect and where the covariates

are not prognostic of the outcome

Table 13: Simulation results for the RMST of the time to intubation or death at day 14 under null
treatment effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.11 142.00 135.82 0.25 1.62
CF-RF 100 0.00 0.05 103.14 103.11 0.02 1.17
CF-XGBoost 100 0.00 0.05 95.76 95.76 0.00 1.09
ℓ1-LR 100 0.00 0.06 87.21 87.13 0.03 0.99
LR 100 0.00 0.09 99.98 99.95 0.02 1.14
MARS 100 0.00 0.08 97.67 97.24 0.07 1.11
RF 100 0.00 0.31 70.72 70.68 0.02 0.80
Unadjusted 100 0.00 0.06 87.92 87.85 0.03 1.00
XGBoost 100 0.00 0.06 87.83 87.82 0.01 1.00

CF-MARS 500 0.00 0.06 91.82 91.53 0.02 1.08
CF-RF 500 0.00 0.05 98.39 98.38 0.00 1.16
CF-XGBoost 500 0.00 0.05 97.91 97.91 0.00 1.15
ℓ1-LR 500 0.00 0.05 87.33 87.32 0.01 1.03
LR 500 0.00 0.06 92.74 92.74 0.00 1.09
MARS 500 0.00 0.05 88.10 88.10 0.00 1.04
RF 500 0.00 0.17 86.34 86.34 0.00 1.01
Unadjusted 500 0.00 0.05 85.12 85.10 0.01 1.00
XGBoost 500 0.00 0.06 86.89 86.89 0.00 1.02

CF-MARS 1500 0.00 0.05 85.92 85.89 0.00 1.00
CF-RF 1500 0.00 0.05 94.58 94.57 0.00 1.10
CF-XGBoost 1500 0.00 0.04 93.27 93.26 0.00 1.09
ℓ1-LR 1500 0.00 0.05 85.62 85.61 0.00 1.00
LR 1500 0.00 0.06 90.04 90.01 0.00 1.05
MARS 1500 0.00 0.05 89.32 89.32 0.00 1.04
RF 1500 0.00 0.11 89.12 89.12 0.00 1.04
Unadjusted 1500 0.00 0.05 85.87 85.83 0.00 1.00
XGBoost 1500 0.00 0.07 89.61 89.59 0.00 1.04
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Table 14: Simulation results for the RD of the time to intubation or death at day 7 under null
treatment effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.10 1.11 1.07 0.02 1.52
CF-RF 100 0.00 0.05 0.85 0.85 0.00 1.17
CF-XGBoost 100 0.00 0.05 0.80 0.80 0.00 1.09
ℓ1-LR 100 0.00 0.06 0.72 0.72 0.00 0.99
LR 100 0.00 0.08 0.82 0.82 0.00 1.12
MARS 100 0.00 0.07 0.79 0.79 0.00 1.09
RF 100 0.00 0.27 0.66 0.66 0.00 0.90
Unadjusted 100 0.00 0.06 0.73 0.73 0.00 1.00
XGBoost 100 0.00 0.06 0.73 0.73 0.00 1.00

CF-MARS 500 0.00 0.05 0.76 0.76 0.00 1.06
CF-RF 500 0.00 0.05 0.82 0.82 0.00 1.13
CF-XGBoost 500 0.00 0.05 0.80 0.80 0.00 1.11
ℓ1-LR 500 0.00 0.05 0.72 0.72 0.00 1.00
LR 500 0.00 0.06 0.78 0.78 0.00 1.08
MARS 500 0.00 0.05 0.74 0.74 0.00 1.03
RF 500 0.00 0.16 0.73 0.73 0.00 1.02
Unadjusted 500 0.00 0.05 0.72 0.72 0.00 1.00
XGBoost 500 0.00 0.06 0.72 0.72 0.00 1.00

CF-MARS 1500 0.00 0.05 0.71 0.71 0.00 0.99
CF-RF 1500 0.00 0.05 0.79 0.79 0.00 1.09
CF-XGBoost 1500 0.00 0.04 0.77 0.77 0.00 1.07
ℓ1-LR 1500 0.00 0.05 0.72 0.72 0.00 0.99
LR 1500 0.00 0.06 0.74 0.74 0.00 1.03
MARS 1500 0.00 0.05 0.74 0.74 0.00 1.03
RF 1500 0.00 0.10 0.74 0.74 0.00 1.03
Unadjusted 1500 0.00 0.05 0.72 0.72 0.00 1.00
XGBoost 1500 0.00 0.06 0.75 0.75 0.00 1.05
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Table 15: Simulation results for the LOR of the modified WHO scale at day 14 under null treatment
effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.00 0.07 38.32 38.30 0.01 0.99
CF-RF 100 0.00 0.06 20.08 20.07 0.01 0.52
CF-XGBoost 100 0.00 0.07 21.21 21.21 0.00 0.55
ℓ1-LR 100 0.00 0.09 22.15 22.15 0.01 0.57
LR 100 0.00 0.08 96.02 96.02 0.00 2.49
MARS 100 0.00 0.07 28.91 28.90 0.01 0.75
RF 100 0.00 0.11 16.61 16.60 0.01 0.43
Unadjusted 100 0.00 0.06 38.60 38.60 0.00 1.00
XGBoost 100 0.00 0.10 34.50 34.48 0.01 0.89

