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Abstract 

The problem of skewness is common among clinical trials and survival data which has being the 

research focus derivation and proposition of different flexible distributions. Thus, a new 

distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax 

distribution to capture the excessiveness of some survival data. We derive the new distribution by 

using beta logit function proposed by Jones (2004). Some statistical properties of the distribution 

such as probability density function, cumulative density function, reliability rate, hazard rate, 

reverse hazard rate, moment generating functions, likelihood functions, skewness, kurtosis and 

coefficient of variation are obtained.We also performed the expected estimation of model 

parameters by maximum likelihood; goodness of fit and model selection criteria including 

Anderson Darling (AD), CramerVon Misses (CVM), Kolmogorov Smirnov (KS), Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC) and Consistent Akaike 

Information Criterion (CAIC) are employed to select the better distribution from those models 

considered in the work. The results from the statistics criteria show that the proposed distribution 

performs better with better representation of the States in Nigeria COVID-19 death cases data than 

other competing models. 

Keywords: Anderson Darling, CramerVon Mises, COVID-19, Kolmogorov Smirnov, Link 

Function, Survival Analysis  

 

1. Introduction 

In survival analysis, problems are encountered in the analysis of clinical data because distributions 

proposed are not flexible enough to follow the movement of the data to give accurate results. In 

the light of this, there is need to develop a more flexible parametric model using COVID-19 data 

for example. In recent times, there was outbreak of the third wave of COVID-19 pandemic called 

Delta Variant after the second wave generating a global outcry. Many researches/ works have been 

done by several researchers since the breakup of the pandemic in December 2019 from various 

fields such as: Medicine, Statistics, Economics etc., with different ideas, models, methods and 

approaches in their respective works. These include: Badmus et al. 2020, Dey et al. 2020, WHO, 

2020, Yoo, 2020 amongst others. Most clinical data are always skewed, thus a new distribution is 

constructed and generated from a parent distribution called Rayleigh Lomax (RL) distribution by 

Kawsar et al. (2018) is generated using beta link function introduced by Jones (2004). This is 
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expected to have different shapes for the survival and hazard rate functions. More parameters are 

added to the parent distribution, the flexibility and the ability of the distribution to model real life 

data are established 

2. Material and Methods 

There are several methods in literature which have been used by many researchers. In this study, 

we consider beta logit function introduced by Jones (2004), which can jointly convolute two or 

more distributions.  

2.1 Properties of Extended Rayleigh Lomax (ERL) Distribution 

2.1 Probability Density Function 

The probability density function of the above distribution is obtained using the beta link function 

given as: 

𝑔 (𝑥, 𝑎, 𝑏) =
(𝑘(𝑥)[𝐾(𝑥)](𝑎−1][1−𝐾(𝑥) ](𝑏−1)

𝐵(𝑎,𝑏)
                         (1) 

  𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽 ≃ 𝐸𝑅𝐿(𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽 > 0) 

𝐾(𝑥) = 1 − 𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

and 𝑘(𝑥) =
𝛽𝜆

𝜃
(

𝜃

𝜃+𝑥
)

−2𝜆+1

𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

𝑥 ≥ −𝜃𝑎𝑛𝑑 𝜃, 𝜆, 𝛽 > 0 

where 𝐾(𝑥) and 𝑘(𝑥) are the cdf and pdf of the parent distribution respectively, 𝑎 and 𝑏 are 

additional shape parameters to the parent distribution. 

𝑔(𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽) =
1

𝐵(𝑎,𝑏)
[𝐾(𝑥)]𝑎−1(1 − 𝐾(𝑥))

𝑏−1
𝑘(𝑥) < 𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽 > 0                  (2) 

where θ, λ and β are scale and shape parameters while a and b are the new shape parameters 

introduced to the distribution. Then (2) becomes extended Rayleigh Lomax (ERL) Distribution 
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Figure 1 depicts: (i) the pdf ,(ii) the cdf , (iii) the survival and (iv) hazard function in plots of the 

ERL distribution. 

