
Prediction and Prevention of Pandemics
via Graphical Model Inference and Convex Programming

Mikhail Krechetov1, Amir Mohammad Esmaieeli Sikaroudi2, Alon Efrat2,3, Valentin Polishchuk4,
and Michael Chertkov3,5,2,1

1 Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
2 Department of Computer Science, University of Arizona, Tucson, AZ, USA, 85721
3 Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA, 85721

4 Linkoping Univeristy, Norrkoping, Sweden, 60174
5 Department of Mathematics, University of Arizona, Tucson, AZ, USA, 85721

Mikhail.Krechetov@skoltech.ru, chertkov@arizona.edu

Abstract

Hard-to-predict bursts of COVID-19 pandemic revealed sig-
nificance of statistical modeling which would resolve spatio-
temporal correlations over geographical areas, for example
spread of the infection over a city with census tract granu-
larity. In this manuscript, we provide algorithmic answers to
the following two inter-related public health challenges of
immense social impact which have not been adequately
addressed by the AI community. (1) Inference Challenge:
assuming that there are N census blocks (nodes) in the city,
and given an initial infection at any set of nodes, e.g. any N of
possible single node infections, any N(N − 1)/2 of possible
two node infections, etc, what is the probability for a subset
of census blocks to become infected by the time the spread of
the infection burst is stabilized? (2) Prevention Challenge:
What is the minimal control action one can take to minimize
the infected part of the stabilized state footprint? To answer
the challenges, we build a Graphical Model of pandemic of
the attractive Ising (pair-wise, binary) type, where each node
represents a census track and each edge factor represents the
strength of the pairwise interaction between a pair of nodes,
e.g. representing the inter-node travel, road closure and re-
lated, and each local bias/field represents the community level
of immunization, acceptance of the social distance and mask
wearing practice, etc. Resolving the Inference Challenge re-
quires finding the Maximum-A-Posteriory (MAP), i.e. most
probable, state of the Ising Model constrained to the set of
initially infected nodes. (An infected node is in the +1 state
and a node which remained safe is in the −1 state.) We show
that almost all attractive Ising Models on dense graphs result
in either of the two possibilities (modes) for the MAP state:
either all nodes which were not infected initially became in-
fected, or all the initially uninfected nodes remain uninfected
(susceptible). This bi-modal solution of the Inference Chal-
lenge allows us to re-state the Prevention Challenge as the
following tractable convex programming: for the bare Ising
Model with pair-wise and bias factors representing the system
without prevention measures, such that the MAP state is fully
infected for at least one of the initial infection patterns, find
the closest, in l1 norm, therefore prevention-optimal, set of
factors resulting in all the MAP states of the Ising model, with
the optimal prevention measures applied, to become safe.

Introduction: Graphical Models of Pandemics
We follow our previous work (Chertkov et al. 2021) in jus-
tification for the use of the Graphical Models (GM) to study
and mitigate pandemics. Therefore, we start from providing
a brief recap of the prior literature on modeling of the epi-
demics, describe the logic which led us in (Chertkov et al.
2021) to the Ising Model (IM) formulation, and then state
formally the inference and prevention problems addressed
in the manuscript.

Difficulty in both predicting and neutralizing the spread
of pandemics is a major social challenge of humanity. Tech-
nically speaking, we are yet to design a coherent data lifecy-
cle for modeling and prevention both in terms of the global
strategies and local tactics. To address the challenge, we
must devise a hierarchy of spatio-temporal models with dif-
ferent resolutions – from individual to community, county
to the city, and from the moment a pathogen first enters our
bodies, to days of disease development and to community
transmission. Importantly, the models should be efficient in
computing probabilistic predictions (for instance, offering
the marginal probability heat map for the city neighborhoods
to transition from the current/prior state of infection to the
projected/a-posteriori state in two weeks).

