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Summary: To draw real-world evidence about the comparative effectiveness of complex time-varying treatment

regimens on patient survival, we develop a joint marginal structural proportional hazards model and novel weighting

schemes in continuous time to account for time-varying confounding and censoring. Our methods formulate complex

longitudinal treatments with multiple “start/stop” switches as the recurrent events with discontinuous intervals of

treatment eligibility. We derive the weights in continuous time to handle a complex longitudinal dataset on its own

terms, without the need to discretize or artificially align the measurement times. We further propose using machine

learning models designed for censored survival data with time-varying covariates and the kernel function estimator

of the baseline intensity to efficiently estimate the continuous-time weights. Our simulations demonstrate that the

proposed methods provide better bias reduction and nominal coverage probability when analyzing observational

longitudinal survival data with irregularly spaced time intervals, compared to conventional methods that require

aligned measurement time points. We apply the proposed methods to a large-scale COVID-19 dataset to estimate

the causal effects of several COVID-19 treatment strategies on in-hospital mortality or ICU admission, and provide

new insights relative to findings from randomized trials.
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1. Introduction

The COVID-19 pandemic has been a rapidly evolved crisis challenging global health and

economies. Public health experts believe that this pandemic has no true precedent in modern

times (Oh, 2020). While multiple COVID-19 vaccines have been developed across the globe,

no consensus has been reached on optimal clinical management of COVID-19 (Yousefi et al.,

2020). The lack of evidence for effective treatment options warrants further investigation

into the causal effects of multiple COVID-19 treatment strategies currently implemented in

clinics. Although randomized controlled trials (RCTs) are considered as the gold standard

for evaluating the efficacy of COVID-19 therapies, they are enormously expensive and time

consuming, especially in a time of crisis. Stringent inclusion and exclusion criteria also limit

the generalizability of RCTs to frailer populations at higher risk for severe morbidity and

mortality. To overcome these challenges, we study the causal effects of COVID-19 treatment

strategies on patient survival by leveraging the continuously growing observational data

collected at the Mount Sinai Health System—New York City’s largest academic medical

system. We focus on four commonly used medication classes that are of most clinical in-

terest: (i) remdesivir; (ii) dexamethasone; (iii) anti-inflammatory medications other than

corticosteroids; and (iv) corticosteroids other than dexamethasone

[Figure 1 about here.]

The complex nature of COVID-19 treatments, owing to differential physician preferences

and variability of treatment choices attributable to evolving clinical guidelines, poses three

major challenges for statistical analysis of observational data that cannot be easily addressed

by existing longitudinal causal inference methods. First, treatment is not randomly allocated

and the treatment status over time may depend upon the evolving patient- and disease-

specific covariates, as known at the time of decision-making. Second, the measurement time

points during the follow-up are irregularly spaced. Third, there is more than one treatment
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under consideration. Patients can be simultaneously prescribed to various treatment combi-

nations, or can be switched to or from a different treatment. Figure 1 illustrates the observed

treatment trajectories for nine randomly selected patients during their hospital stays.

While previous work has shown that a continuous-time marginal structural model is

effective in addressing time-varying confounding and provides consistent causal effect es-

timators (Johnson and Tsiatis, 2005; Hu et al., 2018; Hu and Hogan, 2019), the development

has been restricted to a single longitudinal treatment with only one treatment initiation

or discontinuation, and is therefore not directly applicable. We consider a joint marginal

structural model to accommodate multiple longitudinal treatments in continuous time. To

estimate causal parameters in the joint marginal structural model, we derive a novel set of

continuous-time stabilized inverse probability weights by casting each treatment process as

a counting process for recurrent events, allowing for discontinuous intervals of eligibility. In

addition, we propose to use machine learning and smoothing techniques designed for censored

survival data to estimate such complex weights. Through simulations, we demonstrate that

our approach provides valid causal effect estimates and can considerably alleviate the con-

sequence of unstable inverse probability weights under parametric formulations. We further

undertake a detailed analysis of a large longitudinal registry data of clinical management

and patient outcomes in order to highlight new insights on the comparative effectiveness of

multiple COVID-19 treatments relative to published evidence (Beigel et al., 2020; Johnson

and Vinetz, 2020).

2. Joint Marginal Structural Survival Model

2.1 Notation and set up

We consider a longitudinal observational study with multiple treatments and a right-censored

survival outcome. Denote t as the time elapsed from study entry (e.g., hospital admission),



Joint marginal structural survival models 3

to the maximum follow-up time, and T a collection of time points on the interval [0, to].

Suppose each individual has a p-dimensional covariate process {L(t) : t ∈ T }, some elements

of which may be time-varying; by definition, the time-fixed elements of L(t) are constant

over T . Let T denote time to an outcome event of interest such as death, with {NT (t) : t ∈

T } as its associated zero-one counting process. We consider W different medication classes

(treatments), whose separate and joint causal effects on patient survival are of interest. Let

Aw(t) be a binary indicator, with Aw(t) = 1 representing treatment w ∈ W = {1, . . . ,W}

has been initiated at time t and Aw(t) = 0 otherwise. We also define the counting process

associated with treatment Aw as {Aw(t) : t ∈ T }. Let C denote the time to censoring due

to, for example, discharge or loss to follow up. We use the overbar notation to represent the

history of a random variable, for example, Āw(t) = {Aw(s) : 0 6 s 6 t} corresponds to the

history of treatment Aw from hospital admission up to time t and L̄(t) = {L(s) : 0 6 s 6 t}

corresponds to the covariate history up to time t. Following the convention in the longitudinal

causal inference literature (Robins et al., 2008), we assume the treatment decision is made

only after observing the most recent covariate information just prior to the treatment; that

is, for a given t, Aw(t) occurs after L(t) for all w.

Let T ā1(t),...,āW (t) represent the counterfactual failure time to event of interest had an

individual been assigned treatment history {ā1(t), ā2(t), . . . āW (t)} rather than the observed

treatment history {Ā1(t), Ā2(t), . . . ĀW (t)}. Similarly, T Ā1(t),...,ĀW (t) represents the observed

failure time to event for an individual given the observed treatment history. We similarly de-

fine C ā1(t),...,āW (t) as the counterfactual censoring time under treatment {ā1(t), ā2(t), . . . āW (t)}.

The observed data available for drawing inferences about the distribution of potential out-

comes are as follows: the observed time to outcome event is T ∗ = T ∧C, with the censoring

indicator ∆T = I(T 6 C). Note that both the treatment processes {Aw(t), w = 1, . . . ,W}

and the covariate process L̄(t) are defined for all t ∈ T but are observed only at discrete and
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potentially irregularly spaced time points for each individual. For example, individual i may

have covariates and treatment status observed at a set of discrete time points from study

entry t = 0 to his or her last follow-up time tiKi
6 to. We denote the set of discrete time points

with observed covariate and treatment information for individual i as Ti = {0, ti1, . . . , tiKi
},

and therefore the observed covariate and treatment histories become L̄i(Ti) = {L(t) : t ∈ Ti}

and Āw,i(Ti) = {Aw,i(t) : t ∈ Ti}.

2.2 Joint marginal structural model for survival outcomes

We consider a marginal structural model to estimate the joint causal effects of Ā1(t), . . . , ĀW (t)

on patient survival. The most popular model specification is a marginal structural Cox model,

for its flexibility in handling baseline hazard and straightforward software implementation

when used in conjunction with the stabilized inverse probability weights (Howe et al., 2012).

