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Abstract

In light of the continuing emergence of new SARS-CoV-2 variants and vaccines, we

create a simulation framework for exploring possible infection trajectories under various

scenarios. The situations of primary interest involve the interaction between three

components: vaccination campaigns, non-pharmaceutical interventions (NPIs), and the

emergence of new SARS-CoV-2 variants. New infections are generated according to a

hierarchical model in which people have a random, individual infectiousness. The model

thus includes super-spreading observed in the COVID-19 pandemic. Our simulation

functions as a dynamic compartment model in which an individual’s history of infection,

vaccination, and possible reinfection all play a role in their resistance to further

infections. We present a risk measure for each SARS-CoV-2 variant, ρV , that accounts

for the amount of resistance within a population and show how this risk changes as the

vaccination rate increases. Different control strategies are implemented which aim to

both suppress COVID-19 outbreaks when they occur as well as relax restrictions when

possible. We find that a controller that responds to the effective reproduction number

in addition to case numbers is more efficient and effective in controlling new waves than

monitoring case numbers alone. This is of interest as the majority of the public
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discussion and well-known statistics deal primarily with case numbers.

Keywords: COVID-19, epidemic control, containment, mitigation, effective

reproduction number, cross-infection, vaccination, VOC, compartment model,

overdispersion, superspreading.

Author summary

The COVID-19 pandemic is constantly evolving due to the emergence of new viral

variants and the discovery and distribution of multiple vaccines. Individuals are

partially resistant to future infections based on both the vaccine they received as well as

any previous infection, if applicable. In this setting, governments are assigned a difficult

task: prevent future waves of infections from overwhelming the heath care system but

do not over-regulate citizens’ lives.

We created a model and computer simulation that captures the complexities of the

spread of the COVID-19 pandemic within a community. The model includes a risk

measure for each viral variant that accounts for the amount of resistance within a

population. Our model allows users to simulate interventions to reduce viral spread,

e.g., social distancing requirements. We then ask: what statistics should a government

consider when determining to increase or decrease restrictions? We find that responding

to the effective reproduction number in addition to case numbers is significantly more

effective and efficient than responding to case numbers alone. Lastly, our results

highlight that the slower response arising from reacting the number of hospitalization is

considerably less efficient in containing outbreaks.

Introduction

The continued waves of the COVID-19 pandemic present unique challenges to

regulatory bodies and governments. At issue is the balance between restricting behavior

in order to reduce the spread of SARS-CoV-2 and the desire to return to a normal

state-of-affairs. On one hand, many countries provide a deluge of statistics to measure

the severity of COVID-19, sometimes even on the county level. These statistics then
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inform complex decisions on how many restrictions to enforce. On the other hand, some

countries lack sufficient testing to accurately track the spread of COVID-19. Our

guiding question is, what statistics should be considered when determining if mitigation

measures should be increased or decreased? Of concern is the oft-repeated scenario in

which a new variant emerges which spreads more rapidly either due to increased

infectiousness or vaccine escape.

To this end we create a compartment model that has compartments for each

vaccinated, infected, and recovered group (for each variant), and add dynamic

interactions between these groups. For example, someone could have been infected with

the original SARS-CoV-2 variant, then receive a vaccine, then perhaps later become

infected with a new SARS-CoV-2 variant. The resistance to further infection conferred

by such a history is distinct from those who have, for example, only been vaccinated.

These factors influence the effective reproduction number, or the expected number of

new infections caused by a currently infected individual. We can then simulate

infections using this model in order to answer questions about case dynamics when a

new SARS-CoV-2 variant is introduced.

We also add a controller to our simulations, which can both observe and intervene in

the compartment model. The controller is thought of as a governing agent which is

responsible for both keeping COVID-19 outbreaks at manageable levels and not

imposing unnecessary restrictions, i.e., for keeping outbreaks under “control.” In order

to mimic a real-life entity such as a government, the controller must be constrained in

various ways. First, the controller does not observe latent variables such as

infectiousness, only raw data such as number of new infections (for each variant).

Second, these statistics are observed with a lag, i.e., there is a delay between when

infections occur and when they are observed. Third, the controller uses

non-pharmaceutical interventions (NPIs) such as mask wearing, testing and tracing, and

gathering restrictions (soft lockdowns) – which mitigate the effective reproductive

number of SARS-CoV-2. Lastly, these interventions cannot change continuously: there

is a mandatory temporal gap after an intervention before the controller can intervene

again.

Under these constraints, we are able to explore what statistics the controller needs to

respond to in order to effectively suppress new outbreaks. Note that we are not
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advocating a particular intervention or comparing their efficiency [1, 2]. Instead, we are

considering what information could best inform timely decisions on modifying NPIs.

Furthermore, we note that the success of the controller we implement is often not

mirrored in reality as few if any governments willingly act as rapidly as stipulated. For

example, the World Health Organization issues guidelines for COVID-19 risk [3, 4], but

immediate action is often not taken when a country crosses one of the thresholds they

provide. This is exacerbated by the lag between infection and observation (the “delay”

parameter): governments which either fail to collect adequate data or do not make

decisions using a forecast will make decisions with greater delay.

Other recent works have considered similar topics. [5] posits economic models that

convert the effect of NPIs on both public health and the economy into a single cost

measure. Using infection forecasts from SEIR models, they then optimize decision

thresholds which depend solely on the number of cases. The infection models used do

not contain any diversity in SARS-CoV-2 variants or vaccines. On a different level of

analysis, [6] proposes a procedure for expert elicitation in order to synthesize the results

from multiple modeling groups to improve intervention planning.

We begin by presenting a detailed description of our model. This is broken up into

subsections which describe the compartment model with different vaccines and variants,

the controllers we consider, and how the simulation is initialized to mimic a real

outbreak. In the Results section, we compare the modelled dynamics of the

SARS-CoV-2 variants, as well as the controllers’ effectiveness in containing both current

and hypothesized variants. Last, we discuss broader implications of our research and

further questions which could be explored within the framework.

Methods

New infections are assumed to be generated according to the momentum model of

Johnson et al. [7], which builds upon Cori et al. [8]. In the simplest case, new infections

It are the result of previous infections I1, . . . , It−1 via the following recursion:

It ∼ Poisson

(
Re,t

ν∑
m=1

It−mwm

)
, (1)
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where Re,t is the time-varying effective reproduction number at time t,

w = (w1, . . . , wν) is the generation interval, and ν is the maximum number of days for

which someone is assumed to be infectious. If Jm denotes the number of people infected

by a specific person on the m-th day after this person got infected, then we have for

m ∈ N

wm =
E[Jm]∑∞
l=1 E[Jl]

.