Epidemiology and Mathematical Biology experts have
relied in the past on a number of modeling approaches.
The Agent-Based-Models (ABMs), introduced in epidemi-
ology in 2004-2008 (Eubank et al. 2004; Longini et al.
2005; Ferguson et al. 2005, 2006; Germann et al. 2006;
Halloran et al. 2008), have complemented the earlier com-
partmental models (Ross 1910; Kermack, McKendrick, and
Walker 1927; Anderson and May 1991; Hethcote 2000).
Using ABMs, even though not exclusive to epidemiology
(Wikipedia 2020; Downey 2018), became a breakthrough
in the field, as they allowed to make a significant improve-
ment in the quality of predictions, especially in the spatio-
temporal resolution of how the disease spreads and how
one can mitigate its spread. The models became and re-
mained a core part of the epidemiology data life-cycle. (See
for instance (Lovasi and et.al. 2020; Kerr et al. 2021) for
most recent bibliography.) The ABMs provide a detailed
prediction of how pandemics spread within counties, cities,
and regions. A majority of the country-, city- or county-
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scale testbeds testing various mitigation strategies are re-
solved nowadays with ABMs. In particular, recently ABMs
have been used extensively to inform public health in (non-
pharmaceutical) interventions against the spread of COVID-
19 (Ferguson et al. 2020; Eubank et al. 2020; LANL 2020;
Maziarz and Zach 2020; Kaxiras and Neofotistos 2020), and
verify new strategies like test-trace-quarantine (Kerr et al.
2021), among many other applications.

There are two major problems with the modeling of pan-
demic. First, many parameters need to be calibrated on data.
Second, even when calibrated for the current state of pan-
demic the models which are too detailed become impractical
for making a forecast and for developing prevention strate-
gies – both requiring checking multiple (forecast and/or pre-
vention) scenarios. Using ABMs, which are clearly over-
modeled (too detailed) is especially problematic in the con-
text of the latter. For example, the open-source ABM solver
FLUTE (Chao et al. 2010) developed originally for model-
ing influenza, works with data that are acquired through Ge-
ographic Information Systems (GIS) on the scale of census
tracts or communities, which is a very reasonable scale of
spatial resolution to understand the dynamics of pandemics
on a local scale. FLUTE populates each of the communi-
ties with thousands to millions of inhabitants in order to
account for their daily patterns of travel. We believe that
constructing effective Graphical Models (GM) of Pandemics
with community-scale spatial resolution and then model-
ing pairwise (and possibly higher-order) epidemic interac-
tions between communities directly, without introducing the
thousands-to-millions of dummy agents, will complement
(as discussed in the next paragraph), but also improve upon
ABMs by being more efficient, robust and easier to calibrate.

An important, and possibly one of the first, Graphical
Model (GM) of the COVID-19 pandemic was proposed in
(Chang et al. 2020). Dynamic bi-partite GMs connecting
census tracts to specific Points Of Interest (non-residential
locations that people visit such as restaurants, grocery stores
and religious establishments) within the city and studying
dynamics of the four-state (Susceptible, Exposed, Infectious
and Removed) of a census tract (graph node) on the graph,
were constructed in (Chang et al. 2020) for major metro-area
in USA based on the SafeGraph mobility data (SafeGraph
2021).

In fact, similar dynamic GMs, e.g. of the Independent
Cascade Model (ICM) type (Kempe, Kleinberg, and Tar-
dos 2003; Netrapalli and Sanghavi 2012; Gomez-Rodriguez,
Leskovec, and Krause 2012; Khalil, Dilkina, and Song 2013;
Rosenfeld, Nitzan, and Globerson 2016), were introduced
even earlier in the CS/AI literature in the context of mod-
eling how the rumors spread over social networks (with a
side reference on using ICM in epidemiology). As argued
in (Chertkov et al. 2021) the Independent Cascade Mod-
els (ICMs) can be adapted to modeling pandemics. (An-
other interesting use of the ICM to model COVID-19 pan-
demic was discussed in (Chen et al. 2020).) In its mini-
mal version, an ICM of Pandemic can be built as follows.
Assume that the virus spreads in the community (census
tract) sufficiently fast, say within five days – which is the
estimate for the early versions of COVID-19 median in-