When there is a strong concern that the proportional hazards assumption may not be satisfied

across the marginal distribution of the counterfactual survival times, alternative strategies

including the structural additive hazards model or accelerated failure time model can also be

considered. For purposes of presenting our methodology, we focus on the marginal structural

Cox model but extensions to alternative structural models are possible. For notational brevity

but without loss of generality, we first consider W = 2 treatments. Expansion of the joint

marginal structural model and weighting schema for W > 3 treatments is discussed in

Section 3.4. Specifically, we assume T ā1(t),ā2(t) follows a marginal structural proportional

hazards model of the form

λT
ā1(t),ā2(t)

(t) = λ0(t) exp {ψ1a1(t) + ψ2a2(t) + ψ3a1(t)a2(t)} , (1)

where λT
ā1(t),ā2(t)

is the hazard function for T ā1(t),ā2(t) and λ0(t) is the unspecified baseline

hazard function when treatment A1 and A2 are withheld during the study. The parameter

ψ1 encodes the instantaneous effect of treatment A1 on T ā1(t),ā2(t) in terms of log hazard
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ratio while A2 is withheld during the study. Similarly, ψ2 corresponds to the instantaneous

treatment effect for A2 in the absence of A1. The multiplicative interaction effect of A1 and

A2 is captured by ψ3. In addition, the hazard function λT
ā1(t),ā2(t)

can depend on baseline

covariates by elaborating model (1) or by using a stratified version of λ0(t). Model (1)

implicitly assumes that the instantaneous treatment effect is constant in the course of follow-

up. This model assumption is reasonable given that the COVID-related hospitalization is

generally short and medications are prescribed for days in succession. Finally, model (1) is a

continuous-time generalization of the discrete-time model considered by Howe et al. (2012)

for estimating the joint survival effects of multiple time-varying treatments.

Model (1) offers two advantages for the estimation of treatment effects. First, the coun-

terfactual survival function can be expressed as ST ā1(t),ā2(t)
(t) = exp

{
−
∫ t

0
λT ā1(t),ā2(t)(s)ds

}
.

Therefore, causal contrasts can be performed based on any relevant summary measures of the

counterfactual survival curves including median survival times and restricted mean survival

times. Second, model (1) allows for the estimation of causal effects of interventions defined

by varying treatment initiation timing and treatment duration. For example, an intervention

may take the form of ā1(t†) = {a1(s) = 1, 0 6 s 6 t†}, representing prescribing treatment A1

until t† (e.g., t† = day 6). A more complex intervention strategy is ā1(t†) = {a1(s) = 1(0 6

s 6 t†/2), a2(s) = 1(t†/2 < s 6 t†)}, which refers to assigning treatment A1 until t†/2 and

then switching altogether to A2 until t†.

3. Estimating Structural Model Parameters in Continuous Time

To obtain a consistent estimator for ψ = {ψ1, ψ2, ψ3} in model (1) using longitudinal

observational data with two treatments, we introduce the following causal assumptions and

maintain them throughout the rest of the article:

(A1) Consistency. The observed failure times, T =
∑
A T

ā1(t),ā2(t)
1(Ā1(t) = ā1(t), Ā2(t) =

ā2(t)) , where A = {ā1(t), ā2(t) : a1(t) ∈ {0, 1}, a2(t) ∈ {0, 1}, t ∈ T }. Similarly for the
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observed censoring times, C =
∑
AC

ā1(t),ā2(t)
1(Ā1(t) = ā1(t), Ā2(t) = ā2(t)). The consistency

assumption implies that the observed outcome corresponds to the counterfactual outcome

under a specific joint treatment trajectory {ā1(t), ā2(t)} when an individual actually follows

treatment {ā1(t), ā2(t)}. This is an extension of the consistency assumption developed with

a single time-varying treatment (Robins, 1999) to two time-varying treatments.

(A2) Conditional Exchangeability. Alternatively referred to as sequential randomization, this

assumption states that initiation of treatment at time t among those who are still alive

and remain in the study is conditionally independent of the counterfactual survival time

T ā1(t),ā2(t) conditional on observed treatment and covariate histories. Mathematically, let

Ō(t−) = {L̄(t−), Ā1(t−), Ā2(t−)} denote the observed history up to t−, then ∀ t ∈ T

λA1,A2
(
t | Ō(t−), T > t−, C > t−, T ā1(t),ā2(t)

)
= λA1,A2

(
t | Ō(t−), T > t−, C > t−

)
, (2)

where λA1,A2(t) is the joint intensity process of the joint counting process A1(t) and A2(t).

Similarly, let Ō(t) = {L̄(t), Ā1(t), Ā2(t)} denote the observed history up to t, we assume

conditional exchangeability for censoring such that ∀ t ∈ T ,

λC
(
t | Ō(t), T > t, C > t, T ā1(t),ā2(t)

)
= λC

(
t | Ō(t), T > t, C > t

)
, (3)

where λC(t) is the intensity process corresponding to the counting process of censoring. Our

conditional exchangeability assumption is a continuous-time generalization of the usual se-

quential randomization assumption for the discrete-time marginal structural models (Robins,

1999; Hernán et al., 2001; Howe et al., 2012).

(A3) Positivity. We assume that at any given time t, there is a positive probability of initiating

a treatment plan, among those who are subject to initiating at least one treatment, for

all configurations Ō(t−): P
{
λA1,A2(t | Ō(t−), T > t−, C > t−) > 0

}
= 1. For a pair of joint

treatments (A1, A2), at a given time t, individuals with treatment status (0, 0), (0, 1) or (1, 0)

are subject to “initating” at least one treatment. The treatment initiation patterns can be
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as follows: (0, 0) → {(0, 1), (1, 0), (1, 1)}, (0, 1) → {(1, 1), (1, 0)}, (1, 0) → {(1, 1), (0, 1)}.

Treatment discontinuation (from 1 to 0), however, is not considered a stochastic process in

our study, as COVID medication is typically prescribed with a specific treatment duration,

e.g., treat with dexamethasone at a dose of 6 mg once daily for 10 days (RECOVERY Col-

laborative Group, 2021). Furthermore, because an indivdual cannot be at risk for receiving

the same treatment once he or she is on the treatment, we only need to assume the positivity

when the individual is off that specific treatment, i.e., at risk for initiating that treatment.

3.1 Framing repeated treatment initiation as recurrent events

As Figure 1 suggests, the observed treatment pattern is complex due to considerable vari-

ability in COVID treatment protocols and clinician preferences over time. Individuals may

discontinue a treatment and restart the same treatment at a later time; or they may be

switched altogether to another treatment. Meanwhile, patients can take more than one

treatment for a period of time. Each treatment can therefore be viewed as the counting

process of recurrent events, with discontinuous intervals of treatment eligibility (Andersen

and Gill, 1982). Specifically, casting treatment initiation as a recurrent event process captures

two distinguishing features of our observational data: (i) having received a treatment would

prevent an individual from receiving the same treatment again for the time period while the

individual is on the treatment; and (ii) after the individual was off the treatment, he or she

would be eligible or at risk for re-initiating the treatment.

To formalize the treatment initiation process, we first consider a univariate treatment pro-

cess Aw. We assume that the jumps of Aw(t), i.e., dAw(t), is observed on certain subintervals

of T only. Specifically for individual i, we observe the stochastic process Aw,i(t) on a set

of intervals Ei =
⋃Ji

j=1(Vij, Uij], where 0 6 Vi1 6 Ui1 6 . . . 6 ViJi 6 UiJi 6 tiKi
. This

representation implies the following results. First, an individual can have at most Ji > 1

treatment initiations: if UiJi = tiKi
, then individual i has Ji − 1 treatment initiations;
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and if UiJi < tiKi
, then individual i has Ji treatment initiations. A special case where

Ji = 1 and UiJi = tiKi
corresponds to the situation where individual i is continuously

eligible for treatment initiation and has not been treated during the follow-up. Second,

once treatment is initiated, Aw,i(t) is no longer stochastic until person i discontinues the

treatment. This also suggests that the jth treatment initiation is observed at Uij. Third,

Aw,i(t) = 1 ∀ t ∈ (Uij, Vi,j+1], j = 1, . . . , Ji − 1. In words, treatment status is equal to one

deterministically on the discontinuous intervals of ineligibility (i.e., on treatment period).

Define a censoring or filtering process by DAw
i (t) = I(t ∈ Ei), and the filtered counting

process by NAw
iq (t) =

∫ t

0
DAw

i (u)dAw,iq(u), where q indexes the qth treatment initiation.

