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Abstract

In the political decision process and control of COVID-19 (and other epidemic dis-
eases), mathematical models play an important role. It is crucial to understand and
quantify the uncertainty in models and their predictions in order to take the right deci-
sions and trustfully communicate results and limitations. We propose to do uncertainty
quantification in SIR-type models using the efficient framework of generalized Polyno-
mial Chaos. Through two particular case studies based on Danish data for the spread of
Covid-19 we demonstrate the applicability of the technique. The test cases are related to
peak time estimation and superspeading and illustrate how very few model evaluations
can provide insightful statistics.
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1 Introduction

Quantification of uncertainty is an important aspect in all model and data driven problems.
When a computed solution relies on the collection of imperfect data, the result is rarely per-
fect; the solution rather represents an estimate of some desired value. Also the model used
on the problem may not represent the full phenomenon, either from deliberate simplifications
or due to complicated mechanisms beyond our current understanding. Sources of uncertainty
are commonly classified as being either aleatoric or epistemic uncertainty; the former classify
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uncertainties impossible to know due to insufficient understanding or perhaps measurement
errors at a currently unreachable scale, and the latter encapsulates for example the deliberate
reductions in precision due to simplified models or for instance less data collection. In either
case, the uncertainty will influence the credibility of the solution of the problem and quan-
tifying that uncertainty helps ascertain the trust we should have, or the risk we take, when
making decisions based on such models. Thus it plays a key role in both problems about
prediction and simulation of potential scenarios. The use of computational methods in this
study is commonly referred to as uncertainty quantification (UQ).

In this manuscript we demonstrate how techniques from uncertainty quantification apply
to epidemic modelling to provide insight and locate the key uncertainties; i.e. which data
sources provide the biggest uncertainties. Such knowledge is crucial for mitigation strategies,
restriction policies, etc. targeting controlling or reducing the impact of the spread of diseases
for securing public health. This will in part also improve the ability to deal with uncertainty
in predictive modelling.

Uncertainty quantification as an independent field grew out of problems in various other
fields such as probability theory, dynamical systems and numerical simulations. Sampling
based techniques, such as Markov Chain Monte Carlo (MCMC) methods and bootstrapping,
have seen use in epidemic modelling as seen in the studies [9, 11, 5], and by the expert
group1 providing the Covid-19 related modelling for the Danish government. We propose an
alternative approach called generalized Polynomial Chaos [4, 13, 12, 2] as an efficient general
non-iterative framework to do UQ-analysis using forward modelling where the uncertainties
are parameterized; the outcome being a prediction in terms of the solution’s expected value
and uncertainty in terms of the solution’s variance.

In epidemic modelling the spreading of an infectious disease is investigated through the
application of mathematical models. Models of various complexity, flexibility, restrictions and
assumptions exist. If appropriately combined with data the models, within their assumptions,
provide insight into the behaviour of the disease within the population. It may yield estimates
for its duration, the peak infection and various other aspects. In this paper we use extended
versions of the SIR-type model, which is the most common epidemic model.

As mentioned, such models only work within their assumptions and are thus not perfect
descriptors. They depend on a limited set of parameters, which have to be calibrated matching
the model to the available data. Practical data sources come with their own randomness and
incompleteness, so it is typical to attempt to capture the broader trends rather than say
day-to-day fluctuations. This typically manifests as smoothness in the models and retaining
a coarse state space. Parameter fitting under these constraints may lead to some level of
confidence in the parameters, which can be mathematically represented by a probability
distribution.

With a probability distribution, in place the uncertainty can be propagated to the model
output using UQ techniques providing a distribution on the output as illustrated in Figure
1. This allows for computation of various statistics on the output, e.g. mean, variance,
confidence intervals, etc. This is not trivial to do, however, since quantifying the uncertainty
in a prediction comes at a cost.

Common techniques are MCMC methods, which rely on sampling for exploring the po-
tentially complicated probability distribution of the prediction. However, sampling requires

1https://covid19.ssi.dk/analyser-og-prognoser/modelberegninger (accessed April 9th, 2021; in Danish)
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paramatrize
uncertainty
X ∼ dπprior

forward
propagation
Y = f(X)

output
distribution
Y ∼ dπpost

statistical
moments

E[Y ],V[Y ], . . .