cubation period. If an infected person enters a communi-
ty/neighborhood but does not stay there, he infects others
with some probability. If a single resident of the commu-
nity becomes infected, all other residents are assumed in-
fected as well (instantaneously). The model is a discrete-
time dynamic model in which nodes in a network are in one
of the three states: Susceptible, Infected, or Removed. The
nodes represent communities/neighborhoods. A contact be-
tween an Infected community/node and another community
which is Susceptible has an assigned probability of disease
transmission, which can also be interpreted as the probabil-
ity of turning the S state into I state. Consistently with what
was described above, the network is represented as a graph,
where nodes are tracts and edges, connecting two tracts,
have an associated strength of interaction representing the
probability for the infection to spread from one node to its
neighbor. A seed of the infection is injected initially at ran-
dom, for example, mimicking an exogenous super-spreader
infection event in the area; examples could include political
or religious gatherings. See Figure 1 illustrating dynamics
of the cascade model over 3-by-3 grid graph. Color cod-
ing of nodes is according to Susceptible=blue, Infected=red,
Removed=black. Given the starting infection configuration,
each infected community can infect its graph-neighbor com-
munity during the next time step with the probability as-
sociated with the edge connecting the two communities.
Then the infected community moves into the removed state.
The attempt to infect each neighbor is independent of all
other neighbors. This creates a cascading spread of the virus
across the network. The cascade stops in a finite number of
steps, thereby generating a random Removed pattern, shown
in black in the Fig. 1, while other communities which were
never infected (remain Susceptible) are shown in blue.

It was shown in (Chertkov et al. 2021) that with some
regularization applied, statistics of the terminal state of the
Cascade Model of Pandemic turns into a Graphical Model
of the attractive Ising Model type.

This manuscript Road Map. Working with the Ising
Model of Pandemic, we start the technical part of the
manuscript by posing the Inference/Prediction Challenge
in Section 1. Here, the problem is stated, first, as the Max-
imum A-Posteriori over an attractive Ising Model, and we
argue, following the approach which is classic in the GM
literature, that problem can be re-stated as a tractable LP.
We then proceed to Section 2 to pose the main challenge ad-
dressed in the manuscript – the Prevention Challenge – as
the two-level optimization with inner step requiring resolu-
tion of the aforementioned Prediction Challenge. Aiming to
reduce the complexity of the Prevention problem, we turn in
Section 3 to the analysis of the conditions in the formulation
of the Prediction Challenge, describing the Safety domain
in the space of the Ising Model parameters. We show the
Safety domain is actually a polytope, even though exponen-
tial in the size of the system. We proceed in Section 5 with
analysis of the Prevention Challenge, discussing the inter-
pretation of the problem as a projection to the Safety Poly-
tope from the polytope exterior, needed when the bare pre-
diction suggests that system will be found with high proba-
bility outside of the Safety Polytope. Section 4 is devoted to



Figure 1: An exemplary random sequence (top-left to top-right to bottom-left to bottom-right) of the Independent Cascade
Model (ICM) dynamics over 3 × 3 grid. Nodes colored red, blue, and black are Infected, Susceptible, and Removed at the
respective stage of the dynamical process. This (shown) sample of the dynamic process terminates in 3 steps. Ising Model of
Pandemic (IMP), which is the focal point of this manuscript, describes a regularized version of the ICM terminal state, where
only two states (S-blue and R-black) are left. (See text for details.)

approximation which allows an enormous reduction in the
problem complexity. We suggest here that if the graph of the
system is sufficiently dense, the resulting MAP solution may
only be in one of the two polarized states (a) completely safe
(no other nodes except the initially infected) pick the infec-
tion, or (b) the infection is spread over the entire system. We
support this remarkable simplification by detailed empirical
analysis and also by some theoretical arguments. Section 6 is
devoted to the experimental illustration of the methodology
on the practical example of the Graphical Model of Seattle.
The manuscript is concluded in Section 7 with a brief sum-
mary and discussion of the path forward.

