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Abstract

The domain gap caused mainly by variable medical im-
age quality renders a major obstacle on the path between
training a segmentation model in the lab and applying the
trained model to unseen clinical data. To address this issue,
domain generalization methods have been proposed, which
however usually use static convolutions and are less flexible.
In this paper, we propose a multi-source domain generaliza-
tion model, namely domain and content adaptive convolution
(DCAC), for medical image segmentation. Specifically, we
design the domain adaptive convolution (DAC) module and
content adaptive convolution (CAC) module and incorporate
both into an encoder-decoder backbone. In the DAC module,
a dynamic convolutional head is conditioned on the predicted
domain code of the input to make our model adapt to the un-
seen target domain. In the CAC module, a dynamic convo-
lutional head is conditioned on the global image features to
make our model adapt to the test image. We evaluated the
DCAC model against the baseline and four state-of-the-art
domain generalization methods on the prostate segmentation,
COVID-19 lesion segmentation, and optic cup/optic disc seg-
mentation tasks. Our results indicate that the proposed DCAC
model outperforms all competing methods on each segmenta-
tion task, and also demonstrate the effectiveness of the DAC
and CAC modules.

Introduction
Medical image segmentation is one of the most critical yet
challenging steps in computer-aided diagnosis. Since man-
ual segmentation requires expertise and is time-consuming,
expensive, and prone to operator-related bias, automated
segmentation approaches are in extremely high demand and
have been extensively studied (Litjens et al. 2017; Xie et al.
2021).

Recent years have witnessed the success of deep learn-
ing in medical image segmentation (Falk et al. 2019; Zhou
et al. 2020; Isensee et al. 2020). As a data-driven technique,
deep learning requires a myriad amount of annotated train-
ing data to alleviate the risk of over-fitting. However, there
is usually a small dataset on medical image segmentation
tasks, and this relates to the work required in acquiring the
images and then in image annotation. Due to the small data
issue, the i.i.d. assumption, i.e., training and test data should
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be drawn from the same distribution, is less likely to be
hold. Indeed, the problem of distribution discrepancy be-
tween training and test data is particularly severe on med-
ical image segmentation tasks, since the quality of medical
images varies greatly over many factors, including differ-
ent scanners, imaging protocols, and operators (Wang et al.
2020; Liu et al. 2021a). As a result, a segmentation model
learned on a set of training images may over-fit the data, and
hence has a poor generalization ability on test images, which
are collected in another medical center and follow a differ-
ent distribution. Such undesired performance drop renders a
major obstacle on path between the design and clinical ap-
plication of medical image segmentation tools.

To address this issue, tremendous research endeavors
have recently focused on unsupervised domain adaptation
(UDA), test time adaptation (TTA), and domain generaliza-
tion (DG). UDA attempts to alleviate the decrease of gen-
eralization ability caused by the distribution shift between
the labeled source domain (training) data and unlabelled tar-
get domain (test) data in three ways. At the data level, the
image-to-image translation is performed to make the qual-
ity of source domain data matches the quality of target do-
main data, leading to reduced distribution discrepancy (Yang
and Soatto 2020). At the feature level, domain adaptation is
achieved by using adversarial training or feature normaliza-
tion to extract domain-irrelevant features (Liu et al. 2020;
Shen et al. 2020). At the decision level, various constraints
are posed to enforce the consistency between the source do-
main output and target domain output (Wang et al. 2019).
Despite their promising performance, UDA methods have a
limited clinical value due to the requirement of accessing
target domain data (Tsai et al. 2021; Roth et al. 2021).

To overcome the limitation of UDA, TTA methods have
been proposed to train the segmentation model with only
the source domain data, while fine-tuning the trained model
with the target domain data at the test time. It can be accom-
plished by adding an additional adaptor network to trans-
form (He et al. 2021) or normalize (Karani et al. 2021) the
test data and its features to minimize the domain shift at the
test time. Although TTA methods avoid accessing target do-
main data, they require an extra network to adapt the model
to the target data, which increases the spatial and computa-
tional complexity.

