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Abstract—With the rapid global spread of COVID-19, more
and more data related to this virus is becoming available,
including genomic sequence data. The total number of genomic
sequences that are publicly available on platforms such as
GISAID is currently several million, and is increasing with every
day. The availability of such Big Data creates a new opportunity
for researchers to study this virus in detail. This is particularly
important with all of the dynamics of the COVID-19 variants
which emerge and circulate. This rich data source will give
us insights on the best ways to perform genomic surveillance
for this and future pandemic threats, with the ultimate goal of
mitigating or eliminating such threats. Analyzing and processing
the several million genomic sequences is a challenging task.
Although traditional methods for sequence classification are
proven to be effective, they are not designed to deal with
these specific types of genomic sequences. Moreover, most of the
existing methods also face the issue of scalability. Previous studies
which were tailored to coronavirus genomic data proposed to use
spike sequences (corresponding to a subsequence of the genome),
rather than using the complete genomic sequence, to perform
different machine learning (ML) tasks such as classification and
clustering. However, those methods suffer from scalability issues.

In this paper, we propose an approach called Spike2Vec, an
efficient and scalable feature vector representation for each spike
sequence that can be used for downstream ML tasks. Through
experiments, we show that Spike2Vec is not only scalable on
several million spike sequences, but also outperforms the baseline
models in terms of prediction accuracy, F1-score, etc. Since this
type of study on such huge numbers of spike sequences has
not been done before (to the best of our knowledge), we believe
that it will open new doors for researchers to use this data and
perform different tasks to unfold new information that was not
available before. As an example of this, we use information gain
(IG) to compute the importance of each amino acid in the spike
sequence. The amino acids with higher IG values tend to be the
same to the ones reported by the USA based Centers for Disease
Control and Prevention (CDC) for different variants.

Index Terms—COVID-19 Spike Sequences, Feature Vector
Representation, k-mers, Classification, Clustering

I. INTRODUCTION

Very few fields of study remain untouched in the big data
era, as massive amounts of data are collected in every domain
from finance [1], [2] to astronomy [3], [4]. The field of
biomedical and health informatics is no exception; one which
has had a recent and rather rapid growth spurt in the amount
of available data, due to the COVID-19 pandemic [5], [6]. One
facet of this increase is the amount of genomic data becoming

available for COVID-19 in databases such as GISAID1, where
several million viral genome (virome) sequences of COVID-19
— or more precisely, SARS-CoV-22 — are available.

Such data has a high volume, as the SARS-CoV-2 virome
has ≈ 30K nucleotide base-pairs, and there are more than 2.5
million such sequences available in GISAID alone. While the
number COVID-19 patients being sequenced is a fraction of
the actual number of cases, the sheer number of infections
(both now and in the past) means that the velocity in which
SARS-CoV-2 virome sequences are appearing is very high.
For example, in March 2020, when COVID-19 was declared
a pandemic by the world health organization (WHO), there
were a few thousand sequences available. This grew to tens
of thousands in the late summer/fall, when the Alpha variant
emerged in the UK [7]. By the end of 2020 it was hundreds
of thousands, and in early 2021 it had reached 1 million;
today it is over 2.5 million. This will likely continue to
increase exponentially (see [8]) as many countries [9], [10]
ramp up their sequencing infrastructure for COVID-19 and
future pandemics.

The available SARS-CoV-2 virome sequence data, in
databases such as GISAID, has a high variety, since it com-
prises sequences from all over the world. Since COVID-19
has spread all over the world for more than a year now, and
viruses continue to mutate over time, there are quite a number
of variants of the SARS-CoV-2 virome, and they continue to
emerge. Because variants continue to emerge and die off, some
epidemiologists have even proposed a dynamic nomenclature
system similar to that used for the common cold or flu [11]. We
use this so-called “Pango Lineage” nomenclature to identify
the variants we study here, since only the very common
variants of concern (VoCs) are named. Examples of such
named VoCs are the Alpha [7] (Pango Lineage B.1.1.7),
Gamma [12] (P.1) and Delta [13] (B.1.617.2) variants (see
Table I for a more complete list). The genomic variations (most
of which happen in the spike region, see Figure 1) that define
these different variants have been associated with increased
transmissibility [14], and immune evasion [15].