Following Andersen et al. (1993), we assume conditional independence among occurrences

of treatment initiation given all observed history, and that the set Ei is defined such that

DAw
i (t) is predictable. The observed data with occurrences on the set Ei can therefore be

viewed as a marked point process generating the filtration (FD
t ). Similarly, we denote the

filtration generated by the counting process {Aw(t) : t ∈ T } corresponding to Ei = T by

(Ft). We assume Aw,iq(t) follows Aalen’s multiplicative intensity model (Aalen et al., 2008)

λw,iq(t, θ) = αiq(θ)Yw,iq(t), with respect to (Ft), where λw,iq(t, θ) is the intensity process

of Aw,iq(t), αiq(θ) is the hazard rate function parameterized by θ, and Yw,iq(t) is the at-risk

function with Yw,iq(t) = 1 indicating person i is eligible just before time t for the qth initiation

of treatment Aw in the interval [t, t + dt), and Yw,iq(t) = 0 indicating otherwise. It follows

that the filtered counting process NAw
iq (t) follows the multiplicative intensity model

λAw
iq (t, θ) = αiq(θ)Y

Aw
iq (t) (4)

with respect to (FD
t ) (Andersen et al., 1993). Here, Y Aw

iq (t) = Yw,iq(t)D
Aw
i (t). With two

treatments, model (4) can be directly extended for the joint treatment initiation process as

λA1,A2

iq (t, θ) = αiq(θ)Y
A1,A2

iq (t), (5)
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where Y A1,A2

iq (t) = Y(1,2),iq(t)D
A1,A2

i (t) is the at-risk process for the qth treatment initiation

with the filtering process defined jointly by A1 and A2.

3.2 Derivation of the continuous-time weights

Under assumptions (A1)-(A3), a consistent estimator of ψ can be obtained by solving the

weighted partial score equations (Hu et al., 2018),

n∑

i=1

∫ ∞

0

ΩA1,A2(tKi
)
{
Z(A1i, A2i, t)− Z̄∗(t;ψ)

}
dNT

i (t) = 0, (6)

where ΩA1,A2(tKi
) is the weight that corrects for potential time-varying confounding for

time-varying treatments A1 and A2, Z(A1i, A2i, t)(3×1) = [A1i(t), A2i(t), A1i(t)A2i(t)]
>, and

Z̄∗ =

∑
k∈RT

t
Z(Ak1, Ak2, t)Y

∗T
k (t)r(Ak1, Ak2, t;ψ)

∑
k∈RT

t
Y ∗Tk (t)r(Ak1, Ak2, t;ψ)

(7)

is a modified version of the weighted mean of Z over observations still at risk for the outcome

event at time t. In equation (7), we define the weighted risk set indicator for outcome

Y ∗Ti (t) = ΩA1,A2(tKi
)Y T

i (t), where Y T
i (t) is the at-risk function for the outcome event, and

r(a1, a2, t) = exp{ψ1a1(t) + ψ2(t)a2(t) + ψ3a1(t)a2(t)}.

In the discrete-time setting with non-recurrent treatment initiation, the stabilized inverse

probability weights (we suppress subscript i for brevity) are given by Howe et al. (2012)

ΩA1,A2(t) =





∏

{k:tk6t}

P
(
A1(tk) = a1(tk) | Ā1(tk−1), Ā2(tk−1)

)

P
(
A1(tk) = a1(tk) | Ā1(tk−1), Ā2(tk−1), L̄(tk−1), T > t, C > t

)



×





∏

{k:tk6t}

P
(
A2(tk) = a2(tk) | Ā1(tk), Ā2(tk−1)

)

P
(
A2(tk) = a2(tk) | Ā1(tk), Ā2(tk−1), L̄(tk−1), T > t, C > t

)



 ,

(8)

where tk’s are a set of ordered discrete time points common to all individuals satisfying

0 = t0 < t1 < t2 < . . . 6 t. While ΩA1,A2(t) in (8) corrects for time-varying confounding

by adjusting for L̄(t) in the weights, it requires that the time points are well aligned across

all individuals. In addition, it does not accommodate the recurrence nature of complex

intervention strategies as in our observational study.
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We now generalize the weights developed for the discrete-time setting to a continuous-time

process, which do not require the time points to be well aligned. Partition the time interval

[0, t] into a number of small time intervals, and let dAw(s) be the increment of Aw over the

small time interval [s, s + ds),∀s ∈ [0, t]. Recall that treatment initiation, or the jumps of

Aw(t), dAw(t), is observed on a number of subintervals of T only. That is, conditional on

history L̄(s), the occurrence of treatment initiation for an individual in [s, s+ds)I(s ∈ E) is a

Bernoulli trial with outcomes dAw(s) = 1 and dAw(s) = 0. Then the P (Aw(tk) = aw(tk) | •)

in equation (8) can be represented by

CAw(s) {P (dAw(s) = 1 | •)}dAw(s) {P (dAw(s) = 0 | •)}1−dAw(s) ,

which takes the form of the individual partial likelihood for the filtered counting process

{DAw(s)Aw(s) : 0 6 s 6 t}. When the number of time intervals in [0, t] increases and ds

approaches zero, the final product over the number of time intervals of the individual partial

likelihood will approach a product integral (Aalen et al., 2008), given by

t

R
0

{
CAw(s)λAw(s | •)ds

}dAw(s) {
CAw(s)

(
1− λAw(s | •)ds

)}1−dAw(s)

=

[
t

R
0

{
CAw(s)λAw(s | •)

}∆Aw(s)

]
exp

{
−
∫ t

0

CAw(s)λAw(s | •)ds,
}

(9)

where ∆Aw(t) = Aw(t)− Aw(t−). For individual i, both factors in (9) need to be evaluated

with respect to the individual’s filtered counting process {NAw
iq (t) : 0 6 t 6 tKi

, q =

1, . . . , Qi}, with the first quantity being equal to the finite product over the jump times

and the second quantity being the survival function for treatment initiation. As described in

Section 3.1, the number of treatment initiations for individual i, Qi can take three values:

(i) Qi = 0, (ii) Qi = Ji − 1 or (iii) Qi = Ji. Corresponding to the three cases, the quantity
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in (9) can be rewritten as

Quantity (9) =





SAw (tKi
| •) if Qi = 0

fAw (Ui,Ji−1 | •)
{
SAw (ViJi | •)− SAw (tiKi

| •)
}

if Qi = Ji − 1

fAw (UiJi | •) if Qi = Ji,

where SAw and fAw are the survival and density function of the filtered counting process

for treatment Aw. Here we assume that initiations of different treatments are ordered.

For example, whether to initiate A2 at time t is decided upon observing the treatment

status A1(t). This suggests that the hazard function λA2 is estimable by conditioning on

Ā1(t) and Ā2(t−); and the hazard function λA1 is estimable by conditioning on Ā1(t−)

and Ā2(t−). For exposition brevity, let Ō1(t) = {Ā1(t−), Ā2(t−), L̄(t−), T > t, C > t},

Ō2(t) = {Ā1(t), Ā2(t−), L̄(t−), T > t, C > t}, ŌA1(t) = {Ā1(t−), Ā2(t−), T > t, C > t} and

ŌA2(t) = {Ā1(t), Ā2(t−), T > t, C > t}. Putting this all together, the individual continuous-

time stabilized inverse probability weight that corrects for time-varying confounding by L̄ is

given by ΩA1,A2(t) = ΩA1(t)ΩA2(t) with ΩAw taking the following form:

ΩAw(tKi
)

=





SAw
(
tKi
| ŌAw(tKi

)
)

SAw
(
tKi
| Ōw(tKi

)
) if Qi = 0

fAw
(
Ui,Ji−1 | ŌAw(Ui,Ji−1)

) {
SAw

(
ViJi | ŌAw(ViJi)

)
− SAw

(
tiKi
| ŌAw(tKi

)
)}

fAw
(
Ui,Ji−1 | Ōw(Ui,Ji−1)

) {
SAw

(
ViJi | Ōw(ViJi)

)
− SAw

(
tiKi
| Ōw(tKi

)
)} if Qi = Ji − 1

fAw
(
UiJi | ŌAw(UiJi)

)

fAw
(
UiJi | Ōw(UiJi)

) if Qi = Ji

(10)

Turning to censoring, under the conditional exchangeability assumption (A2), the censoring

process is covariate- and treatment-dependent. To correct for selection bias due to censoring,

we additionally define a weight function associated with censoring,

ΩC(Gi) =
SC (Gi |Ci > Gi, Ti > Gi)

SC
(
Gi | Ā1(Gi), Ā2(Gi), L̄(Gi), Ci > Gi, Ti > Gi

) ,
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where SC is the survival function associated with the censoring process, and

Gi = 1(∆T
i = 1)Ti + 1(∆T

i = 0, Ci > tKi
)tKi

+ 1(∆T
i = 0, Ci 6 tKi

)Ci.