We assume that a newly infected individual does not cause secondary cases on the

same day, corresponding to w0 = 0, and that infections do not occur after day ν. The

generation interval can be interpreted as the infectiousness profile of infected persons.

We set w to be a discretized gamma distribution with ν = 13, mean 4.46, and standard

deviation 2.63. These are values specific to Austria [9], and are similar to values

determined elsewhere [10,11].

The recursion in Equation (1) assumes that all people have the same infectiousness

on day t: Re,t. We follow [7] and remove this assumption by explicitly drawing an

infectiousness parameter for each infected person from a fixed Gamma distribution with

dispersion parameter k < 1. This generalization allows for superspreading: the

phenomenon of extreme heterogeneity in infectiousness. We set k = 0.1, which

corresponds to a setting in which 10% of infected individuals cause 80% of new

infections [12]. This is an integral component of the difficulty of controlling COVID-19

outbreaks. Individual infectiousness can be aggregated over the infected, resulting in

the following process of new infections:

It ∼ Poisson

(
ν∑

m=1

θt−mwm

)
where (2)

θs ∼ Gamma(Isk, rate = k/Re,t). (3)

We generalize this model further in order to study the effect of combinations of

variants, previous infections, vaccination strategies, and NPIs – and interactions

between them – on the effective reproductive number Re,t. This is done by

decomposing Re,t into many constituent parts which depend on the compartments in
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our model. In order to describe this decomposition, we need notation for compartments.

Our model contains a set of compartments C . Each compartment C ∈ C is a group

of people with a unique infection and vaccine history. The history is encoded as a

superscript h: Ch. The value of h contains both digits and capital letters, where digits

correspond to vaccines and letters correspond to different SARS-CoV-2 variants (when

possible, the first letter of the variant name). For example, a group with label h = A1B

contains people that were first infected with variant A (Alpha), then vaccinated with

vaccine 1, then contracted variant B (Beta). For simplicity, the digit 0 is reserved for

the compartment that has neither been vaccinated nor contracted SARS-CoV-2 of any

form, i.e., C0.

The only characteristics of the history that effect the model are the total set of

experiences (vaccines or infections) as well as the final infection, as this determines the

variant one is infectious with. Furthermore, reinfection with the same variant does not

confer additional benefit. Hence we can simplify histories to those that have no

repeated characters. Lastly, at times it will be easier to write equations using the set of

histories, H , instead of the corresponding set of compartments, C . As h ∈H is the

identifier of a compartment, we will also at times call it a compartment for ease of use.

Each group Ch contains the total number of people with that history, both infected

(Ih) and recovered (Sh), which are subgroups with the same labels: Ch = Ih ∪ Sh. The

recovered (or vaccinated) subgroup is written as Sh to emphasize that they are again

susceptible to infection, though with a resistance parameter depending on h as

described below. All are given subscripts t, though for consistency with the generating

equations, the subscripted groups have different interpretations. Cht and Sht contain all

people on day t with history h and the subset that are recovered, respectively. Iht gives

the number of new infections with history h on day t. For simplicity, individuals recover

ν + 1 days after being infected. We assume that when one is experiencing an infection,

they cannot become newly infected (or receive a vaccine). With these simplifications,

we have |Cht | = |Sht |+
∑ν
m=1 I

h
t−m. Note that notation for Iht has been overloaded to

either be the set of people with new infections with history h or the cardinality of this

set. This provides consistency with the generating Equation (2).

An important aspect of the simulation is that interaction groups are created

dynamically. For example, someone in Sht can be infected with a SARS-CoV-2 variant
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D or become vaccinated with vaccine 4. This person then moves from Sht to a new

group with identifier hD or h4, respectively. The dynamic generation of groups goes

hand-in-hand with a dynamic change of population characteristics which may require

different mitigation strategies. Crucially, the new group hD or h4 can have new

resistances to infection.

There is a specific Rghe,t for all compartments h, g ∈H , where group Ih is able to

infect group Sgt on day t. Clearly this is not possible for all compartments Ch, as not all

compartments are infectious, e.g., I0t := 0 ∀t. In these cases, Rghe,t = 0, ∀g ∈H . This is

done for convenience such that we do not have to specify restrictions on the label h for

all equations presented in the paper. As data are often reported in terms of relative

transmissibility of SARS-CoV-2 variants, each infected group Ih has a basic

reproduction number relative to that of the original SARS-CoV-2 variant given by

Rh0 = λhR0. As above, this only depends on the final index of h. If h is a non-infectious

compartment (its final index is a number), then λh = 0.

With this group-specific notation, we can define a decomposition of Rhge,t as

Rhge,t = λgR0γ̃
hgM̃tLt (4)

where

• M̃t = (1−Mt) where Mt ∈ [0, 1] is the effectiveness of NPIs at time t (mitigation

of infectiousness). M̃t = 1 corresponds to no mitigation (full infectiousness),

whereas M̃t = 0 reduces new infections to 0.

• Lt is a seasonality factor at time t.

• γ̃hg is the susceptibility of group h to infection from group g. We consider

γ̃hg = (1− γhg) where γhg ∈ [0, 1] is the resistance of group Sh to being infected

by group Ig. The value of γhg depends both on the infection carried by Ig as well

as the unique history h.

Similar to other human coronaviruses and influenza viruses [13,14], it is widely

believed that SARS-CoV-2 follows a seasonal transmission pattern in temperate regions

with transmissions peaking during the winter. Possible explanations include different
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viral longevity due to humidity and air temperature [15,16], reduced host airway

immune response in dry winter months [14,17], and increased indoor interactions during

colder months. We model seasonality, Lt, as in [18] via a cosine transform:

Lt = 1 +
ε

2

(
cos

(
2π
t− tpeak
365.25

)
− 1

)
, (5)

where ε is the amplitude size and tpeak is the date when the transmission rate peaks.

Following [19], we assume that the seasonal reduction in transmission is 40% (ε = 0.4);

the lowest transmission rate is set to July 1, while the highest transmission rate occurs

on tpeak = January 1. This is in line with the estimates for the general seasonality of

other coronaviruses in temperate climates [13].

The resistance parameters γhg evolve according to two simple rules. First, if a

person with history h is given a vaccine (e.g. 1), resulting in history g = h1, they have

variant-specific resistances equal to the maximum from those provided by h and 1. For

example, history h may provide resistance .9 for infection from variant D and .98 for

variant A. Vaccine 1, on the other hand, provides resistance .95 for both. The resulting

resistance for g is thus .95 for D and .98 for A. All resistance parameters are given in

Table 1.