DG methods target at boosting the generalization abil-
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ity of DCNN models and improving their performance in
the unseen target domain. An intuitive solution is to extract
domain-invariant features via posing domain-invariant con-
straints to the model or using adversarial training (Wang
et al. 2020; Fan et al. 2021; Zhou et al. 2021b). Never-
theless, it is not easy to differentiate domain-invariant fea-
tures from domain-specific ones, especially when the tar-
get data distribution is completely unknown. To increase
the diversity of training data, multiple source domains have
been increasingly used to replace the single source domain.
Multi-source DG methods (Liu, Dou, and Heng 2020; Du
et al. 2021; Liu et al. 2021b,a) usually employ meta-learning
to minimize the generalization gap between the simulated
source domain and the target domain. However, if the sim-
ulated domain could not cover the unseen target domain,
meta-learning-based methods may not perform well. Al-
ternatively, augmentation-based DG methods (Zhang et al.
2020; Li et al. 2020) attempt to simulate the target data dis-
tribution via augmenting either the source data or the fea-
tures of source data. Despite their advantages, DG meth-
ods still suffer from limited performance, which is attributed
mainly to their static nature. Specifically, a DG model is
frozen after training, and thus it uses the same set of pa-
rameters to handle various unseen target data, which have
diverse distributions.

In this paper, we propose a multi-source domain general-
ization model, namely domain and content adaptive convo-
lution (DCAC), for medical image segmentation. We adopt
an encoder-decoder structure as the backbone and design
the domain adaptive convolution (DAC) and content adap-
tive convolution (CAC). To adapt our model to the un-
seen target domain, the DAC module provides a domain-
adaptive head, whose parameters are dynamically generated
by the domain-aware controller based on the estimated do-
main code of the input. To adapt our model to each test im-
age, the CAC module has a content-adaptive head, whose
parameters are dynamically produced by the content-aware
controller based on the global image features. We have eval-
uated the proposed DCAC model on three medical image
segmentation benchmarks, including the prostate segmenta-
tion in MRI scans from six domains, COVID-19 lung lesion
segmentation in CT scans from four domains, and optic cup
(OC)/optic disc (OD) segmentation in fundus images from
four domains.

In this work, we have made the following contributions.

• We used the domain-discriminative information embed-
ded in the encoder feature maps to generate the domain
code of each input image, which establishes the relation-
ship between multiple source domains and the unseen
target domain.

• We designed the dynamic convolution-based DAC mod-
ule and CAC module to enable our DCAC model to adapt
not only to the unseen target domain but also to each test
image.

• We presented extensive experiments, which demonstrate
the effectiveness of our DCAC model against the state-
of-the-art in three medical image segmentation bench-
marks with different imaging modalities.

Related Work
DG in Medical Image Segmentation DG methods
designed for medical image segmentation can be roughly
categorized into augmentation-based, meta-learning-
based, and domain-invariant feature learning approaches.
Augmentation-based methods, such as the deep stacked
transformation (Zhang et al. 2020), simulate the distribution
of target domain data by augmenting the source domain
data. Alternatively, the linear-dependency DG method (Li
et al. 2020) performs the augmentation in the feature space,
aiming to simulate the distribution of features instead of
the distribution of data. With the recent advance of the
episodic training strategy for domain generalization in com-
puter vision (Li et al. 2019), many meta-learning-based
methods have been developed to generalize medical image
segmentation models to unseen domains (Liu et al. 2021b;
Li et al. 2021). For example, a shape-aware meta-learning
scheme (Liu, Dou, and Heng 2020), which takes the incom-
plete shape and ambiguous boundary of prediction masks
into consideration, was proposed to improve the model
generalization for prostate MRI segmentation. In another
example, the continuous frequency space interpolation was
combined with the episodic training strategy to achieve
further performance gains in cross-domain retinal fundus
image segmentation and prostate MRI segmentation (Liu
et al. 2021a). Although these methods work well on specific
tasks using elaborately tuned parameters, their performance
degrades substantially on the target domain when there are
only few source domains. Given this, domain-invariant
feature learning methods (Onofrey et al. 2019) have been
proposed. Zhao et al. (Zhao et al. 2021) adopted domain
adversarial learning and mix-up to improve white matter
hyperintensity prediction on an unseen target domain. Wang
et al. (Wang et al. 2020) built a domain knowledge pool to
store domain-specific prior knowledge and then utilized do-
main attribute to aggregate features from different domains.
Different from these methods, the proposed DCAC model
uses dynamic convolutions whose parameters are generated
by a controller according to the features of an input image,
and thus is able to adapt to the test image from an unknown
domain.