This leads to a final modification of the estimating equation for ψ,

n∑

i=1

∫ ∞

0

ΩA1,A2ΩC(Gi)
{
Z(A1i, A2i, t)− Z̄∗∗(t;ψ)

}
dNT

i (t) = 0, (11)

where Z̄∗∗ =

∑
k∈RT

t
Z(Ak1, Ak2, t)Y

∗∗T
k (t)r(Ak1, Ak2, t;ψ)

∑
k∈RT

t
Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ)

and Y ∗∗Ti (t) = ΩC(Gi)Ω
A1,A2(tKi

)Y T
i (t).

3.3 Estimation of the causal survival effects

We consider four ways in which the continuous-time weights ΩA1,A2(t) can be estimated:

(i) fitting a usual Cox regression model for the intensity process of the counting process

of treatment initiation {Aw(t) : t ∈ T }, estimating the density function fAw and survival

function SAw from the fitted model with the Nelson-Aalen estimator for the baseline intensity

function, and finally calculating the weights following equation (10); (ii) smoothing the

Nelson-Aalen estimator and in turn fAw and SAw estimated from the fitted Cox regression

model by means of kernel functions (Ramlau-Hansen, 1983), and calculating the weights

using the smoothed version of fAw and SAw ; (iii) fitting a multiplicative intensity tree-based

model (Yao et al., 2020) in which the functional form of the intensity ratio for treatment

initiation is flexibly captured to estimate the fAw and SAw and calculate the weights; (iv)

smoothing the Nelson-Aalen estimator of the baseline intensity from the tree-based model

and calculating the weights using the smoothed version of fAw and SAw . Among these

approaches, (i) relies on the parametric assumptions about the intensity ratio relationships

between the treatment initiation process and covariate process and may be subject to

model misspecification and bias for estimating causal effects. Compared to the Nelson-Aalen

estimator which includes discrete jumps at event occurrences, the kernel function estimator

in (ii) may help alleviate the issue of extreme or spiky weights, and has also been shown to be
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a consistent and asymptotically normal baseline intensity estimator (Andersen et al., 1993).

Approach (iii) leverages a recent random survival forests model (Yao et al., 2020) that can

accommodate time-varying covariates to mitigate the parametric assumptions and attendant

biases associated with the usual Cox regression. With baseline time-fixed treatment, prior

work has used similar machine learning techniques to improve propensity score weighting

estimators (Lee et al., 2010) as well as to provide more accurate causal effect estimates with

censored survival data (Hu et al., 2021). Finally, approach (iv) smooths the baseline intensity

estimated from the survival forests for estimating the stabilized inverse probability weights,

and serves as an additional step to smooth over the potentially spiky weights. In Section 4, we

compare the performances of these four strategies to estimating the continuous-time weights

to generate practical recommendations. In addition, the censoring weight function ΩC(Gi)

can be estimated in a similar fashion via any one of these four approaches. Additional details

of kernel function smoothing in approach (ii) and random survival forests in approach (iii)

are presented in Web Appendix S1.

To accommodate the time-varying covariate process and account for the recurrent nature

of treatment initiation, we fit a survival model to the counting process style of data input.

Each individual is represented by several rows of data corresponding to nonoverlapping

time intervals of the form (start, stop]. The “cut-off” time points by which we slice the

time interval can be the unique time points when the events occur or when the values of

the covariates are updated. To allow for discontinuous intervals of eligibility, when defining

multiple time intervals Ei = ∪Jij=1(Vij, Uij] on T for individual i, the duration of a treatment

is removed from T when the individual is currently being treated and therefore no longer

eligible for initiating the treatment. Finally, since our estimators for ψ can be considered as

solution to the weighted partial score equation (11), we can use the robust sandwich variance

estimator to construct confidence intervals for the structural parameters. In practice, the
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robust sandwich variance estimator is at most conservative under the discrete-time setting

(Hernán et al., 2001; Shu et al., 2020), and we will empirically assess the accuracy of this

variance estimator with continuous-time weights via simulations. Additional details of the

robust sandwich variance estimator are provided in Web Appendix S1.

3.4 Extensions to more than two time-varying treatments

Although we introduce our methods with two longitudinal treatments, our approach can be

extended to more than two time-varying treatments in a straightforward fashion. In theory,

a fully interacted version of model (1) can be formed to include all the main effects of aw(t)

∀w ∈ W and the interactions thereof. Clinical interests and data sparsity on combinations of

treatments may also be used to guide the inclusion of interaction terms into the structural

model. Suppose B = {b1(t), . . . , bV (t)} is a collection of causal interaction effects of interest,

e.g., b1(t) = a1(t)a2(t), the general joint marginal structural proportional hazards model is

λT
ā1(t),...,āW (t)

(t) = λ0(t) exp

{
W∑

w=1

ψ1waw(t) +
V∑

v=1

ψ2vbv(t)

}
, (12)

where ψ1w’s and ψ2v’s capture the causal main and interaction effects on the counterfactual

hazard function. A consistent estimator of ψ = {ψ11, . . . , ψiW , ψ21, . . . , ψ2V } can be obtained

by solving the general form of the estimating equation

n∑

i=1

∫ ∞

0

ΩA1,...,AW ΩC(Gi)
{
Z(A1i, . . . , AWi, t)− Z̄∗∗(t;ψ)

}
dNT

i (t) = 0, (13)

where Z(A1i, . . . , AWi, t) is a vector of length W +J representing the time-varying treatment

status Aw(t) and multiplicative terms of the treatment status Av(t)Av′(t), Z̄
∗∗ is evaluated

using weighted risk set indicators Y ∗∗Ti (t) = ΩC(Gi)Ω
A1,...,AW (tKi

)Y T
i (t). The joint treatment

weights ΩA1,...,AW (tKi
) can be estimated by assuming a specific order in which treatments

are initiated and calculating the weights using appropriate history information Ōw(t) and

ŌAw(t), similar as described in Section 3.2. The estimation of the censoring weights ΩC(Gi)

also follows the same strategy outlined in Section 3.2 with two longitudinal treatments.
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4. Simulation Study

4.1 Simulation design and algorithm

We carry out simulations to investigate the finite-sample properties of the proposed weight

estimators for the marginal structure Cox model parameters. We simulate data compatible

with the marginal structural Cox model by generating and relating data adhering to the

structural nested accelerated failure time (SNAFT) model (Young et al., 2010). A general

representation of a SNAFT model for time-varying treatments is (Hernán et al., 2005)

T 0̄ =

∫ T ā

0

exp [ψafta(t)] .

Robins (1992) developed a simulation algorithm to generate data adhering to the SNAFT

model under the discrete-time version of the identifying assumptions (A1)-(A3) in Section 3.

Young et al. (2008) showed that, under the same identifying assumptions, data adhering to

a marginal structural Cox model of the following form

λT
ā

(t) = λ0(t) exp [ψmsma(t)]

can be simulated from a SNAFT model with ψaft = ψmsm by adding an additional quantity to

the term exp [ψafta(t)]. In particular when T 0̄ has an exponential distribution, the additional

quantity is zero, hence the structural nested AFT model simulation algorithm (Robins,

1992) can be used to appropriately simulate data compatible with the marginal structural

cox model under complex time-varying data structures. Building on these previous works, we

extend the simulation algorithm described in Karim et al. (2017) to generate data from the

joint marginal structural Cox model, while allowing for multiple time-varying treatments

with discontinuous intervals of treatment eligibility and for both continuous and discrete

time-varying confounding variables.

[Algorithm 1 about here.]