1www.gisaid.org
2Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the

virus which causes the COVID-19 disease
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Because databases such as GISAID collect sequences from
all over the world, they come from heterogeneous sources
of sequencing technologies and centers, leading to multiple
levels of veracity. However, the largest source of different
veracity in the data is the widely varying degree to which
different populations are represented. For example, the UK
sequences about 5% of its population of ≈ 70 million, the
USA sequences about 1% of its population of ≈ 300 million,
while India sequences only a fraction of a percent of its
population of ≈ 1.3 billion [16], [17] (see Figure 3). Because
of this, for example, even though the Delta variant likely
originated in India, the majority of the available sequences
of this variant are from the UK and the USA, after it arrived
in these countries [18].

Since the genomic sequence of a virus encodes all of its
functions such as virulence and transmissibility, the value of
such massive amounts of genomic data is clear. It is variation
in this genomic sequence itself which defines the different
variants of SARS-CoV-2 such as Alpha, Delta and Gamma.
All of these variants differ from each other in effect (due to
their unique genomic variations), yet they all descend from
the original SARS-CoV-2 sequence [19]. It is only through a
process of evolution and transmission to many parts of the
globe for over a year, has it diverged to this extent. The
amount of sequence data available today puts us in the age
of genomic surveillance: tracking the spread of pathogens in
terms of genomic content [20], [21].

Approaches for rapidly clustering and classifying sequences
will be crucial in these genomic surveillance efforts. A clus-
tering method, when applied to the data on a daily basis, for
example, would identify a new and rapidly emerging variant in
terms of a cluster which grows abnormally quickly, allowing
scientists to focus on this cluster. Classification, on the other
hand, would allow us to track the spread of known variants
in new municipalities, regions, countries and continents. For
example, the USA had a wave of the Alpha variant from the
UK in early 2021, and later, a wave of the Delta variant
from India and/or via other intermediaries, such as the UK
(see Figure 5). Such patterns of spread can reveal information
about the underlying transmission networks between different
countries (the UK and USA, or the UK and India), or even
parts of different countries. This can help overcome some of
the different veracity in the data, such as the widely varying
degree to which different countries are represented in terms
of sequencing data, due to sampling bias. For example, even
though India is very under-sampled compared to the UK, the
wave of the Delta variant in the UK, along with information
about flights from India to the UK near the beginning of this
wave could give us insights on how the Delta variant originated
and spread in India.

The development of clustering and classification approaches
needs several important considerations, however. For one, the
number of sequences is so huge that any way of extracting
useful features becomes even more critical. Since the spike
protein is the entry point of the virus to the host cell, it
is an important characterizing feature of a coronavirus [22],

[23]. Most of the variants of SARS-CoV-2 are characterized
by mutations which happen disproportionately in the spike
region of the genome [7], [12], [13]. Even the mRNA vaccines
(e.g., Pfizer and Moderna) for COVID-19 are designed to
encode/target only the SARS-CoV-2 spike protein [24] (unlike
traditional vaccines which comprise an entire virome). Since
the spike region is sufficient to characterize most of the
important features of a viral sample, yet much smaller in
length, as depicted in Figure 1, we focus on an embedding
approach tailored to the spike region of the sequences.

266 21,563 29,67425,38413,468

Spike Protein(s)5′ 3′

Non-structural Proteins (ORF1ab) Structural Proteins (S, E, M, and N)

Fig. 1: The SARS-CoV-2 genome is composed of ≈ 30Kb nu-
cleotide base pairs, which codes for several proteins, including
the spike protein. The region of the genome which corresponds
to the spike protein is composed of 3821 (25, 384− 21, 563)
nucleotide base pairs, hence 3821 (+ 1 stop codon *) /3 =
1274 amino acids.