1 Ising Model of Pandemic
As argued in (Chertkov et al. 2021) the terminal state of a
dynamic model generalizing the ICM model can be repre-
sented by the Ising Model of Pandemic (IMP), defined over
graph G = (V, E), where V is the set of N = |V| nodes and
E is the set of undirected edges. The IMP, parameterized by
the vector of the node-local biases, h = (ha|a ∈ V) ∈ RN ,
and by the vector of the pair-wise (edge) interactions, J =
(Jab|{a, b} ∈ E), describes the following Gibbs-like proba-
bility distribution for a state, x = (xa = ±1|a ∈ V) ∈ 2|V|,
associated with V:

P (x | J, h) =
exp (−E(x | J, h))

Z(J, h)
, (1)

where any node, a ∈ V can be found in either S- (suscept-
able, never infected) state, marked as xa = −1, or R- (re-
moved, i.e. infected prior to the termination) state, marked
as xa = +1. In Eq. (1), E(x|J, h) and Z(J, h) are model’s
energy function and partition function respectively:

E(x | J, h) =
∑
a∈V

haxa −
∑
a,b∈V

Jabxaxb, (2)

Z(J, h) =
∑
x

∑
a∈V

haxa −
∑
a,b∈V

Jabxaxb

 .(3)

In what follows, we will focus on finding the Maximum-
A-Posteriori (MAP) state of the IMP conditioned to a par-
ticular initialization – setting a subset of nodes, I ∈ V , to be
infected. We coin the MAP problem Inference Challenge:

x(MAP)(I|J, h) = arg min
x
E(x | J, h)

∣∣∣
∀a∈I: xa=+1

, (4)

where we emphasize dependence of the MAP solution on
the set of the initially infected nodes, I.

Note that in general finding x(MAP) is NP-hard (Barahona
1982). However if J > 0 element-wise, i.e. the Ising Model
is attractive (also called ferromagnetic in statistical physics),
Eq. (4) becomes equivalent to a tractable (polynomial in N )
Linear Programming (see (Živný, Werner, and Průša 2014)
and references therein). In fact, the IMP is attractive, reflect-
ing the fact that the state of a node is likely to be aligned
with the state of its neighbor.

Let us also emphasize some other features of the IMP:

1. G should be thought of as an ”interaction” graph of a city,
reflecting transportation, commutes, and other forms of
interactions between populations with the homes at the
two nodes (census tracts) linked by an edge. The strength
of a particular Jab shows the level of interaction associ-
ated with the edge {a, b}.

2. A component, ha, of the vector of local biases, h, is
reflecting a-node specific factors such as immunization
level, imposed quarantine, and degree of compliance
with the public health measures (e.g., wearing masks and
following other rules). Large negative/positive ha shows
that residents of the census tract associated with the node
a are largely healthy/infected.

If solution of the Inference Challenge problem is such that
the R-subset of the MAP solution, x(MAP)(I|J, h), i.e.

R(I, J, h) =
{
a ∈ V |x(MAP)

a (I|J, h) = +1
}
, (5)

is sufficiently large, we would like to mitigate the infection,
therefore setting the Prevention Challenge discussed in the
next Section.

2 Prevention Challenge
Let us assume that modification of J and h are possible and
consider the space of all feasible J and h. We will then iden-
tify Safe Domain as a sub-space of feasible J and h such that
for all the initial sets of the initially infected nodes, I, con-
sidered the resulting ”infected” subset, R(I, J, h), is suffi-
ciently small. A more accurate definition of the Safe Domain
follows. Then, we rely on the definition to formulate the
control/mitigation problem coined Prevention Challenge. At
this stage, we would also like to emphasize that studying the



geometry of the Safe Domain is one of the key contributions
of this manuscript.

Definition. Consider IMP over G = (V, E) and with the
parameters (J, h). Let us also assume that the set of initially
infected nodes, I, is drawn from the list, Υ. We say that
(J, h) is in the k-Safe Domain if for every I from Υ the
number of R-nodes in the MAP solution (4), is at most k,
i.e.

∀I ∈ Υ : |R(I, J, h)| ≤ k, (6)

whereR(I, J, h) is defined in Eq. (5).
Prevention Challenge: Given (J (0), h(0)) describing the

bare status of the system (city) which is not in the k-
Safe Domain, and given the cost of the (J, h) change,
C
(
(J, h); (J (0), h(0))

)
, what is least expensive change to

(J (0), h(0)) state of the system which is in the the k-Safe
Domain? Formally, we are interested to solve the following
optimization:

(J (corr), h(corr)) = arg min
(J,h)

C
(

(J, h); (J (0), h(0))
)

Eq. (6)
.