CF-MARS 500 0.00 0.05 16.92 16.91 0.00 1.01
CF-RF 500 0.00 0.05 17.27 17.27 0.00 1.03
CF-XGBoost 500 0.00 0.06 17.75 17.74 0.00 1.06
ℓ1-LR 500 0.00 0.06 16.45 16.45 0.00 0.98
LR 500 0.00 0.06 17.28 17.28 0.00 1.03
MARS 500 0.00 0.06 17.26 17.26 0.00 1.03
RF 500 0.00 0.09 15.20 15.20 0.00 0.91
Unadjusted 500 0.00 0.05 16.74 16.74 0.00 1.00
XGBoost 500 0.00 0.07 16.54 16.54 0.00 0.99

CF-MARS 1500 0.00 0.05 16.60 16.60 0.00 1.02
CF-RF 1500 0.00 0.06 17.37 17.37 0.00 1.07
CF-XGBoost 1500 0.00 0.06 17.11 17.11 0.00 1.05
ℓ1-LR 1500 0.00 0.05 16.33 16.28 0.01 1.00
LR 1500 0.00 0.05 16.61 16.61 0.00 1.02
MARS 1500 0.00 0.05 16.25 16.24 0.00 1.00
RF 1500 0.00 0.08 16.21 16.21 0.00 0.99
Unadjusted 1500 0.00 0.05 16.30 16.29 0.00 1.00
XGBoost 1500 0.00 0.06 16.30 16.29 0.00 1.00
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Table 16: Simulation results for the MW of the modified WHO scale at day 14 under null treatment
effect and covariates with no prognostic power.

Estimator n Effect size P(Reject H0) n× MSE n× Var |Bias| Rel. eff.

CF-MARS 100 0.50 0.08 0.42 0.42 0.00 1.54
CF-RF 100 0.50 0.06 0.28 0.28 0.00 1.02
CF-XGBoost 100 0.50 0.07 0.29 0.29 0.00 1.07
ℓ1-LR 100 0.50 0.07 0.27 0.27 0.00 0.99
LR 100 0.50 0.47 2.09 2.09 0.00 7.57
MARS 100 0.50 0.08 0.36 0.36 0.00 1.32
RF 100 0.50 0.11 0.22 0.22 0.00 0.79
Unadjusted 100 0.50 0.06 0.28 0.28 0.00 1.00
XGBoost 100 0.50 0.09 0.27 0.27 0.00 0.97

CF-MARS 500 0.50 0.05 0.28 0.28 0.00 1.04
CF-RF 500 0.50 0.06 0.28 0.28 0.00 1.04
CF-XGBoost 500 0.50 0.06 0.29 0.29 0.00 1.07
ℓ1-LR 500 0.50 0.05 0.26 0.26 0.00 0.99
LR 500 0.50 0.08 0.72 0.72 0.00 2.69
MARS 500 0.50 0.06 0.28 0.28 0.00 1.05
RF 500 0.50 0.09 0.24 0.24 0.00 0.91
Unadjusted 500 0.50 0.05 0.27 0.27 0.00 1.00
XGBoost 500 0.50 0.07 0.26 0.26 0.00 0.99

CF-MARS 1500 0.50 0.05 0.27 0.27 0.00 1.03
CF-RF 1500 0.50 0.06 0.28 0.28 0.00 1.08
CF-XGBoost 1500 0.50 0.06 0.28 0.28 0.00 1.06
ℓ1-LR 1500 0.50 0.05 0.26 0.26 0.00 1.02
LR 1500 0.50 0.05 0.27 0.27 0.00 1.03
MARS 1500 0.50 0.05 0.26 0.26 0.00 1.00
RF 1500 0.50 0.08 0.26 0.26 0.00 1.00
Unadjusted 1500 0.50 0.05 0.26 0.26 0.00 1.00
XGBoost 1500 0.50 0.06 0.27 0.27 0.00 1.02
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