Previously, some efforts has been done to perform classifi-
cation and clustering of SARS-CoV-2 spike sequences [25]–
[27]. However, those methods are not scalable to the amount
of data we use in this study. Although they were successful
in getting higher predictive accuracy, it is not clear if the
proposed methods are robust and will give same predictive
performance on larger datasets. In this paper, we propose
Spike2Vec, an efficient and scalable feature vector generation
approach for SARS-CoV-2 spike sequences, to which we can
apply different machine learning tasks downstream, such as
classification and clustering. Our contributions in this paper
are as follows:

1) We propose an embedding approach, called Spike2Vec
that outperforms the baseline classification method in
terms of predictive accuracy.

2) We show that our method is scalable on larger datasets
by using ≈ 2.5 million spike sequences.

3) We prove from the results that the machine learning
models used in [25]–[27] are not scalable on these larger
datasets. This robust checking help us to analyze the
machine learning models in detail in terms of their
appropriateness for SARS-CoV-2 spike sequences.

4) We also show that in terms of clustering, our embedding
approach is better than the baseline model.

The rest of the paper is organized as follows: Section II
contains a discussion on the previous studies related to our
research problem. Section III contains a detailed description
of our Spike2Vec approach. Section IV contains the imple-
mentation details of the experimental evaluation of Spike2Vec,
along with the dataset statistics and discussion of the baseline
models. We present and discuss the results of this experimental
evaluation in Section V. Finally, we conclude our paper in
Section VI.



II. LITERATURE REVIEW

Because of the rapid spread of COVID-19 since December
2019, a lot of sequence data is available for this virus. This
new source of information has attracted researchers from all
the fields to perform analysis on this data to better understand
the diversity and dynamics of this virus. Authors in [27]
propose a one-hot encoding based approach to classify the
different coronavirus hosts using spike sequences alone. They
shows that near-optimal prediction accuracy can be achieved
by considering only the spike portion of the genome sequence
rather than using the whole sequence. Ali et al., in [25]
perform classification of different variants of the human
SARS-CoV-2. Although they were successful in achieving
higher accuracy than in [27], the kernel method used in their
approach, however, is not scalable to the size of the data we
use in this study. This drawback makes it difficult to use this
approach in real-world scenario, i.e., the current scenario.

Supervised and unsupervised feature selection methods
such as ridge regression [28], lasso regression, and principal
component analysis (PCA) [29], etc., are very popular for
not only reducing the runtime but also for improving the
predictive performance of the underlying machine learning
algorithms. Authors in [26] performs clustering on SARS-
CoV-2 spike sequences and show that clustering performance
could be improved by simply using lasso and ridge regression.
Although they were also able to get significant improvement
in terms of clustering quality as compared to the baseline,
using feature selection methods like ridge regression and lasso
regression scales very poorly on the larger datasets, such as
the one we use in this study. Melnyk et al., in [30] perform
clustering of the entire SARS-CoV-2 genome (rather than
just the spike sequence) using CliqueSNV [31], a method
originally designed for identifying haplotypes in an intra-host
viral population. Although they obtained good overall F1-
scores, our (clustering) approach tends to obtain better overall
F1-scores. It would be interesting to know whether that is
because of our feature vector representation, or because we
leverage more (and more up-to-date) data, or both.

Farhan et al., in [32] propose an efficient approach to com-
pute a similarity matrix (kernel matrix). The computed kernel
matrix is proven to be efficient for sequence classification.
However, since their approach requires to save an entire n×n
dimensional kernel matrix (where n is the total number of
sequences), this makes their method expensive in terms of
space. Authors in [33] use the random feature method to map
the original input into low dimensional feature space so that
the inner product of the low dimensional data is approximately
equals to the inner product of original data points. Peng et
al., in [34] use the random feature attention model for text
classification. Their approach is linear in terms of runtime and
space and uses random feature methods to approximate the
softmax function.

While dealing with Big Data, it is also important to analyze
the trade-off between the prediction accuracy and the run-
time [35]. Although Ali et al., in [25] use the kernel method for

spike sequence classification, since the kernel computation is,
however, expensive in terms of time and space, their approach
is only a proof of concept, and not feasible in a real-world
scenario.