Figure 1: The workflow used for handling UQ.

model evaluations, which can be expensive as a vast number of samples are necessary for
MCMC due to its slow convergence rate.

Generalized Polynomial Chaos (gPC) poses an efficient alternative non-sampling based
method, which can provide very good estimates using significantly fewer model evaluations
when the dimension of the problem is sufficiently low. Provided that the number of uncertain
parameters is sufficiently low, it is a very efficient method. The drawback is that it suffers from
the curse of dimensionality, when the parameter count (i.e. the dimension) grows, and requires
smoothness of the prediction distribution. It utilizes orthogonal polynomials and Gaussian
quadrature to optimize the number of model evaluations necessary to compute statistics by
means of an orthonormal expansion. gPC has also been used on Spanish data in [8].

Once computation of various statistics given uncertainty in inputs are in place, we obtain
information about the stochasticity of our results. An interesting question is then where
we would gain the most from building confidence in an input parameter? In other words,
are some parameters significantly more contributing to the uncertainty in the model output?
Sobol indices provide an insight in this regard. This is called Variance-based sensitivity
analysis. Sobol indices have for example been applied to the Bristish CovidSim model in [3].

This manuscript is structured as follows: Section 2 and 3 provides the theoretical back-
ground. In Section 2 we give an introduction to Polynomial Chaos and illustrate how various
basic statistics are directly computable from the expansion coefficients. Sobol indices are
given a brief introduction in Section 3. We provide a short derivation of their formulation
and relate them back to the Polynomial Chaos by providing formula for their computation in
terms of the expansion coefficients. These sections are based on the expositions in [10, 1].

The main novelty of our work is in Section 4, where we demonstrate the utility of gPC
analysis and Sobol indices in epidemic models and apply them to Danish data from the early
phases of Coronavirus SARS-CoV-2 (Covid-19). The versatility of the tools is illustrated in
two different cases. Case 1 is a simple SIR-model based estimation of the timing and size of
the peak of an epidemic. Case 2 attempts to provide a way of modelling superspreaders in
SIR-type models inspired by the recent manuscript [9].

The computations included in this manuscript were done in Matlab and the framework
is available as a small toolbox on the DTU GitLab server 2. The methods used for computing
the various quadratures have been ported to Matlab from NumPy[7].

2 Polynomial Chaos Expansion

We will consider a model described by the input-output map f : Ω ⊆ X → Y, where X = Rn is
the parameter space and Ω is a subset and Y = Rm is the output space. The aim is to quantify
behaviour in the model Y = f(X) ∈ Y under some variation of the parameter X ∈ X . There

2https://gitlab.gbar.dtu.dk/bcsj/covid-19-ctrl-public-code
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are various ways of approaching this. We could compute derivatives df : X → L(X ,Y), d2f ,
. . . , dkf , etc. However, unless f is linear this information is exclusively local in nature and
does not explain global trends. Further more, we will consider f as a black box in general so
we cannot assume any directly exploitable structure.

A way to capture more broad information about f is to consider its coefficients with
respect to a suitable basis. A good choice of basis yields a fast decay in the coefficients of f ,
which leads to a good approximation by a finite series representation. Of course, no basis will
display a fast coefficient decay for every decomposable function, however, there are choices
applicable for fairly broad and useful classes of functions.

Polynomial Chaos decomposes f ∈ L2(Ω,Y,dµ) in a basis of orthonormal polynomials
{φα} of increasing order, where α = (α1, . . . , αn) ∈ Nn is a multi-index. We will use the
notational convention that α = 0 when αi = 0 for all 1 ≤ i ≤ n. Note that φ0(x) = 1; the
zeroth order polynomial is always constant. The decomposition is standard

f(X) =
∑
0≤α
〈f, φα〉µφα(X), where 〈f, φα〉µ =

∫
Ω
f(x)φα(x) dµ(x). (1)

Here 〈f, φα〉µ are the coefficients of f . In practice the sum is truncated and as mentioned above
approximated by a finite series representation. This is reasonable since for {φα} orthonormal
in L2(Ω,Y, dµ) the coefficients decays towards zero, and assuming f is well-behaved this decay
is fast.

For a number of common probability measures dµ the orthonormal polynomials are well-
known and easy to generate. They also yield Gaussian quadratures with respect to these
probability measures, which makes the computation of the involved integrals fast.