Some new distributions from the extended Rayleigh Lomax distribution are mentioned below: 

(a) When 𝑎 =  1 in (2), we have the Lehmann Type II Rayleigh Lomax Distribution. 

(b)  If 𝑏 = 1 in (2), we get the pdf  of exponentiated Rayleigh Lomax distribution 

(c)  When β=1 in (2), this consists of beta Lomax distribution  

(d)  When 
𝛽

𝜃
= 𝛽, 𝜆 = 1 𝑎𝑛𝑑 

𝜃+𝑥

𝜃
= 2𝑥 in (2), it then becomes beta Rayleigh distribution  

(e)  If 𝑎 = 𝑏 = 1 in (2), it yields Rayleigh Lomax distribution which is the parent distribution. (see 

Kawsar et al. (2018)). 

(f)  When 𝑏 = 𝛽 = 1 in (2), this consists exponential Lomax distribution by El-Bassiouny et al. 

(2015) 

(g)  If 𝑎 = 𝑏 = 𝜆 = 𝜃 = 1 in (2), it yields Rayleigh Lomax distribution which is the parent 

distribution. (see Siddiqui, 1962). 

2.2 The Cumulative Distribution (CDF) of BRL Distribution 
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The associative cumulative distribution function cdf in (2) is given as  

𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑘)𝑑𝑘 = 𝐺(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽)

𝑥

0

 

= ∫
1

𝐵(𝑎,𝑏)
[𝐾(𝑥)]𝑎−1(1 − 𝐾(𝑥))

𝑏−1
𝑘(𝑥)𝑑𝑘

𝑥

0
                       (3) 

We set  

𝑘(𝑥) = 1 − 𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

                                                               (4) 

𝑑𝑘 

𝑑𝑥
=

𝛽𝜆

𝜃
(

𝜃

𝜃 + 𝑥
)

−2𝜆+1

𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

[1 − 𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

] 

𝑑𝑘 

𝑑𝑥
=

𝛽𝜆

𝜃
(

𝜃

𝜃 + 𝑥
)

−2𝜆+1

𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

− [𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

]

2

 

Also 

,𝑑𝑥 =
𝑑𝑘

𝛽𝜆
𝜃

(
𝜃

𝜃+𝑥
)

−2𝜆+1
𝑒

−
𝛽
2

(
𝜃

𝜃+𝑥
)
−2𝜆

[1−𝑒
−

𝛽
2

(
𝜃

𝜃+𝑥
)
−2𝜆

]

 

Putting dx in equation (2), we realize: 

𝑔(𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽) = 1

𝐵(𝑎,𝑏)
∫ [1 − 𝑒−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

]

𝑎−1

[𝑒−
𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

]

𝑏−1

𝑑𝑘
∞

0                                    (5) 

And k in equation (4) becomes 

𝑘(𝑥) =
𝑑𝑘(𝑥)

𝑑𝑥
=

𝛽𝜆

𝜃
(

𝜃

𝜃 + 𝑥
)

−2𝜆+1

𝑒
−

𝛽

2
(

𝜃

𝜃+𝑥
)

−2𝜆

 

Equation (5) can be expressed as 

𝑔(𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽) = 1

𝐵(𝑎,𝑏)
𝐾𝑎−1(1 − 𝐾)

𝑏−1 𝑑𝑘

𝑑𝑥
                                                  (6) 

Now, putting (2) in (6), we get 

  𝐺(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) = 𝑃(𝑋 ≤ 𝑥) = ∫
1

𝐵(𝑎,𝑏)
𝐾𝑎−1(1 − 𝐾)𝑏−1 𝑑𝑘

𝑑𝑥

𝑥

0
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= ∫
1

𝐵(𝑎, 𝑏)
𝐾𝑎−1(1 − 𝐾)𝑏−1

𝑑𝑘

𝑑𝑥

𝑥

0

 

Where 𝐵(𝑥, 𝑎, 𝑏) = ∫ 𝐾𝑎−1(1 − 𝐾)𝑏−1𝑑𝑘
𝑥

0
 and it is called the incomplete beta function. 