Second, if a person with history h is infected by a variant V , resulting in history

g = hV , we consider both the resistances of h and those conferred by V . For this new

history g, the resistance to an infection with a different SARS-CoV-2 variant V ′ is given

by

γgV
′

= 1− (1− γV V
′
)(1− γhV

′
), equivalently (6)

γ̃gV
′

= γ̃V V
′
γ̃hV

′
. (7)

We note here that interactions between groups are only considered in terms of

resistances, not in terms of infectiousness; a vaccinated individual that nevertheless gets

infected with variant V is considered equally infectious as an unvaccinated individual

infected with variant V . This is a simplification – in reality, the viral load in infected,

vaccinated individuals appears to decline faster (and is hence lower on average) [20]. In
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addition, for the same nasopharyngeal viral load (Cts), the probability of detecting an

infectious virus using cell culture is also slightly lower [21]. While the model can be

extended to include some estimate of lower infectiousness for an infected, vaccinated

group, we chose not to do so at present; we do not have a quantitative estimate of how

reduced infectiousness translates into reduction in transmission probability in real-life

settings, particularly as vaccinated individuals may behave differently. Secondly, we

ignore the effect of vaccine waning, which acts in the opposite direction.

Specifying the infections created by Ih is notationally far more complex than in

equations (2) and (3). The issue is that Ih is not solely responsible for creating new

infections with this same history at time t: Iht . This problem arises even in the most

simplistic multi-variant-vaccine setting. Given compartments C0, C1, CA, and C1A,

consider the effects of infection and vaccination. New cases IAt are produced by both IA

and I1A when they infect members of S0, while new cases I1A are produced when either

IA or I1A infect members of S1, or S1A. Vaccine 1 is administered to a random

member of either S0 or SA, and adds members to either S1 or S1A, respectively.

Given these complexities, we provide simple equations that only show the new

infections of a specific history. While it is possible to provide equations for the total

new cases for a variant V , this would complicate our expressions and amounts to

summing over many different compartments that are distinct in our model. Later,

Equation (13) provides variant-specific equations in some settings as a way to compare

infectiousness of variants in a population.

For consistency of notation, our generating equations describe the number of new

infections of a variant V within a compartment Cg. To do so, consider all compartments

which are infectious with V : {h ∈H s.t. h = h̄V , for some history h̄}. Each Ch creates

new infections in Sg according to equations (2) and (3). We then sum over these groups.

IgVt ∼ Poisson

M̃tLtN
−1

∑
h∈C

s.t. h=hV

γ̃gh|Sgt |
ν∑

m=1

θht−mwm

 where (8)

θhs ∼ Gamma(Ihs k, rate = k(λhR0)−1) (9)

and N is the total population size, N =
∑
C∈C |C|.
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Observe that θhs depends on Rh0 = λhR0 instead of Rhge,t. This is because θhs gives

the “native infectiousness” of – and is solely a property of – Ihs , separate from the

interaction between Ih and Sht in the environment experienced at time t. Similarly, the

second sum of the Poisson argument,
∑ν
m=1 θ

h
t−mwm, does not depend on g because it

represents the total infectiousness of Cht . New infections, however, depend on other

groups h and the environment through the remaining parameters in Equation (8). If we

ignore resistance γ̃gh and the proportion of infected people in the population is small,

we have N−1
∑
h∈C γ̃gh|Sht | ≈ 1. In this case, Equation (8) reproduces (2) in the

original setting of the momentum model for a single variant [7].

Controllers

We assume a controller is interested in constraining the observed process of new

infections, It =
∑
h∈H Iht , and can manipulate M̃t. Changes in non-pharmaceutical

interventions (NPIs) are concretely implemented by setting M̃t+1 = δM̃t in Equation

(8). Thus, increase in NPIs such as mask mandates have the effect of a multiplicative

decrease in transmissibility. We have explicitly assumed a certain compound effect of

NPIs rather than specifying them. Our goal is not to prescribe which combination of

NPIs to use, but to demonstrate differences in efficiency of containment strategies that

result from using different statistics to guide the decision on the timing of the NPIs.

We consider two types of controllers which react to different statistics computed

from case data. Both increase and decrease mitigation, M̃ , by some proportion δ ∈ [0, 1]

whenever they intervene. The first controller changes the effect of NPIs when daily

cases pass pre-specified boundaries and is termed a “reactive” controller. This is a

controller which increases NPIs when reported daily cases are over some high threshold

(e.g. 150 per 100,000 over the last 14 days) and decreases NPIs for case numbers below

a low threshold (e.g. 25 per 100,000 over the last 14 days) so long as case numbers are

not increasing. A second type of controller, termed “proactive”, also utilizes an estimate

of the effective reproduction number.

Let R̄e,t be the effective reproduction number given aggregate statistics which ignore

the type of infection. It can be computed by equating the argument in Equation (1)

with the expected sum of infections for all groups from Equation (8):
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R̄e,t = W−1
∑
h∈H

M̃tLtN
−1
∑
g∈H

γ̃hg|Sht |
ν∑

m=1

θht−mwm

 where (10)

W =
∑
h∈H

ν∑
m=1

Iht−mwm. (11)

While Equation (10) provides a useful summary as an average effect implied by our

model which accounts for variant heterogeneity, population diversity, and

superspreading, it is not feasible for a controller to compute as it depends on the

unknown parameters θh. A feasible estimator does not consider θht to be known, using

instead its expectation given λh and R0:

R̂e,t = W−1
∑
g∈H

(
M̃tLtN

−1
∑
h∈H

γ̃hg|Sht |
ν∑

m=1

λhR0I
h
t−mwm

)
. (12)

We note that the statistic above is not meant to be an ideal estimate of the effective

reproduction number Re,t, but instead functions as a computationally efficient way to

track the spread of infections in a way that is consistent with our simulation framework.

While quantities such as |Sht | are not known in practice, they can be estimated per

variant and vaccine. In fact, this is done when initializing our model and is described

extensively later.

Given It and the estimated reproduction number, R̂e,t, a “proactive” controller

changes mitigation measures based on R̂e,t and case numbers. Behavior is the same as

for the reactive controller, except that there is also an upper bound specified for R̂e,t:

when effective reproduction number increases beyond this upper bound, restrictions are

increased. Reducing restrictions requires R̂e,t < 1 in addition to low case numbers.

Vaccines and Variants

Our model includes two types of vaccines and six SARS-CoV-2 variants. Vaccine types

are summarized in two groups: i) mRNA vaccines which include both Pfizer-BioNTech’s

Comirnaty (BNT162b2) and Moderna’s Spikevax (mRNA-1273); and ii) vector vaccines

which include AstraZeneca’s Vaxzevria/Covishield (AZD1222) and Janssen’s COVID-19
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vaccine (JNJ-78436735).