Throughout we simulate an observational study with n = 1000 patients and two time-
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varying treatmentsA1(t) andA2(t). We assume L̄(t) is appropriately summarized by a contin-

uous time-varying confounding variable L1(t) and a binary time-varying confounding variable

L2(t). The simulation algorithm includes two steps. In step (1), we consider nonlinear terms

for the continuous variable L1(tk) and the interaction term A1(tk−1)×L1(tk), A2(tk)×L1(tk),

A1(tk−1) × L2(tk) and A2(tk) × L2(tk) in the true treatment decision model. In particular,

past treatment status {A1(tk−1), A2(tk)} is a predictor of L(tk), which then predicts future

treatment exposure {A1(tk), A2(tk+1)} as well as future failure status Y (tk+1) via 1/ log(T 0̄).

Therefore, L(tk) is a time-dependent confounder affecting both the future treatment choices

and counterfactual survival outcomes. The simulation of treatment initiation is placed in

the recurrent events framework. Once treatment is initiated at time tk, treatment duration

following initiation is simulated from a zero-truncated Poisson distribution. In step (1), we

generate a longitudinal data set with 100×1000 observations (100 aligned measurement time

points for each of n = 1000 individuals). In step (2), we randomly discard a proportion of

follow-up observations for a randomly selected subset of individuals; and in the resulting data

set, the individuals will have varying number of follow-up measurement time points, which

are also irregularly spaced. In Algorithm 1, we sketch a simplified version of simulation

procedures with one treatment A1. Web Appendix S2 provides the full pseudo-code for

simulating data under the marginal structural Cox model with two time-varying treatments.

Our simulation parameters are chosen so that the simulated data possess similar character-

istics to those observed in the COVID-19 data set. The treatments A1 and A2 are simulated

to resemble dexamethasone and remdesivir such that: (i) about 20% patients did not take any

of the anti-viral and anti-inflammatory medications aimed at treating COVID-19; (ii) among

those who were treated, 62% took dexamethasone only, 25% took remdesivir only and 13%

took both (either concurrently or with treatment switching); (iii) the number of initiations

for both treatments ranges from 0 to 4 with the average medication duration about 5 days.
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The values of treatment effect parameters ψ1 and ψ2 were set to yield a 6.7% mortality

proportion among those who received dexamethasone and a 4.9% mortality proportion in

those treated with remedesivir.

4.2 Comparison of methods

We conduct two sets of simulations to investigate the finite-sample performance of our

proposed joint marginal structural survival model in continuous time (JMSSM-CT). First,

we compare how accurate the four weight estimators described in Section 3.3 estimate the

structural parameter ψ. Second, we use the best weight estimator, suggested by the first

set of simulation, for JMSSM-CT, and compare it with the joint marginal structural model

that requires aligned discrete time points (JMSM-DT). To ensure an objective comparison,

we use the random forests (Breiman, 2001) and adapt it into our proposed recurrent events

framework to estimate the weights for JMSM-DT. In addition, we implement both JMSSM-

CT and JMSM-DT on the “rectangular” simulation data with 100 aligned time points for

each individual and on the “ragged” data with irregular observational time points. The

performance on the rectangular data will be considered as the benchmark performance,

based on which we will assess the relative accuracy of JMSSM-CT and JMSM-DT when

estimating the structural parameters with the “ragged” data.

4.3 Performance characteristics

To assess the performance of each method, we simulate 250 observational data sets using the

above simulation algorithm, and evaluate the absolute bias, root mean squared error (RMSE)

and covarage probability (CP) for estimating the ψ. The CP is evaluated on normality-based

confidence intervals with the robust sandwich variance estimator. Figure 2 suggests that the

weight estimator (iv) using both the flexible tree-based survival model and kernel function

estimator of the treatment initiation intensity yielded the lowest biases in estimating both ψ1

and ψ2. By contrast, the weight estimator (i) via the usual main-effects Cox regression model
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along with the Nelson-Aalen baseline intensity estimator produced the largest estimation

bias. Applying the kernel function smoothing to the Nelson-Aalen estimator led to bias

reduction for both the Cox (approach (ii)) and tree-based survival model (approach (iv)) for

the treatment process. Flexible modeling of the intensity ratio function has a larger effect

in reducing the bias in structural parameter estimates than smoothing the nonparametric

baseline intensity estimator. For example, compared to approach (ii), approach (iii) further

reduced the mean absolute bias (MAB) in estimating ψ̂1 by approximately 67% – from .06

to .02. Supplementary Table 1 summarizes the MAB, RMSE and CP for the four weight

estimators and similarly suggests that approach (iv) led to the smallest MAB and RSME,

and provided close to nominal CP with the robust sandwich variance estimator.

[Figure 2 about here.]

The second set of simulation benchmarks the performance of JMSSM-CT versus JMSM-

DT on the data with fully aligned follow-up time points and compare how much each method

can recover the benchmark performance in situations where the longitudinal measurements

are irregularly spaced. Table 2 displays the MAB, RMSE and CP for each of the two methods

under both data settings, and Supplementary Figure 1 visualizes the distributions of biases

across 250 data replications. In the rectangular data setting with fully aligned time points,

compared to JMSM-DT, JMSSM-CT had similar CP but smaller MAB and RMSE. As the

sparsity of longitudinal measurements increased and the time intervals became unevenly

spaced, the proposed JMSSM-CT could still recover the benchmark performance; whereas

the JMSM-DT had a deteriorating performance (larger MAB and RMSE and lower CP), with

larger performance decline under coarser discretization of the follow-up time. Supplementary

Table 2 summarizes the distribution of estimated individual time-varying weights from one

random replication of the ragged data for JMSSM-CT and JMSM-DT. Overall, JMSSM-
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CT with the weight estimator (iv) provided the smallest maximum/minimum weight ratio

(2.36/0.68) and no extreme or spiky weights.

[Table 1 about here.]

5. Estimating Comparative Effectiveness of COVID-19 Treatments

We apply the proposed JMSSM-CT with the best weight estimation approach (iv) (Sec-

tion 3.3) to analyze a comprehensive COVID-19 data set drawn from the Epic electronic

medical records system at the Mount Sinai Medical Center, with the goal of studying

the comparative effectiveness of multiple COVID-19 treatment strategies. The data set

includes 11,286 de-identified unique adult patients (>18 years of age) who were diagnosed

with COVID-19 and hospitalized within the Mount Sinai Health System between February

25, 2020 to February 26, 2021. A confirmed case of COVID-19 was defined as a positive

test result from a real-time reverse-transcriptase PCR-based clinical test carried out on

nasopharyngeal swab specimens collected from the patient (Wang et al., 2020). We focus on

four treatment classes that are of most clinical interest: (i) remdesivir; (ii) dexamethasone;

(iii) anti-inflammatory medications other than corticosteroids; and (iv) corticosteroids other

than dexamethasone. Detailed definitions of the four treatment classes are provided in

Supplementary Table 3. The observed treatment patterns are visualized in Figure 1; patients

could be simultaneously prescribed two or more treatment strategies, or they could switch

from one treatment class to another during their hospital stays.

The primary outcome is time to in-hospital death, which may be right censored by hospital

discharge or administratively censored on to= February 26, 2021, the date on which the

database for the current analysis was locked. For the general patient population with a

COVID-19 infection, we considered a composite outcome, ICU admission or in-hospital

death, whichever occurs first. In addition, we stratify our analysis by ICU admission to
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examine the comparative effectiveness of multiple treatment strategies on in-hospital death

among patients who had never been admitted to ICU (relatively healthier) and among

patients who had been admitted to ICU (relatively sicker) during the post-ICU period. For

modeling purposes, we assumed that L̄(t) was appropriately summarized by age, sex, race,

ethnicity, D-dimer levels (the degradation product of crosslinked fibrin, reflecting ongoing

activation of the hemostatic system) (Zhang et al., 2020), serum creatinine levels (a waste

product that forms when creatine breaks down, indicating how well kidneys are working)

(Caillard et al., 2021), whether the patient used tobacco at the time of admission, whether

the patient was admitted to ICU, history of comorbidities represented by a set of binary

variables: hypertension, coronary artery disease, cancer, diabetes, asthma and chronic ob-

structive pulmonary disease, hospital site, and patient oxygen levels (definition provided in

Supplementary Table 4). The time-varying confounding variables were ICU admission, D-

dimer levels, serum creatinine level and patient oxygen levels. When fitting the joint marginal

structural proportional hazards model (12), pairwise treatment interactions were included if

there were sufficient data points supporting the joint use of the pair of treatments.