𝐺(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) = ∫
𝐾𝑎−1(1−𝐾)𝑏−1𝑑𝑘

𝐵(𝑎,𝑏)

𝑥

0
=

𝐵(𝑘,𝑎,𝑏)

𝐵(𝑎,𝑏)
                                 (7) 

Expression (7) becomes the cumulative distribution function of ERL distribution. 

2.3 The Survival Rate/Reliability Function 

The reliability function of BRL distribution is given by 

𝑆𝑢𝑟(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) = 1 − 𝐺(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) = 1 − ∫ 𝑓(𝑘)𝑑𝑘

𝑥

0

 

1 − ∫
𝐾𝑎−1(1 − 𝐾)𝑏−1𝑑𝑘

𝐵(𝑎, 𝑏)

𝑥

0

= 1 −
𝐵(𝑘, 𝑎, 𝑏)

𝐵(𝑎, 𝑏)
 

𝑆𝑢𝑟(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) =
𝐵(𝑎,𝑏)−𝐵(𝑥,𝑎,𝑏)

𝐵(𝑎,𝑏)
                        (8) 

2.4 The Hazard Rate Function 

ℎ𝑒𝑧(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) =
𝑔(𝑥, 𝛼, 𝑏, 𝜃, 𝜆, 𝛽)

1 − 𝐺(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽)
=

𝐾𝑎−1(1−𝐾)𝑏−1𝑘

𝐵(𝑎,𝑏)

𝐵(𝑎,𝑏)−𝐵(𝑥,𝑎,𝑏)

𝐵(𝑎,𝑏)

 

=
𝐾𝑎−1(1−𝐾)𝑏−1𝑘

𝐵(𝑎,𝑏)−𝐵(𝑥,𝑎,𝑏)
                                                        (9) 

 

2.5 The Reversed Hazard Rate Function 

𝑅ℎ𝑎𝑧(𝑥, 𝑎, 𝑏, 𝜃, 𝜆, 𝛽) =
𝑔(𝑥,𝛼,𝑏,𝜃,𝜆,𝛽)

𝐺(𝑥,𝑎,𝑏,𝜃,𝜆,𝛽)
=

𝐾𝑎−1(1−𝐾)𝑏−1𝑘

𝐵(𝑘,𝑎,𝑏)

𝐵(𝑎,𝑏)
. 

=
𝐵(𝑎,𝑏)𝐾𝑎−1(1−𝐾)𝑏−1𝑘

𝐵(𝑘,𝑎,𝑏)
                                               (10) 

2.6 Testing the Trueness of the PDF of ERL Distribution 

The ERL distribution is a probability density function with the use of: 
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∫ 𝑔𝐸𝑅𝐿
∞

0
(𝑦)𝑑𝑦 = 1                                                            (11) 

Jones (2004) in his generalized beta distribution of first kind is given by: 

𝑔𝑥(𝑥, 𝑎, 𝑏, 𝑢) = [𝐵(𝑎, 𝑏)]−𝑢[𝐾(𝑦)]𝑎𝑢−1[1 − 𝐾(𝑦)𝑢]𝑠−1𝐾(𝑦)      0 < 𝑦 < 1 

where 𝑎, 𝑏 and  𝑢 >  0,  therefore differentiating (𝑎) above, we obtain 

𝑔𝐸𝑅𝐿𝐷(𝑦) = [𝐵(𝑎, 𝑏)]−𝑢𝐺𝑎𝑢−1(1 − 𝐺𝑢)𝑏−1
𝑑𝐺

𝑑𝑦
 

∫ 𝑔𝐸𝑅𝐿𝐷(𝑦) =
∞

−∞

∫
𝑢

𝐵(𝑎, 𝑏)
𝐺𝑎𝑢−1(1 − 𝐺𝑢)𝑏−1𝑑𝐺

∞

−∞

 