We consider six variants: the original wild-type (WT), Alpha (B.1.1.7), Beta

(B.1.351), Gamma (P.1), Delta (B.1.617.2) variants, and a hypothetical variant Omega.

In general, their relative advantage and effective reproduction number depend on the

composition of the population. The first row of table 1 shows the assumed relative

advantage of variant V over the wild-type, λV = RV0 /RWT
0 , in a näıve population. The

values are computed from recent estimates of RVi
e /R

Vj
e using GISAID sequences across

different countries which are then aggregated to produce a summary estimate for each

variant [22]. In general, this value is thus confounded with acquired advantage due to

immunity escape, although the departure appears small within the time frame of the

study (until June 3, 2021). The values are consistent with estimates of λV assuming

substantial immune escape [23,24] and are on the lower boundary generally accepted for

the transmissibility advantage of Delta [25].

We assume that the basic reproduction number of the original strain RWT
0 is

approximately 3.5. There is a wide range of estimates of RWT
0 , ranging from about 2 to

6.5 [26,27]. As RWT
0 depends on interaction networks in a society and will therefore

plausibly differ between countries and regions, we use an estimate of RWT
0 from the

early Austrian case data [28, p.13], corrected for the assumed seasonality of 40%.

Table 1 summarizes both the assumed effectiveness of the vaccines against infection

with SARS-CoV-2 variants as well as the estimates of resistance conferred by previous

infection. We use estimates from the recent analysis by [29] (United Kingdom)

concerning infections (with RT-qPCR’s Ct < 30) by the Alpha and Delta variants.

While [29] assesses subjects PCR-tested in weekly intervals, it is limited to people

younger than 65 years old. We thus extend the lower bound of effectiveness

following [30], which also gives estimates for effectiveness of both mRNA vaccines

against (symptomatic) infections with Gamma/Beta variants (in Ontario, Canada). We

also use estimates from Brazil [31] for the reduction of transmission of the Gamma

variant following full vaccination with vector vaccines, and from Qatar [32] and South

Africa [33] for the Beta variant. For computational simplicity, we use the resistances

after a full vaccination (typically, two doses), and assign this 2 weeks after the first dose

of a vector vaccine or 3 weeks for an mRNA vaccine. This is because the error arising

from assigning full immunity 1-2 weeks after second dose would be larger than
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neglecting slightly lower immunity between doses [29, 34–36]. We assume the percentage

of people who do not follow up with the second dose (when required) is sufficiently low

that it can be ignored.

The reduction of probability of reinfection is based on the estimates by [29] for the

WT, Alpha, and Delta variants. We assume that the probability of transmission from

reinfection is reduced by 87% (84− 90%) upon prior infection with the same variant, and

it is reduced less (by 77%, (66− 85%)) for the Delta variant when the previous infection

was by a different variant (typically WT or Alpha). There is less reliable information on

the reduction of re-infection for the Beta and Gamma variants. We use the model-based

estimate by [24] of 70% cross-immunity (55-80%) for the Gamma variant. Based on the

relative sensitivity of the variants to convalescent sera [37, 38] – and in the absence of a

direct estimate of reinfection protection for the Beta variant based on a random

cross-infection survey – we employ the 70% cross-immunity for the Beta variant as well.

The resistances are set to approximately 0.75 for cross-immunity between (typically

rare) combinations where we do not have direct data, and to approximately 0.85 for

reduction in reinfection by the same strain. See Table 1 for exact values.

Lastly, we ignore the effect of immunity waning after vaccine or previous infection

within the period of simulation; it is clear however that for a longer time-frame,

immunity waning – and effect of boosting for particular groups – would need to be

considered [39,40], preferably while also including age (risk) structure.

Initializing the Simulation

Given the initial conditions, the equations given in 8 and 9 control all new infections

and vaccine schedules specify new vaccinations. To initialize the simulation, we need to

specify an initial collection of compartments C , a vaccine schedule, and a level of NPIs.

These are chosen to most accurately represent the pandemic in Austria.

Epidemiological data in Austria is gathered and provided by AGES (Agentur für

Gesundheit und Ernährungssicherheit GmbH), the Austrian agency for health and food

safety [41]. In addition to tracking the number of infections, hospitalizations, deaths,

and tests, AGES tracks the genome sequencing of SARS-CoV-2 samples gathered in

Austria to monitor the prevalence of variants of concern (VOC). The first confirmed
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Table 1. Model parameters for different variants. The first row gives the assumed
increase of R0 relative to wild-type (WT) based on [22]. The rest give the immunity
against new infection following vaccination or previous infection. The upper row per
label gives the median estimate; the lower row gives a confidence interval. The
references are given in the superscript of the median value. See the text for more details.

Label WT Alpha Beta Gamma Delta Omega

λV 1 1.3 1.25 1.40 2.10 1.55
- (1.24,1.33) (1.2,1.3) (1.22,1.48) (1.76,2.17) (1.35,1.75)

mRNA 0.94 [29, 30] 0.94 [29, 30] 0.75 [32] 0.85 [30] 0.84 [29, 30] 0.5
(0.85,0.96) (0.85,0.96) (0.7,0.8) (0.7 ,0.93) (0.7,0.86) (0.4,0.6)

vector 0.86 [29] 0.86 [29] 0.1 [33] 0.65 [31] 0.7 [29] 0.4
(0.65,0.93) (0.65,0.93) (0,0.55) (0.6 ,0.8) (0.65,0.73) (0.3,0.5)

WT 0.87 [29] 0.87 [29] 0.7 [24] 0.7 [37, 38] 0.77 [29] 0.4
(0.84,0.9) (0.84,0.9) (0.55,0.8) (0.55,0.8) (0.66,0.85) (0.3,0.5)

Alpha 0.87 [29] 0.87 [29] 0.7 [24] 0.7 [37, 38] 0.77 [29] 0.4
(0.84,0.9 ) (0.84,0.9) (0.55,0.8) (0.55,0.8) (0.66,0.85) (0.3,0.5)

Beta 0.75 0.75 0.85 0.7 [37, 38] 0.75 0.4
(0.65,0.85) (0.65,0.85) (0.8,0.9) (0.55,0.8) (0.65,0.85) (0.3,0.5)

Gamma 0.75 0.75 0.7 [24] 0.85 0.75 0.4
(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.8 ,0.9) (0.65,0.85) (0.3,0.5)

Delta 0.75 0.75 0.7 [24] 0.7 [37, 38] 0.85 0.4
(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.55,0.8) (0.8,0.9) (0.3,0.5)

Omega 0.75 0.75 0.7 0.7 0.75 0.85
(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.55,0.8) (0.65,0.85) (0.8,0.9)

case of the Alpha variant in Austria was on January 3, 2021. A VOC sentinel system

was subsequently established with one PCR test lab per county submitting a random

sample of SARS-CoV-2 specimens for complete genome sequencing.

