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ABSTRACT

It is increasingly common to encounter prediction tasks in the biomedical sciences for which multi-
ple datasets are available for model training. Common approaches such as pooling datasets and ap-
plying standard statistical learning methods can result in poor out-of-study prediction performance
when datasets are heterogeneous. Theoretical and applied work has shown multi-study ensembling to
be a viable alternative that leverages the variability across datasets in a manner that promotes model
generalizability. Multi-study ensembling uses a two-stage stacking strategy which fits study-specific
models and estimates ensemble weights separately. This approach ignores, however, the ensem-
ble properties at the model-fitting stage, potentially resulting in a loss of efficiency. We therefore
propose optimal ensemble construction, an all-in-one approach to multi-study stacking whereby we
jointly estimate ensemble weights as well as parameters associated with each study-specific model
via a unified optimization formulation. We establish that limiting cases of our approach yield ex-
isting methods such as multi-study stacking and pooling datasets before model fitting. We propose
an efficient block coordinate descent algorithm to optimize the proposed loss function. We compare
our approach to standard methods by applying it to a multi-country COVID-19 dataset for baseline
mortality prediction. We show that when little data is available for a country before the onset of
the pandemic, leveraging data from other countries can substantially improve prediction accuracy.
Importantly, our approach outperforms multi-study stacking and other standard methods in this ap-
plication. We further characterize the method’s performance in data-driven simulations and other
numerical experiments. Our method remains competitive with or outperforms multi-study stacking
and other earlier methods across a range of between-study heterogeneity.
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1 Introduction

1.1 Background

Statistical methods to leverage information from different studies and sources are critical for generating prediction
algorithms that are replicable across populations and experimental settings. The increasing availability of biomedical
databases in, for example, neuroimaging (OpenNeuro (openneuro.org)), genetics (e.g., GWAS Catalogue (Buniello
and others, 2019)), HIV (Stanford HIV database (Ramon and others, 2019)) and cancer genomics (Ganzfried and
others, 2013; Edgar and others, 2002) has resulted in increased interest in the utilization of data from multiple sources
when training prediction algorithms. This is further motivated by the observation that prediction performance assessed
within-study (e.g., with cross validation) is often far more optimistic than the performance evaluated out-of-study (Ma
and others, 2014; Chang and Geman, 2015; Bernau and others, 2014). Despite promising initial progress, much
remains to be investigated on how to combine information across datasets or “studies” in a manner that promotes
model generalizability. A simple, but at times powerful approach is to merge datasets before model fitting. This
can fail to capture, however, the heterogeneity across datasets and can therefore perform poorly when studies are
heterogeneous. In this case different models for each study may lead to better fits, and their ensemble to better out-
of-study predictions (Patil and Parmigiani, 2018; Guan and others, 2020). To account for the heterogeneity, one
approach is to pre-process the studies with data harmonization techniques before model fitting (Da-ano and others,
2020; Zhang and others, 2020). While this is generally helpful, it can be insufficient, and potentially remove genuine
signal (Nygaard and others, 2015; Cetin-Karayumak and others, 2020).

1.2 Related Literature

Multiple related sub-fields of transfer learning (Kouw and Loog, 2019) contain a rich body of methodologies geared
towards the multi-study problem specifically as well as the “dataset shift” issue more generally. Broadly speaking,
these methods aim to deal with variation in the distribution of the training and test dataset(s). “Concept shift” refers to
changes in the conditional probability of labels given predictors, while “covariate shift,” describes discrepancies in the
joint distribution of the covariates between training and test data. “Hybrid shift” describes the case when both concept
and covariate shift occur (Kouw and Loog, 2019; Yang and others, 2020).

Our motivating application can be described as a multi-source transfer learning problem (Chen, 2021; Kouw and
Loog, 2019). These describe settings where the modeler has a small sample of labeled training data drawn from
the distribution of interest, but seeks to enhance prediction performance through borrowing labeled data from other
related studies, or “domains.” Typically these other auxiliary data sources share common covariates and outcomes.
The distribution of these data are thought to be similar to the distribution of the data of the target study. This is closely
related to multi-source domain adaptation which proposes strategies that use information from multiple datasets, but
also leverage the covariates of the test set to tailor the model to the target domain (Kouw and Loog, 2019; Sun
and others, 2015). The domain generalization literature focuses on leveraging multiple datasets in model training to
improve model generalizability, to enhance prediction performance on a new, unknown, but related, “domain” (Wang
and others, 2021). Our methods are inspired both by this vast literature in transfer learning as well as related methods
in “multi-study” statistics that aim to draw upon multiple data sources in inference (Guo and others, 2021; Rashid and
others, 2020), supervised prediction (Loewinger and others, 2021; Guan and others, 2020; Ramchandran and others,
2020; Ren and others, 2020), and unsupervised learning (De Vito and others, 2019; Roy and others, 2019).

Previous work in this area proposed multi-study ensembling in conjunction with a generalization of stacking, an
ensemble weight estimation method (Breiman, 1996), as a flexible strategy to aggregate information from different
studies (Patil and Parmigiani, 2018; Ramchandran and others, 2020; Loewinger and others, 2021; Ren and others,
2020; Guan and others, 2020). The approach involves two separate stages: A) training one or more models on each
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study separately, and B) constructing an ensemble prediction rule that is a weighted average of the predictions from
each of the study-specific models. The ensemble weights are estimated in step B through “multi-study stacking,”
(MSS) by regressing the outcome of all training studies against the predictions of each of these models, using all
available training data sets. Heuristically, this method rewards cross-study prediction performance by determining
the ensemble weight associated with a model fit on one study based upon how well that model predicts across all the
training data sets.

To formalize, we assume we have K training studies and we denote the outcome vector of training study k as yk ∈
Rnk , and its design matrix as Xk ∈ Rnk×(p+1). In addition to p predictors, Xk includes a column of ones for an
intercept. We let N =

∑K
k=1 nk. Multi-study stacking as originally proposed consists of two stages. In stage A) we

separately fit models Ŷk(·) on data from the kth study, for every k. In stage B) we compute predictions made by these
models at the observed covariates of study k′ as Ŷk(Xk′) for every k′. Define y and X̂ as follows:

y =


y1

...
yK


N×1

X̂ =


Ŷ1(X1) Ŷ2(X1) ... ŶK(X1)

...
...

. . .
...

Ŷ1(XK) Ŷ2(XK) ... ŶK(XK)


N×K

We then fit a stacking regression to predict y given X̂ using, for example, non-negative least squares (NNLS) or
Ridge regression, typically with an intercept term. The resulting coefficients serve as the weights of the ensemble
prediction and are denoted by the p + 1 dimensional vector ŵ. At data point x the prediction rule is ŶStack (x) =

ŵ0 +
∑K
k=1 ŵkŶk (x).

Theoretical work has described settings in which this type of ensembling is expected to outperform merging data
sets before model fitting here labeled “Trained-on-the-Merged dataset” (ToM). For example Guan and others (2020)
compare the ToM approach to ensembling when the learner is either linear or Ridge regression, under a linear mixed
effects data generating model where true regression coefficients vary with k. They show that when between-study
heterogeneity, as measured by the variance of the random regression coefficients, is sufficiently high, ensembling is
expected to outperform ToM.

Subsequent work generalized multi-study ensembling and formalized two approaches: generalist stacking (described
above) for domain generalization settings, in which we aim to train models that generalize to an unseen study, and
specialist stacking for multi-source transfer learning settings, in which we aim to tailor the ensemble to predict well
on a target study for which labeled data is available at the time of model training (Ren and others, 2020). For example,
say we wish to engineer the ensemble to predict well on future data that follows the same distribution as data from
training study k∗, where k∗ ∈ [K] and [K] denotes the set {1, 2, ...,K}. This can be accomplished by regressing
yk∗ onto X̂k∗ where X̂k∗ =

[
Ŷ1(Xk∗) Ŷ2(Xk∗) ... ŶK(Xk∗)

]
nk∗×K

. By setting up the stacking regression

in this manner, specialist stacking estimates ensemble weights appropriate for data similar to training set k∗. Similar
architecture for stacking in transfer learning settings has been proposed previously (Yuankai, 2019).

Ren and others (2020) further proposed a “no data reuse” (NDR) specialist stacking procedure that excludes data used
in stage A from the stage B stacking. Briefly, this is accomplished by dividing training data for the target study into L
folds. Taking L = 2 for ease of explanation, let the data in the two folds be {y1

k∗ ,X1
k∗} and {y2

k∗ ,X2
k∗}. Then train

model Ŷ1
k∗() on {y1

k∗ ,X1
k∗} and a separate model, Ŷ2

k∗(), on {y2
k∗ ,X2

k∗}. Then when fitting the stacking regression,
data reuse is avoided by using Ŷ2

k∗() to make predictions on {y1
k∗ ,X1

k∗} and vice-versa. Specifically, the stacking
procedure involves regressing yk∗ onto X̂k∗ where

yk∗ =

[
y1
k∗

y2
k∗

]
nk∗×1

X̂k∗ =

[
Ŷ1(X1

k∗) Ŷ2(X1
k∗) ... Ŷ2

k∗(X1
k∗) ... ŶK(X1

k∗)

Ŷ1(X2
k∗) Ŷ2(X2

k∗) ... Ŷ1
k∗(X2

k∗) ... ŶK(X2
k∗)

]
nk∗×K

.
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In practice this is implemented with more than two folds. After the estimation of ensemble weights, a third stage is
implemented in which a final model for study k∗, Yk∗(), is fit using {yk∗ ,Xk∗} (i.e., all available data for that study).
This model is then used in the final prediction rule, ŶStack (x) = ŵ0 +

∑K
k=1 ŵkŶk (x)

In this paper we propose a simpler version of no data reuse specialist stacking, which does not require splitting the
data into folds, and is amenable to a simple optimization formulation. In stage A), this algorithm trains single-study
learners on all studies except the target study k∗. In stage B), it only uses the target training data {yk∗ ,Xk∗} by
regressing yk∗ onto the[

Ŷ1(Xk∗) ... Ŷk∗−1(Xk∗) Ŷk∗+1(Xk∗) ... ŶK(Xk∗)
]
nk∗×K−1

matrix. Stage A) builds an ensemble that captures the heterogeneity of data distributions. Stage B) specializes the
weights of the ensemble to perform well on the target study. We refer to this variant as "no-data-reuse specialist
stacking" throughout the manuscript.