Consider for instance the standard normal distribution N (0, 12), which up to a scaling
constant has probability measure exp(−x2/2). The (probabilists) Hermite polynomials form
an orthogonal sequence with respect to this measure. Picking a degree nquad and computing
the roots ξi of the Hermite polynomial of the corresponding the degree together with the
weights wi gives a quadrature rule for integration∫

R
f(x)e−

x2

2 dx ≈
nquad∑
i=1

wif(ξi),

where the equality is exact whenever f is a polynomial with deg(f) ≤ 2nquad − 1.

2.1 Statistical properties

While stochastic phenomenons come with expressive distributions, which are detailed, we
will often quantify an uncertain output Y in terms of the basic statistical properties like
the mean, variance and covariance, as these are easier to process. Given a model f with
parameters characterized by the random variable X, the resulting output Y = f(X) is a
new random variable and its basic statistical properties become directly computable from the
coefficients in our polynomial expansion for f .

Assume that dµ is a probability measure on the parameter set Ω, and that {φα} is an
orthonormal basis as above. Consider the random variable Y = f(X), where X ∼ dµ, i.e. it
follows the distribution defined by dµ. Let us denote by cα = 〈f, φα〉µ, then it is easy to see
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that we immediately obtain the mean value in terms of the first coefficient;

E[Y ] =

∫
Ω
f(x) dµ(x) =

∫
Ω
f(x)φ0(x) dµ(x) = c0, (2)

and we can do similarly for other statistics.
The variance may be derived as

V[Y ] =
∑
0≤α

c2
αV [φα(X)] =

∑
0<α

c2
α, (3)

using E[φα] = δα and E[φαφβ] = δα−β by orthonormality.
Consider now the random variables Y1 = f1(X) and Y2 = f2(X) with coefficients {cα}

and {dα}, then a computation analogous to that for the variance yields the covariance as

Cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2] =

∞∑
0<α

cαdα. (4)

In fact, if Y is a random vector with Yi = fi(X), 1 ≤ i ≤ k and we have coefficients
ci,α = 〈fi, φα〉µ. Forming the infinite matrix

Q =


c1,α(1) c1,α(2) · · · c1,α(j) · · ·
c2,α(1) c2,α(2) · · · c2,α(j) · · ·

...
...

...
ck,α(1) ck,α(2) · · · ck,α(j) · · ·

 ∈ Rk×N,

where α(·) : N → Nn is some traversal of the multi-index space with α(0) = (0, 0, . . . , 0), the
covariance matrix C = Cov(Y,Y) is of the form C = QQT ∈ Rk×k.

3 Sobol indices

As we often quantify our uncertain output Y = f(X) in terms of the statistical properties,
it is natural to ask which of the components among the parameters X produced the largest
contribution to the variance in quantities of interest. In other words, if we may somehow
reduce the uncertainty in a single parameter, which choice would yield the greatest decrease
in the uncertainty in the output? It is important to keep in mind that even if a single
parameter carries a huge uncertainty it might not be very influential in the model. This kind
of insight may be utilized to save on computational effort and to identify the most influential
parameters.

The Sobol indices form a quantification of the variance contribution on the output Y from
each individual parameter and each combination of parameters in X. Like the basic statistical
properties, the Sobol indices are computable from the polynomial expansion coefficients for
f . We give a brief example here, then present the formulation of the Sobol indices, and follow
up with the derivation in terms of the coefficients.

Consider the map f : Ω ⊂ X → Y, X = Rn. Though we could in principle consider Y as a
vector space, due to the rapid growth in required number of indices complicating the notation
we shall refrain and instead have Y = R.

5



Let dµ =
∏n
i=1 dµi be a probability measure on Ω ⊆ X and X = (X1, . . . , Xn), Xi ∼ dµi.

In essence the Sobol indices is a decomposition of the variance of the output Y = f(X) in
terms of the different combinations of input parameters X1, . . . , Xn.