Dynamic Convolution Dynamic convolutions, which are
more flexible than traditional ones, have been increasingly
studied in the field of deep learning (He, Deng, and Qiao
2019; Pang et al. 2020; Zhou et al. 2021a; Han et al. 2021). A
dynamic convolutional layer, in which the filters are gener-
ated conditioned on the input image, was proposed for short-
range weather prediction using radar images (Klein, Wolf,
and Afek 2015). The dynamic parameter generation condi-
tioned on each input image was integrated to the mask head
for instance segmentation, resulting in improved accuracy
and efficiency (Tian, Shen, and Chen 2020). The dynamic
filter network was also applied to partially labelled abdom-
inal CT image dataset for multi-organ segmentation (Zhang
et al. 2021). In this network, the parameters of dynamic seg-
mentation head are generated for each target organ, condi-
tioned on the input image features and task code. Due to
their adaptive nature, dynamic convolutions successfully in-



crease the flexibility and enable the network to have a bet-
ter representation capacity. The proposed DCAC model em-
ploys dynamic convolutions to resolve the domain general-
ization issue for cross-domain medical image segmentation.
In our solution, the parameters of dynamic convolutions are
generated on condition of the domain code or global features
of the input image.

Method
Problem Definition and Method Overview
Let a set of K source domains be denoted by Ds =
{(xki, yki)Nk

i=1}Kk=1, where xki is the i-th image in the k-
th source domain, and yki is the segmentation mask of xki.
Our goal is to train a segmentation model Fθ : x → y on
Ds, which can generalize well to an unseen target domain
Dt = (xi)

Nt
i=1.

The proposed DCAC model is an encoder-decoder struc-
ture (Falk et al. 2019) equipped with a domain predictor,
a domain-aware controller, a content-aware controller, and a
series of domain-adaptive heads and content-adaptive heads.
The workflow of this model consists of four steps. First, the
feature map produced by each encoder layer is aggregated
and fed to the domain predictor. Second, based on the gener-
ated domain code, the domain-aware controller predicts the
parameters of the domain-adaptive head. Third, the content-
aware controller uses the final output of the encoder as its in-
put to generate the parameters of the content-adaptive head.
Finally, according to the deep supervision strategy, the out-
put of each decoder layer is fed sequentially to a domain-
adaptive head and a content-adaptive head, which predict the
segmentation result on a pixel-by-pixel basis. The diagram
of our DCAC model is shown in Figure 1. We now delve
into its details.

Encoder-decoder Backbone
The backbone used in our DCAC model is a U-shape struc-
ture that has an encoder and a decoder, each being composed
of N = 4 ∼ 6 blocks depending on the given segmentation
task. Each encoder block contains two convolutional layers
with a kernel size of 3, and the first layer has a stride of 2
to downsample the feature map, except for the first encoder
block. Each layer is followed by instance normalization and
the LeakyReLU activation. In the encoder, the number of fil-
ters is set to 32 in the first layer, then doubled in each next
block, and finally fixed with 320 when it becomes larger than
256 (Isensee et al. 2020). The computation in each encoder
block can be formally expressed as

f iE = F iE(f
i−1
E ; θiE), i = 1, 2, · · · , N (1)

where θiE represents the parameters of the i-th encoder block
F iE , f iE is the feature map produced by F iE , and f0E = xi is
the input image.