III. PROPOSED APPROACH

In this section, we give a step by step description of the
Spike2Vec approach. Given the SARS-CoV-2 spike sequences,
we first generate k-mers so that we can preserve some ordering
information of the sequences. An interesting side note is that
de novo genome assembly (when no reference is present)
involves inferring sequence order by assembling k-mers ob-
tained from short reads [36]. After the k-mers are generated, to
convert the alphabetical information of k-mers into numerical
representation (so that ML algorithms can be applied), we
generate frequency vectors, which count the number of oc-
currences of each k-mer in the spike sequence. We then map
the high dimensional frequency vectors to low dimensional
embedding using an approximate kernel approach. Each step
of Spike2Vec is explained in detail below.

A. k-mers Generation

The first step of Spike2Vec is to compute all k-mers for
the spike sequences. The main idea behind using k-mers is to
allow some order information of the sequence to be preserved.
The total number of k-mers, which we can be generated from
a spike sequence of length N is:

N − k + 1 (1)

In our data, the value for N is 1274. In Equation (1), k is a
user-defined parameter for the size of each mer. See Figure 2
for an example. In our experiments we use k = 3; this was
decided using a standard validation set approach [37].

Fig. 2: Example of 4-mers of the amino acid sequence “MD-
PEGRKMLSV”.

B. Frequency Vectors Generation

Since a k-mers is an alphabets-based representation of a
spike sequences, we need to convert the k-mers into a numer-
ical representation. Therefore, we design feature vectors that
contain the frequency/counts of each k-mer in its respective
spike sequence. Each sequence A is over an alphabet Σ.



Remark 1: Alphabets in our dataset represents amino acids
of the spike sequence.
These fixed length frequency vector have length |Σ|k, which
represents the number of possible k-mers of a spike sequence.
Since the total number of alphabets in our data are 21 (the
number of amino acids), the length of each frequency vector
becomes 213 = 9261.

C. Low dimensional Representation

In large scale machine learning (ML) tasks such as clas-
sification and regression, typical supervised/unsupervised di-
mensionality reduction methods such as principal component
analysis, ridge regression, and lasso regression, etc., are not
suitable because they take a lot more time to execute. There-
fore, in a real world scenario where we can have a huge
amount of data, the scalability of any underlying algorithm
could be one of the major issues. One option is to use kernel
based algorithms that compute a similarity matrix which can
later be used for the underlying ML tasks. To compute the
kernel matrix (gram matrix), the kernel trick is used.

Definition 3.1 (Kernel Trick): The Kernel Trick is used to
generate features for an algorithm which depends on the inner
product between only the pairs of input data points. The main
idea is to avoid the need to map the input data (explicitly) to
a high-dimensional feature space.
The Kernel Trick relies on the following observation: Any
positive definite function f(a,b), where a, b ∈ Rd, defines an
inner product and a lifting φ so that we can quickly compute
the inner product between the lifted data points [33]. More
formally:

〈φ(a), φ(b)〉 = f(a, b) (2)

The major drawback of kernel methods is that in case of
large training data, the kernel method suffers from large initial
computational and storage costs.

To overcome these computational and storage problems, we
use an approximate kernel method called Random Fourier Fea-
tures (RFF) [33], which maps the input data to a randomized
low dimensional feature space (euclidean inner product space).
More formally:

z : Rd → RD (3)

In this way, we approximate the inner product between a pair
of transformed points. More formally:

f(a, b) = 〈φ(a), φ(b)〉 ≈ z(a)′z(b) (4)

In Equation (4), z is low dimensional (unlike the lifting φ).
In this way, we can transform the original input data with z,
which acts as the approximate low dimensional embedding for
the original data. This low dimensional representation is then
used as an input for different ML tasks like classification and
regression.

IV. EXPERIMENTAL EVALUATION

We now detail the experiments we performed to evaluate
Spike2Vec in terms of both the downstream classification and
clustering results obtained.

A. Experimental Setup

All experiments are conducted using an Intel(R) Xeon(R)
CPU E7-4850 v4 @ 2.10GHz having Ubuntu 64 bit OS
(16.04.7 LTS Xenial Xerus) with 3023 GB memory. Imple-
mentation of Spike2Vec is done in Python and the code is
available online for reproducibility3. Our pre-processed data
is also available online4, which can be used after agreeing
to terms and conditions of GISAID5. For the classification
algorithms, we use 1% data for training and 99% for testing.
The purpose of using smaller training dataset is to show how
much performance gain we can achieve while using minimal
training data.