1.3 Optimal Ensemble Construction:
A general framework for simultaneous model parameter and model weight estimation

The multi-study ensembling procedures described above are flexible and easy to implement, but one potential short-
coming is that ensemble weights and study-specific model parameters are estimated separately in each stage. These
approaches may therefore lose efficiency because the ensemble properties are ignored in stage A). The main thrust of
this work is to integrate both stages into a single and explicit optimization framework.

We propose a method based on multi-study ensembling and stacking that seeks to improve prediction performance by
jointly optimizing model parameters and ensemble weights. We term this “all-in-one” approach as optimal ensemble
construction (OEC). We formalize this below as a convex combination of the sum of study-specific model losses (e.g.,
study-specific mean square errors) and the stacking regression loss function. As an initial foray into this area, our work
investigates linear models. We show that in this case the OEC yields standard stacking and the ToM as special cases
of our framework. While we focus on linear models in this work, we note that our framework is general and may be
applied to other predictive models as well.

1.4 Motivation: Counterfactual COVID-19 mortality estimation

Our work was initially motivated by the estimation of COVID-19 related mortality. International comparisons of
COVID-19 specific death counts suffer from important limitations. For example, due to health systems heterogeneity,
the criteria for what constitutes a COVID-19 death is different across countries (Karanikolos and others, 2020). In part,
these criteria depend on the testing capacity of the jurisdiction, which can be sub-optimal in underdeveloped countries
(Max Roser and Hasell, 2020). Hence, excess mortality is regarded as the gold-standard method of estimating the
direct and indirect effects of the COVID-19 pandemic (Beaney and others, 2020) and is calculated by subtracting
the number of deaths that would have been expected to occur in a locality (e.g., based on historical trends) from the
number of observed deaths.

In many countries, infrastructure to monitor mortality before and during a disaster is not yet fully established (Kar-
linsky and Kobak, 2021; Fottrell, 2009). Such countries may have limited data to estimate baseline mortality before
the onset of a disaster, such as a pandemic, and hence the resulting estimates of excess mortality may be unreliable.
For instance, Karlinsky and Kobak (2021) contacted officials in a host of countries to collect international mortality
data to produce a database for the comparison and assessment of public health strategies. Many officials indicated
that no data or very limited data was available prior to the onset of COVID-19. Although only a minority of nations
world-wide provided any public data, Karlinsky and Kobak (2021) quoted responses from health officials in countries
such as Argentina, China, India, Liberia and Vietnam to emphasize that many countries do not have the resources to
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collect sufficient mortality data. The following quote from a Liberian health official speaks volumes about this ongoing
challenge (Karlinsky and Kobak, 2021):

“Unfortunately, we do not have a mechanism in place at the moment to capture routine mortality
data in-country nation-wide...As you may also be aware, death or mortality registration or reporting
is yet a huge challenge in developing countries...”

Even among countries that collected pre-pandemic data, samples were often limited to as little as one year of pre-
pandemic data (e.g., South Africa) (Karlinsky and Kobak, 2021; Bernard and others). Even further, some countries
only provided quarterly or monthly data (e.g., Iran, Taiwan) which may not provide the temporal resolution needed
for precise assessment of public health responses.

This motivates the implementation of multi-study methods to borrow information across countries to create better
baseline mortality estimates. Leveraging information from other countries’ data may improve baseline mortality es-
timates on the target country because shared latent factors (e.g., geographic, health systems, weather patterns) may
have similar impacts on mortality trends across countries. While these factors may not be comparable across all
observed countries, there may exist clusters of countries across which borrowing information is useful. Identifying
a prioriwhich countries to borrow information from may not be reliable, as even natural heuristics such as geographic
proximity may be unreliable. Thus we sought to develop methods that could identify which countries would provide
auxiliary data that could improve the estimation of baseline mortality for a target country in a data-driven fashion. To
this end, we compare the prediction capabilities of the proposed methods against conventional approaches by using a
multi-country dataset of weekly death counts for 38 countries (i.e., K = 38 studies) (Jdanov and others), where we
aim to predict baseline mortality in a country of interest.

2 Methods

2.1 Notation and Problem Statement

We next build on the notation introduced earlier and specify distributional assumptions. We assume we have K
observed studies available for model training. The pair of outcomes and covariates for study k is {yk,Xk}. The
merged dataset has outcome variable y ∈ RN and design matrix X ∈ RN×(p+1) where, N =

∑
k nk. We assume

that the outcome yk,i for observation i in study k is conditionally distributed as yk,i |xk,i ∼ fyk | xk
(yk |Xk), and that

marginally the covariates xk,i are distributed as xk,i ∼ fxk
(Xk). We assume that the conditional distributions of the

outcome given the covariates may differ across studies. We explore both settings where the marginal distributions of
the covariates, fxk

(Xk), differ across studies, and where they are approximately the same.

In the two-stage multi-study stacking method discussed in Section 1.2, we distinguish between the model parameters
(e.g., the coefficients in a linear model) and the ensemble weights used to aggregate predictions from different models.
We refer to statistical learning methods (e.g., linear models, as this is our focus here) to be fit on a single study as
single study learners (SSL). We denote the model parameters associated with a fit to the kth study as γk ∈ Rp+1. For
example, in the squared `2 penalized linear regression setting, γ̂k is the solution to the following

min
γk

‖yk − Xkγk‖22 + λ ‖Dp+1γk‖22 , (1)

where Dr ∈ Rr×r is a diagonal matrix with the (1,1)-th location equal to zero and all other diagonal entries equal to
one to prevent regularization of the intercept.

We denote the estimates of model parameters obtained from a fit to the merged dataset as γ̂ToM. For example, in the
squared `2 penalized linear regression setting, γToM is a solution to:

min
γToM

∥∥y − XγToM
∥∥2
2

+ λ
∥∥Dp+1γ

ToM
∥∥2
2
. (2)
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We refer to variations of two-stage multi-study methods as “generalist” or “specialist”, depending on the goal. For
specialist methods, we further indicate whether we used a “no data reuse” variation. We abbreviate the multi-study
stacking generalist as MSSG, the specialist as MSSS and the no data reuse specialist as MSSSN. We denote the
corresponding ensemble (stacking) weights associated with a model fit to study k aswG

k , wS
k orwSN

k . We do not need to
distinguish between model parameters for different MSS procedures because they are equal for all MSS methods; only
ensemble weights, estimated in stage B), differ. We refer to the two-stage multi-study stacking methods collectively
as MSS methods. Similarly, we collectively refer to the optimal ensemble approaches as OEC methods.

2.2 Optimal Ensemble Construction

We now introduce the OEC counterparts of MSSG, MSSS and MSSSN, which we refer to as OECG, OECS and OECSN,
respectively. We consider a single SSL per study. To avoid confusion with the two-stage multi-study stacking of
section 1.2, we denote the model parameters associated with the SSL fit to data from study k as βG

k , βS
k, βSN

k ∈ Rp+1

and the ensemble weights by αG
k , αS

k and αSN
k , respectively. We also include ensemble intercepts that we do not

constrain to be non-negative which we denote αG
0 , αS

0, αSN
0 . We denote the corresponding vectors, which include

both the study-specific ensemble weights and the intercept, by αG,αS ∈ Rp+1, and αSN ∈ Rp. We denote BG,
BS ∈ Rp+1×K and BSN ∈ Rp×K to be matrices of study-specific model coefficients. For example, column k of BG

is equal to βG
k . The SN parameters αSN and BSN ∈ Rp×K have dimension p rather than p + 1 as they do not contain

components corresponding to study k∗, as we will further clarify later. Here we focus on the linear-linear OEC, where
the optimal coefficients for SSL and the ensemble weights are given by solutions to the following joint optimization
formulations.

Generalist OEC (OECG): We begin with the generalist OEC loss function, defined in the linear-linear case as

min
αG≥0, αG

0

min
BG

η
 1

2N

∥∥∥∥∥y − αG
01−

K∑
k=1

αG
kXβG

k

∥∥∥∥∥
2

2

+
µ

2

∥∥DK+1α
G
∥∥2
2

 +

(1− η)

[
K∑
k=1

1

2nk

∥∥yk − XkβG
k

∥∥2
2

+
1

2

K∑
k=1

λk
∥∥Dp+1β

G
k

∥∥2
2

]}
(1)

where dimensions are as specified above, and where µ and λk’s are regularization parameters for the corresponding
regression models. The top term in (1) is the loss for the (penalized) non-negative least squares regression used to
calculate ensemble weights, and the bottom term in (1) is the sum of study-specific Ridge-regularized least squares
loss functions. The overall objective function is a convex combination of these two terms—the weight η controls
whether the optimization procedure will seek better study-specific SSL fits (low η) or fits of the SSLs that better
contribute to the ensemble as a whole (high η).

Specialist OEC (OECS): The OECS formulation is similar except that only data from the target study, k∗, is
included in the portion of the objective function involving ensemble weights. The resulting optimization formulation
is

min
αS≥0, αS

0

min
BS

η
 1

2nk∗

∥∥∥∥∥yk∗ − αS
01−

K∑
k=1

αS
kXk∗βS

k

∥∥∥∥∥
2

2

+
µ

2

∥∥Dp+1α
S
∥∥2
2

 +

(1− η)

[
K∑
k=1

1

2nk

∥∥yk − XkβS
k

∥∥2
2

+
1

2

K∑
k=1

λk
∥∥DK+1β

S
k

∥∥2
2

]}
(2)
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No Data Reuse Specialist OEC (OECSN): Formulation (2) can be modified to yield the OECSN which does not
include a study-specific learner for the target study, k∗ and determines parameters and weights by solving:

min
αSN≥0, αSN

0

min
BSN

η
 1

2nk∗

∥∥∥∥∥∥yk∗ − αSN
0 1−

K∑
k 6=k∗

αSN
k Xk∗βSN

k

∥∥∥∥∥∥
2

2

+
µ

2

∥∥DKαSN
∥∥2
2

 +

(1− η)

 K∑
k 6=k∗

1

2nk

∥∥yk − XkβSN
k

∥∥2
2

+
1

2

K∑
k 6=k∗

λk
∥∥DpβSN

k

∥∥2
2

 (3)

The parameters βSN
k∗ and αSN

k∗ are not included in the objective function or the decision variables.