We consider a few simple scenarios. Let X1 ∼ N (0, a2) and X2 ∼ N (0, b2) be normally
distributed. Say Y = X1 +X2, then the Sobol indices would be S1, S2 and S12 corresponding
to each non-empty combination of X1 and X2. Their values would be S1 = a2

a2+b2
, S2 = b2

a2+b2

and S12 = 0. In other words, say a > b, then it is better to decrease the uncertainty in X1

rather than X2.
In contrast, consider Y = X1X2, then the Sobol indices are S1 = S2 = 0 and S12 = 1, so

it decreasing the uncertainty in either is equally beneficial.

3.1 Formulation

To compute the Sobol indices we rely on a decomposition into marginalizations of f . We
give a derivation of the Sobol indices based on the exposition in [10] to make clear their
computation.

Let U = {1, . . . , n}.
f(X) =

∑
u⊆U

fu(Xu), (5)

where Xu = (Xi)i∈u and f∅(X∅) := f0 = E[f(X)]. The remaining functions fu, u 6= ∅, are
then recursively defined by

fu(Xu) = EU\u[f(X)]−
∑
u′(u

fu′(Xu′), (6)

where EU\u[f(X)] is a marginalization, i.e.

Eu[f(X)] :=

∫
Rk

f(x)
∏
i∈u

dµi(xi), k = |u| (7)

with dµ = 0 outside Ω.
Note that the sum is telescopic, each component corresponding to a set u subtracting

subset components again. Hence we may compute each fu(Xu) starting from the smallest
subsets of u and progressively building up to the bigger subsets.

We consider now the variance of f(X) and apply the expansion (5) to obtain

V[f(X)] =
∑

u⊆U,u 6=∅

V[fu(Xu)]. (8)

By dividing by the left hand side in (8) we get

1 =
∑

u⊆U,u6=∅

V[fu(Xu)]

V[f(X)]
=

∑
u⊆U,u 6=∅

Su, (9)

defining Su := V[fu(Xu)]/V[f(X)]. The Sobol indices are then {Su}u⊆U,u 6=∅.

6



3.2 Relation to Polynomial Chaos

The Sobol indices are efficiently computable from the PC coefficients. The marginalizations
of the distribution arise as restrictions to certain subsets of the coefficients.

Let cα be the PC coefficients of f . To compute the Sobol indices we wish to compute the
terms V[fu(Xu)]. Taking the variance on both sides in (6) we get

V[fu(Xu)] = V
[
EU\u[f(X)]

]
−
∑
u′(u

V[fu′(Xu′)].

Clearly, if we compute bottom up hierarchically using the partial ordering u ≤ v if u ⊆ v,
we simply need to compute the marginalizations V[EU\u[f(X)]] and then subtract formerly
computed values.

Due to the maginalizations of f we will need to consider the marginal structure of our
basis functions {φα} too. For a multi-index α ∈ Nn we shall use the notation

φα(x) = ψ1,α1(x1) · · ·ψn,αn(xn),

where {ψi,j}j is the orthonormal polynomial basis for parameter Xi. With this we may derive

EU\u[f(X)] =

∫
Rk

f(x)
∏
i∈u

dµi(xi)

=

∫
Rk

∑
0≤α

cαφα(x)
∏
i∈u

dµi(xi)

=
∑
0≤α

cα

 ∏
i∈U\u

ψi,αi(Xi)

(∏
i∈u

∫
R
ψi,αi(xi) dµi(xi)

)

=
∑
0≤α

cα

 ∏
i∈U\u

ψi,αi(Xi)

(∏
i∈u

E[ψi,αi(Xi)]

)

(note that this product of mean values is 0 unless αi = 0 for all i ∈ u; we write simply αu = 0)

=
∑

0≤α,αu=0

cα
∏
i∈U\u

ψi,αi(Xi)

(as ψi,0(x) = 1 this product extends to all of α again now that αu = 0 is fixed)

=
∑

0≤α,αu=0

c2
αφα(X).

Taking the variance of the above and using the fact that V[φα(X)] = 1 for α 6= 0 and zero
otherwise we get

V
[
EU\u[f(X)]

]
=

∑
0≤α,αu=0

c2
αV[φα(X)] =

∑
0<α,αu=0

c2
α (10)

7



Visually, if we consider just two parameters, we see in the coefficient grid below how the
different coefficients distribute themselves among the

�
�c2

0,0 c2
0,1 c2

0,2 c2
0,3 · · · ∑

� = V[f2(x2)]

c2
1,0 c2

1,1 c2
1,2 c2

1,3 · · ·

c2
2,0 c2

2,1 c2
2,2 c2

2,3 · · ·

c2
3,0 c2

3,1 c2
3,2 c2

3,3 · · ·
...