[Table 2 about here.]

[Figure 3 about here.]

Using the stabilized inverse probability weights to correct for time-varying confounding and

censoring, the structural model parameter estimates ψ̂ (log hazard ratio) and the associated

95% confidence intervals are provided in Table 2. Using the parameter estimates, we further

computed the counterfactual survival curves under each treatment regimen. Figure 3 presents

the counterfactual survival curves for ICU admission or death, whichever occurs first, among

patients with COVID-19 infection, under five treatment regimens given upon admission to

hospital. Among the four separate treatment classes, remdesivir had significantly better

treatment benefits followed by dexamethasone than two alternative treatment classes: anti-
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inflammatory medications other than corticosteroid and corticosteroids other than dex-

amethasone. Interestingly, remdesivir and corticosteroids other than dexamethasone had

a significant treatment interaction effect suggesting additional survival benefit when they

are used in combination. This is demonstrated by the highest counterfactual survival curve

under the concomitant use of these two types of medications.

To further investigate the comparative effectiveness of COVID-19 treatments, we perform

additional subgroup analyses for COVID-19 patients with different disease severities indexed

by ICU admission. For the relatively healthier COVID-19 patients who had never been

admitted to ICU, Supplementary Figure 2 shows that remdesivir still had the best mortality

benefit with respect to in-hospital death while dexamethasone and other corticosteroids led

to the lowest survival rate. No combinations of these medications could further improve

survival. Supplementary Figure 3 demonstrates that among the unhealthier patients who

were admitted into ICU, in contrast to findings for pre-ICU patients, dexamethasone led to

the highest in-hospital survival rate among the four treatment classes, where as remdesivir

came in second. Furthermore, when used in conjunction with corticosteroids other than

dexamethasone, both dexamethasone and remdesivir delivered elevated survival benefit,

suggested by their higher counterfactual survival curves. Our findings that dexamethasone

delivered the most benefit among post-ICU COVID-19 patients but no benefit for pre-ICU

patients are in agreement with the clinical trial results (RECOVERY Collaborative Group,

2021) that suggested lower 28-day mortality from the use of dexamethasone among those

who were receiving either invasive mechanical ventilation or oxygen alone at randomization

(relatively sicker) but not among those receiving no respiratory support (relatively healthier).

6. Discussion

Motivated by inconclusive real-world evidence for the comparative effectiveness of multiple

treatment strategies for COVID-19, we have developed a joint marginal structural survival
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model and novel weighting schemes to address time-varying confounding and censoring in

continuous time. There are three main advantages of our proposed method. First, this

approach casts the complex time-varying treatment with irregular “start/stop” switches

into the process of recurrent events where treatment initiation can be considered under the

recurrent event framework with discontinuous intervals of eligibility. This innovative for-

mulation enables us to address complex time-varying confounding by modeling the intensity

processes of the filtered counting processes for complex time-varying treatments. Second, the

proposed method is able to handle a complex longitudinal dataset on its own terms, without

discretizing and artificially aligning measurement times, which would lead to less accurate

and efficient treatment effect estimates, as demonstrated by our simulations. Third, modern

machine learning techniques designed for censored survival data and smoothing techniques

of the baseline intensity function can be used easily for with our weighting method to further

improve the treatment effect estimator under conventional parametric formulations.

Our approach can be extended in the following two directions. First, we considered a joint

marginal structural proportional hazards model and a tailored simulation algorithm to gen-

erate datasets of complex time-varying structures that are compatible with the proportional

hazards model. It may be worthwhile to develop alternative joint marginal structural survival

models such as the structural additive hazards model, and assess the robustness of different

structural models for estimating counterfactual survival functions under different data gen-

erating processes. Second, we have maintained the conditional exchangeability assumption in

our work, and therefore developing sensitivity analyses to capture the effects of time-varying

unmeasured confounding for our model would be a worthwhile and important contribution.

Supplementary Materials

Web Appendices, Tables and Figures referenced in Section 3, 4, 5, are available with this

paper at the Biometrics website on Wiley Online Library. The R codes to implement the
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proposed methods and replicate our simulation studies are provided in the GitHub page of

the first author https://github.com/liangyuanhu/JMSSM-CT.
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Algorithm 1 Marginal Structural Cox Model Simulation Algorithm

1. Set values for parameters M,λ0, n, ζ,β,γ, ψ1.
2. Compute.

for i← 1 to n do
INIT: L1(−1)← 0;L1(−1)← 0;A1(−1)← 0;Y (0)← 0;H(m)← 0;nA1 ← 0; τA1 ← 0
T 0̄ ∼ Exponential(λ0)

for m← 0 to M do
L1(m)← E (L1(m) = l1(m) |L1(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0; ζ)
logit(pL2)← logitP (L2(m) = 1 |L2(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0;β)
L2(m) ∼ Bernoulli(pL2)
logit(pA1) = logit{P (A1(m) = 1 |L1(m), L1(m− 1), L2(m), L2(m− 1), A1(m− 1),

nA1 , Y (m) = 0;γ)}
if A1(m− 1) = 0 or m− 1 = τA1 then

A1(m) ∼ Bernoulli(pA1)
if A1(m) = 1 then
δA1 ∼ zero-truncated Poisson(10)
τA1 ← m+ δA1

A1(m+ 1) : A1(max (τA1 ,M))← 1
nA1 ← nA1 + 1

end if
end if
Hm ← Hm + exp {ψ1A1(m)}
if T 0̄ > Hm then Ym+1 ← 0
else Ym+1 ← 1
end if
end for

end for
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Figure 1. Treatment processes for nine randomly selected patients visualized by heat
maps. Colors indicate remaining on treatment. Lack of color corresponds to being switched
off treatment.
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Figure 2. Biases in the estimates of ψ1 and ψ2 among 250 data replications using four
approaches to estimate the weights as described in Section 3.4. Approach (i) uses main-
effects Cox regression model and Nelson-Aalen estimator for baseline intensity. Approach
(ii) uses kernel function smoothing of the Nelson-Aalen estimator in approach (i). Approach
(iii) uses a survival forests model that accommodates time-varying covariates and Nelson-
Aalen estimator for baseline intensity. Approach(iv) uses kernel function smoothing of the
Nelson-Aalen estimator in approach (iii).
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Figure 3. Counterfactual survival curves for each of five treatment strategies among the
general COVID-19 patients. The composite outcome of ICU admission or death is used.
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Table 1
Comparing the proposed method JMSSM-CT in continuous time with JMSM-DT in discrete time in estimating the

treatment effect ψ on the bases of mean absolute bias (MAB), root mean square error (RMSE) and coverage
probability (CP) across 250 data replications. In the estimation of the weights, the weight esimator (iv) was used for

JMSSM-CT and the random forests adapted into our recurrent events framework (Section 3.2) was used for
JMSM-DT. Both methods were implemented on the “rectangular” simulation data with 100 aligned time points for
each individual and on the “ragged” data with unaligned time points. With the ragged data, the follow-up time was

discretized in the space of 0.5 , 1 and 2 days for JMSM-DT.

Data format Methods
ψ1 ψ2

MAB RMSE CP MAB RMSE CP

Rectangular
JMSM-DT .021 .026 .944 .019 .023 .948

JMSSM-CT .015 .020 .948 .014 .018 .948

Ragged

JMSM-DT (2d) .040 .047 .660 .035 .041 .668

JMSM-DT (1d) .033 .041 .732 .029 .035 .738

JMSM-DT (0.5d) .027 .034 .801 .024 .030 .804

JMSSM-CT .016 .022 .952 .015 .019 .952
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Table 2
The joint and interactive effect estimates ψ̂ (log hazard ratio) of COVID-19 treatments and associated 95%

confidence intervals (CI), using the COVID-19 dataset drawn from the Epic electronic medical records system at the
Mount Sinai Medical Center. The composite outcome of in-hospital death or admission to ICU was used for the
general COVID-19 patients. Time to in-hospital death was used for subpopulations of those who had never been

admitted into ICU (pre-ICU) and of post-ICU patients. Confidence intervals were estimated via the robust sandwich
variance estimators. “×” denotes treatment interaction and “—” indicates that the pairwise interaction was not

included in the joint marginal structural survival model.