Putting      𝑀 = 𝐺𝑢, then differentiating M with respect to G 

𝑑𝑀

𝑑𝐺
= 𝑈𝐺𝑢−1 

𝑑𝐺 =  
𝑑𝑀

𝑈𝐺𝑢−1
 

𝐺 =  𝑀
1

𝑢 

∫ 𝑔𝐸𝑅𝐿𝐷(𝑦)𝑑𝑦 =
∞

−∞

∫
𝑢

𝐵(𝑎, 𝑏)
(𝑀

1

𝑢)
𝑎𝑢−1

(1 − 𝑀)𝑏−1
𝑑𝑀

𝑈𝐺𝑢−1

1

0

 

= [𝐵(𝑎, 𝑏)]−1 ∫
𝑀𝑎−

1

𝑢(1 − 𝑀)𝑏−1

𝑀1−
1

𝑢

𝑑𝑀
1

0

 

= [𝐵(𝑎, 𝑏)]−1 ∫ 𝑀𝑎−1(1 − 𝑀)𝑏−1𝑑𝑀
1

0

 

∫ 𝑀𝑎−1(1 − 𝑀)𝑏−1𝑑𝑀
1

0

= 𝐵(𝑎, 𝑏) 

Therefore,      𝑔𝐸𝑅𝐿𝐷(𝑦) =
𝐵(𝑎,𝑏)

𝐵(𝑎,𝑏)
 = 1 

Hence, the 𝑔𝐸𝑅𝐿distribution has a true continuous probability density function. 
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3. Moments and Generating Function 

In this section, we derive and obtain the moment generating function (mgf) of the distribution 

𝑚(𝑡) = 𝐸(𝑒𝑡𝑦)and the general 𝑟𝑡ℎ moment of a beta generated distribution defined by 

Hosking (1990) 

𝜇𝑟
1 = 𝐵(𝑎, 𝑏)−1 ∫ [𝐹−1(𝑦)]𝑟1

0
𝑦𝑎−1[1 − 𝑦]𝑏−1𝑑𝑦                                    (12) 

Cordeiro et al. (2011) also discussed another mgf for generated beta distribution. 

𝑚(𝑡) = 𝐵(𝑎, 𝑏)−1 ∑ (−1)𝑗(
𝑏 − 1

𝑗
∞
𝑗=0 ) 𝑒(𝑞, 𝑟; 𝑎𝑗 − 1)                                      (13) 

where, 

𝑒(𝑞, 𝑟) = ∫ 𝑒𝑡𝑦[𝐹(𝑦)]𝑚
∞

−∞

𝑓(𝑦)𝑑𝑦 

then, 

𝑀𝑦(𝑡) = 𝐵(𝑎, 𝑏)−1 ∑ (−1)𝑗 (
𝑏 − 1

𝑗
)∞

𝑗=0 ∫ 𝑒𝑡𝑦[𝐹(𝑦)]𝑎(𝑗+1)−1∞

−∞
𝑓(𝑦)𝑑𝑦          (14) 

Putting the pdf and cdf of the Extended Rayleigh Lomax distribution into equation (14), we get 

𝑀𝐸𝑅𝐿𝐷(𝑦)(𝑡) = 𝐵(𝑎, 𝑏)−1 ∑ (−1)𝑗(
𝑏 − 1

𝑗
𝑛
𝑗=0 ) ∫ 𝑒𝑡𝑦[𝐹(𝑦)]𝑎(𝑗+1)−1∞

−∞
𝑓(𝑦)                     (15) 

If 𝑎 = 𝑏 = 1 in equation (14) that becomes the moment generating function of the baseline 

distribution. 

Hence, the 𝑟𝑡ℎ moment of the ERL distribution is obtained, since the moment generating function 

of the parent distribution is given by 

𝑀𝑦(𝑡) = ∑
𝑡𝑗

𝑗!

∞
𝑗=0 ∫ 𝑦𝑗𝑓(𝑦, 𝛽, 𝜆, 𝜃)𝑑𝑦

∞

0
∑

𝑡𝑐

𝑐!
∞
𝑐=0 ∑ (𝑏𝐶𝑗)𝜃𝑗 (

2

𝛽
)

1

2𝜆∞
𝑗=0 (−𝜃)𝑏−𝑗𝑟 (

𝑗

2𝜆
+ 1)           (16) 

Equation (16) can be re written as  

𝑀𝐸𝑅𝐿𝐷(𝑦)(𝑡) = 𝐵(𝑎, 𝑏)−1 ∑(−1)𝑗(
𝑏 − 1

𝑗

𝑛

𝑗=0

) ∫ 𝑒𝑡𝑦[𝐹(𝑦)]𝑎(𝑗+1)−1 ∑
𝑡𝑖

𝑖!