(7)

Expressing it informally, the Prevention Challenge seeks
to identify a minimal correction (thus ”corr” as the upper in-
dex) (J (corr), h(corr)), which will move the system to the safe
regime from the unsafe bare one, (J (0), h(0)). The measures
may include limiting interaction along some edges of the
graph, thus modifying some components of J , or enforcing
local biases, e.g., increasing level of vaccination, at some
component of h.

Given that condition in Eq. (6) also requires solving
Eq. (4) for each candidate (J, h), the Prevention Challenge
formulation is a difficult two-level optimization. However,
as we will see in the next Section, the condition in Eq. (6)
(and thus the inner part of the aforementioned two-level op-
timization) can be re-stated as the requirement of being in-
side of a polytope in the (J, h) space. In other words, the
(k)-Safe Domain is actually a polytope in the (J, h) space.

3 Geometry of the MAP States
Before solving the Prevention Challenge problem, we want
to shed some light on the geometry of the MAP states. We
work here in the space of all the Ising models over a graph
G = (V, E), where each of the models is specified by (J, h).

Proposition. Safe Domain of a graph G = (V, E) with
N = |V| nodes is a polytope in the space of all feasible
parameters, (J, h), defined by an exponential in N number
of linear constraints.

Remark. The Proposition allows us, from now on, to use
Safe Polytope instead of the Safe Domain.

Proof of the Proposition. The space of all the Ising mod-
els is divided into 2N regions by the corresponding MAP
states. Moreover, the boundary between any pair of neigh-
boring regions is linear: consider two states x(i) and x(j),
and denote (J, h)(i) (resp. (J, h)(j)) the set of all the Ising
models with the MAP state x(i) (resp. x(j)), then (J, h)(i)

and (J, h)(j) are separated by the equation, E(x(i) | J, h) =

E(x(j) | J, h), which is linear in (J, h). For a subset,R ⊆ V ,
of nodes, let x(R) be the state in which, xa = +1, ∀a ∈
R, xa = −1, ∀a /∈ R. Let X(R) be the set of all the MAP
states, x, such that ∀a ∈ R, xa = +1 (while other nodes,
i.e. b ∈ V \ R, are not constrained, xb = ±1). Then the
k-Safe Polytope, which we denote, SP(k), is defined by at

most
k∑

k′=1

(
N
k′

)
· (2N−k′ − 1) linear inequalities:

SP(k) =
⋂

∀R, |R| ≤ k;
∀x ∈ X(R) \ x(R)

{
(J, h) | E(x(R)|J, h) > E(x | J, h)

}
,

(8)
were some of these linear inequalities on the rand hand side
may be redundant.

Remark. In the case of k = 1 (which, obviously, ap-
plies only if all the initial infections are at a single nodes,
i.e. ∀I ∈ Υ, |I| = 1), there are at most, N · (2N−1 − 1)
linear inequalities.

We illustrate the geometry of the Ising model over the tri-
angle graph (three nodes connected in a loop, K3) in Fig. 2
and Fig. 3. For both illustrations, we fix the h value to −1
at all the nodes, and we are thus exploring the remaining
three degrees of freedom, J12, J13, J23 (since J is symmet-
ric), which corresponds to exploring interactions within the
class of attractive Ising models, ∀a, b = 1, 2, 3 : Jab ∈ R+.

First, we consider the case when the only node
a = 1 is infected. In this simple setting there
are four possible MAP states, (x1, x2, x3) ∈
{(+1,−1,−1), (+1,−1,+1), (+1,+1,−1), (+1,+1,+1)},
shown in Fig. (2) as green, blue, yellow and red, respec-
tively. Finally, in the figure Fig. (3) we plot the Safe
Polytope SP(1). We observe that the two ”polarized” MAP
states, (+1,−1,−1) and (+1,+1,+1), are seen most often
among the samples, while domain occupied by the other
two ”mixed” MAP states, (+1,−1,+1) and (+1,+1,−1)
is much smaller, with the two modes positioned on the
interface between the two polarized states.