...
...

...
. . .∑

� = V[f1(x1)]
∑

� = V[f12(x12)]

Here “
∑

�” is simply intended as a placeholder symbol for the sum of each of the elements
in the box. Note that c0,0 is crossed out, as it is the mean, which does not contribute the the
variance.

4 Uncertainty Quantification in modelling spread of diseases
using Polynomimal Chaos

In this section we present two cases to demonstrate the flexibility of the above techniques
by applying them to SIR-type models. The first case considers a SEIR-model and compute
distributions for the size and timing of the peak of the modelled epidemic.

For the second case a more extensive SIR-type model is considered. Inspired by the agent
based modelling of superspreaders discussed in [9] we construct a multi-compartment SIR-
type model and formulate a modelling approach for superspreaders leading to comparable
results despite the differences in modelling assumptions. With this model we perform a UQ
analysis on the coefficients modelling the government imposed restrictions.

In both cases the population size N is taken as 5.8× 106 matching the size of the Danish
population.

4.1 Case 1: Epidemic peak

For this simple case we consider an SEIR-model, i.e. a model with the compartments
(S)usceptible, (E)xposed, (I)infectious and (R)ecovered/removed. The model is visualized
in the diagram in Figure 2.

8



S E I R

β σ γ

Figure 2: Illustration of compartments and transmission rates for a SEIR model.

As an ODE system the model is of the form

∂S

∂t
= −β I(t)S(t)

N
, (11a)

∂E

∂t
= β

I(t)S(t)

N
− σE(t), (11b)

∂I

∂t
= σE(t)− γI(t), (11c)

∂R

∂t
= γI(t), (11d)

where β, σ and γ are transition coefficients and N the total size of the population. σ is the rate
at which people progress from being exposed (incubating) to becoming infectious individuals,
and γ is the rate at which one recovers (or dies) from the disease. Their reciprocals are the
average time an individual spends in the exposed and infectious compartments respectively.
β denotes the average rate of infection happening in the population. This quantity is a
function of the infectiousness of the virus and the social patterns of the population; e.g.
higher hygiene standard in the population would lead to a lower β. Note that it is assumed
that S +E + I +R = N at all times, which is typically used for shorter time horizons in the
modelling.

The model makes the assumptions that we are dealing with a large population with het-
erogeneous mixing; in other words any randomly sampled subset of individuals from the
population should behave the same at the macroscopic level of a society.

The progress of an epidemic can roughly be modelled this way. The model is easy to
expand in complexity to incorporate various sources of data and phenomenons. We see this
in the following case.

In an epidemic the number of infected individuals will rise rapidly as each infected indi-
vidual will infect several others. However, as the population becomes saturated with infected
individuals the likelihood of a meeting between an infected and a susceptible will decrease.
We say herd immunity is kicking in. Hence, the epidemic peaks at some time tpeak where the
number of infectious individuals are at its highest.

We consider in this example each parameter β, σ and γ uncertain. The uncertainties are
given as uncertainty in the reproduction number R0 = β

γ , in the duration in the exposed

compartment τinc = σ−1 and the duration in the infectious compartment τinf = γ−1. As these
are positive quantities we assume each log-normally distributed. We thus consider the map

F : (R0, τinc, τinf) 7→ (tpeak, Ipeak), (12)

where Ipeak := I(tpeak). As the log-normal distribution is simply a transformation of the
normal distribution, it is a simple task to transform the quadrature nodes accordingly.

9



We can thus apply the theory from the early sections to propagate the uncertainty in the
arguments of F to the output using only few evaluations. As the output quantities are known
to be positive as well, we shall assume log-normal distributions for these as well and fit them
by computed means and variances.

Figure 3: The peak of infectious individuals during a SEIR-model simulation. Each column
corresponds to different applied quadrature degree. The top chart visualizes computed sam-
ples. The middle-charts the resulting distributions and the lower bar diagrams illustrate the
variance contributions by the model parameters.