Symmetrically, the decoder upsamples the feature map
and refines it gradually. In each decoder block, the trans-
posed convolution with a stride of 2 is used to improve the
resolution of input feature maps, and the upsampled feature
map is concatenated with the corresponding low-level fea-
ture map from the encoder before being further processed by

two convolutional layers. The computation in each decoder
block can be formally expressed as

f iD = F iD(C(f
i
E , U(f i+1

D )); θiD), i = N − 1, N − 2 · · · , 1
(2)

where U(·) represents upsampling, C(·) represents concate-
nation, θiD represents the parameters of the i-th decoder
block F iD, f iD is the feature map produced by F iD, and
fND = fNE .

With this encoder-decoder architecture, multiscale en-
coder feature maps {f iE}Ni=1 and multiscale decoder fea-
ture maps {f iD}

N−1
i=1 can be generated. It is expected that

{f iE}Ni=1 are domain-sensitive and can be utilized to cal-
culate the probabilities of belonging to source domains of
the input image. Meanwhile, {f iD}

N−1
i=1 are expected to be

rich-semantic and not subjected to a specific domain, i.e.,
containing the semantic information of domains and target
tasks.

Domain Adaptive Convolution
Due to the discrepancy between source domains and the un-
seen target domain, the encoder-decoder backbone trained
with source domain images may not be optimal for target
domain images. Therefore, we equipped the backbone with
domain-adaptive heads, in which the filters are variable and
adaptive to the domain of the input image in the inference
stage. For each test image, its probabilities of belonging to
source domains, known as a domain code, are calculated by
the domain predictor and fed to the domain-aware controller
to generate the filters used in the domain-adaptive heads (see
Figure 1).
Domain Predictor. Although the target domain is not iden-
tical to each source domain, an image in the target domain
may similar to those in one or more source domains. And
such ‘domain attribute’ of the image can be used as the clue
to guide the adaptive processing of it. Therefore, we design
the domain predictor to predict the probability of each target
domain image belonging to each source domain.

The domain predictor takes multiscale encoder feature
maps {f iE}Ni=1 as its input. Each feature map f iE is aggre-
gated with global average pooling (GAP), and the aggre-
gated features at all scales are then concatenated into a vec-
tor. To predict the domain code of the input image, the vec-
tor is fed to a classification module, which is composed of
a fully-connected layer FC(·) and a soft-max layer SM(·).
The calculation of each domain code can be formally ex-
pressed as

Dp = SM((FC(C(GAP (f1E), · · · , GAP (fNE ))); θFC)),
(3)

where θFC represents the parameters of FC(·). The do-
main code Dp is a K-dimensional vector that satisfies∑K
k=1 Dp

k = 1. During training, since each input image is
sampled from one of K source domains, the ground truth
domain code that supervises the training of domain predic-
tor is a one-hot K-dimensional vector. Note that image seg-
mentation and domain prediction are different tasks, though
using the same set of features extracted by encoder blocks.
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Figure 1: Architecture of the proposed method. The feature map in orange color represents GAP (fNE ), i.e., the output of the
N -th encoder block after global average pooling.

To avoid the interference with the image segmentation per-
formance caused by domain prediction, we adopt the gra-
dients truncation strategy to stop the gradients back propa-
gated from the fully-connected layer in the domain predic-
tor(see Figure 1).
Domain-aware Controller. We use a single convolutional
layer as the domain-aware controller φd(·), which maps the
domain code to the parameters ωd of the filters in the domain
adaptive head. Such mapping can be formally expressed as

ωd = φd(D
p; θdφ) (4)

where θdφ represents the parameters in this controller.
Domain-adaptive Head. A lightweight domain-adaptive
head is designed to enable dynamic convolutions, which are
responsive to specific domains. This head contains a tra-
ditional convolutional layer and a dynamic convolutional
layer, both using filters with a kernel size of 1. The tradi-
tional layer reduces the channels of the input feature map to
K × C, where C is the number of segmentation classes.
Since there exists a skip connection to enforce residual
learning, the output of the dynamic layer has K × C chan-
nels, too. Therefore, there are totally (K × C)2 + (K × C)
parameters in the dynamic layer, which are generated dy-
namically by the domain-aware controller φd(·) conditioned
on the domain code Dp.