As will be shown below in the next Section, the polar-
ization phenomena with only two ”polarized” MAP states,
which we coin in the following the two polarized modes,
which we see on this simple triangle example, is generic for
the attractive Ising model.

4 Two Polarized Modes
Definition. Consider a particular subset of the initially in-
fected nodes, I (where thus, ∀a ∈ I : xa = +1). We
call the MAP state of the model polarized when one of the
following is true: (i) only initially infected nodes show +1
within the MAP solution, ∀a ∈ I : xa = +1, ∀b ∈ V \ I :
xb = −1 or (ii) all nodes within the MAP state show +1,
∀a ∈ V : xa = +1. We call a MAP state mixed otherwise.

Experimenting with many dense graphs, which are typ-
ical in the pandemic modeling of modern cities with ex-
tended infrastructures and multiple destinations visited by
many inhabitants, we observe that the two polarized MAP
states dominate generically, while the mixed states are ex-
tremely rare.



Figure 2: Geometry of the attractive Ising model illustrated
on the example of a triangle graph (K3) when a single node
is infected. See explanations in the text.

Fig. 4 illustrates results of one our ensemble of random
IMPs’ experiments. We, first, fix N to 20, pick M such that
M ≤ N(N − 1)/2 = 190 and then generate at random M
edges connecting the 20 nodes. Then, for each of the ran-
dom graphs (characterized by its own M ) we generate 500
random samples of (J, h), representing attractive Ising mod-
els. Finally, we find the MAP state for each IMP instance,
count the number of mixed states and show the dependence
of the fractions of the mixed states (in the sample set) in the
Fig. (4). A fast decrease of the proportion of the mixed states
is observed with an increase in M .

Extension of these experiments (see Fig. (5)) suggests that
when we consider an ensemble of IMPs over graphs with N
nodes and the average degree α = O(1) which is sufficiently
large (so that the graph is sufficiently dense) and increase
N , we observe that the Mixed State Probability (MSP), or
equivalently proportion of the mixed-to-polarized states, de-
creases dramatically. Moreover, based on the experiments,
we conjecture that the MSP decays to zero at α > αc, but it
saturates at α < αc, where αc is the threshold depending on
the ensemble details. This threshold behavior is akin to the
phase transition that occurred in many models of the spin
glass theory (Mezard, Parisi, and Virasoro 1986) and many
models of the Computer Science and Theoretical Engineer-
ing defined over random graphs and considered in the ther-
modynamic limit, i.e. at N → ∞. See e.g. (Richardson and
Urbanke 2008) (application in the Information Theory, and
specifically in the theory of the Low Density Parity Check
Codes) (Mezard and Montanari 2009) (applications in the
Computer Science, and specifically for random SAT and re-
lated models) and references therein. We postpone further
discussions of the conjecture for a future publication (see
also brief discussion in Section 7).

Figure 3: The Safe Polytope illustrated on the example of a
triangle graph (K3) with field vector h = [−1,−1,−1]. See
explanations in the text.

We will continue discussion of the two-mode solution in
the next Section.

5 Projecting to the Safe Polytope
In this Section we aim to summarize all the findings so far
to resolve the Prevention Challenge formulated in Section 2,
specifically in Eq. (7) stating the problem as finding a mini-
mal projection to the Safety Domain/Polytope from its exte-
rior. The task is well defined, but in general, and as shown in
Section 3, it is too complex – as the description of the Safety
Polytope (number of linear constraints, required to define it)
is exponential in the system size (number of nodes in the
graph). However, the two-mode approximation, introduced
in Section 4, suggests a path forward: use the two-mode ap-
proximation and therefore remove all the linear constraints
but one, separating the two polarized states.

Let us denote the two-mode approximation of the Safe
Polytope by ŜP (Υ), where thus k in the original Safe Poly-
tope, SP (k), is replaced by the set Υ of all the initial infec-
tion patters. Then we write,

ŜP (Υ) =
⋂
I∈Υ

{
(J, h) | E(+12N | J, h) ≥ E(x(I) | J, h)

}
,

(9)

where, ∀a ∈ I : x
(I)
a = +1 and ∀b ∈ V \ I : x

(I)
b = −1.