Throughout, we denote by α̂ and β̂, with appropriate subscripts and superscripts, solutions of these optimization
problems. We obtain these estimates by applying the block coordinate descent method described in Supplemental
Figure 7 to the corresponding optimization problem.

The loss function associated with the OECSN differs from the no data reuse specialist stacking objective proposed
in Ren and others (2020). We implemented this modification because the algorithm proposed by Ren and others
(2020) does not lend itself to an OEC form that rules out data reuse. While the approach does properly exclude data
reuse when implemented in a two-stage procedure, a direct generalization as a joint optimization approach would not
prevent reuse because the different folds of the target study data, and the corresponding model coefficients, would be
tied through the shared estimation of the ensemble weight wk∗ .

Throughout the paper, we distinguish between generalist and specialist, algorithms. For this reason, when fitting a
model or ensemble to make predictions on some new, unseen dataset, (denoted here as study K + 1), we compare the
performances of MSSG, OECG, and ToM. When we aim to make predictions on a new observation in a target study
for which we have limited training data (study k∗), we compare the MSSS with the OECS and the MSSSN with the
OECSN. We also compare these last four methods to SSM, a model fit only to the training data of the target study, to
examine whether borrowing information is beneficial for prediction performance.

The main methodological question we examine here is whether jointly optimizing ensemble weights and linear model
parameters improves prediction performance above two-stage multi-study stacking. We examine this for generalist
and specialist multi-study stacking. The possible ensembling methods can be described by a 2 × 2 table: OEC/MSS
× specialist/generalist. For specialist stacking, we also examine performance with and without data reuse.

2.3 Connections between OEC and earlier methods

The following observations provide insight into the properties of the OEC framework, as they show that, if both the
SSL and the ensemble weight component of the loss are linear models with no regularization on model parameters or
ensemble weights, then the ToM, SSM and two-stage multi-study stacking methods are special cases. We present the
results in the OECG, OECS and OECSN cases specifically. Proofs can be found in Supplemental section 12.

The optimization problems corresponding to the OECG, OECS and OECSN with no regularization on model parameters
or ensemble weights are:

OECG Without Regularization

min
αG≥0, αG

0

BG

 η

2N

∥∥∥∥∥y − αG
01−

K∑
k=1

αG
kXβG

k

∥∥∥∥∥
2

2

+ (1− η)

K∑
k=1

1

2nk

∥∥yk − XkβG
k

∥∥2
2

 (4)
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OECS Without Regularization

min
αS≥0, αS

0

BS

 η

2nk∗

∥∥∥∥∥yk∗ − αS
01−

K∑
k=1

αS
kXk∗βS

k

∥∥∥∥∥
2

2

+ (1− η)

K∑
k=1

1

2nk

∥∥yk − XkβS
k

∥∥2
2

 (5)

OECSN Without Regularization

min
αSN≥0, αSN

0

BSN

 η

2nk∗

∥∥∥∥∥∥yk∗ − αSN
0 1−

∑
k 6=k∗

αSN
k Xk∗βSN

k

∥∥∥∥∥∥
2

2

+ (1− η)
∑
k 6=k∗

1

2nk

∥∥yk − XkβSN
k

∥∥2
2

 (6)

Proposition 1 provides insights into the optimal solutions of the OEC by characterizing how these solutions relate to
parameter estimates from earlier methods.

Proposition 1.

Case 1.1. (OECG) Let (α̂G(η), B̂G(η)) be optimal solutions to optimization problem (4). Then as η → 1−,
(α̂G(η), B̂G(η)) will converge to the solutions of:

min
αG,BG

K∑
k=1

1

2nk

∥∥yk − XkβG
k

∥∥2
2

s.t.
1

2N

∥∥∥∥∥y − αG
01− X

K∑
k=1

αG
kβ

G
k

∥∥∥∥∥
2

2

= f∗

where, f∗ = minαG≥0,αG
0,BG

1
2N

∥∥∥y − αG
01− X

∑K
k=1 α

G
kβ

G
k

∥∥∥2
2
.

Case 1.2. (OECS) Let (α̂S(η), B̂S(η)) be optimal solutions to optimization problem (5). Then as η → 1−,
(α̂S(η), B̂S(η)) will converge to the solutions of:

min
αS,BS

K∑
k=1

1

2nk

∥∥yk − XkβS
k

∥∥2
2

s.t.
1

2nk∗

∥∥∥∥∥yk∗ − αS
01− Xk∗

K∑
k=1

αS
kβ

S
k

∥∥∥∥∥
2

2

= f∗

where, f∗ = minαS≥0,αS
0,BS

1
2nk∗

∥∥∥yk∗ − αS
01− Xk∗

∑K
k=1 α

S
kβ

S
k

∥∥∥2
2
.

Case 1.3. (OECSN) Let (α̂SN(η), B̂SN(η)) be optimal solutions to optimization problem (6)

Then as η → 1−, (α̂SN(η), B̂SN(η)) will converge to the solutions of:

min
αSN,BSN

∑
k 6=k∗

1

2nk

∥∥yk − XkβSN
k

∥∥2
2

s.t.
1

2nk∗

∥∥∥∥∥∥yk∗ − αSN
0 1− Xk∗

∑
k 6=k∗

αSN
k β

SN
k

∥∥∥∥∥∥
2

2

= f∗

where, f∗ = minαSN≥0,αSN
0 ,BSN

1
2nk∗

∥∥∥yk∗ − αSN
0 1− Xk∗

∑K
k=1 α

SN
k β

SN
k

∥∥∥2
2
.

Case 1.1 implies that in the generalist setting, when η → 1−, optimal OECG estimates will yield fitted values equal
to those produced by the ToM linear model (without regularization): Xγ̂ToM = α̂G

01 + X
∑
k α̂

G
k β̂

G
k where γ̂ToM =

minγToM

∥∥y − XγToM
∥∥2
2
. When X is of full rank, the equivalence can be stated in terms of the parameter estimates

directly (and thus predictions made using these solutions): γ̂ToM = α̂G
0 +

∑
k α̂

G
k β̂

G. Case 1.2 states that in specialist
settings, when η → 1−, optimal OECS solutions will yield fitted values equal to those produced by a linear model fit
only to the target study, (i.e., study k∗): Xk∗ γ̂k∗ = α̂S

01 + Xk∗
∑
k α̂

S
kβ̂

S
k where γ̂k∗ = minγk∗ ‖yk∗ − Xk∗γk∗‖22.

Similarly, Case 1.3 states that Xk∗ γ̂k∗ = α̂SN
0 1 + Xk∗

∑
k 6=k∗ α̂

SN
k β̂

SN
k . When Xk∗ is of full rank it follows that

γ̂k∗ = α̂S
0 +

∑
k α̂

S
kβ̂

S = α̂SN
0 +

∑
k α̂

SN
k β̂

SN.

We next characterize the optimal OEC solutions when η is taken to the opposite extreme.
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Proposition 2.

Case 2.1. (OECG) Let (α̂G(η), B̂G(η)) be optimal solutions to optimization problem (4). Then as η → 0+,
(α̂G(η), B̂G(η)) will converge to a solution to the following:

min
αG≥0,αG

0,BG

∥∥∥∥∥y − αG
01− X

K∑
k=1

αG
kβ

G
k

∥∥∥∥∥
2

2

s.t.
K∑
k=1

1

2nk

∥∥yk − XkβG
k

∥∥2
2

= g∗

where, g∗ = minBG
∑K
k=1

1
2nk

∥∥yk − XkβG
k

∥∥2
2
.

Case 2.2. (OECS) Let (α̂S(η), B̂S(η)) be optimal solutions to to optimization problem (5). Then as η → 0+,
(α̂S(η), B̂S(η)) will converge to a solution to the following:

min
αS≥0,αS

0,BS

∥∥∥∥∥yk∗ − αS
01− Xk∗

K∑
k=1

αS
kβ

S
k

∥∥∥∥∥
2

2

s.t.
K∑
k=1

1

2nk

∥∥yk − XkβS
k

∥∥2
2

= g∗

where, g∗ = minBS
∑K
k=1

1
2nk

∥∥yk − XkβS
k

∥∥2
2
.

Case 2.3. (OECSN) Let (α̂SN(η), B̂SN(η)) be optimal solutions to optimization problem (4). Then as η → 0+,
(α̂SN(η), B̂SN(η)) will converge to a solution to the following:

min
αSN≥0,αSN

0 ,BSN

∥∥∥∥∥∥yk∗ − αSN
0 1− Xk∗

K∑
k 6=k∗

αSN
k β

SN
k

∥∥∥∥∥∥
2

2

s.t.
∑
k 6=k∗

1

2nk

∥∥yk − XkβSN
k

∥∥2
2

= g∗

where, g∗ = minBSN
∑
k 6=k∗

1
2nk

∥∥yk − XkβSN
k

∥∥2
2
.

Proposition 2 shows that as η → 0+, the optimal OEC solution yields fitted values equal to those of its MSS counter-
part. For example, in the generalist case, as η → 0+, we have ŵ01 + X

∑
k ŵ

G
k γ̂ = α̂G

01 + X
∑
k α̂

G
k β̂

G
k . If each Xk

is full rank for k ∈ [K], Proposition 2 states that MSSG, MSSS and MSSSN are special cases of their corresponding
OEC counterparts that arise when η → 0+. For example, in the generalist case, if each of the Xk are full rank, then
ŵG = α̂G and γ̂k = β̂G

k ∀k ∈ [K].