To accelerate the convergence of our DCAC model, we
adopt the multi-scale supervision strategy. Given the feature
map f iD generated by the i-th decoder block, the output of
the domain-adaptive head is computed as

f iDAC = F iO(f
i
D)− F iO(f iD) ∗ ωd,

i = N − 1, N − 2 · · · , 1
(5)

where ∗ represents the convolution, and F iO(·) is the tradi-
tional convolutional layer.

Content Adaptive Convolution
The proposed DCAC model is expected to adapt not only to
the unseen test domain but also to each test image. There-
fore, we equipped our segmentation backbone with con-
tent adaptive convolutions, which are implemented using a
content-adaptive head whose parameters are generated dy-
namically by a content-aware controller.
Content-aware Controller. The content-aware controller is
a convolutional layer, denoted by φc. The input of this con-
troller is the global image representation, which is the fea-
ture map generated by the encoder (i.e., the output fNE of
the N -th encoder block) and aggregated by global average
pooling. The output is the ensemble of parameters of the
content-adaptive head, which can be formally expressed as

ωc = φc(GAP (f
N
E ); θcφ) (6)

where θcφ represents the parameters of the controller φc.
Content-adaptive Head. The content-adaptive head, which
is placed after the domain-adaptive head, contains three
stacked convolutional layers using filters with a kernel size
of 1. The first two layers have K × C channels, and the last
layer hasC channels. Thus there are totally 2×((K×C)2+
(K×C))+((K×C)×C+C) dynamic parameters in this
head. These parameters, denoted by ωc = {ωc1, ωc2, ωc3},
are generated by the controller φc according to the globally
aggregated image feature map fNE .

The content-adaptive head uses the output of domain-
adaptive head f iDAC as its input. This head acts as a pixel
classifier, performing image segmentation via predicting



class labels on a pixel-by-pixel basis. The computation of
segmentation result pi can be formally expressed as

pi = SM(((f iDAC ∗ ωc1) ∗ ωc2) ∗ ωc3),
i = N − 1, N − 2, · · · , 1

(7)

where SM(·) represents the soft-max operation.

Training and Test
Besides image segmentation, the proposed DCAC model
also performs domain classification using the domain pre-
dictor. For the classification task, the objective is the cross-
entropy loss, which can be calculated as

Lcls = −
K∑
k=1

dk log(d
p
k) (8)

where dk is the domain label, and dpk is the soft-max proba-
bility of belonging to the k-th domain.

For the segmentation task, the Dice loss and cross-entropy
loss are used jointly as the objective. The segmentation loss
at each scale can be calculated as

Liseg =1−
2
∑V
v=1 p

i
vy
i
v∑V

v=1 (p
i
v + yiv + ε)

−
V∑
v=1

(
yiv log p

i
v +

(
1− yiv

)
log
(
1− piv

)) (9)

where piv and yiv denote the prediction and ground truth of
the v-th voxel in the output of the i-th decoder block, V
represents the number of voxels, and ε is a smooth factor to
avoid dividing by 0.

Since deep supervision is used, the total loss is defined as
follows

L = Lcls +
N−1∑
i=1

ωiLiseg (10)

where ωi is a weighting vector that enables higher resolu-
tion output to contribute more to the total loss (Isensee et al.
2020).

During inference, given a test image x, the multiscale en-
coder feature maps {f iE}Ni=1 and multiscale decoder feature
maps {f iD}

N−1
i=1 can be produced by the trained encoder-

decoder backbone. Based on {f iE}Ni=1, the trained domain
predictor can generate aK-dimensional domain code. Based
on the code, the trained domain-aware controller can gen-
erate the parameters for the domain-adaptive head. Mean-
while, based on the feature map produced by the last en-
coder block (i.e., fNE ), the content-aware controller can gen-
erate the parameters for the content-adaptive head. Finally,
the feature map produced by the decoder is fed sequentially
to the domain-adaptive dynamic head and content-adaptive
head to generate the segmentation result. Note that deep su-
pervision is carried out only in the training stage and the
segmentation is not performed at course scales in the test
stage.