Eq. (9) represents a polytope stated in terms of the |Υ| con-
straints. In particular, if Υ accounts for all the initial infec-
tions, I, of size not large than k, then |Υ| =

∑k
k′=1

(
N
k′

)
: the

number of constraints grows exponentially in the maximal
size of the initial infections, however the number of the con-
straints remains tractable for any k = O(1). Replacing con-
ditions in Eq. (7) by ŜP (Υ), defined in Eq. (9), one arrives at



Figure 4: Proportion of the mixed states in all samples for an
ensemble of the (attractive) Ising Model of Pandemic over
graphs with N nodes, shown as a function of the varying
number of edges, M . Each shown point is the result of the
averaging over 500 random instances of the (J, h) over the
same graph. (See text for additional details.)

the following tractable (in the case of k = O(1)) convex op-
timization expression answering the Prevention Challenge
approximately (within the two-mode approximation):

(Ĵ (corr), ĥ(corr)) = arg min
(J,h)

C
(

(J, h); (J (0), h(0))
)

Eq. (9)
.

(10)

This formula is the final result of this manuscript analytic
evaluation. In the next Section we use Eq. (10), with C(·; ·)
substituted by the l1-norm, to present the result of our ex-
periments in a quasi-realistic setting describing a (hypothet-
ical) pandemic attack and optimal defense, i.e., prevention
scheme.

6 Experiments
Seattle data
We illustrate our methodology on a case study of the city of
Seattle. Seattle has 131 Census Tracts. (Each Census Tract
includes 1 to 10 Census Block Groups with 600 to 3000 res-
idents.) Each Census Tract represents 1200 to 8000 popula-
tion, and its boundaries are designed to represent natural or
urban landmarks and also to be persistent over a long period
(United States Census Bureau 2019). To reduce complex-
ity, we merge census tracts into 20 regions. See Fig. 6. To
prepare this splitting of Seattle into 20 regions/nodes, we
utilize geo-spatial information from the TIGER/Line Shape-
files project provided by U.S. Census Bureau (United States
Census Bureau 2021). The travel data of Seattle was ex-
tracted from the Safegraph dataset (Saf), which provides
anonymized mobile tracking data. Each data point in the
Safegraph database describes the number of visits from a
Census Block to a specific point of interest represented by
latitude and longitude. Mobility data associated with travel-
ers crossing the boundaries of Seattle was ignored. We then
follow the methodology developed in (Chertkov et al. 2021)
to combine the aggregated travel data with the epidemiolog-
ical data, representing current state of infection in the area.

Figure 5: Proportion of the mixed-to-polarized states for an
ensemble of the (attractive) Ising Model of Pandemic over d-
regular graphs withN nodes, shown as a function of d. Each
point is the result of averaging over 100 random instances of
the (J, h) over different random graphs with the same node
degree. (See text for additional details.)

This results in the estimation of the pair-wise interactions,
J , parameterizing the Ising Model of Pandemic. We also
come up with an exemplary (uniform over the system) lo-
cal biases, h, completing the definition of the model. (We
remind that the prime focus of the manuscript is on devel-
oping methodology which is AI sound and sufficiently gen-
eral. Therefore, the data used in the manuscript are roughly
representative of the situation of interest, however not fully
practical.) We consider a situation with different levels of in-
fection and chose (J (0), h(0)) stressed enough, that is result-
ing in the prediction (answer to our Prediction Challenge),
which lands the system in the dangerous domain – outside
of the Safety Polytope.

Convex projection
In all of our experiments, we have used the general-
purpose Gurobi optimization solver (Gurobi Optimization,
LLC 2021) to compute the MAP states and thus to validate
the two-mode assumption. (We have also experimented with
CVXPY (CVXPY 2021), but found it performing slower
than Gurobi, at least over the relatively small samples con-
sidered in this proof of principles study. In the future, we
plan to use existing, or developing new, LP solvers de-
signed specifically for finding the MAP state of the attrac-
tive Ising model.) To illustrate our Prevention strategy, we
took the Seattle data described above, and fed it as an in-
put into the optimization (10), describing projection to the
Safety Polytope, where C(·; ·) is substituted by the l1 norm.
CVXPY solver was used for this convex optimization task.
Our code (python within jupyter notebook) is available at
https://github.com/mkrechetov/IsingMitigation.