Together, these propositions demonstrate that in the linear-linear setting, without regularization, the OEC encompasses
important special cases and earlier multi-study methods: MSSG is a special case of OECG, arising when η → 0+,
while pooling datasets with the ToM approach is a special case arising when η → 1−. Similarly, MSSS is a special
case of the OECS, arising when η → 0+, while a study-specific model is obtained when η → 1−. These propositions
examine behavior at the extremes, and suggest that, for intermediate values of η, the OEC can be viewed as a trade-off
between MSSG and pooling datasets together before model fitting (i.e., the ToM) in the generalist case. In the specialist
case, the propositions suggest that the OEC can be framed as a trade-off between MSSS and only fitting a model on the
target study. In our motivating application, we visualize this trade-off in the no data reuse specialist case by showing
how predicted values of the OEC smoothly vary between the predictions of the study-specific model and the MSSSN

as a function of η ∈ (0, 1). Across the range of η, the OEC allows for a spectrum of solutions that range in both the
manner and degree to which information is borrowed from other sources.

3 Application: Counterfactual Mortality Prediction

3.1 Data

We consider a data source recently developed by the Human Mortality Database, called the Short-term Mortality
Fluctuations (STMF) data series (Jdanov and others). The STMF data series provides weekly death counts and death
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rates for 38 countries, as outlined in Supplementary Table 7. We denote the reported death rates for country k at week
t by Ỹt,k. STMF calculates it as the observed weekly death count, Ct,k divided by an annual measure of population
size Nl,k, that is: Ỹt,k = Ct,k/Nl,k when week t occurs during year l. As a result, these death rates exhibit artificial
discontinuities at the start of each calendar year, that are an artifact of changing the annual population size from Nl,k

to Nl+1,k. To avoid this, we followed the strategy outlined in US Census Bureau (2012). We calculated the mid-year
population size, Nl,k, (i.e., observed population counts taken on July 1 of year l) from the death rates and death counts
provided by STMF. We then linearly interpolated population size by regressing the annual population estimates, Nl,k
against year, l, and used the regression fit to calculate weekly estimates of population size: P̂t,k = β̂0

†
+ β̂1

†
t, where

β̂0
†

and β̂1
†

were linear model coefficient estimates from this regression. Finally we calculated new annual death rates
(per 1,000 individuals) as Ykt = 1, 000× 52× Ct,k/P̂k,t.

We only used test countries in the Northern hemisphere since the model was based on seasonal effects modeled by
calendar date. There are only three countries from the southern hemisphere in STMF (Australia, New Zeland and
Chile) a set too small to fit a model borrowing information across countries, thereby resulting in poor performance.
We did, however, allow the OEC methods to leverage information from countries in the Southern hemisphere when
training models tailored to countries in the Northern hemisphere. For any given test year, we required countries to have
at least 2 years of data at that point to serve as auxiliary sources (i.e., countries from which we can borrow information
for a given test country/year). We started testing at 2003 because prior to 2003 there was little data and excessive
variability year-to-year in the number of training countries.

3.2 Study-specific models

It is common to model expected death counts as a function of seasonal and secular trends in mortality. We modeled
annual death rates, Yk,t, with the following linear model:

E[yk,t |xk,t] = γk,0 + γk,1t+

2∑
j=1

[
γk,j+1 sin

(
2πjt

52

)
+ γk,j+3 cos

(
2πjt

52

)]
(3)

where γk,1 represents a linear effect of time to capture secular trends in mortality, and γk,2:p represents the effect
of the Fourier basis function to capture seasonal changes. Model (3) can be represented in the familiar linear form,
E[yk,t |xk,t] = xTk,tγ, where the elements of xk,t simply contain basis expansions of time. One could adopt, for
example, a Poisson likelihood for the conditional distribution of the death counts given the covariates (i.e., basis
expansions of time). However, weekly death counts were in the hundreds for all countries except Luxembourg and
Iceland and most countries recorded weekly counts in the thousands. Since the counts were high, we expect a Gaussian
to provide a good approximation to a Poisson distribution. Since we sought to borrow information across countries, we
modeled rates instead of counts to make the outcome more comparable across the countries in the database. We opted
for model (3) assuming yk,t |xk,t follows a Gaussian distribution instead of a Poisson for computational convenience.
In Supplementary Figures 10-12 we show the results of sensitivity analyses where we omit the linear effect of time
γk,1t from model (3).

3.3 Application: Problem Statement and Assessment of Methods

Excess mortality in country k, at week t, can be defined as the observed death count minus the rate expected in the
counterfactual world in which COVID-19 never existed. Estimating excess deaths therefore requires a prediction of
mortality in the counterfactual world where a disaster did not occur. In practice, this prediction is the expected death
counts in a particular week given historical data (i.e., all data before the onset of the disaster). Unfortunately, prediction
performance in such settings is unverifiable. Hence, to assess if our methods are useful for counterfactual prediction,
we trained models and tested their performance on historical data where no pandemic occurred, so that a ground-truth
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was known. Heuristically, the rationale is that if the baseline model has high prediction accuracy on historical data,
we expect it would also predict counterfactual mortality well.

We tested predictors generated using the OECS and the OECSN against their MSSS and MSSSN counterparts. We also
implemented a SSM (which we refer to interchangeably as a “country-specific model” here), in which we did not
borrow information from other countries. In all approaches, we used model (3) as the single-study learner.

We sought to evaluate prediction performance for all countries meeting the inclusion criteria in the database across
a range of training/testing years. We assessed our question first in the STMF dataset using a time-series hold-one-
country-out testing procedure. That is, we trained models on a subset of historical data (i.e., a subset of years), made
predictions on held out historical data and computed performance metrics (e.g., RMSE) to quantify the quality of the
predictions. We tailored our approach to assess whether our method improved performance when there exists little
pre-COVID-19 training data for the target country. Specifically, for each target country and year (from 2003-2019)
we artificially assumed only having one year of training data from that target country in the database. We then made
predictions of mortality in that country for the following year and compared those predictions to what was observed.

Our approach is illustrated in Figure 1. To fix ideas, say we are interested in making predictions for the Country 1 in
2014. We would use data from Country 1 in 2014 as a test set and trained a country-specific model on US data from
only 2013 (i.e., simulating only having one year’s worth of data). To analyze the performance when we borrowed
information, we allowed the MSSS, MSSSN, OECS and OECSN to use data from any other country that had at least
100 weeks of training data prior to 2014 (e.g., 2011, 2012 and 2013). All data after the start of the test period was
discarded and any country that did not have enough training data was not used as an auxiliary source. All approaches
were compared based upon their prediction performance on US data from 2014. We repeated this procedure for every
feasible year between 2003 and 2019 and for all countries (assuming the above inclusion criteria are met). The test
period was set to an entire year to assess the performance of the method’s estimation of both secular and seasonal
trends as well as to mimic the long term predictions required for COVID-19 excess mortality estimation.

3.4 Multi-study Modeling and Parameter Tuning

We ran analyses both with and without a Ridge (squared `2) penalty term on the country-specific model parameters
and the ensemble weight parameters. The inclusion of a penalty was kept consistent across all methods that we
implemented. This was to ensure that any gains in performance achieved through the OEC could not have been
attained through simple regularization.

We centered and scaled covariates prior to model fitting. We tuned η in expression (1) using cross validation procedures
specific to generalist and specialist settings. For the OECS and OECSN, we tuned η specifically for the target study.
We divided the training set for study k∗ into K folds (i.e., we set the number of folds to K, the number of training
studies) and used each fold as a validation set. For OECG, we tuned η with a K-fold cross validation procedure
in which the folds were constructed to be study-balanced in order to encourage generalizability to an unseen study.
The `2 regularization parameter associated with ensemble weights, µ, was tuned using a K-fold, study-balanced,
cross validation scheme separately using the OECG algorithm. We kept this tuning parameter fixed across all OEC
algorithms. Similarly, we tuned the `2 regularization parameter associated with the stacking regression again using a
K-fold cross validation. We tuned study-specific model regularization parameters associated with the Ridge penalty
using a within-study (i.e., within-country) K-fold cross validation scheme and kept these fixed across all methods
implemented (i.e., ToM, SSM, and all OEC and MSS approaches). The `2 regularization parameter associated with
ToM algorithm was tuned using a hold-one-study-out cross validation (e.g., theKth fold merged all studies, 1, ...,K−
1, fit a single model and validated on study K).
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(a) Example observed data. Countries have different amounts of data before the onset of COVID-19 that
could be used for training and validation.

Onset of Covid-19

Country 3

Country 1

Country 2

Country 4

Country 5

20202019201820172016201520142013201220112010

Current iteration year
Training data Test year

Years of training data

(b) Architecture of leave-one-country-out prediction experiments.

Figure 1: Illustration of the validation scheme. Country 1 is used as a test country. Year 2013 from country 1 is utilized
for training and year 2014 is taken as a test set; other data from country 1 is discarded for training or testing purposes.
Country 2 and country 4 are used in multi-study versions. Data after the test year is discarded. Country 5 and Country
3 are not utilized since they do not have data before the test year 2014. This prediction is repeated for each year and
country that meet the criteria for inclusion.

3.5 Application Results: COVID-19

We present results by test-year for both the the OECS and OECSN in Figure 2 and Supplemental Figure 9. We present
results from models fit both with study-specific Ridge penalties (Supplemental Table 6) and without them (Table 1).
Table 1 only contains a subset of years (2010-2019) for purposes of visual presentation but a version of the table
including all years (2003-2019) can be found in Supplemental Table 5. Although we fit the generalist methods ToM,
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OECG and MSSG, their performance was uniformly poor. This is not surprising given that this application involves
transfer learning. As a result, we do not present these results here.

The figures and tables demonstrate that borrowing information through two-stage stacking procedures (MSSS or
MSSSN) or their OEC counterparts (OECS and OECSN) has strong benefits with or without regularization. Impor-
tantly, the OECS substantially outperformed both a country-specific model and the MSSS. The OECSN outperformed
the MSSSN but improvements were more modest than those comparing the OECS and the MSSS. The OECSN and
MSSSN substantially outperformed the OECS and the MSSS, respectively. We also present the results relative to a
country-specific model to show the relative performance of the OEC and MSS methods in Supplemental Figure 9.
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Figure 2: RMSEOEC/RMSEMSS . Performance of OEC methods relative to their multi-study stacking counter-
parts: values below 1.00 indicate OEC method produces superior performance relative to MSS version. The x-axis
indicates the year of the last day in the test-set.