∞

𝑖=0

∑(𝑖𝐶ℎ)𝜃ℎ (
2

𝛽
)

ℎ

2𝜆
∞

ℎ=0

(−𝜃)𝑖−ℎ𝑟 (
ℎ

2𝜆
+ 1)

∞

−∞

 

= 𝐵(𝑎, 𝑏)−1 ∑ ∑ ∑ (−1)𝑗 (
𝑏 − 1

𝑖
)∞

ℎ=0
∞
𝑗=0

∞
𝑖=0

𝑡𝑖

𝑖!
(𝑖𝐶ℎ)𝜃ℎ (

2

𝛽
)

ℎ

2𝜆 (−𝜃)𝑖−ℎ𝑟 (
ℎ

2𝜆
+ 1) . [𝐹(𝑦)]𝑎(𝑗+1)−1 (17) 

and the 𝑟𝑡ℎ moment of ERL distribution is obtained from equation (17) 



8 
 

µ𝐸𝑅𝐿𝐷(𝑟)
𝑖 = 𝐸(𝑦𝑟) = 𝐵(𝑎, 𝑏)−1 ∑ ∑ (−1)𝑗 (

𝑏 − 1
𝑖

) . [𝐹(𝑦)]𝑎(𝑗+1)−1∞
ℎ=0

∞
𝑗=0

𝑡𝑖

𝑟!
(

𝑟
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

2𝜆 (−𝜃)𝑟−ℎ𝑟 (
ℎ

2𝜆
+ 1)(18) 

Letting 𝑎 = 𝑏 = 1 in (18) gives the rth moment of the baseline distribution by Kawsar et al. (2018) 

µ𝑟
𝑖 = 𝐸(𝑦𝑟) = ∑ (

𝑟

ℎ
)

∞

ℎ=0

𝜃ℎ (
2

𝛽
)

ℎ

2𝜆

(−𝜃)𝑟−ℎ𝑟 (
ℎ

2𝜆
+ 1) 

Other measures such as the Skewness (SKERLD)(𝑎, 𝑏, 𝛽, 𝜆, 𝜃) and Kurtosis (KTERLD) (𝑎, 𝑏, 𝛽, 𝜆, 𝜃) 

are also obtained below: 

The 𝑟𝑡ℎ moment of the ERL distribution is written as: 

µ𝐸𝑅𝐿𝐷(𝑟)
𝑖 = ∫ 𝑦𝑟

∞

0

𝐹𝐸𝑅𝐿𝐷(𝑦)𝑑𝑦 

That is, 

µ𝐸𝑅𝐿𝐷(𝑟)
𝑖 = ∫ 𝑦𝑟

∞

0

([𝐵(𝑎, 𝑏)]−1(𝐾(𝑌))
𝑎−1

(1 − 𝐾(𝑦))
𝑏−1

𝑑𝑘(𝑦)) 

where,   𝐾(𝑦) = (1 − 𝑤(𝑦))−𝑢 

i.e   𝑊(𝑦) = 𝑒
−

𝛽

2
(

𝜃

𝜃+𝑦
)
  𝑎𝑛𝑑 𝑢 = 2𝜆 

therefore, 

µ𝐸𝑅𝐿𝐷(𝑟)
𝑖 =

(𝑟𝐶ℎ)𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)𝑟−ℎ𝑟(
ℎ

𝑢
+ 1)

𝐵(𝑎, 𝑏)
∑ ∑(−1)𝑗 (

𝑏 − 1
𝑖

) ([(1 − 𝑤(𝑦))−𝑢]𝑎(𝑗+1)−1)

∞

ℎ=0

∞

𝑗=0

 