Experiments and Discussions
We evaluated the proposed DCAC model against the base-
line and state-of-the-art DG models on three tasks, including
the prostate segmentation using MRI, COVID-19 lesion seg-
mentation using CT, and OC/OD segmentation using fun-
dus imaging. These tasks cover different image modalities
and represent variable domain shifts in cross-domain medi-
cal image segmentation problems.

Datasets
Three datasets were used for this study. For prostate segmen-
tation, the dataset contains 116 T2-weighted MRI cases from
six domains (Liu, Dou, and Heng 2020). Following (Liu,
Dou, and Heng 2020; Liu et al. 2021a), we preprocessed
the MRI data and only preserved the slices with the prostate
region for consistent and objective segmentation evaluation.
For COVID-19 lesion segmentation, the dataset consists of
120 RT-PCR positive CT scans with pixel-level lesion an-
notations, collected from the first multi-institutional, multi-
national expert annotated COVID-19 image database (Tsai
et al. 2021). For OC/OD segmentation, the dataset contains
789 cases for training and 281 cases for test, which are col-
lected from four public fundus image datasets and have in-
consistent statistical characteristics (Wang et al. 2020). The
statistics of three datasets were summarized in Table 1.

Implementation Details
The images in each segmentation task were normalized by
subtracting the mean and dividing by the standard devia-
tion. To make a compromise between the network complex-
ity and input image size, the mini-batch size was set to 32
for 2D prostate segmentation with a patch size of 256×256,
set to 16 for 2D OC/OD segmentation with a patch size of
512× 512, and set to 2 for 3D COVID-19 lesion segmenta-
tion with a patch size of 128×196×196. To expand the train-
ing set, several data augmentation techniques were used, in-
cluding random cropping, rotation, scaling, flipping, adding
Gaussian noise, and elastic deformation. The SGD algorithm
with a momentum of 0.99 was adopted as the optimizer. The
initial learning rate lr0 was set to 0.01 and decayed accord-
ing to the polynomial rule lr = lr0 × (1− t/T )0.9, where t
is the current epoch and T is the maximum epoch. The max-
imum epoch T was set to 200 for 2D prostate segmentation,
500 for 2D OC/OD segmentation, and 1000 for 3D COVID-
19 lesion segmentation. The whole framework was imple-
mented using the PyTorch framework on NVIDIA 2080Ti.

Comparative Experiments
We compared the proposed DCAC model with the ‘Intra-
domain’ setting (i.e., training and testing on the data from
the same domain), ‘DeepAll’ baseline (i.e., training on the
data aggregated from all source domains and testing directly
on the unseen target domain), and four DG methods, includ-
ing (1) BigAug: a data-augmentation based method (Zhang
et al. 2020), (2) SAML (Liu, Dou, and Heng 2020) and
FedDG (Liu et al. 2021a): two meta-learning-based meth-
ods, and (3) DoFE: a domain-invariant feature learning ap-
proach (Wang et al. 2020). For each segmentation task,



Table 1: Statistics of three datasets used for this study.

Task Modality Number of Domains Cases in each Domain Total Cases
Prostate Segmentation MRI 6 30; 30; 19; 13; 12; 12 116
COVID-19 Segmentation CT 4 28; 19; 58; 15 120
OC/OD Segmentation Fundus Imaging 4 50/51; 99/60; 320/80; 320/80* 789/281*

* Data split (training/test cases) was provided by (Wang et al. 2020).

the leave-one-domain-out strategy was used to evaluate the
performance of each DG method, i.e., training on K − 1
source domains and evaluating on the left unseen target do-
main. Each domain is chosen as the target domain in turn.
The segmentation performance was measured by the Dice
Similarity Coefficient (DSC) and Average Surface Distance
(ASD), which characterize the accuracy of predicted masks
and boundaries, respectively.