Method Test Year
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

MSSS 0.98 0.92 0.97 0.91 0.92 0.94 0.95 0.90 0.97 0.92
OECS 0.60 0.72 0.76 0.70 0.62 0.84 0.63 0.72 0.59 0.61
MSSSN 0.54 0.71 0.74 0.69 0.60 0.86 0.58 0.69 0.40 0.58
OECSN 0.53 0.71 0.74 0.68 0.60 0.86 0.57 0.70 0.38 0.52

Table 1: Average RMSEMethod/RMSESSM . Performance of ensembling methods relative to a country-specific
model that was fit without a country-specific Ridge penalty. Columns indicate test year.

When training data is limited, including a linear term for time to capture secular trends in a country-specific model may
introduce identifiability issues. This is because the model may struggle to distinguish between seasonal and secular
trends when trained on a single year of data, even with regularization. While we showed that borrowing information
alleviates this issue, we wanted to ensure the multi-study approach was still beneficial compared to a simpler model
with no linear effect of time. In the supplemental section we present results from analyses using a model with no
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linear term (4). We are not aware of past analyses that only model mortality with seasonal trends, but we explored
these results as a sensitivity analysis to further characterize how the OEC methods improve performance over MSS
methods. First, we compared an OEC with a linear trend to a country-specific model with no linear trend (Supplemental
Figure 10). The OECSN consistently outperformed the simpler country-specific model, but the OECS and two-stage
specialist stacking did not. This may suggest that the country-specific model struggled with identifiability problems
and that the OECS and MSSS may place too large an ensemble weight on that target country’s model. The MSSSN

and OECSN avoid this problem by only using the target data to calculate ensemble weights. This is consistent with
previous reports about limitations of the data re-use approach MSSS (Ren and others, 2020).

We next compared the OECS and OECSN models fit with no linear trend to their MSS counterparts. In both, the
design matrix only included Fourier basis terms. Results from this analysis can be found in Supplemental Figure 12.
In this simpler modeling scheme as well, the OECS and OECSN approaches outperformed their MSS counterparts,
suggesting that the OEC approach can improve the estimation of both seasonal and secular trends. Importantly, the
OECSN and OECS performed comparably. This may suggest that the OECSN yields the greatest benefit over OECS

when the modeling scheme is susceptible to problems related to identifiability or over-fitting. Finally, we compared
OECSN and OECS models fit with no linear term for time to a country-specific model without a linear term for time
(Supplemental Figure 11). These results demonstrate that also in the simpler modeling case, there are strong benefits
to borrowing information with the OEC approach.

The present work seeks to develop methods to improve prediction performance when training data for a target study
(country) is limited. We conducted a sensitivity analysis to characterize how prediction performance varies as a
function of the quantity of training data available for the target study. Supplemental Figure 8 shows that OECS was
associated with superior prediction performance compared to both a SSM and a MSSS when the target study had as
much as three years of training data, although the benefit monotonically decreased as number of training observations
increases. Importantly, borrowing information was never detrimental, on average, in any of the settings explored.

We conclude the application with an example to demonstrate that the country-specific model and the MSSSN are
special cases of the OECSN that arise from limiting values of η ∈ (0, 1] (Figure 3). We selected the country and test
year presented in the figure to show an example that yielded country-specific estimates and OECSN estimates that were
different enough to visually depict the effect of η but did not overstate the utility of borrowing information with either
MSSSN or OECSN. This test year exhibit a spike in mortality counts for three consecutive outlying weeks early in the
year. This type of pattern occurred commonly across countries and years and is difficult for any modeling approach
to capture. As η → 0, the OEC predictions approach that of the MSSSN. As η → 1, the OECSN predictions approach
that of the country-specific model.
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Figure 3: Fitted values and predictions of OECSN as a function of η. As η → 1, the OECSN predictions approach those
of the country-specific model (SSM). When η → 0, the OECSN predictions approach those made by NDR Specialist
Stacking (MSSSN). We show η ∈ [0, 0.9] as a color gradient to zoom in on the most sensitive part of the tuning curve
in this example. Gray lines indicate predictions for η < 0.9. Light (dark) gray points to the left (right) of the dotted
vertical line are training (test) samples. Lines indicate fitted values (predictions) to the left (right) of the dotted vertical
line.

4 Data-driven simulations based on COVID-19 Mortality Application

4.1 Design of Data-Driven Simulation Experiments

We next conducted data-driven simulations to explore the COVID-19 application in a setting where we could compare
predictions against a ground-truth. We simulated data from a linear mixed effects model:

yk,t = xTk,tθk + εk,t

where θk ⊥⊥ εk, θk ∼ Np(µθ, σ
2
θΣθ) and xk,t ∈ Rp+1 which includes a column of ones for an intercept. xk,t

includes only basis expansions of time and was constructed as described above in the COVID-19 application. We
chose the parameters of the random effects distribution based on estimates from the COVID-19 data. Denoting by
γ̂k the coefficient estimates from an OLS fit to all observed data (i.e., all years prior to 2020) from country k, we
define µθ = ¯̂γ = 1

K

∑
k γ̂k to be the sample mean of each coefficient, averaged across country-specific estimates.

To explore the impact of heterogeneity in model coefficients on prediction performance we choose multiple scenarios
for σ2

θ . For Σθ, we used the empirical covariance matrix from the application by setting Σθ = Σ̂γ where Σ̂γ =
1

K−1
∑
k(γ̂kγ̂

T
k −K ¯̂γ ¯̂γT ). We assumed that the residuals of study k are distributed as εk ∼ Nnk

(0, σ2
εk
I). We selected

the variance of the residuals, σ2
εk

, by sampling with replacement from the vector of estimated residual variances from
each of the country-specific models [ σ̂2

ε1 , ..., σ̂
2
εK ]T . This allowed us to realistically emulate the variability in noise

associated with the observed COVID-19 data from each of the countries.
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The design matrix for study k, Xk is constructed as in the COVID-19 application from time (in weeks): it includes a
linear effect for time and 4 terms that are Fourier basis expansions of time for seasonal trends. Including the column of
ones for the intercept, Xk ∈ Rnk×6. The test country was set to have 52 weeks of (weekly) training data (nk∗ = 52)
and 52 weeks of test data. We drew nk, the number of weeks of training data for k ∈ [K] \ k∗, from a discrete
uniform: nk ∼ Unif(104, 517). The parameters of the uniform were selected based upon the observed sample size
in the real dataset and to ensure each study, for k ∈ [K] \ k∗, had at least twice as many weekly observations as
the target country, k∗. Although the errors εk are i.i.d, the basis functions used in the simulation scheme induces
autocorrelation in the outcome yk, which we explored by inspection of the empirical autocorrelation function (ACF).
We included a Ridge penalty in the stacking regression for the MSS methods. We included a Ridge penalty in the
ensemble weighting component of the loss in the OEC methods as well. We assessed performance of the MSS and
OEC methods with and without study-specific Ridge penalties. We present results with study-specific Ridge penalties
in the supplement (Supplemental Figure 13; Supplemental Table 8). Results were comparable with and without the
study-specific penalties.

4.2 Data-Driven Simulations Results

In almost all settings explored, the OEC and MSS approaches substantially outperformed simply using a country-
specific model. The OECS appears to perform better compared to the MSSS when the magnitude of between-study
heterogeneity in true model coefficients, (σ2

θ ) is lower. Conversely, the OECSN performed better relative to the MSSSN

approach when the σ2
θ was higher. Both the OECS and OECSN performed better relative to their MSS counterparts

for lower K, although the effect of K on performance varied as a function of the magnitude of σ2
θ . Importantly,

the OECS and OECSN almost never yielded worse average performance than their MSS counterparts and they often
conferred substantial benefit. In the rare instances where the OEC exhibited worse average performance than its MSS
counterpart, it was only by roughly 1%. These results demonstrate 1) borrowing information is almost uniformly
beneficial and 2) the OEC approaches almost always outperformed using a MSS method.

Parameters OECS vs. MSSS OECSN vs. MSSSN

σ2
θ σ2

θ

K 0.25 0.5 1.0 2.0 4.0 0.25 0.5 1.0 2.0 4.0

2 0.94 0.99 0.98 0.97 0.97 0.97 0.95 0.94 0.92 0.89
5 0.93 0.94 0.95 0.97 0.99 1.00 1.00 1.00 1.00 0.98
8 0.93 0.93 0.94 0.94 0.99 1.00 1.00 0.99 0.97 0.98

25 0.94 0.92 0.95 0.95 0.98 1.00 1.00 1.00 0.98 0.98
30 0.90 0.95 0.95 0.97 1.00 1.00 1.01 0.99 0.98 0.98

Table 2: Average data-driven simulation performance: RMSEOEC/RMSEMSS . Columns indicate σ2
θ and rows

indicate K, number of studies. Monte carlo error was at most 0.002.