VOC prevalence in Austria is published online and updated roughly every one to two

weeks. Figure 1 provides the historical reported variant prevalences. 2021 has already

seen two new variants emerge and quickly become dominant. In Austria, Alpha took

approximately 15 weeks between emergence and dominance, whereas Delta took a mere

10 weeks. Both Beta and Gamma variants were observed in Austria, though neither

variant made serious headway into the population.

When simulations are initialized for a given date, the relative size of recovered

compartments are given using data from Figure 2. To compute the number of people

who were previously infected, we must account for the detection ratio throughout the

entirety of the pandemic. Based on [42] and consistent with seropositivity in Austria

from mid November [43], we assume that 12% of the Austrian population had an

infection with the wild-type before January 1, 2021. For 2021, we specify the detection
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Fig 1. Reported prevalence of different SARS-CoV-2 variants in Austria in
2021 (as of August 31, 2021; data is reported approximately three weeks after samples
are collected).

ratio which measures the (age-averaged) probability that an infected individual is

diagnosed and appears in the official case statistics. Due to increases in the availability

and use of COVID-testing in Austria, we use the following estimates for the detection

ratio in 2021: 1/2,3 for January and February, 1/2 for March and 1/1,4 for April and

beyond. These are consistent with model-based estimates for Austria which use

hospitalizations and deaths to learn about the proportion of unreported cases [28,44].

We use a vaccine schedule to match that of Austria throughout the simulation period.

We use the 7-day median of administered first doses during each calendar week [45] up

until August 8, 2021. When simulating beyond the window of available data, we use the

latest 7-day median and administer this many doses until the expected upper bound on

vaccinations is reached. Currently, this bound is 85% of the population. As of August 8,

2021, the distribution of administered vaccines was 72% Pfizer-BioNTech’s Comirnaty,

10% Moderna’s Spikevax, 15% AstraZeneca’s Vaxzevria, and 3% Janssen’s COVID-19

vaccine. Beyond August 8, the distribution of newly administered doses is 74% from

Pfizer, 3% Moderna, 22% Janssen , and 1% from AstraZeneca.
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Fig 2. Estimate of the population composition in Austria on June 12 and
August 8, 2021.

A final step to calibrate our model with current case numbers is to set an initial

effect of NPIs. This is done by equating the implied reproduction number from the

simulation, R̂e,t, to the estimated Re in Austria at the time the simulation starts.

Results

This section presents simulation results for a setting constructed to be similar to that in

Austria. This serves to anchor the simulation in a realistic setting, though the high-level

results are applicable beyond Austria as well. To aid comparisons to other countries,

data are reported as cases/100,000 inhabitants.

Comparing Variants

Ultimately, our model requires many parameters to be set which govern the resistance

one variant provides to infection from others, as well as resistances conferred due to

vaccines. There are three relevant dimensions in which we allow variants to differ: the

basic reproduction number Rh0 , immune escape after vaccination, and immune escape
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after infection. It is important to view these as three separate components, and we note

that increasing severity in multiple categories may over-estimate the true risks of

different variants. Consistent with known estimates, we assume that the generation

interval does not significantly differ among variants [46–48].

Table 1 discusses the parameters we use and how they differ between variants. We

extend that discussion here by showing how these parameters translate into dimensions

of primary concern. To simplify a visual presentation, Figure 3 only shows RV0 and

vaccine effectiveness, which are the two most important measures that are independent

of population composition. We further distinguish vaccine effectiveness between mRNA

(◦) and vector (M) vaccines. Both estimates and their uncertainty are summarized in

Figure 3, in which the parameters are drawn from a truncated normal distribution with

mean and truncation points given in Table 1. The uncertainty represented in Figure 3 is

also included in our simulations.

Fig 3. Base reproduction number and vaccine effectiveness against variants
we include in our simulations: Alpha (A), Gamma (G), Delta (D), and Omega (O).
The Omega variant is constructed to analyze hypothetical scenarios. Note that WT is
only present in the history of previous infections.

While Figure 3 summarizes raw parameters, it is not sufficient to characterize which

variants are of greater concern within a given population. We also show how these

September 24, 2021 17/39



variant characteristics map to variant risk and are affected by the rise of immune

resistance due to vaccinations. These are the two dimensions of primary interest: our

risk measure combines both the variant profiles and the background population

characteristics, while vaccinations provide the long-term solution to the pandemic.

Therefore, our graphs summarize which variants are of greatest concerns to regions with

different vaccination rates. Rhge,t from Equation (4) does not easily allow one to compare

variants because it specifies both the group that is being infected as well as depends on

mitigation and seasonality. Therefore, we remove time varying components and average

over all groups h in the population. Furthermore, in order to discuss a variant V and

not merely the infectiousness of a compartment Ch, this needs to be summed over all

compartments with matching final (infectious) character, i.e.,

ρVt = N−1λVR0

∑
h∈H

s.t. h=hV

∑
g∈H

γ̃gh|Sgt |. (13)

This is essentially the base reproduction number of variant V in the current population

before mitigation and seasonality.

In order to plot ρVt as a function of the vaccination rate r ∈ [0, 1], we need to

consider how the population composition would change and how this would be reflected

in the size of our compartments. As we have created a realistic population distribution

for Austria on August 8, 2021, we want to maintain this realism over the range of

possible infection rates. Therefore, we split the population into two sets: vaccinated and

unvaccinated. The unvaccinated cohort Cuv = {Ch ∈ C s.t.N ∩ h = ∅} and the

vaccinated cohort Cva = {Ch ∈ C s.t.N ∩ h 6= ∅}. As vaccines are assumed to be given

independently of whether or not someone has been previously infected and recovered,

this maintains our population distribution. Let Huv and Hva contain the partitioned

histories corresponding to Cuv and Cva, respectively. Lastly, let Nva =
∑
h∈Hva

|Sht |

and Nuv =
∑
h∈Huv

|Sht | be the size of the vaccinated and unvaccinated susceptible

populations, respectively. Note that N ≈ Nva +Nuv as we ignore the comparatively

small set of people that are currently infected. We then have
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ρVt (r) = λVR0

 r

Nva

∑
h∈Hva

s.t. h=hV

∑
g∈H

γ̃gh|Sgt |+
1− r
Nuv

∑
h∈Huv

s.t. h=hV

∑
g∈H

γ̃gh|Sgt |

 . (14)

Observe that Equation (14) is merely a convex combination between ρVt computed

on two different populations: those who are vaccinated (first term) and those who are

not (second term). For example, suppose that there is no resistance conferred by

previous infection and perfect resistance conferred by vaccination (γ̃hV = 1, ∀h ∈Huv

and γ̃hV = 0, ∀h ∈Hva). In this case, Equation (14) simplifies to

ρVt (r) = λVR0(1− r), which is just the base reproduction number times the proportion

of unvaccinated individuals.