The example can be seen in Figure 3 where we have used the following hyper-parameters;

10



chosen based on early reported numbers for Covid-19 with some level of contact restriction
assumed.

mean variance
R0 ∼ LogNormal 1.4 0.0252

τinc ∼ LogNormal 4.2 0.72

τinf ∼ LogNormal 3.3 0.72

We compute the example with a low and a high number order of quadrature to illustrate how
we may obtain quite accurate information with few model evaluations. In the left column
of the figure we use 3rd order quadratures corresponding to 33 = 27 model evaluations, and
in the right column we employ 10th order quadratures corresponding to 103 = 1000 model
evaluations.

The top coordinate system of the figure illustrates all samples. The color and weight
has been scaled by the probability of the corresponding values. The next axes shows the log-
normal distribution for the peak time and the magnitude of the peak in infectious individuals.
The last axes show the corresponding Sobol indices illustrating that with the selected values
the variance of R0 is not the primary concern if we wanted to narrow down the peak time
further.

We observe how the 27 model evaluations provides the same information as the 1000
model evaluations, showing that this problem is handled well already at this low number of
evaluations.

4.2 Case 2: Superspreaders

Superspreaders are infected individuals who during an epidemic are responsible for the in-
fection of a significantly larger amount of individuals than the observed average. Historical
observations of diseases have shown that incidents with superspreaders play an important
role[6].

Various aspects play into causing an individual to become a superspreader, which may both
be physiological and sociodynamic in nature. An individual exhaling an increased amount
of pathogens relative to the norm could lead to a significantly larger number of infections
during regular social interactions compared to a “normal” infectious individual. But it could
also simply be the participation in a large scale social event for instance a party, concert or a
festival, where the physical distancing may be very low and number of contacts proportionally
higher, which results in mass infection.

Inspired by [9] we attempt in this case to replicate some of their results in a computa-
tionally fast way using a SIR-type model. We employ the structure from their agent based
model to construct the SIR-type model depicted in the diagram in Figure 4. In the diagram
we have the following compartments: First, as in the former model susceptible and exposed.
Then there are asymptomatic infectious I1 and symptomatic infectious I2. We note that this
is a legacy structure from [9], where it is used mostly for book keeping. Neither there nor here
is behavior assumed to differ between the compartments. We have a (W)ait compartment,
which signifies a short time, where the individual is either so sick that they have isolated
themselves as to not infect anyone before admission to the hospital, or they are in not in
non-infecting recovery. There is a branch with (H)ospitalized and (C)ritical care before all
ending in the recovered/removed compartment.

11



The parameters choices are taken as in [9], but we restate them for completeness in Table
1. For z1 and z2 we compute them from the hospitalization rates listed in the Supplementary

σ−1 γ−1
1 γ−1

2 γ−1
3 α−1 ζ−1

1.2 1.2 3 2 5 12

Table 1: Superspreader model parameters [9]. Units are in [days].

material Table 1 in [9] which comes from Norwegian data. We present the data in Table 2
where di, hi and κi are the data rows. From these quantities z1 and z2 are computed as

z1 =
9∑
i=1

dihi, and z2 =
9∑
i=1

dihi
z1

κi.

The expression for the last parameter β(t) is given in (16) and (15). The modelling approach
is covered in Section 4.2.1.

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

D ({di}) [%] 10.9 11.9 13.3 11.7 13.6 13.6 11.7 8.9 4.4∗

H ({hi}) [%] 0.001∗∗ 0.013 0.37 1.1 1.4 2.7 3.9 5.5 5.5
C ({κi}) [%] 5 5 5 5 6.3 12.2 27.4 43.2 70.9

∗) 0.1% was added here since the numbers from the source table didn’t actually add to 100%.
∗∗) This number was 0 in the table, it is known that some kids end up hospitalized, so we changed
it to a small but strictly positive value.

Table 2: Population distribution and hospitalization probability data [9]. Legend: D: Dis-
tribution of the population; H: Probability of hospitalization; C: Probability of moving to
critical care.