5 General Simulations

5.1 Design of Simulation Experiments

We next report on a second set of simulations whose goal is to characterize the performance of both the “generalist”
and “specialist” algorithms, outside of a time series setting. We simulated datasets to characterize the effect of three
features of multi-study settings on the performance of our proposed methods: 1) covariate-shift (heterogeneity in
fxk

(Xk) across studies), 2) concept-shift (heterogeneity in fyk | xk
(yk |Xk) across studies), and 3) study clusters
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Figure 4: Performance of the OECS and OECSN compared to their MSS counterparts in data-driven simulations.
Figures are zoomed in to easily visualize differences.
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Parameters OECS MSSS OECSN MSSSN

K σ2
θ vs. Study-Specific Model

2 0.25 0.91 0.96 0.82 0.85
2 1.00 0.96 0.98 0.96 1.05
2 4.00 0.96 0.98 1.06 1.24

8 0.25 0.86 0.94 0.80 0.80
8 1.00 0.88 0.94 0.81 0.82
8 4.00 0.90 0.92 0.89 0.93

30 0.25 0.83 0.92 0.81 0.81
30 1.00 0.85 0.90 0.84 0.84
30 4.00 0.90 0.89 0.89 0.91

Table 3: Average data-drive simulation performance without regularization at different K and σ2
θ . Performance of

each method is RMSEOECS/RMSESSM , where SSM denotes a study-specific model, fit only on the target study.
Monte carlo error was at most 0.0073.

across which (1) and (2) vary. We generated clusters as in (Loewinger and others, 2021): groups of studies that shared
similar distributions, fXk

(Xk) and fyk |Xk
(yk |Xk). To control both within and between-cluster heterogeneity in

fyk |Xk
(yk |Xk), we simulated fyk | xk

(yk |Xk) from a linear mixed effects model that included both cluster-specific
and study-specific random effects:

yk = Xk(θk + δc) + εk,

where study k is in cluster c, δc ∈ Rp+1 is a cluster-specific random effect and θk ∈ Rp+1 is a study-specific random
effect. We independently drew δc |µδ ∼ Np+1(µδ, σ

2
δ I) and θk,j ∼ Unif(−σ2

δ/20, σ2
δ/20) so that that random

effects varied across studies within a cluster by a degree proportional to the between-cluster heterogeneity. The vector
of random effects δc is centered at the fixed effects, µδ ∈ Rp+1, where we independently drew µδ,j ∼ Unif(−2, 2).
We simulated the random effects to be independent of the error term: θk ⊥⊥ εk and δc ⊥⊥ εk. As above, Xk
includes a column of ones so that the model includes an intercept. We conditionally drew εki |σ2

εk
∼ Nnk

(0, σ2
εk
Ink

)

where σ2
εk
∼ Unif(1, 2), inducing heterogeneity between studies in the variance of the residuals. We drew nk ∼

Unif(150, 300) (discrete uniform). nk∗ = 50 (the training set for the target study). ntest = 100 (test set for each
iteration). We selected these values to ensure that nk > nk∗ . These sample size values were motivated by the ratio of
nk/nk∗ observed in the application. We selected K = 5 since many multi-study settings encountered in practice have
few training studies available. We selected p = 20 and set 10 coefficients to 0, to model sparsity in the true model
coefficients, as relevant in many prediction settings.

We simulated the covariates so that the marginal distribution of the covariates, fXk
(Xk), differed across studies and

clusters. We drew a vector of covariates for observation i of study k as xk,i |µXk
∼ Np(µXk

,ΣX) where ΣX is
a covariance matrix that was randomly generated (i.e., varied across simulation iterations) but was held fixed across
studies within an iteration and µXk

was a study specific vector of covariate means. To induce covariate shift, we
modeled the means of the covariates in study k and cluster c as

µXk
= ζc + τk

where ζc, τk ∈ Rp. We drew cluster-specific covariate means, ζc | µ̃ ∼ Np(µ̃, σ
2
XI) and we independently drew

τk ∼ Unif(−0.05, 0.05). Therefore σ2
X controls the magnitude of heterogeneity across clusters in the means of the
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covariates. We independently drew µ̃j ∼ N(5, 10). Thus studies differed within and across clusters in the covariate
distributions.

We simulated sets of studies both with and without study clusters. In the “no cluster” case, we drew each training and
test study to be in a separate cluster (C = 6). In the “cluster” case, we generated three clusters with two studies per
cluster (C = 3). The test study was also generated as belonging to one of the same three clusters.

We simulated 100 iterations for each set of simulation parameters, each iteration consisting of a set of training studies
and a test set. Each iteration therefore produced an RMSE for each method. We show the distribution of these RMSEs
across the 100 iterations in figures below.

We used both Ridge regression and OLS as the single-study learners. We tuned model parameters as in the COVID-
19-driven simulations. We present figures and results without study-specific Ridge penalties in Supplemental Section
11.

5.2 Results

We present results comparing each OEC approach to the corresponding two-stage stacking approach, to investigate
whether jointly training an ensemble in this framework is superior to training the ensemble with MSS. We included a
subset of the results in Table 4 and the full version in Supplemental Table 14. We also present the results relative to a
common baseline in Supplemental Table 13.

Parameters OECG MSSG OECS MSSS OECSN MSSSN

C σ2
X σ2

δ vs. ToM vs. Study-Specific Model

3 0.01 0.01 0.99 1.00 0.87 0.99 0.84 0.84
3 1.50 0.01 0.96 1.07 0.85 0.99 0.85 0.83
3 0.01 1.00 0.98 0.99 0.94 0.99 0.89 0.85
3 1.50 1.00 1.02 1.85 1.01 0.99 0.99 0.85

6 0.01 0.01 1.00 0.99 0.89 0.98 0.86 0.85
6 1.50 0.01 0.97 1.00 0.89 0.98 0.86 0.85
6 0.01 1.00 1.06 0.99 1.01 0.99 1.03 1.75
6 1.50 1.00 1.12 1.15 1.03 0.99 1.06 1.74

Table 4: Average simulation performance with (C = 3) and without (C = 6) clustering at varying degrees of covariate-
shift (σ2

X ) and variance of random effects (σ2
δ ). Each section indicates the performance of the method (e.g., OECG)

relative to a baseline of the ToM algorithm or a study-specific model respectively (e.g., RMSEOECG / RMSEToM,
RMSEOECS / RMSEMSSS ). Monte Carlo error was at most 0.003.

The OECG outperformed the MSSG across all values of both σ2
X and σ2

δ , when there was clustering in the studies.
The OECG outperformed the ToM across all values of σ2

X and σ2
δ except for very high levels of σ2

δ , where the two
algorithms were comparable. When there was no clustering, the OECG outperformed both the ToM and the MSSG at
lower values of σ2

δ and was comparable to both algorithms at higher values of σ2
δ .

The OECS exhibited superior performance compared to the MSSS in most settings explored. However, when at high
levels of σ2

δ and when the data exhibited no clustering, the algorithms performed comparably. The OECSN tended
to perform better when there was no clustering and there was higher variance of the random effects. When the data
exhibited clustering, the MSSSN performed comparably or slightly better than its OEC counterpart in all settings
explored.
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Figure 5: Performance of the OECS compared to MSSG and the ToM algorithm. Figures are zoomed in to easily
visualize important differences.

While covariate shift appeared to influence the relative performance of the methods in the generalist setting, it did not
appear to explain much of the variability in performance of the OEC in the specialist case (i.e., OECS and OECSN).
At a fixed value of σ2

δ , the performance of the OECG relative to the MSSG varied as a function of σ2
X . It appeared

the relative performance of the OECG improved as a function of σ2
X . However, it appears the OECS performed better

relative to its MSS counterpart when there were lower levels of covariate shift.
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These results demonstrate the benefits of an all-in-one approach. The OECG often outperformed both MSSG and the
ToM. While MSSG often performed well compared to the ToM, it suffers from cases where it is vastly outperformed
by the ToM. For example, when σ2

δ and σ2
X were high and there was clustering in the studies (C = 3), the generalist

approach exhibited an average RMSE about 80% higher than the ToM. This echos the frequent empirical observation as
well as insights from analytical work comparing ToM and ensembling (Ren and others, 2020; Guan and others, 2020).
The OECG approach however, does not suffer from cases where it is vastly outperformed by the standard benchmarks;
indeed, the OECG was comparable to the ToM in that simulation setting. The ToM modestly outperformed the OECG

on average when σ2
δ was high and the studies did not exhibit clustering, but this appeared to be driven by outliers.

The performance of the OECS and OECSN further demonstrate the utility of jointly estimating model parameters and
ensemble weights. The OECS strongly outperforms the study-specific model and the MSSS (by as much as about 15%).
While the OECSN performs comparably or slightly worse than the MSSSN method in some settings, it importantly never
performs worse than a study-specific model. When studies do not cluster and σ2

X and σ2
δ are high, the MSSSN method

exhibits an RMSE about 75% higher than a simple study-specific model. In these cases, OECSN still remains superior
to or competitive with the study-specific model and the MSSSN.

Taken together, these simulations demonstrate that the performance of the OEC was often comparable or superior
to MSS in both generalist and specialist settings. Additionally, while MSS methods sometimes exhibited very poor
performance compared to benchmark approaches, the OEC methods consistently outperformed these methods in these
cases, highlighting the robustness of these approaches.
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Figure 6: Performance of the OECS and OECSN compared to their MSS counterparts. Figures are zoomed in to easily
visualize differences.

6 Discussion

We propose and evaluate Optimal Ensemble Construction (OEC), a flexible approach that can be used to construct
ensemble learners in domain generalization and transfer learning. OEC generalizes two-stage multi-study stacking in
cases where the individual learners are finitely parameterized, by specifying an explicit loss function. OEC improved
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prediction performance of both specialist multi-study stacking (for transfer learning) and generalist multi-study stack-
ing (for domain generalization). We observed the most consistent gains in the transfer learning setting.

In our application, we showed how leveraging external sources of data through the OEC can be used to improve the
accuracy of excess mortality estimation when countries do not have sufficient pre-disaster data. Even for countries
that have sufficient training data, our method may prove useful when analyzing mortality (or any other vital statistics
outcome) stratified by demographic indicators, or subregions of a country (Islam and others, 2021) since it is common
to encounter small counts for the outcome when conducting analyses within substrata. In such cases, it may prove
beneficial to borrow information from neighboring regions, or other demographic groups. More broadly, using multi-
study methods in counterfactual estimation may be a promising area of future research in settings where data sources
for counterfactual estimation are limited. The work also adds to the growing body of literature exploring the application
of ensembling methods in COVID-19-related prediction problems. For example, ensembling techniques have proven
useful for predicting cases (Ray and others, 2020; Raj and others, 2020).

Recent work has proposed gradient boosted trees to directly estimate excess mortality during the COVID-19 pandemic
based upon a large set of covariates such as COVID-19 case counts and demographic variables (The Economist, 2021).
The authors proposed to use data from many countries during model training and motivated their methods by the need
for excess mortality predictions in countries which have not made estimates available. They propose to pool data from
different countries before fitting one global model to predict excess mortality given a set of country-specific covariates.
This differed from our method which generated an ensemble of country-specific models to predict baseline mortality
based upon historical mortality trends.