Table 2 gives the DSC and ASD values obtained by our
DCAC model and six competing models in each target do-
main and the average performance over six domains. As ex-
pected, the performance of DeepAll seems to be worse on
average than that of Intra-domain, due to the distribution
discrepancy between the source (training) data and target
(test) data. Meanwhile, it shows that the augmentation-based
method BigAug performs worse than meta-learning-based
methods (i.e., SAML and FedDG), indicating that simply
augmenting training data is insufficient to simulate the data
distribution of the target domain. It also shows that DoFE
is superior to FedDG but slightly inferior to SAML, sug-
gesting that the domain-invariant feature learning approach
(i.e., DoFE) can disentangle domain-sensitive features, but it
can hardly adapt to different domain discrepancies automat-
ically. It is worth noting that, meta-learning-based methods
are designed to directly minimize the generalization gap be-
tween the simulated source domain and the target domain in
the training stage, which can be effective when the source
training domains are adequate to simulate various general-
ization gaps (see the performance of SAML and FedDG in
Domain 5 and 6 in Table 2). More important, it reveals that
the proposed DCAC mode not only beats Intra-domain and
DeepAll but also outperforms four state-of-the-art DG meth-
ods. We believe the superior performance can be attributed
to the fact that, with dynamic convolution, our model is ca-
pable of adapting to both the predicted domain code and ex-
tracted global features of the input image.

The average segmentation performance of our DCAC
model and five competing models on the COVID-19 lesion
segmentation task and OC/OD segmentation task was given
in Table 3 and Table 4, respectively. In both experiments, the
average performance of Intra-domain is surprisingly worse
than that of DeepAll. A possible reason is that the amount of
training data in a single domain (see Table 1) is far from suf-
ficient for training a DCNN model, leading to serious over-
fitting of the small training dataset. By contrast, aggregat-
ing the data in multiple domains can benefit model train-
ing and thus results in improved performance. Meanwhile,
it seems that the domain-invariant feature learning method
is relatively better than meta-learning methods, indicating

0.0
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Figure 2: Confusion matrix of the approaches, which use
(left) single-scale global features or (right) multiscale global
features for domain classification.

the sensitivity of meta-learning-based methods to the num-
ber of source domains. When there are less source domains,
the diversity of the generalization gap simulated by meta-
learning is highly restricted. Comparing to these methods,
our model is less susceptible to the number of source do-
mains and achieves stable performance gain on both seg-
mentation tasks. This observation is consistent with what we
observed in Table 2.

Ablation Analysis
The prostate segmentation task was chosen as a case study,
and ablation studies were conducted on this task to inves-
tigate the domain-discriminatory ability of extracted fea-
tures and the effectiveness of newly designed DAC and CAC
modules.
Domain-discriminatory power of extracted features was
assessed using the domain classification accuracy. In our
DCAC model, we aggregated the feature map produced by
each encoder block using GAP and concatenated the mul-
tiscale global features to form the input for domain classi-
fication. For comparison, we also attempted to apply GAP
to only the feature map produced by the last encoder block
and use the single-scale global features for domain classifi-
cation. The confusion matrices of these two approaches were
visualized in Figure 2. It shows that the domain attributions
can be largely discriminated even using only the deepest se-
mantic enriched global image features. However, using mul-
tiscale global features can substantially improve the accu-
racy of domain classification (see the right part of Figure 2).
It suggests that the multiscale feature maps produced by
encoder blocks contain domain-specific information, which
can be used for reliable domain prediction (i.e., generating
the domain code) and should be somehow depressed for do-
main generalization -based medical image segmentation.



Table 2: Performance (DSC↑/ASD↓) of our DCAC model and six segmentation models in prostate segmentation.

Models Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Average
Intra-domain 89.27/1.41 88.17/1.35 88.29/1.56 83.23/3.21 83.67/2.93 85.43/1.91 86.34/2.06
DeepAll (baseline) 89.27/1.37 87.34/1.20 73.74/2.42 89.19/1.06 83.81/2.40 89.41/0.87 85.46/1.55
BigAug (Zhang et al. 2020) 88.62/1.70 86.22/1.56 83.76/2.72 87.35/1.98 85.53/1.90 85.83/1.75 86.21/1.93
SAML (Liu, Dou, and Heng 2020) 89.66/1.38 87.53/1.46 84.43/2.07 88.67/1.56 87.37/1.77 88.34/1.22 87.67/1.58
FedDG (Liu et al. 2021a) 90.19/- 87.17/- 85.26/- 88.23/- 83.02/- 90.47/- 87.39/-*