Remark 2: Our data split and pre-processing follow those
of [25].

B. Dataset Statistics

We used the (aligned) amino acid sequences corresponding
to the spike protein from the largest known database of SARS-
CoV-2 sequences, GISAID. In our dataset, we have 2,519,386
spike sequences along with the COVID-19 variant information
(in our data, we have 1327 variants in total) for each spike
sequence. The information about some of the more well-
represented variants is given in Table I. Since most of the
variants are new, we do not have all the information available
for all them. Therefore, we put “-” in the field in Table I for
which we do not have any information available online.

Figure 3 shows the total number of spike sequences for the
top 10 countries worldwide. In our GISAID dataset, a total
of 219 countries are represented. Since USA has the highest
number of spike sequences, we use it as a case study to analyze
the spread patterns of different variants in Section IV-C1.

Fig. 3: Country-wise distribution (for the top 10 countries) of
spike sequences.

C. Data Visualization

To see if there is any (hidden) clustering in the data, we
mapped the data to 2D real vectors using the t-distributed

3https://github.com/sarwanpasha/Spike2Vec
4https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?

usp=sharing
5https://www.gisaid.org/

https://github.com/sarwanpasha/Spike2Vec
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://www.gisaid.org/


Pango
Lin-
eage

Region Labels
Num. Mutations
S-gene/Genome

Num. of
sequences

B.1.1.7 UK [7] Alpha 8/17 976077
B.1.351 South Africa [7] Beta 9/21 20829
B.1.617.2 India [13] Delta 8/17 242820
P.1 Brazil [12] Gamma 10/21 56948
B.1.427 California [38] Epsilon 3/5 17799
AY.4 India [39] Delta - 156038
B.1.2 - - - 96253
B.1 78741
B.1.177 - - - 72298
B.1.1 - - 44851
B.1.429 - - - 38117
AY.12 India [39] Delta - 28845
B.1.160 - - - 25579
B.1.526 New York [40] Iota 6/16 25142
B.1.1.519 - - - 22509
B.1.1.214 - - - 17880
B.1.221 - - - 13121
B.1.258 - - - 13027
B.1.177.21 - - - 13019
D.2 - - - 12758
B.1.243 - - - 12510
R.1 - - - 10034

TABLE I: The SARS-CoV-2 variants which were represented
in more than 10,000 sequences (of the ≈ 2.5 million se-
quences). The S/Gen. column represents number of mutations
on the Spike (S) gene / entire genome. Total number of
amino acid sequences in our dataset is 2,519,386. The variants
discussed in this Table comprise 1,995,195 sequences.

stochastic neighbor embedding (t-SNE) approach [41]. Since
it was not possible to run the t-SNE algorithm on all ≈ 2.5
million spike sequences, we obtained a representative subset of
sequences containing 7000 randomly selected sequences such
that the proportion of each variant in this subset is equal to
its proportion in the original data. The t-SNE plot for Delta,
Beta, Iota, Epsilon, and Gamma variants is shown in Figure 4.

Fig. 4: t-SNE embeddings of spike sequences

1) USA Case Study: Figure 5 shows the COVID-19 spread
pattern for three variants in the USA from March 2020 to
July 2021. We can see in Figure 5 that after the coronavirus
spread hit the peak in April 2021, the number of cases of

the coronavirus started decreasing. That was the point where
a significant proportion of the population of the USA was
vaccinated (hence peak spread reduced).

Fig. 5: Spread pattern of Alpha (blue line), Delta (orange line),
and Gamma (black line) variants in USA country from March
2020 to July 2021. Y-axis shows the total number of COVID-
19 infected patients.

D. Performance Evaluation

To evaluate Spike2vec, we perform classification and clus-
tering on the low dimensional feature vectors that it produces.
For the classification task, we use Naive Bayes, Logistic
Regression, and Ridge Classifier. For the clustering analysis,
we use the K-means algorithm. To evaluate the clustering
algorithms, we report accuracy, precision, recall, weighted F1,
macro F1, ROC-AUC. We also show the runtime of different
classification algorithms. To evaluate the clustering method,
we use weighted F1 score.