Fig 4. The relative advantage of variants with the composition of the
population, namely the extend of immune resistance. A population dependent
measure of variant infectiousness, defined in Equation (14), shown as a function of the
proportion of population that is vaccinated. The population history reflects Austria on
August 8, 2020, with about 20% of population recovered from infections, mainly by WT
(75%), Alpha (22%) and Delta (3%). (Note that while Delta is dominant by this time,
the absolute number of infections is comparably low). Shaded regions correspond to
50% and 90% prediction intervals resulting from the uncertainty in viral parameters
summarised in Figure 3, and the assumed composition of the population is depicted in
Figure. For simplicity, we assume that vaccination is independent of the infection
history.

Figure 4 shows how ρV (r) changes as a function of the proportion of the population

that is fully vaccinated, r. In a highly vaccinated population, the Delta and Beta

variants are estimated to be similarly infectious, but they diverge significantly in
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populations with a lower percentage vaccinated. The bands in Figure 4 capture the

uncertainty in parameter values shown in Figure 3. The ranking of risks only switches

in the case when a large proportion of the population is vaccinated (thus increasing the

average resistance against variants, which were highly transmissible in a more näıve

population). This area is unlikely to be reached without wide-spread and thorough

vaccination campaigns. For example, only 88% of the Austrian population is in the 12+

age category, and nearly all of this category would need to be vaccinated to reach the

change point.

In order to understand what a future outbreak could look like, we hypothesize a new

variant, Omega, with lower base effective reproduction number than the currently

dominant Delta variant but also lower vaccine effectiveness. This configuration was

chosen in order to create a realistic problem setting that can continually affect regions

even after successful vaccination campaigns.

Control Types

One long-standing question has been how best to control COVID-19 outbreaks when

they arise. This subsection explores which statistics should be considered when

determining whether to increase or decrease mitigation measures, particularly after the

introduction of a new SARS-CoV-2 variant with higher effective reproduction number.

Two control regimes are considered that either respond to increases in case numbers

(“reactive” control) or to increases in an estimate of the reproduction number

(“proactive” control). We find that using an estimate of the effective reproduction

number in addition to case numbers is a more efficient strategy.

Responding to the effective reproduction number further helps to address a potential

endogeneity effect due to increasing prevalence of COVID-19, i.e., individuals may

modify their behavior when the situation either worsens or improves. Most public

reporting discusses solely case numbers, so it may be reasonable to assume that

individuals base decisions more on either absolute case levels or strong increases in cases.

This can be problematic at the start of a wave if case numbers are incredibly low:

purely measuring absolute increases or case-number thresholds may trigger a response

too slowly. On the other hand, as the reproduction number is not given the same
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attention in the media, individuals may not change behavior dramatically when it

changes. This helps connect NPIs to simulation dynamics, as individuals are not also

responding to the same statistics as our NPIs.

As mentioned above, we consider two specific control settings. The first, termed

“reactive”, only responds to case numbers. There is an upper bound, above which stricter

NPIs are used, and a lower bound, below which NPIs are relaxed. This is crafted to

mimic the EU protocols for measuring the riskiness of non-essential travel, which assign

color codes to regions depending on their publicly reported epidemiological data such as

14-day rate of cases, deaths, and/or tests administered [4]. Being below the lower

boundary corresponds to being “green” whereas above the upper corresponds to being

“red”. In our results, we show a reactive controller with two different sets of thresholds.

The first set, referred to as “low-positivity”, uses a lower bound of 25 cases per 100,000

and an upper bound of 150 cases per 100,000 (both measured over a 14-day period).

This corresponds the recommendations for a low test-positivity region. The second set,

referred to as “high-positivity”, uses also a lower bound of 25 cases per 100,000 but an

upper bound of 50 cases per 100,000 (both measured over a 14-day period). This is far

stricter and corresponds to recommendations for a high test-positivity region.

The second control, termed “proactive”, responds to both case numbers and the

effective reproduction number R̂e,t in Equation (12). The same thresholds for case

numbers are used as by the reactive control. There is also an upper threshold of 1.2 for

R̂e,t. The decision rule is as follows: If R̂e,t is above its upper threshold or the cases are

above the upper threshold whilst R̂e,t > 1, increase restrictions. Conversely, if both

R̂e,t < 1 and cases are below their lower threshold, reduce restrictions. In all other

cases, make no changes. For both controllers, when mitigation is modified, it is assumed

that a 20% change in mitigation is made (both when strengthening and relaxing NPIs).

Delta

We simulate two main scenarios corresponding to both the growth of a new dominant

variant and projections for infections after the variant permeates the population. For

concreteness and validation in this section, the new variant is the Delta variant. We

simulate infection trajectories using initial conditions when Delta accounts for 20% of

current infections. For the majority of the world, 20% is no longer an accurate
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description of the current state of the pandemic, but this simulation provides two

benefits: first, it provides valuable model validation by starting the simulation when

20% was accurate for Austria and comparing simulations to observed cases and

statistics; second, it furnishes a sample case for what can happen when a new variant

with similar transmissibility advantage reaches this threshold.

Our 20% Delta simulation begins on June 12, 2021, as that matches the AGES

estimates for Delta prevalence in Austria. The same initialization process was used as

discussed previously, merely until June 12 instead of August 8. All other parameters

needed to initialize our simulations are also taken from observed data on this day. This

includes history of new cases, the proportion of population that is vaccinated or

previously infected, etc. Figure 5 shows that our model accurately forecasts the

proportion of Delta cases as measured by AGES: this holds true regardless of whether a

proactive or reactive control is used, as seen in the bottom panel Figure 6. The result is

independent of the controller as the controller affects all variants equally.

Fig 5. The changing proportion of new Delta cases is accurately predicted.
The simulation is initialized using information available on June 12, when the observed
proportion of Delta in Austria is 20%.

Simulation results for the low-positivity thresholds are shown in Figure 6, which

shows daily incidences (case numbers), the effective mitigation level M̃t (reduction in

Re,t due to NPIs), and the current estimate of the effective reproduction number R̂e,t.

These additional graphs can be used to more precisely monitor both the simulated

COVID-19 epidemic as well as the control process. The first observation from Figure 6
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is that the reactive control fits the observed cases over the summer months extremely

well. We note that the only real data used beyond the June 12 start date is the

vaccination schedule.