4.2.1 Modelling varying infectivity

We model a superspreaders by assuming a distribution of infectivity amongst individuals
in the population. Consider the normalized population [0, 1] and assign to each a ∈ [0, 1] an

S E I1 I2 W

H C

R

β(t) σ γ1 γ2 (1− z1)γ3

z1γ3

(1− z2)α

z2α
ζ

Figure 4: Illustration of expanded SIR-type model taking into account superspreaders; based
on [9].
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infectivity β(a). That is, if U is some ordered set of possible infectivities and ψ is a probability
measure on U with cumulative probability function Ψ, then β(·) = (1−Ψ)−1(·). We assume
that the population is ordered by decreasing infectivity; i.e. β(a) ≤ β(a′) for a < a′. Assuming
a well-mixed distribution such that infection is equally likely to hit any individual a ∈ [0, 1]
we may readily calculate the contribution to infection caused by the fraction p most infectious
individuals, Cp.

In a SIR-model the number of people getting infected at a time t is commonly, as seen in
(11a), of the form

β
I(t)S(t)

N
,

where I(t) is the number of infected individuals, S(t) the number of susceptible individuals,
and N is the population size. Here β is the average infectivity; β =

∫ 1
0 β(a) da.

The p most infectious individuals would then be contributing the fraction

Cp = β
−1
∫ p

0
β(a) da. (13)

This quantity informs the choice of probability measure ψ if one works under the scheme that
superspreaders form some fraction p of the population and is responsible for infecting the
fraction Cp of the population. Fixing these two quantities limits the admissible measures ψ.

This way of modelling a variation in infectivity also admits fairly easy extensions to control
scenarios where some rules may change behavioral dynamics over time. We may for instance
consider a time-dependent infectivity

βrestricted(t) =

∫ 1

0
φ(β(a), a, t) da,

where φ(b, a, t) is some restriction function describing a change in the behavior over time. In
practice, however, φ(b, a, t) ≡ φ(b, t) will typically be independent of a as we cannot feasibly
identify an individual as more infectious than another until after the fact. And so we have to
make rules that are uniform for everyone. A simple example could be a strict limitation in
how many individuals anyone meet, which could be crudely modelled as

φ(b, a, t) = min(b, c(t)), (14)

where c : R+ → R+ is some time-dependent upper bound.
Of course, if φ(b, a, t) ≡ φ(a, t) is independent of b, we may impose any kind of other

ordering on the population, e.g. by age, and apply hard restrictions based on that one. But
then we lose all information from the infectivity β, which might be undesirable.

We take for our model β(a) as a simple piecewise constant function

β(a) =

{
sA if a < p,

s if a ≥ p,
a ∈ [0, 1]. (15)

Here p is the assumed concentration of superspreaders; e.g. if we assume 10% are super-
spreaders p = 0.1. sA is the infection rate for superspreaders and s the infection rate for
the remaining population. It is an easy calculation that Cp from (13) is independent of s, so
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choosing an assumed (p, Cp) pair determines A and choosing s then determines the mean rate
β.

We shall model a social restriction as a hard cap on the amount of individuals any single
person gets to interact with. We model this with a restriction function as in (14); i.e.

β(t) =

∫ 1

0
min(β(a), c(t)) da. (16)

with c being a piecewise constant function which changes values at approximately 1) the time
of the Danish lockdown, 2) the timing of the Danish reopening’s phase 1 (about a month
later), 3) the timing of the Danish reopening’s phase 2 (another about 40 days later).

4.2.2 Fitting the model

From an assumption about the prevalence of superspreaders we first fit β’s scaling parameter
s and an initial condition I0 for the epidemic from hospital admission by day3 (only for the
pre-lockdown part of the data set) and an assumption of an unmitigated growth rate at about
23% per day[9]. For the initial condition we fit a number I0 and we assume that S(0) = N−I0,
E(0) = I0

2 , I1(0) = I0
3 and I2(0) = I0

6 . The remaining compartments start at 0. The problem
is formulated as

arg min
s,I0

w0

2
|G(s, I0)− 0.23|2 + α

w1

2
‖Ht<t1(s, I0)−Hssi,t<t1‖2, (17)

where the weights w−1
0 = 0.232

[
persons2

day2

]
and w−1

1 = ‖Hssi‖2
[
persons2

]
balance the widely

different scales of the two terms, and Hssi is the data set of newly admitted hospitalized by
day. G computes the average initial daily growth rate and H computes the newly admitted
hospitalizations from the model. By the subscript t < t1 we mean only the part of the data
corresponding to this constraint; t1 = 16 before which H is independent of our restriction
function. We chose α = 0.01.