Our method is not without its limitations. A disadvantage of combining the study-specific and ensemble weighting
loss functions is that non-convexity arises from the resulting bilinear terms. As a result, the optimization approach im-
plemented here is not guaranteed to converge to the global minimum and requires careful initialization. We found that
initializing at MSS estimates yields consistently high prediction performance in practice and appeared to outperform
other heuristics such as random restarts. Thus, the optimization procedure will always be more computationally ex-
pensive than multi-study stacking. However, in all the settings explored, the optimization procedure converged within
a couple seconds and allowed for tuning over large grids of hyperparameter values. It is possible to obtain global
solutions to the problems by using modern techniques in mixed integer programming (Bertsimas and others, 2017).
Such techniques can deliver optimality certificates for the associated optimization problems but would likely be much
slower compared to the methods we present here.

The OEC method that we proposed here lend itself to future extensions. For example, we have introduced the OEC
in the regularized linear-linear setting, but one could easily replace the linear models with other specifications (e.g.,
support vector machines) at either the SSL stage, the ensembling stage or both. Also, loss functions could be replaced
by penalized negative log-likelihoods reflecting distributions other than the Gaussian. Similarly, while the propositions
focus on the linear models case, analogous results can be shown for the broader class of generalized linear models.
However, we keep the analysis focused on the linear case, empirically explored in the present work. In addition,
some of the results above can be recast to account for models with regularization, but these generalizations require
additional regularity conditions and may not provide further insight into the connections between the OEC and earlier
multi-study methods.

The methods presented here can complement many methods proposed in the rich literature of transfer learning, domain
generalization and multi-task learning (Zhang and Yang, 2017; Zhuang and others, 2020; Farahani and others, 2020).
A number of methods proposed in these bodies of work seek to jointly train ensembles using matrix decomposition
methods of model parameters and matrix regularization schemes. Indeed, such methods can be used in conjunction
with our framework since they focus on improving prediction performance through the model parameter estimation
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procedure, not the ensemble weighting scheme. In this sense, our work complements many cutting edge methods for
multi-source data integration.

In summary we propose a flexible generalization of multi-study stacking that yields improvements in prediction per-
formance in both “generalist” and “specialsit” implementations. We hope the present work will be beneficial both
methodologically, by complementing existing methods, as well as in improving excess mortality estimation in low
counts settings.

7 Software and Reproducibility

Code and instructions to reproduce analyses, figures and tables are available at: https://github.com/gloewing/
OEC. This contains code to tune and fit penalized linear regression problems with all the methods assessed here.
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8 Supplementary Material: Optimization Algorithm

Denote f(B,w) as the optimization function for the OECG method:

f(B,w) = min
αG≥0, αG

0

min
BG

η
 1

2N
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01−

K∑
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We describe the optimization algorithm for this case, with the understanding that the other cases will be similar.

Figure 7: Block coordinate descent algorithm for optimization of the OEC loss. 1We terminate the algorithm when the
relative difference in objective values across two successive updates in (β1, . . . ,βk,w

G) is smaller than a threshold
or the number of iterations is larger than 1000, whichever is sooner.

9 Supplementary Material: COVID-19 Figures

Method Test Year
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

MSSS 0.96 0.99 0.95 0.99 0.97 0.94 0.97 0.98 0.92 0.97 0.91 0.92 0.94 0.95 0.90 0.97 0.92
OECS 0.67 0.68 0.61 0.69 0.72 0.70 0.66 0.60 0.72 0.76 0.69 0.62 0.84 0.63 0.72 0.58 0.61
MSSSN 0.63 0.62 0.51 0.64 0.66 0.66 0.63 0.54 0.71 0.74 0.69 0.60 0.86 0.58 0.69 0.40 0.58
OECSN 0.63 0.64 0.49 0.62 0.66 0.65 0.63 0.53 0.71 0.74 0.68 0.60 0.86 0.57 0.70 0.38 0.52

Table 5: Average RMSE/RMSESSM Performance of ensembling methods relative to a country-specific model (no
country-specific Ridge penalty). Columns indicate test year.
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Method Test Year
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

MSSS 0.99 1.01 1.01 1.03 0.99 1.00 0.99 1.01 1.00 1.00 1.00 1.02 0.99 1.00 1.01 1.03 1.01
OECS 0.77 0.88 0.71 0.82 0.87 0.83 0.79 0.67 0.88 0.86 0.86 0.75 0.94 0.72 0.88 0.64 0.71
MSSSN 0.75 0.84 0.62 0.78 0.81 0.80 0.76 0.62 0.87 0.84 0.88 0.74 0.96 0.68 0.85 0.48 0.73
OECSN 0.75 0.86 0.60 0.76 0.82 0.79 0.76 0.61 0.87 0.84 0.87 0.73 0.96 0.66 0.88 0.44 0.63

Table 6: AverageRMSE/RMSESSM Performance of ensembling methods relative to a country-specific model with
a study-specific Ridge penalty. Columns indicate test year.

Country Weeks

Austria 217
Belgium 261
Chile 547
Denmark 529
Ecuador 179
France 125
Germany 223
Iceland 171
Israel 261
Italy 96
Netherlands 523
Norway 534
Peru 183
Portugal 536
Portugal 536
South Africa 77
Spain 229
Sweden 280
Switzerland 536
UK 536
USA 380

Table 7: Number of weeks in dataset for each country (including 2020 data)

9.1 Comparison with model without linear term for time

The model with only a seasonal trend and no secular trend (i.e., no linear term for time) is:

Yk,t = γk,0 +

2∑
j=1

[
γk,j sin

(
2πjt

52

)
+ γk,j+2 cos

(
2πjt

52

)]
(4)
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Figure 8: RMSEOECS/RMSEMethod. Performance of the OECS relative to the SSM and the MSSS as a function
of number of months of training data for target study.
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Figure 9: RMSE/RMSESSM Performance of MSS or OEC method relative to a country-specific model (SSM)
using an OLS fit.
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Figure 10: RMSEOEC/RMSESSM Performance of the OEC method fit with a linear term relative to a study-specific
(country-specific) model with no linear term.
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Figure 11: RMSEOEC/RMSESSM Performance of the OEC method fit with no linear term relative to a study-
specific (country-specific) model with no linear term.
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Figure 12: RMSEOEC/RMSESSM . Performance of the OEC method fit with no linear term relative to stacking
with no linear term.
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10 Supplementary Material: Data-Driven Simulations

Parameters OECS vs. MSSS OECSN vs. MSSSN

σ2
θ σ2

θ

K 0.25 0.5 1.0 2.0 4.0 0.25 0.5 1.0 2.0 4.0

2 0.97 0.95 0.96 0.98 0.96 0.98 0.96 0.93 0.92 0.88
5 0.96 0.94 0.96 0.96 0.98 1.00 1.00 1.00 1.00 0.98
8 0.96 0.94 0.95 0.97 1.01 1.00 0.99 0.99 0.96 0.98

25 0.93 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.01 0.98
30 0.94 0.95 0.96 0.98 1.00 1.00 0.99 0.99 0.98 1.00

Table 8: Average data-driven simulation performance: RMSEOEC/RMSEMSS . Columns indicate σ2
θ and rows

indicate K, number of studies. Monte carlo error was at most 0.003.
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Figure 13: Performance of the OECS and OECSN compared to their MSS counterparts in data-driven simulations using
a Ridge penalty on each study-specific model. Figures are zoomed in to easily visualize differences.
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Parameters OECS MSSS OECSN MSSSN

K σ2
θ vs. Study-Specific Model

2 0.25 0.91 0.96 0.82 0.85
2 0.50 0.96 0.98 0.89 0.97
2 1.00 0.96 0.98 0.96 1.05
2 2.00 0.94 0.97 0.92 1.04
2 4.00 0.96 0.98 1.06 1.24

5 0.25 0.89 0.95 0.80 0.79
5 0.50 0.89 0.96 0.80 0.80
5 1.00 0.89 0.95 0.83 0.83
5 2.00 0.92 0.95 0.87 0.87
5 4.00 0.94 0.95 0.93 0.95

8 0.25 0.86 0.94 0.80 0.80
8 0.50 0.86 0.93 0.77 0.77
8 1.00 0.88 0.94 0.81 0.82
8 2.00 0.87 0.93 0.83 0.87
8 4.00 0.90 0.92 0.89 0.93

25 0.25 0.84 0.90 0.80 0.80
25 0.50 0.80 0.89 0.77 0.77
25 1.00 0.80 0.86 0.78 0.78
25 2.00 0.80 0.85 0.79 0.81
25 4.00 0.84 0.85 0.83 0.85

30 0.25 0.83 0.92 0.81 0.81
30 0.50 0.85 0.91 0.83 0.83
30 1.00 0.85 0.90 0.84 0.84
30 2.00 0.86 0.88 0.85 0.88
30 4.00 0.90 0.89 0.89 0.91

Table 9: Simulation performance without regularization at differentK and varying degrees of σ2
θ . Performance of each

method is relative to a country-specific model (i.e., a model fit only on the target study, RMSEOECS/RMSESSM )
Monte Carlo error was at most 0.007.
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Parameters OECS MSSS OECSN MSSSN

K σ2
θ vs. Study-Specific Model

2 0.25 0.91 0.94 0.81 0.84
2 0.50 0.91 0.96 0.79 0.83
2 1.00 0.94 0.98 0.90 0.99
2 2.00 0.98 0.99 1.03 1.13
2 4.00 0.96 1.00 1.02 1.23

5 0.25 0.91 0.95 0.80 0.80
5 0.50 0.90 0.96 0.82 0.82
5 1.00 0.91 0.96 0.84 0.84
5 2.00 0.92 0.95 0.88 0.88
5 4.00 0.94 0.97 0.93 0.96

8 0.25 0.85 0.90 0.77 0.77
8 0.50 0.85 0.91 0.79 0.80
8 1.00 0.86 0.92 0.82 0.83
8 2.00 0.90 0.93 0.86 0.91
8 4.00 0.95 0.94 0.93 0.98

25 0.25 0.81 0.88 0.79 0.80
25 0.50 0.82 0.88 0.81 0.81
25 1.00 0.84 0.88 0.83 0.83
25 2.00 0.87 0.89 0.87 0.86
25 4.00 0.89 0.89 0.89 0.92

30 0.25 0.80 0.86 0.79 0.79
30 0.50 0.81 0.87 0.80 0.81
30 1.00 0.83 0.86 0.83 0.84
30 2.00 0.85 0.87 0.85 0.87
30 4.00 0.90 0.89 0.90 0.90

Table 10: Simulation performance with regularization at different K and varying degrees of σ2
θ . Performance of each

method is relative to a country-specific model (i.e., a model fit only on the target study): RMSEOECS/RMSESSM .
Monte Carlo error was at most 0.007.
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11 Supplementary Material: General Simulations
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Figure 14: Performance of the OECG compared to the MSSG and the ToM algorithm using no study-specific Ridge
penalties. Figures are zoomed in to easily visualize differences.
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Figure 15: Performance of the OECS and OECSN compared to their MSS counterparts using no study-specific Ridge
penalties. Figures are zoomed in to easily visualize differences.
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Figure 16: Performance of all methods together (σ2
X = 0.01) and the ToM algorithm without study-specific Ridge

penalties. Figures are zoomed in to easily visualize differences.
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Figure 17: Performance of all methods together (σ2
X = 0.01) and the ToM algorithm with study-specific Ridge

penalties. Figures are zoomed in to easily visualize differences.