DoFE (Wang et al. 2020) 89.79/1.33 87.42/1.57 84.90/2.13 88.56/1.52 86.47/1.93 87.72/1.33 87.48/1.64
D-CAC 91.24/1.37 89.94/0.92 86.72/1.67 89.23/1.34 79.51/3.54 89.90/0.96 87.74/1.70
Ours w/o DAC 91.13/1.12 89.62/1.01 84.75/2.17 89.31/1.48 80.79/2.11 89.93/0.93 87.59/1.47
Ours w/o CAC 91.69/1.01 89.96/0.97 85.27/1.89 89.19/1.33 78.44/2.35 90.65/0.90 87.53/1.41
Ours (DCAC) 91.76/0.98 90.51/0.89 86.30/1.77 89.13/1.53 83.39/2.46 90.56/0.85 88.61/1.41

* ASD was not reported in (Liu et al. 2021a).

Table 3: Average performance (over four domains) of our
DCAC model and six models in COVID-19 lesion segmen-
tation.

Model Average DSC↑/ASD↓
Intra-domain 61.58/14.07
DeepAll (baseline) 63.91/10.39
BigAug (Zhang et al. 2020) 64.08/13.33
SAML (Liu, Dou, and Heng 2020) 64.41/13.57
FedDG (Liu et al. 2021a) 63.65/15.36
DoFE (Wang et al. 2020) 64.45/13.45
Ours (DCAC) 65.10/12.76

Table 4: Average performance (over four domains) of our
DCAC model and six models in OC/OD segmentation.

Model Average DSC↑/ASD↓
Intra-domain 86.91/13.11
DeepAll (baseline) 87.14/12.89
BigAug (Zhang et al. 2020) 88.19/11.56
SAML (Liu, Dou, and Heng 2020) 87.85/12.31
FedDG (Liu et al. 2021a) 87.03/-*

DoFE (Wang et al. 2020) 88.44/11.33
Ours (DCAC) 88.47/11.32

* ASD was not reported in (Liu et al. 2021a).

Ground Truth DeepAll D-CAC Ours w/o DAC Ours w/o CAC Ours

Figure 3: Visualization of the results obtained by applying
DeepAll, our DCAC, and three variants of DCAC to three
prostate MRI slices, together with the ground truth.

Contributions of DAC and CAC. In this work, we designed
the DAC module and CAC module to make our model ca-
pable of adapting to the unseen test domain and test im-
age, respectively. To evaluate the contributions of these two
modules, we compared our model with its variant that uses
only one module. We also compared to a variant, denoted
by D-CAC, that uses the concatenation of domain code and
global image features to generate one and only one unified
dynamic head. The performance of our DCAC model and
its three variants was given in Table 2. It reveals that our
DCAC model outperforms not only D-CAC but also the vari-
ant without either DAC or CAC. The results confirm that ei-
ther DAC or CAC contributes to the final results and the two-
dynamic-head strategy is superior to the unified dynamic
head.

We visualized the segmentation results of DCAC and
three variants in Figure 3. We also display the results of
DeepAll and ground truth for reference. It shows that our
DCAC model can produce more accurate segmentation re-
sults of unseen test images, particularly in the boundary re-
gion.

Conclusion
This paper proposes a multi-source domain generalization
model called DCAC, which uses two dynamic convolutional
heads. One dynamic head is conditioned on the predicted
domain code of the input to make the DCAC model adapt
to the target domain, while the other dynamic head is con-
ditioned on global image features to make the model adapt
to the input image. Our results on the prostate segmenta-
tion, COVID-19 lesion segmentation, and OC/OD segmen-
tation tasks suggest that, after training on the data from mul-
tiple source domains, the proposed DCAC model can gen-
eralize well on an unseen target domain, achieving substan-
tially improved average performance over the baseline and
four state-of-the-art domain generalization methods. In our
future work, we will extend the proposed DCAC model to
multi-source, multi-modality, and multi-task scenarios, aim-
ing to provide large-scale pre-trained segmentation model
for various downstream medical image segmentation appli-
cations.
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