Using the now determined quantities (s, I0) we fit the three restriction levels in c(t) from
the whole data set of hospital admission by day. Fixing (t1, t2, t3) = (16, 46, 86) we have

c(t) =


1 if t ≤ t1,
c1 if t1 < t ≤ t2,
c2 if t2 < t ≤ t3,
c3 if t3 < t.

(18)

Then the parameter fitting problem becomes

arg min
c1,c2,c3

1

2
‖H(c1, c2, c3)−Hssi‖2 − w2(min(0, c2 − c1) + min(0, c3 − c2)), (19)

where w2 is some arbitrary large number so the last term forms a soft constraint enforcing
c1 < c2 < c3.

3Danish data available from SSI (www.ssi.dk), the Danish Ministry of Health. The data was public and
accessed on June 14th, 2020; it does not remain available anymore. The used data file is available as a CSV-file
with the codes in the GitLab repository.

14



Assuming (p, Cp) =
(

1
10 ,

4
5

)
, i.e. that only 10% contribute 80% of all infections, the above

fitting schemes resulted in

s = 0.602

[
1

day

]
, I0 = 473.572 [persons] , and (c1, c2, c3) = (0.130, 0.187, 0.188).

These results depended slightly on the choice of initial condition but the differences were on
the order of 10−3. The simulation, when done using these data, may be viewed in Figure 5.

We note that the difference between restriction levels c2 and c3 is almost insignificant.
There are likely various reasons for this. In the model in [9] they have different society
structures which they can close down. Comparatively, we only really have one here. A possible
explanation might be that the phase 2 reopening didn’t really affect the overall amount of
contacts for people. Of course, this could also be a data deficiency as small variations of c3

has proven to not change the optimization functional significantly.

Figure 5: Superspreader case simulation using fitted data. The time-evolution of different
compartments have been visualized grouped by their relative y-scale. x-scale units are in
days and y-scale units are counts. The dotted red curve seen lowest in both charts is the
active restriction. The yellow dots in the right chart is newly hospital admissions by day from
the Danish authorities.

4.2.3 Adding uncertainty

Assuming a level of uncertainty in the fitted restriction levels we may compute confidence
intervals for the model. In Figure 6 we assume normally distributed priors for the restriction
levels with means ci, i = 1, 2, 3, and relatively scaled standard deviations of 0.1ci, i = 1, 2, 3.
Assuming the posteriors may be approximated reasonably by a truncated normal distributions,
95% confidence intervals are visualized. We see that with uncertainty of this level on the
parameters the development is expected to keep declining.

The evolution of the Sobol indices over time is drawn up in Figure 7 illustrating the
variance contributions from the parameters, which show as expected how c1 is the most
important initially but is gradually taken over by c2 and then c3 in the later stages. Notably
c1 remains fairly important even during the time span where c2 controls the level of interaction,
and likewise c2 into the time span where c3 is active.
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Figure 6: Superspreader case simulation using fitted data taking into account uncertainty.
Hospitalized (H), critical care (C) and newly hospitalized are shown with confidence intervals.
x-scale units are in days and y-scale units are counts. The dotted red curve is the active
restriction. The yellow dots are newly hospital admissions by day from the Danish authorities.

5 Conclusion

We have in this summarized the key elements of generalized Polynomial Chaos and the related
Polynomial Chaos Expansions, as well as their applications to the efficient quantification of
uncertainty in models; both basic statistical properties and the Sobol indices. The novelty
of this work lies in the application of these techniques to epidemic models; here applied to
official Danish data from the Covid-19 epidemic, which struck in 2020 and remains an issue
still in 2021. We find that taking uncertainty into account in predictions of these types are
of tremendous value and utmost importance, and that these tools are well suited in the field
of epidemic modelling. We thus recommend using these tools, which have so far remained
outside the field, for their efficiency. Not to replace existing tools, but to provide a wider
array of options suitable for different purposes.
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Figure 7: The Sobol indices evolution over time in the superspreader case simulutation us-
ing fitted data with added uncertainty. The x-axis is in units of days. At each time the
color distribution above determine the part of the variance contributed by each parameter;
the corresponding parameter listed in the legend-box. The cicj parts are the joint variance
contributions of ci and cj , as is visible, c1, c2 and c3 are mostly unrelated here.
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