Both controllers relax restrictions at roughly the same point (early July), which

approximately coincides with the start of the Green Pass program for European tourism

on July 1. Approximately one month later, however, the proactive control would

increase mitigation measures again to prevent the start of a new outbreak. As case

numbers were so low during June, merely looking at new cases yields no increase in

NPIs for some time. Alternatively, increasing mitigation earlier stabilizes both the

effective reproduction number as well as the the number of new cases.

While the reactive controller in Figure 6 yields case numbers that mimic the

observed values very closely, we note that it is not guaranteed in any way that cases will

evolve like this in the future. Importantly, the controller begins intervening in the

process in early September. If Austria delays in making such changes, it is unlikely that

the case numbers will be reduced as shown in our figures.

Figure 7 presents results for the same simulation setting except with the

high-positivity case number thresholds. It is clear that simulated cases are much lower

as NPIs are triggered more quickly for both controllers due to a stricter upper bound.

Case numbers under a reactive controller exhibit a “yoyo” effect, in which they

relatively rapidly cycle through periods of increase and decrease. This effect can also be

seen for the low-positivity thresholds of Figure 6, but the timescale is much longer. In

general, large peaks lead to sufficiently strict NPIs that subsequent peaks appear much

later in our simulations. The proactive controller is much more efficient, and eliminates

this behavior almost entirely. Most importantly, however, is that the proactive

controller achieved similar control with the low-positivity thresholds. In particular, the

left column of Figure 6 shows on average less strict NPIs than Figure 7. While case

numbers are somewhat higher with higher thresholds, they are still at easily manageable

levels for the Austrian medical system.

From the point of view of feasibility, the proactive controller makes far fewer

interventions than the reactive controller. While a strict reactive controller does keep

case numbers low, this results in interventions which occur almost every two weeks.

This is the minimum period that we specify in our model as a gap between interventions.
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Fig 6. Responding to both the effective reproduction number R̂e,t and the
case numbers (proactive control, left) is more efficient than only using the
case numbers (reactive control, right). The top row shows the effective
reproduction number, middle row the effect of interventions on R̄′e,t (where M̃t = 1
means no NPIs), and bottom row the daily incidence per 100,000 inhabitants. The
simulation starts on June 12 (black dashed vertical line) when Delta prevalence was at
20%, and Alpha was the dominant variant. Initializing the model requires use case
numbers from the previous 13 days (gray dashed vertical line). The thresholds are
shown as dotted horizontal lines and coincide with the WHO recommendations for
change in NPIs when positivity rate is low [3, 4]); note that the thresholds, 25 resp. 150
per 100,000 within 14 days are divided by 14 as the y-axis shows daily incidence. The
shaded region gives the 50% (dark) resp. 95% (light) confidence interval. The actual
incidence in Austria is shown as gray bars, and is matched well by the reactive control
with these thresholds.

It is unlikely that a government would be able to so regularly change policy.

New variant

This section introduces a new hypothetical SARS-CoV-2 variant that occupies both a

reasonable and empty region of the infectiousness graph in Figure 4. The hypothetical

variant, termed Omega, has a lower base reproduction number than Delta but evades

immunity after vaccination or infection by older variants more easily. This provides a
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Fig 7. The proactive control is more efficient than reactive control even
when incidence thresholds are stricter. Assuming stricter control, where NPIs are
increased already when the incidence is 50 per 100,000 inhabitants over a 14 day period,
the yoyo effect is effectively prevented with proactive control - but not with reactive
control. All other parameters are as in Fig. 6.

scenario in which even a relatively highly vaccinated community will still experience an

outbreak and the possibility to explore policies used during the winter of 2021 and

spring 2022. Omega is introduced as a weekly import, and for simplicity, one case is

imported per day. The distribution of imported cases has no effect on the results,

regardless if cases are imported daily or staggered throughout the week. The results are

fairly robust to the rate of import of Omega. For example, doubling the import rate

primarily reduces the time required to see an outbreak and causes faster yoyo effects for

the reactive control (Fig. S1). All other parameter and control settings are the same as

in the previous subsection on Delta.

Figure 8 shows how the controls manage the new Omega variant using the

low-positivity thresholds (25 and 150 cases/100,000 over 14 days). The first few months

of each image look the same as those in Figure 6: the increased mitigation in the fall

September 24, 2021 25/39



delays Omega from being established. The second simulated wave, however, is driven by

Omega given the high proportion vaccinated. Given the population vaccination levels

and compartment structure in Austria, Omega out-competes Delta when the proportion

of vaccinated individuals exceeds 40%, which happened in Austria at the end of

May,2021. The largest difference between scenarios with and without Omega the width

of the intervals for the reactive control. Not only does the reactive control allow larger

outbreaks, but it is unable to guarantee that all simulation paths are controlled. In

approximately 2.5% of simulations, infections peaked at nearly 35 cases/100,000. The

proactive control was able to provide much stronger control on all simulation instances.

Furthermore, near the end of the series we see that the reactive controller has actually

used more NPIs that the reactive controller.

Fig 8. The reactive control fails to contain new variants that are
competitive in highly-vaccinated populations. The figure shows a scenario with
a hypothetical variant Omega, with lower base reproduction number R0 than the Delta
variant, but with a higher ability to escape immunity post vaccination or infection by
other variants (c.f. Fig. 4). Proactive control prevents an outbreak and uses less NPIs
overall. Other parameters are the same as in Fig. 6

As vaccinations increase, some governments may react to hospitalised (or
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ICU-hospitalised) incidence instead of case numbers. The rationale is that the controller

decides based on hospital capacity, rather than managing the cases. This is particularly

enticing as the vaccines reduce severe illnesses or hospitalizations even more than mere

infections. Yet, this results in a larger delay in control as there is a larger delay between

infection and hospitalization. While we do not model hospitalizations, we can increase

the delay that the government suffers for observing cases. This isolates the effect of the

delayed information. If hospitalizations are a constant multiple of infections, then our

results translate directly to that domain as well.

Figure 9 shows simulation results with the hypothetical Omega variant, using

low-positivity WH0 thresholds (25 and 150 cases/100,000/14 days), but with a delay of

21 days (instead of 7 days). In this case, the controller is using the same decision rules

to increase or decrease NPIs, but the case data informing this decision is 21 days old.