E. Baseline Algorithm

For the baseline approach, we use the one-hot encoding
based approach proposed in [27] (for reference, we call this
method as One Hot Embedding “OHE” in rest of the paper).
Authors in [27] use a typical one-hot encoding approach
to convert the spike sequences into numerical representa-
tions. In spike sequences, we have 21 unique amino acids
(unique alphabets forming Σ) namely “ACDEFGHIKLMN-
PQRSTVWXY”. Also, the length of each spike sequence is
1273 plus an ending character ∗ at the 1274th location. After
getting the one-hot encoding based numerical representation
for each spike sequence, we will get a feature vector of length
26, 733 corresponding to each spike sequence (21 × 1273 =
26, 733). After getting this numerical representation, authors
in [27] use the typical principal component analysis (PCA)
approach to reduce the dimensionality of the data. In our case,
since the size of our data is too huge, simply using PCA would
take a lot of computational time. Therefore, in OHE, we use
RFF on the one-hot embeddings to get the low dimensional
feature vector representations for our baseline model.

Remark 3: If we directly apply the classification algorithms
on the one-hot embedding, the underlying classification algo-
rithms simply do not run and exceed the amount of available



Approach ML
Algo.

Acc. Prec. Recall F1 (weighted) F1 (Macro) ROC-AUC Training runtime (sec.)

OHE
NB 0.306370 0.583309 0.306370 0.383127 0.179708 0.594794 566.099
LR 0.568250 0.498771 0.568250 0.495177 0.196033 0.576567 1309.060
RC 0.563617 0.479080 0.563617 0.485127 0.174295 0.566908 110.766

Spike2Vec
NB 0.420112 0.797562 0.420112 0.521133 0.391974 0.685318 457.5417
LR 0.688674 0.689724 0.688674 0.649236 0.490654 0.694196 830.6327
RC 0.675313 0.680797 0.675313 0.629078 0.447041 0.674559 95.7315

TABLE II: Variants Classification Results (1% training set and 99% testing set) for top 22 variants (1995195 spike sequences)
discussed in Table I. Best values are shown in bold.

memory (≈3TB). This shows that scalability is the major
problem with these typical ML algorithms.

F. Machine Learning Models

For the classification task, we use Naive Bayes (NB),
Logistic Regression (LR), and Ridge Classifier (RC) [42] with
default parameters. For clustering, we use simple k-means
algorithm with default parameters.

Remark 4: For k-means, we use 22 as the number of
clusters. We selected the number of clusters using the Elbow
method [26]. To do this, we perform clustering with different
number of clusters ranging from 2 to 100 and then see the
trade-off between the sum of squared error (distortion score)
and the runtime. After analyzing the trade-off, we use “knee
point detection algorithm (KPDA)” [43] to find the optimal
value of k for the k-means algorithm.

V. RESULTS AND DISCUSSION

In this section, we first present the classification results
for Spike2Vec and show that it significantly outperforms the
baseline in terms of prediction accuracy. We then show the
results for the clustering using weighted F1. In the end,
we report the importance of each amino acid by computing
information gain.

A. Classification Results

Results for different classification algorithms are shown in
Table II. We can observe that overall Logistic regression is
almost a clear winner in case of Spike2vec. All the classifiers
in case of Spike2Vec clearly outperform the corresponding
classifiers with OHE. This performance for different evaluation
metrics shows the effectiveness of using k-mers instead of
one hot encoding for feature vector representation of the
spike sequences. Also, we can observe that although the
performance of RC in case of Spike2Vec is not better than LR,
it is significantly better than LR and NB however in terms of
training runtime. Therefore, we can conclude that overall LR
is better in terms of prediction performance with Spike2Vec
while RC is better in terms of runtime along with comparable
performance to LR.