Treatment classes
ψ̂ (95% Confidence Interval)

Overall Pre-ICU Post-ICU

Dexamethasone −0.20(−0.35,−0.06) −0.06(−0.71, 0.64) −0.75(−1.42,−0.08)

Remdesivir −0.53(−0.75,−0.31) −0.62(−1.22,−0.02) −0.54(−1.04,−0.04)

Corticosteroids other than

dexamethasone −0.08(−0.29, 0.19) −0.13(−0.46, 0.21) −0.19(−0.27,−0.03)

Anti-inflammatory medications

other thancorticosteroids −0.05(−0.56, 0.47) −0.28(−1.02, 0.45) −0.08(−0.89, 0.72)

Remdesivir × Corticosteroids

other than dexamethasone −0.74(−0.95,−0.52) — −0.71(−1.38,−0.04)

Dexamethasone × Corticosteroids

other than dexamethasone — — −1.13(−1.78,−0.46)



Web-based Supplementary Materials for “Joint marginal structural models

to estimate the causal effects of multiple longitudinal treatments in

continuous time with application to COVID-19” by Hu et al.

email : liangyuan.hu@rutgers.edu

S1 Additional technical details

S1.1 The kernel function estimator

In Section 3.4, four approaches are described to estimate the stabilized time-varying inverse prob-

ability of treatment weights. The Nelson-Aalen estimator of the baseline intensity is smoothed by

means of kernel functions in approach (ii) and approach (iv). For exposition brevity, consider a

simple multiplicative intensity model for treatment initiation

λ(t) = λ0(t)r
(
L̄(t), β

)
Y (t),

where λ0(t) is the baseline intensity rate function, r
(
L̄(t), β

)
> 0 is the (time-dependent) intensity

ratio function parameterized by β, and Y (t) is the at risk indicator. The cumulative baseline

hazard is Λ0(t) =
∫ t

0 λ0(s)ds. The kernel function estimator for λ0(t) is derived by smoothing the

increments of the Nelson-Aalen estimator of Λ̂0 as

λ̂0(t) = b−1

∫

T
K

(
t− s
b

)
dΛ̂0(s),

where K is the kernel function, which is a bounded function on [-1,1] and has integral 1, and

the bandwidth b is a positive parameter governing the amount of smoothness. Commonly used

kernel functions include the standard normal density function K(x) = φ(x) and the Epanechnikov

kernel function K(x) = 0.75(1 − x2), |x| ≤ 1. ? shows that the kernel function estimator λ̂0(t) is

consistent and asymptotically normal provided that there exists a sequence of positive constants

{an}, increasing to infinity as n→∞, and that the bandwidth tends to zero more slowly than a−2
n

as n→∞.
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Placed in the framework of recurrent events for a treatmentAw that can have multiple “start/stop”

switches as described in Section 3.1, the intensity of the qth treatment initiation λAw
q (t) is smoothed

by means of kernel function estimator of the baseline intensity function λAw
0q (t).

In our simulations (Section 5) and COVID-19 case study (Section 6), we used both the stan-

dard normal density φ(x) and Epanechnikov kernel functions and they yielded similar results. We

presented results from the normal density kernel function. Following ?, we chose the optimal

bandwidth b as the value that minimizes the mean integrated squred error (MISE)

MISE(λ̂0) = E

∫ to

0

[
λ̂0(t)− λ(t)

]2
dt.

S1.2 Random survival forests accommodating time-varying covariates

Approach (iii) uses a recent random survival forests model (?) that accommodates time-varying

covariates to reduce the parametric assumptions about the form of the intensity ratio function

required by the usual proportional intensity regression model. ? proposed a forest method that

estimates the survival function by three steps. In step (1), reformat the data in the counting

process structure, that is, for individual i, the time-varying covariate L(i)(t) will be represented as

L(i)(t) = l
(i)
j , t ∈

[
t
(i)
j , t

(i)
j+1

)
, j = 0, . . . , J (i) − 1. Then split the individual i observation into J (i)

pseudo subject observations:
(
t
(i)
j , t

(i)
j+1, δ

(i)
j , l

(i)
j

)
with left-truncated right-censored (LTRC) times

t
(i)
j , t

(i)
j+1 and event indicator δ

(i)
j for the time interval

[
t
(i)
j , t

(i)
j+1

)
. Pool the counting process styled

records from N subjects to create a list of pseudo-subjects,

{
t
′
l, t

′
l+1, δ

′
l , l

′
l

}n

l=1
, n =

N∑

i

J (i). (1)

The set of pseudo-subjects is treated as if they were independent. Step (2) is to apply the forest

algorithms on the reformatted dataset given in (1), to fit a model. In step (3), given a partic-

ular stream of covariate values at the corresponding time values, a survival function estimate is

constructed based on the outputs of the forest algorithms.

We now briefly describe the forest algorithms. ? extended the relative risk forests, which com-

bines the relative risk trees (?) with random forest methodology (?), for LTRC data by modifying

the splitting criteria. The splitting criterion under the relative risk framework is to maximize the

reduction in the one-step deviance between the log-likelihood of the saturated model and the max-

imized log-likelihood. Let Rh denote the set of observations that fall into the node h. Let Λ0 index

the baseline cumulative hazard function, ϕh represent the nonnegative relative risk of the node h,
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and tl and δl be the time and event indicator of the lth observation ∀l ∈ Rh. Given the right

censored observations (tl, δl), the full likelihood deviance residual for node h is defined as

dh =
∑

l∈Rh

2

{
δl log

(
δl

Λ̂0(tl)ϕ̂h

)
−
(
δl − Λ̂0(tl)ϕ̂h

)}
. (2)

Two steps are needed to modify the splitting rule and obtain the deviance residual appropriate

for LTRC data (?). First, compute the estimated cumulative hazard function Λ̂0(·) based on all

pseudo-subject observations. Second, replace Λ̂0(tl) in (2) with Λ̂0(t
′
l+1) − Λ̂0(t

′
l), and replace δl

in (2) with δ
′
l . We refer to ? for more detailed description of the random survival forests model.

S1.3 Variance estimation

Since our estimators for ψ (marginal structural proportional hazards model parameter) can be

considered as solution to the weighted partial score equation, we consider the robust sandwich

variance estimator as a convenience device to construct confidence intervals. The robust sandwich

variance estimator has been considered, for example, in ?, and ??, and has been shown to be at most

conservative under the discrete-time setting. We use this estimator for inference in conjunction with

our continuous-time stabilized inverse probability weights, and formally evaluate its performance

in our simulations. We briefly describe the robust sandwich variance estimator below. With the

continuous-time weights, we focus on equation (11) in the main text with two treatments:

n∑

i=1

∫ ∞

0
ΩA1,A2ΩC(Gi)

{
Z(A1i, A2i, t)−

S(1)(t;ψ)

S(0)(t;ψ)

}
dNT

i (t) = 0,

where ΩA1,A2ΩC(Gi) is the weight for time-varying treatments A1 and A2 and censoring (in con-

tinuous time), Z(A1i, A2i, t)(3×1) = [A1i(t), A2i(t), A1i(t)A2i(t)]
>, and

S(0)(t;ψ) =
∑

k∈RT
t

Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ)

S(1)(t;ψ) =
∑

k∈RT
t

Z(Ak1, Ak2, t)Y
∗∗T
k (t)r(Ak1, Ak2, t;ψ).