40



Optimal Ensemble Construction A PREPRINT

Parameters OECG ToM OECS SSM OECSN

C σ2
X σ2

δ vs. MSSG vs. MSSS vs. MSSSN

3 0.01 0.00 1.00 1.00 0.80 1.00 1.01
3 0.50 0.00 0.99 0.99 0.80 1.00 1.01
3 1.50 0.00 0.99 0.99 0.80 1.00 1.01
3 0.01 0.01 0.99 0.99 0.83 1.00 1.01
3 0.50 0.01 0.92 0.92 0.82 1.00 1.01
3 1.50 0.01 0.93 0.93 0.82 1.00 1.01
3 0.01 1.00 1.02 1.03 0.91 1.00 1.05
3 0.50 1.00 0.67 0.67 0.94 1.00 1.08
3 1.50 1.00 0.66 0.65 0.98 1.00 1.15

6 0.01 0.00 1.00 1.00 0.81 1.00 1.01
6 0.50 0.00 0.99 0.99 0.81 1.00 1.01
6 1.50 0.00 0.98 0.98 0.82 1.00 1.01
6 0.01 0.01 1.01 1.01 0.85 1.00 1.01
6 0.50 0.01 1.02 1.03 0.86 1.00 1.01
6 1.50 0.01 1.02 1.02 0.85 1.00 1.01
6 0.01 1.00 1.09 1.11 1.00 1.00 0.62
6 0.50 1.00 1.12 1.15 1.01 1.00 0.63
6 1.50 1.00 1.11 1.13 1.06 1.00 0.66

Table 11: Simulation performance with (C = 3) and without (C = 6) clustering at varying degrees of covariate-
shift (σ2

X ) and variance of random effects (σ2
δ ). No Ridge penalty was included. Each column indicates the per-

formance of a method relative to a corresponding multi-study stacking method (e.g., OECG vs. MSSG indicates
RMSEOECG/RMSEMSSG . Monte carlo error was at most 0.0024.
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Parameters OECG MSSG OECS MSSS OECSN MSSSN

C σ2
X σ2

δ vs. ToM vs. Study-Specific Model

3 0.01 0.00 1.00 1.00 0.80 1.00 0.81 0.80
3 0.50 0.00 1.00 1.01 0.80 1.00 0.81 0.80
3 1.50 0.00 1.00 1.01 0.80 1.00 0.81 0.80
3 0.01 0.01 1.00 1.01 0.83 1.00 0.82 0.81
3 0.50 0.01 1.00 1.10 0.82 1.00 0.82 0.81
3 1.50 0.01 1.00 1.09 0.82 1.00 0.82 0.81
3 0.01 1.00 1.00 1.02 0.91 1.00 0.87 0.83
3 0.50 1.00 1.00 1.76 0.94 1.00 0.90 0.83
3 1.50 1.00 1.02 1.89 0.98 1.00 0.96 0.83

6 0.01 0.00 1.00 1.00 0.81 1.00 0.82 0.81
6 0.50 0.00 1.00 1.01 0.81 1.00 0.82 0.81
6 1.50 0.00 1.00 1.02 0.82 1.00 0.82 0.81
6 0.01 0.01 1.00 0.99 0.85 1.00 0.84 0.83
6 0.50 0.01 1.00 1.00 0.86 1.00 0.84 0.83
6 1.50 0.01 0.99 1.02 0.85 1.00 0.84 0.83
6 0.01 1.00 0.98 0.94 1.00 1.00 1.00 1.72
6 0.50 1.00 0.99 1.06 1.01 1.00 1.01 1.72
6 1.50 1.00 1.00 1.12 1.06 1.00 1.07 1.72

Table 12: Simulation performance with (C = 3) and without (C = 6) clustering at varying degrees of covariate-
shift (σ2

X ) and variance of random effects (σ2
δ ). No Ridge penalty was included. Each section indicates the per-

formance of the method (e.g., OECG) relative to a baseline of the ToM algorithm or a study-specific model (e.g.,
RMSEOECG/RMSEToM ). Monte carlo error was at most 0.0033.
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Parameters OECG ToM OECS SSM OECSN

C σ2
X σ2

δ vs. MSSG vs. MSSS vs. MSSSN

3 0.01 0.00 1.00 1.01 0.84 1.01 1.01
3 0.50 0.00 0.99 1.00 0.84 1.01 1.01
3 1.50 0.00 0.98 1.02 0.85 1.01 1.02
3 0.01 0.01 0.99 1.00 0.88 1.01 1.01
3 0.50 0.01 0.91 0.93 0.87 1.01 1.01
3 1.50 0.01 0.92 0.95 0.86 1.01 1.02
3 0.01 1.00 1.03 1.04 0.95 1.01 1.05
3 0.50 1.00 0.67 0.69 0.97 1.01 1.07
3 1.50 1.00 0.66 0.66 1.02 1.01 1.16

6 0.01 0.00 1.00 1.01 0.86 1.03 1.01
6 0.50 0.00 0.99 1.03 0.86 1.03 1.01
6 1.50 0.00 0.97 1.15 0.86 1.03 1.01
6 0.01 0.01 1.01 1.01 0.91 1.02 1.01
6 0.50 0.01 1.02 1.02 0.91 1.02 1.01
6 1.50 0.01 1.00 1.07 0.91 1.02 1.02
6 0.01 1.00 1.09 1.03 1.02 1.01 0.63
6 0.50 1.00 1.14 1.02 1.02 1.01 0.63
6 1.50 1.00 1.16 1.05 1.03 1.01 0.65

Table 13: Simulation performance with (C = 3) and without (C = 6) clustering at varying degrees of covariate-
shift (σ2

X ) and variance of random effects (σ2
δ ). A Ridge penalty was included. Each column indicates the per-

formance of a method relative to a corresponding multi-study stacking method (e.g., OECG vs. MSSG indicates
RMSEOECG/RMSEMSSG . Monte carlo error was at most 0.003.
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Parameters OECG Generalist OECS Specialist OECS−NDR Zero Out

C σ2
X σ2

β vs. ToM vs. Study-Specific Model

3 0.01 0.00 0.99 0.99 0.83 0.99 0.83 0.82
3 0.50 0.00 0.98 1.00 0.83 0.99 0.84 0.82
3 1.50 0.00 0.96 0.99 0.84 0.99 0.84 0.82
3 0.01 0.01 0.99 1.00 0.87 0.99 0.84 0.84
3 0.50 0.01 0.98 1.10 0.86 0.99 0.84 0.84
3 1.50 0.01 0.96 1.07 0.85 0.99 0.85 0.83
3 0.01 1.00 0.98 0.99 0.94 0.99 0.89 0.85
3 0.50 1.00 0.97 1.69 0.96 0.99 0.92 0.85
3 1.50 1.00 1.02 1.85 1.01 0.99 0.99 0.85

6 0.01 0.00 0.99 0.99 0.84 0.98 0.84 0.83
6 0.50 0.00 0.96 0.97 0.84 0.98 0.84 0.83
6 1.50 0.00 0.87 0.91 0.84 0.98 0.84 0.83
6 0.01 0.01 1.00 0.99 0.89 0.98 0.86 0.85
6 0.50 0.01 1.01 1.00 0.89 0.98 0.86 0.85
6 1.50 0.01 0.97 1.00 0.89 0.98 0.86 0.85
6 0.01 1.00 1.06 0.99 1.01 0.99 1.03 1.75
6 0.50 1.00 1.13 1.10 1.01 0.99 1.03 1.75
6 1.50 1.00 1.12 1.15 1.03 0.99 1.06 1.74

Table 14: Simulation performance with (C = 3) and without (C = 6) clustering at varying degrees of covariate-
shift (σ2

X ) and variance of random effects (σ2
δ ). A Ridge penalty was included. Each section indicates the per-

formance of the method (e.g., OECG) relative to a baseline of the ToM algorithm or a study-specific model (e.g.,
RMSEOECG/RMSEToM ). Monte carlo error was at most 0.0031.

12 Supplementary Material: Proofs

The proofs of Propositions 1 and 2 rely on the following lemma.

Lemma 1. Consider the following optimization problem

min
θ
Hδ(θ) := h1(θ) + δh2(θ)

where, h1(θ) and h2(θ) are both non-negative functions on Rn and δ ≥ 0 is a tuning parameter. Assume that
minθ hi(θ) < ∞ exists (i.e., the minimum is attained) for each i ∈ {1, 2}. Let θ̂δ ∈ arg minθHδ(θ) for δ ≥ 0. Let
us define

θ0 ∈ arg min
θ

h2(θ) s.t. h1(θ) = min
v
h1(v).

Assume that θ0 is bounded and h2(θ0) <∞. Then, as δ → 0+

θ̂δ → arg min
θ
h2(θ) s.t. h1(θ) = min

v
h1(v).

Proof. Note the following chain of inequalities:

min
v
h1(v) ≤ min

θ
{h1(θ) + δh2(θ)} ≤ h1(θ0) + δh2(θ0).
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If we let δ → 0+, then, the left and right hand sides converge to the same limit. Therefore, the middle expression has
the same limit. This completes the proof of the lemma.

Proof of Proposition 1. The proof follows by taking δ = (1− η)/η.

Proof of Proposition 2. The proof follows by taking δ = η/(1− η).
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