This corresponds to the approximate 2-3 week delay between infection and

hospitalization at ICU [49]. We see that the initial outbreaks are significantly more

pronounced (c.f. Fig. 8), especially for the reactive control. Delayed information cuts

both ways, however, as restrictions are increased and maintained far longer than

necessary: decreases in transmissions are also not observed quickly. By driving cases

down near 0, future waves are delayed. In some simulation paths, Omega outbreaks are

observed under reactive control starting in April. In reality, we expect a government to

relax sooner, but at the cost of future waves also arriving sooner.
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Fig 9. Controller with a larger delay leads to significantly more
pronounced outbreaks, especially with reactive control. The figure shows a
controller with a 3-week delay. A similar delay would be expected when decisions are
based on hospitalizations due to COVID-19, rather than on cases. We (conservatively)
assume the thresholds would stay the same. C.f. Fig. 8, where the controller responds
with a 1-week delay.

Discussion

The model and simulation that we develop provides significant insight into efficient

control strategies of COVID-19 outbreaks. The key behavior which we wanted to

capture in our simulation was a complex interaction between diverse groups in a

compartment model. Our simulation creates compartments for various vaccines,

multiple SARS-CoV-2 variants, and specifies well-supported parameters for them all.

The interaction rules between compartments are transparent. This allows us to simulate

complex scenarios in a realistic and dynamic setting. Our results show many benefits of

looking at the effective reproduction number in addition to case numbers.

A potential limitation of our simulation is our lack of observation level model which

would allow us to simulate a fluctuating positivity rate. While some view this to be an
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important statistic, we do consider a range of case-based thresholds which span the

gamut of positivity rate scenarios. In all of these settings, we find consistent support for

using a proactive control strategy that responds to changes in the effective reproduction

number.

Our model does not explicitly incorporate any network structure for individuals’

interactions; each individual in the simulation interacts independently with all other

members. In reality, infections take place in the household, work, and social

environments. The different cross-contamination rates in these environments lead to

clusters of observed infections, not only in terms of infections occurring, but also in

terms of identifying them via contact tracing. This is partially alleviated by our model

accounting for super-spreading. Large super-spreading events are often caused by high

infectiousness coupled with a particular network structure. By incorporating

super-spreading natively in our model, we are able to produce cluster-like effects due to

people that are significantly more contagious than others. Furthermore, other changes

in network structure are captured by seasonality or mitigation; seasonality can be

caused by increased indoor interaction during winter months, and social distancing rules

are common NPIs.

Of great concern currently is the effect of waning immunity granted by vaccines.

While this is not implemented in our simulation, we do analyze the mirror problem.

Instead of reducing vaccine effectiveness over time, we introduce a hypothetical

SARS-CoV-2 variant which has an elevated level of escape of vaccination-induced

immunity. The resulting effect is a reduced average vaccine efficacy – thus to some

extent, the results we present extend to models with waning immunity.

As our model contains many parameters governing diverse characteristics such as

vaccine effectiveness, resistance to reinfection (including cross-infection by other

variants) and basic reproduction numbers, a natural question is which of these has a

stronger effect on the simulation. The difficulty in answering comes down to the

distribution of the population across the compartments we describe. Populations with

lower vaccination rates but higher rates of previous infection will naturally be more

sensitive to cross-infection rates and vice versa. That is why we defined the ρV

parameter, which characterizes a decisive component of the effective reproduction

number. It depends on both R0 and the reduction in transmissibility arising from the
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(partial) immunity acquired by previous infections and vaccinations within a particular

population. We believe ρV is an important summary parameter of great relevance.

The paper is not intended to forecast what the future of SARS-CoV-2 will bring:

potentially vaccine resistant variants, or variants with even higher base reproduction

number, etc. The next important VOC may well have different characteristics to the

hypothesised Omega. It is important to keep in mind though, that same VOCs which

appear to be currently out-competed by (say) Delta may have a competitive advantage

later, e.g., the recently prominent VOC Mu [50]. The possibility of change in the

relative advantage between variants is especially relevant should the newly dominant

variant also lead to more severe symptoms. The main claims of this paper, however,

hold true for all of these possibilities. Regardless of the process leading to future waves,

one certainty is that they will occur. In this eventuality, governments must design

methods to identify and react to changes in the pandemic. Our results focus on this

common denominator.
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7. Johnson KD, Beiglböck M, Eder M, Grass A, Hermisson J, Pammer G, et al.

Disease momentum: Estimating the reproduction number in the presence of

superspreading. Infectious Disease Modelling. 2021;6:706–728.

doi:https://doi.org/10.1016/j.idm.2021.03.006.

8. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to

estimate time-varying reproduction numbers during epidemics. American journal

of epidemiology. 2013;178(9):1505–1512.

9. Richter L, Schmid D, Chakeri A, Maritschnik S, Pfeiffer S, Stadlober E.

Schätzung des seriellen Intervalles von COVID19, Österreich; 2020.
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Supplementary information

Sampling in Practice

We use the following data and parameters specific to Austria

• As generation interval (ωt) we will choose a discretization of a Gamma-distribution

with mean E = 4.46 and standard deviation s = 2.63 cut off after day 13 as found

by AGES in [9]. We use this generation interval for all variants.

• The Austrian population is given by N = 8.902.600 (as of 2020-01-01, source:

http://www.statistik.at/web_de/presse/122588.html).

• We use the data on the progress of the Austrian vaccination program provided by

https://info.gesundheitsministerium.at/. Individuals vaccinated with an

mRNA respective vector vaccine will be added to the appropriate group 14

respective 21 days after the first dose. We take the median doses of the last 7 days

of available data for projecting daily administered doses into the future.

• We use reported incidence provided by https://covid19.who.int/. We assume

all infections that happened in 2020 were with the wild type and we split the

incidence of 2021 according to the AGES data that is given in Figure 1.

Furthermore we scale this reported incidence to account for undetected infections

based on values found in [51].

• We estimate the observed reproduction number using the R package EpiNow

developed in [52].

The sampling procedure is as follows:

(1) Import data and choose the parameters as above.

(2) Simulate the overlap between vaccinated and previously infected individuals to

determine the group sizes Sht .

(3) Choose initial incidence values, separated into the different variants (e.g. taking

constant percentages or fitting a simple model like an exponential growth model)

as well as imported cases.
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(4) Let t0 the the the last day of observed data and let R̄e denote the effective

reproduction number observed on this day. For initializing the model we compute

the initial mitigation M̃t0 using Equation 12 in the following way

M̃t0 = R̄eWLt0N

∑
g∈H

∑
h∈H

γ̃hg|Sht0 |
ν∑

m=1

λgR0I
g
t0−mwm

−1 .
(5) Sample the model as described in the Methods section.
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Supplemental Figures

Fig S1. The projected dynamics of the new variant stays similar when the
import rate doubles. With double the import rate, the outbreak of Omega merely
speeds up slightly. Parameters as in Figure 8 except that we import 2 cases of Omega
per day.
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