= 𝑍 ((
𝑟
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)𝑟−ℎ𝑟(
ℎ

𝑢
+ 1))    (19) 

Where, 

𝑍 =
∑ ∑ (−1)𝑗 (

𝑏 − 1
𝑖

) ([(1 − 𝑤(𝑦))−𝑢]𝑎(𝑗+1)−1)∞
ℎ=0

∞
𝑗=0

𝐵(𝑎, 𝑏)
 

At the same time, the first   four  central moments µ𝑟
𝑖 = 1, 2, 3, 4 are obtained through (17) as: 

Furthermore, the mean and second to fourth moments of the ERL distribution are given as follows: 
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µ = µ1
⃓, µ2 = µ2

⃓ − µ2, µ3 = µ3
⃓ − 3µµ2

⃓ + 2µ3, and µ4 = µ4
⃓ − 4µµ3

⃓ + 6µ2µ2
⃓ − 3µ4 

µ1
⃓ = 𝑍 ((

1
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)1−ℎ𝑟(
ℎ

𝑢
+ 1))                                   (20) 

µ2
⃓ = 𝑍 ((

2
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)2−ℎ𝑟(
ℎ

𝑢
+ 1))                                    (21) 

µ3
⃓ = 𝑍 ((

3
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)3−ℎ𝑟 (
ℎ

𝑢
+ 1))                                  (22) 

µ4
⃓ = 𝑍 ((

4
ℎ

) 𝜃ℎ (
2

𝛽
)

ℎ

𝑢 (−𝜃)4−ℎ𝑟(
ℎ

𝑢
+ 1))                                   (23) 

Other measures such as skewness, kurtosis and coefficient of variation of the ERL distribution are 

given below: 

 

3.8 Skewness of the ERL Distribution 

The skewness is a means of measuring non symmetry of the distribution. The skewness is given 

by: 

𝑆𝐾𝐸𝑅𝐿𝐷 =
µ3

µ2
1.5                                                                  (24) 

3.9 Kurtosis of the ERL Distribution 

The kurtosis is another measure that measures the peak of the distribution. The kurtosis of the BRL 

distribution is given as: 

𝐾𝑇𝐸𝑅𝐿𝐷 =
µ4

µ2
2 − 3                                                                            (25) 

3.10 Coefficient of Variation of the ERL Distribution 

This is also a measure of variability of a probability distribution. The CV of the ERL distribution 

is given as: 

𝐶𝑉𝐸𝑅𝐿𝐷 = √µ2

µ
                                                                              (26) 
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4. Estimation of Parameter 

We made  attempt to derive the maximum likelihood estimates (MLEs) of the ERL distribution 

parameters including: θ, λ, β, 𝑎 and 𝑏 which are scale and shape parameters. According to Cordeiro 

et al. (2011), the log likelihood function is given as: 

𝐿(𝜑) = 𝑛 log[𝐵(𝑎, 𝑏)] + ∑ log[𝐾(𝑦,𝑛
𝑖=1 𝛿)] + (𝑎 − 1) ∑ log[1 + 𝐾(𝑦, 𝛿)] + (𝑏 − 1)[𝐾(𝑦, 𝛿)]𝑛

𝑖=1      (27) 

𝜑 = (𝑎, 𝑏, 𝑐, 𝛿) 𝑎𝑛𝑑 𝛿 = (𝜃, 𝜆, 𝛽)   are vectors 

If c = 1, it becomes equation (27) which leads to 

𝐿(𝜑) = 𝑐𝑜𝑛𝑠𝑡 − 𝑛 log[𝐵(𝑎, 𝑏)] + ∑ log[𝐾(𝑦,𝑛
𝑖=1 𝛿)] + (𝑎 − 1) ∑ log[1 + 𝐾(𝑦, 𝛿)] + (𝑏 − 1)[𝐾(𝑦, 𝛿)]𝑛

𝑖=1       (28) 

𝑘(𝑦, 𝛿) 𝑎𝑛𝑑 𝐾(𝑦, 𝛿) have been stated at the beginning. 