Table 1 shows results of our Prevention experiments on
the Seattle data. We analyze l1 projection to ŜP (Υ) where
Υ consists of all the initial infection patterns consisting of up
to k nodes. In all of our experiments, the values of the field
vector h (uniform across the system) was fixed to −1. We
observe that the number of constraints grows exponentially

https://github.com/mkrechetov/IsingMitigation


Figure 6: Seattle case study areas and census tracts (Office
of Planning & Community Development, Seattle 2010).

k LP Constraints Runtime Cost
1 801 1.65s 41.69
2 991 3.04s 43.62
3 2131 10.90s 44.30
4 6976 100.08s 44.56

Table 1: Summary of our prevention experiments on the
Seattle data. k, in the first column, is the maximal number of
nodes in the initially infected patterns (all accounted for to
construct the k-Safe Polytope). The second column shows
number of linear constraints characterizing the k-Safe Poly-
tope. Respective Run Time and Cost are shown in the 3rd
and 4th column, where Cost shows the difference in l1 norm
between the (J (0), h(0)), characterizing stressed but unmit-
igated regime, and the optimal prevention regime, resulting
in (Ĵ (corr), ĥ(corr)) computed according to Eq. (10).

with k; however, the cost of intervention remains roughly
the same. We intend to analyze the results of this and other
(more realistic) experiments in future publications aimed at
epidemiology experts and public health officials.

7 Conclusions and Path Forward
In this manuscript, written specifically for the AI com-
munity, we follow our prior work (Chertkov et al. 2021),
aimed at a broader interdisciplinary community, and explain
respective inference (prediction) and control (prevention)
questions/challenges. We use the language of GMs, which
is one powerful tool in the modern arsenal of AI, and state
the Prediction Challenge as a MAP optimization over an at-
tractive Ising model, which can be expressed generically as
a solution of a tractable Linear Programming (LP). We then
turn to the analysis of the prevention problem, which is set
if the aforementioned prediction solution suggests that the

probability of significant infection is above a pre-defined (by
the public health experts) tolerance threshold. We show that
in its simplest formulation, the prevention problem is equiv-
alent to finding minimal l1 projection to the safety polytope,
where the latter is defined by solving the aforementioned
prediction problem. In general, the polytope does not allow a
description non-exponential in the size of the system. How-
ever, we suggested an approximation that allows to approx-
imate the safety polytope efficiently - that is, linearly in the
number of the initial infection patterns. The approximation
is justified (empirically, with supporting theoretical argu-
ments, however not yet backed by a mathematically rigorous
theory) in the case when the interaction graph of the system
(e.g., related to the system/city transportation and human-
to-human interaction network) is sufficiently dense. We con-
clude by providing a quasi-realistic experimental demonstra-
tion on the GM of Seattle.

We conclude the manuscript with an incomplete list of
AI challenges, presented in the order of importance (subjec-
tive), which need to be resolved to make the powerful GM
approach to pandemic prediction and prevention practical:
• Build a hierarchy of Probabilistic Graphical Models

which allow more accurate (than Ising model) represen-
tation of the infection patterns over geographical and
community graphs. The models may be both of the
static (like Ising) or dynamic (like Independent Cascade
Model) types. Extend the notion of the Safety Region
(polytope) to the new GM of pandemics.

• Consider the case when the resolution of the Prediction
Challenge problem returns a positive answer - most likely
future state of the system is safe, and then develop the
methodology which allows estimating the probability of
crossing the safety boundary. In other words, we envi-
sion formulating and solving in the context of the GM
a problem which is akin to the one addressed in (Owen,
Maximov, and Chertkov 2019): estimate the probability
of finding the system outside of the Safety Polytope.

• Construct other (than two-mode) approximations to the
Safety Polytope. Approximations built on sampling of
the boundaries of the safety polytope and learning (pos-
sibly reinforcement learning) are needed.

• Develop the asymptotic (thermodynamic limit) theory
which allows validating (and/or correcting systemati-
cally) the efficient (two-mode and other) approximations
of the Safety Polytope.
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