B. Clustering Results

We also test the performance of Spike2Vec using the k-
means clustering method. Results for the clustering methods
are shown in Table III. We can observe that Spike2Vec
clearly outperforms the baseline models in case of all but

1 variant. The reason for the bad performance in case of
Beta and Epsilon variants is due to the fact that they are
in comparatively less proportion in the dataset (see Table I).
Because of the less information, Spike2Vec is not able to
design rich feature vector representation for these variants.

F1 Score (Weighted) for Different Variants
Methods Alpha Beta Delta Gamma Epsilon
OHE 0.0410 0.0479 0.5942 0.6432 0.0571
Spike2Vec 0.9997 0.0300 0.8531 0.9680 0.2246

TABLE III: F1 score by applying the k-means clustering
algorithm on all 1327 variants (2519386 spike sequences) in
the GISAID dataset. Best values are shown in bold.

The contingency table for some of the more well represented
variants computed using Spike2Vec is given in Table IV. Since
we have a total of 1327 variants, it is not possible to show the
contingency table for all of the variants. Therefore, we only
show relationship between variants and clusters for some of
the popular variants in Table IV.

C. Importance of Each Amino Acid

Authors in [25] compute Information Gain (IG) between
the variants and each amino acid (attribute) separately. The
main goal for computing IG was to see the importance of each
amino acid. Since they are using very small dataset (7000 spike
sequences), it is not clear if the information gain values they
computed will be the same for our ≈ 2.5 million sequences.
Therefore, a “proof of concept” is needed to verify their results
(on a larger dataset). The IG is defined as follows:

IG(Class, position) = H(Class)−H(Class|position)
(5)

H =
∑

i∈Class

−pi log pi (6)

where H is the entropy, and pi is the probability of the class
i. We extracted 10 sample datasets of 20000 spike sequences
each and computed IG for each of the dataset separately.
For each of the dataset, we got same amino acids with the
maximum IG values. The values for different amino acids for
one of the 10 datasets is given in Figure 6. The Centers for
Disease Control and Prevention (CDC) located in USA pointed
out mutations at a few positions that take place in different
variants [39]. We compare the mutation information from the
CDC with the (high) IG values that we got for different amino



K-means (Cluster IDs)
Variant 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Epsilon 109 0 3186 432 113 219 67 0 160 9 134 0 18 14 0 78 9 3792 113 0 48 41
Alpha 6061 1 175923 23353 5846 11754 3376 0 9466 1041 6889 0 734 1281 0 4160 329 205848 5730 0 3193 2136
Gamma 344 0 10403 1312 327 686 205 0 534 63 390 0 52 77 0 254 14 11977 324 0 182 137
Beta 144 0 3853 436 115 237 64 0 191 8 148 0 19 25 0 81 7 4435 119 0 71 44
Delta 1432 1 43691 5732 1391 2832 831 0 2342 241 1777 0 172 315 0 1016 77 51596 1400 0 836 541

TABLE IV: Contingency tables of variants vs clusters.

acids. According to the CDC, R452L is present in Epsilon and
Delta lineages and sub-lineages while K417N, E484K, and
N501Y substitutions are present in the Beta variant.

Remark 5: Note that R452L means Amino acid at position
452 was ‘R’ before and after mutation, it changed to ‘L’.
Similarly, K417T, E484K, and N501Y substitutions are present
in the Gamma variant [39]. We can see in Figure 6 that we
obtained the maximum IG values for the same amino acids
positions mentioned by CDC. We also made the IG values for
all amino acids available online6.
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Fig. 6: Information gain for each amino acid position with
respect to variants. The x-axis corresponds to amino acid
positions in the spike sequences.

VI. CONCLUSION

We propose an efficient and scalable embedding approach
in this paper that can be used to perform different machine
learning tasks on the SARS-CoV-2 spike sequences. We show
that our model can scale to several million sequences, and it
also outperforms the baseline models significantly. Since the
COVID-19 disease is relatively new, we do not have enough
information available for different coronavirus variants so far.
We will explore the new (and existing) variants in more detail
in the future. We will also use deep learning models to enhance
the prediction performance of Spike2Vec. Using adversarial
examples to test the robustness of the ML models in case of
spike sequences is another potential future extension.
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