The log likelihood function of ERL distribution is given as: 

𝐿𝐵𝑅𝐿𝐷(𝜑) = −𝑛 log[𝐵(𝑎, 𝑏)] + ∑ [𝑘(𝑥)]𝑛
𝑖=1 + (𝑎 − 1) ∑ log[𝐾(𝑥)] + (𝑏 − 1)𝑛

𝑗=1 ∑ log[1 − 𝐾(𝑥)]𝑛
𝑖=1              (29) 

Taking the differentiation in respect to a, b, θ, λ and β give the following: 

𝜕𝐿(𝜑)

𝜕𝑎
= −𝑛

𝑟⃓(𝑎)

𝑟(𝑎)
+ 𝑛

𝑟⃓(𝑎+𝑏)

𝑟(𝑎+𝑏)
+ ∑ log(1 − 𝐾(𝑌, 𝛿))𝑛

𝑦=1                                                       (30) 

𝜕𝐿(𝜑)

𝜕𝑏
= −𝑛

𝑟⃓(𝑏)

𝑟(𝑏)
+ 𝑛

𝑟⃓(𝑎+𝑏)

𝑟(𝑎+𝑏)
+ ∑ log(𝐾(𝑌, 𝛿))𝑛

𝑦=1                                                                     (31) 

𝜕𝐿(𝜑)

𝜕𝜃
= ∑ [

𝜕[𝐾(𝑌,𝛿)]

𝜕𝜃

𝐾(𝑌,𝛿)
]𝑛

𝑗=1 + (𝑎 − 1) ∑ [
𝜕[1−𝐾(𝑌,𝛿)]

𝜕𝜃

1−𝐾(𝑌,𝛿)
]𝑛

𝑦=1 + (𝑏 − 1) ∑ [
𝜕[𝐾(𝑌,𝛿)]

𝜕𝜃

(𝑌,𝛿)
]𝑛

𝑦=1                           (32) 

𝜕𝐿(𝜑)

𝜕𝜆
= ∑ [

𝜕[𝐾(𝑌,𝛿)]

𝜕𝜆

𝐾(𝑌,𝛿)
]𝑛

𝑗=1 + (𝑎 − 1) ∑ [
𝜕[1−𝐾(𝑌,𝛿)]

𝜕𝜆

1−𝐾(𝑌,𝛿)
]𝑛

𝑦=1 + (𝑏 − 1) ∑ [
𝜕[𝐾(𝑌,𝛿)]

𝜕𝜆

(𝑌,𝛿)
]𝑛

𝑦=1                           (33) 

𝜕𝐿(𝜑)

𝜕𝛽
= ∑ [

𝜕[𝐾(𝑌,𝛿)]

𝜕𝛽

𝐾(𝑌,𝛿)
]𝑛

𝑗=1 + (𝑎 − 1) ∑ [

𝜕[1−𝐾(𝑌,𝛿)]

𝜕𝛽

1−𝐾(𝑌,𝛿)
]𝑛

𝑦=1 + (𝑏 − 1) ∑ [

𝜕[𝐾(𝑌,𝛿)]

𝜕𝛽

(𝑌,𝛿)
]𝑛

𝑦=1      (34) 

4.1 Analysis of Data 

The data used for the analysis is a secondary data obtained from COVID-19 situation weekly 

epidemiological report 39; 5th – 11th July, 2021 (NCDC website state the website): Thirty-six (36) 

States including federal capital territory (FCT) with reported laboratory-confirmed COVID-19 

cases, recoveries, deaths, samples tested and active cases (37 data points); and was accessed on 

Thursday 22nd July, 2021 put date accesses at reference not here. Only the death cases from all 

states of the federation are used for the analysis.  
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Table 1. Summary of Goodness of fit Statistics of Death Cases Data 

Minimum Maximum Skewness Kurtosis AD (P-value) KS (p-value) CVM (p-value) 

2.00 456.00 3.55 14.39 3.883e-12 < 2.2e-16 3.591e-09 

 

 

 

Figure 2: The Scatter, Theoretical Quantiles, Boxplot, Histogram, Density and distribution plot 
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Table 2: Contains the MLE, Standard Error (in parenthesis) and Model Selection Criteria. 

Model-Par 

/Model Sel 

ERLD* ExpLD LRLD BRD RLD ExpRLD BLD 

𝑎 0.801 

(0.015) 

2.203 

(0.044) 

_ _ 1.801 

(0.038) 

_ _ 1.802 

(0.040) 

0.801 

(0.015) 

𝑏 5.500 

(0.132) 

_ _ 2.500 

(0.056) 

0.999 

(0.019) 

_ _ _ _ 2.501 

(0.057) 

𝜃 0.025 

(NA) 

0.002 

(NA) 

0.008 

(NA) 

0.048 

(NA) 

0.000 

(NA) 

0.016 

(NA) 

0.010 

(NA) 

𝜆 0.113 

(0.003) 

0.109 

(0.002) 

0.117 

(0.003) 

_ _ 0.116 

(0.003) 

0.110 

(0.002) 

0.117 

(0.003) 

𝛽 0.501 

(0.014) 

_ _ 0.500 

(0.014) 

2.500 

(0.063) 

2.900 

(0.078) 

1.500 

(0.037) 

_ _ 

−2𝐿𝑜𝑔𝐿 1298.939 1629.850 2003.402 2201.424 2391.883 2498.683 2775.822 

𝐴𝐼𝐶 2607.878 3265.700 4014.804 4410.848 4789.766 5005.366 5559.644 

𝐶𝐴𝐼𝐶 2609.813 3266.427 4016.054 4412.098 4790.493 5006.616 5560.916 

𝐻𝑄𝐼𝐶 2610.718 3267.404 4017.076 4413.120 4791.470 5007.638 5561.916 

𝐵𝐼𝐶 2615.933 3270.533 4021.248 4417.292 4794.599 5011.810 5566.088 

 

4.2 Result and Discussion 

The summary of goodness of fit statistics is used to check for normality of the data; skewness, 

kurtosis, Anderson Darling (AD), Kolmogorov Smirnov (KS) and Cramer-Von-Mises (CVM) 

shown in Table 1 with their values clearly indicate that the data does not follow normal distribution 

since p-values less than 5%, skewness greater than 0 (zero) and kurtosis also greater than 3 

(Karadimitriou and Shivam Mishra (2020). While, graphs from figure 2 show the nature of the 

data, the scatter, theoretical quantiles, boxplot, histogram, density and empirical cumulative 

distribution function (ecdf) plot show the data is skewed. For instance, non-linearity by scatter and 

quantiles plots, outliers by boxplot and skewness by histogram and density plots. The minimum 

and maximum values in the data set are inclusive. 

The results obtained in Table 2 are based on parameter estimates by method of maximum 

likelihood estimation (MLEs). The standard error values are in bracket for all the models. The 

https://medium.com/@shivamrkom?source=post_page-----5abbefc81fd0--------------------------------
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model ERLD is compared with other six models ExpLD, LRLD, BRD, RLD, ExpRLD and BLD 

Also, model selection criterion is performed on all models considered in the study. From  the 

results, ERLD has the smallest values in all as we can see bold and starred where 𝑨𝑰𝑪 =

𝟐𝟔𝟎𝟕. 𝟖𝟕𝟖, 𝑪𝑨𝑰𝑪 = 𝟐𝟔𝟎𝟗. 𝟖𝟏𝟑, 𝑯𝑸𝑰𝑪 = 𝟐𝟔𝟏𝟎. 𝟕𝟏𝟖 and 𝑩𝑰𝑪 = 𝟐𝟔𝟏𝟓. 𝟗𝟑𝟑, which indicates 

that it is a robust and flexible model. 

5.0 Conclusion 

Despite the level of Nigerian COVID-19 death cases data set, the ERL distribution follows the 

movement of the data and has better representation of the data than any of the other existing 

distributions. The proposed distribution being flexible and versatile, can accommodate increasing, 

decreasing, bathtub and unimodal shape hazard function. It is therefore useful and effective in the 

analysis of clinical and survival data. 
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