In the above definition, RT
t refers to the collection of subjects still at risk for the outcome event

at time t, Y ∗∗Tk (t) = ΩC(Gi)Ω
A1,A2(tKi)Y

T
k (t), where Y T

i (t) is the at-risk function for the outcome

event, and r(a1, a2, t) = exp{ψ1a1(t) + ψ2(t)a2(t) + ψ3a1(t)a2(t)}. Now further define

S(2)(t;ψ) =
∑

k∈RT
t

Z(Ak1, Ak2, t)
⊗2Y ∗∗Tk (t)r(Ak1, Ak2, t;ψ),
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with a⊗2 = aa> for any vector a. Then the robust sandwich variance estimator takes the form

Σ−1
0 Σ1Σ−1

0 (?), where

Σ0 =

n∑

i=1

∫ ∞

0
ΩA1,A2ΩC(Gi)

{
S(2)(t;ψ)

S(0)(t;ψ)
− S(1)(t;ψ)⊗2

S(0)(t;ψ)

}
dNT

i (t),

and

Σ1 =
n∑

i=1

[∫ ∞

0
ΩA1,A2ΩC(Gi)

{
Z(A1i, A2i, t)−

S(1)(t;ψ)

S(0)(t;ψ)

}
dMT

i (t)

]⊗2

,

and MT
i (t) = NT

i (t)−
∫ t

0 Y
∗∗T
k (u)λ0(u)r(Ak1, Ak2, u;ψ)du is the martingale based on the counting

process for outcome event. The sandwich variance estimator is obtained when both Σ0 and Σ1 are

evaluated at the estimated weights and ψ̂.

Because the above robust variance estimator considers the weights ΩA1,A2ΩC(Gi) as fixed known

values (?), it could result in conservative (but still valid) inference. With time-invariant weights

estimated by logistic regression in the cross-sectional treatment setting, the corrected robust sand-

wich variance estimator has been derived to achieve improved variance estimation for hazard ratio

parameters (?). However, an extension to continuous-time weights is not trivial and currently

unavailable. Alternatively, resampling method such as the bootstrap method (??) could be used

to make more robust inference for ψ that accounts for the uncertainty of the weights. Although

theoretical valid, this resampling approach is not pursued in our current work due to the substan-

tially more intensive computations associated with repeated estimation of complex weights under

the recurrent event framework.

S2 Marginal Structural Cox Model Simulation Algorithm

Here we provide pseudocodes for the marginal structural cox model data simulation. We use the

COVID-19 dataset as the foundation to set the values of the parameters in both the treatment

assignment and marginal structural models. In our simulations, to reduce the impact of data

sparsity, we set the maximum number of treatment initiations to be 4. To do this, the pseudocodes

can be modified by setting treatment exposure status to one at all time points after the fourth

treatment initiation throughout to the end of follow-up.

GET

M ← 100 (maximum follow-up); λ0 ← 0.005; n← 1000;

β ← (β0, β1, β2, β3) ← [log(3/7),−0.5,− log(1/2), log(3/2)] (parameter vector for generating

time-varying confounding variables L2);
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ζ ← (ζ0, ζ1, ζ2, ζ3, ζ4) ← [log(2/7),− log(1/2),−0.5, log(3/2), log(2/3)] (parameter vector for

generating time-varying confounding variables L1);

γ ← (γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11)

← [log(2/7), 1/2,−1/2,− log(3/5), 0.8, 0.5, 0.8,−0.5, 1/2, 1.2,−0.6,−0.3] (parameter vec-

tor for generating A1);

η ← (η0, η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11)

← [log(3/7), 1/3,−1/3,− log(2/5), 0.9, 0.6, 0.8,−0.5, 1/3, 0.9,−0.6,−0.4] (parameter vec-

tor for generating A2);

ψ1 ← −0.5 (true log-hazard value representing the effect of treatment A1 )

ψ2 ← −0.3 (true log-hazard value representing the effect of treatment A2)

COMPUTE

for ID ← 1 to n (for each individual) do

INIT: L1(−1)← 0;L2(−1)← 0;A1(−1)← 0;A2(−1)← 0;Y (0)← 0;H(m)← 0;

nA1 ← 0;nA2 ← 0; τA1 ← 0; τA2 ← 0

T 0̄ ∼ Exponential(λ0)

for m← 0 to M do

L1(m)← E (L1(m) = l1(m) |L1(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0; ζ)

← ζ0 + ζ1(1/ log T 0̄) + ζ2A1(m− 1) + ζ3L1(m− 1) + ζ4A2(m− 1)

logit(pL2)← logitP (L2(m) = 1 |L2(m− 1), A1(m− 1), A2(m− 1), Y (m) = 0;β)

← β0 + β1A1(m− 1) + β2L2(m− 1) + β3A2(m− 1)

L2(m) ∼ Bernoulli(pL2)

logit(pA1) = logitP (A1(m) = 1 |L1(m), L1(m− 1), L2(m), L2(m− 1), A1(m− 1),

A2(m− 1), nA1 , Y (m) = 0;γ)

= γ0 + γ1A1(m− 1) + γ2(L2(m− 1))2 + γ3(L1(m− 1))2 + γ4(A1(m− 1)L1(m))

+γ6(L1(m)L2(m)) + γ7(A1(m− 1)L2(m)) + γ8A2(m− 1)

+γ9(A2(m− 1)L1(m)) + γ10(A2(m− 1)L2(m)) + γ11nA1

if A1(m− 1) = 0 or m− 1 = τA1 then

A1(m) ∼ Bernoulli(pA1)

if A1(m) = 1 then

δA1 ∼ zero-truncated Poisson(10) (treatment duration after initiation)

τA1 ← m+ δA1

A1(m+ 1) : A1(max (τA1 ,M))← 1
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nA1 ← nA1 + 1

end if

end if

logit(pA2) = logitP (A2(m) = 1 |L1(m), L1(m− 1), L2(m), L2(m− 1), A1(m),

A2(m− 1), nA2 , Y (m) = 0;η)

= η0 + η1A1(m− 1) + η2(L2(m− 1))2 + η3(L1(m− 1))2 + η4(A1(m)L1(m))

+η6(L1(m)L2(m)) + η7(A1(m)L2(m)) + η8A2(m− 1)

+η9(A2(m− 1)L1(m)) + η10(A2(m− 1)L2(m)) + η11nA2

if A2(m− 1) = 0 or m− 1 = τA2 then

A2(m) ∼ Bernoulli(pA2)

if A2(m) = 1 then

δA2 ∼ zero-truncated Poisson(9) (treatment duration after initiation)

τA2 ← m+ δA2

A2(m+ 1) : A2(max (τA2 ,M))← 1

nA2 ← nA2 + 1

end if

end if

Hm ← Hm + exp {ψ1A1(m) + ψ2A2(m)}
if T 0̄ ≥ Hm

Ym+1 ← 0

else

Ym+1 ← 1

T ← m+ (T 0̄ −Hm)× exp {−ψ1A1(m)− ψ2A2(m)}
end if

end for m

end for ID
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Figure 1: The distributions of biases across 250 simulation replications of the ragged longitudinal

data with unaligned time points, in estimating the parameters ψ1 and ψ2 using the proposed

JMSSM-CT method and the comparison method JMSM-DT. When implementing JMSM-DT, the

follow-up time was respectively discretized into time intervals of length 0.5, 1 and 2 days, as the

method requires aligned measurement time points.
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S3 Supplementary figures and tables

S3.1 Additional simulation results

Table 1: Mean absolute bias (MAB), root mean square error (RMSE) and coverage probability

(CP) for the estimates of ψ across 250 data replications with unaligned follow-up time points,

using four weight estimators (i)-(iv) described in Section 3.4.

Weight estimators
ψ1 ψ2

MAB RMSE CP MAB RMSE CP

(i) .102 .104 .048 .092 .094 .060

(ii) .063 .067 .104 .055 .059 .112

(iii) .023 .029 .936 .020 .025 .940

(iv) .016 .022 .952 .015 .019 .952

Table 2: The distribution of the estimated individual time-varying weights from one random repli-

cation of the “ragged” longitudinal data with unaligned time points, for the proposed JMSSM-CT

versus JMSM-DT. To estimate the weights, the random forests was used for JMSM-DT and four

approaches (i)-(iv) (Section 3.4) were used for JMSSM-CT.

Methods Weight estimators
Distribution of estimated weights

Minimum First quartile Mean Third quartile Maximum

JMSSM-CT

(i) 0.23 0.89 1.05 1.23 5.34

(ii) 0.40 0.98 1.01 1.07 4.28

(iii) 0.52 0.88 1.00 1.09 2.99

(iv) 0.68 0.95 1.00 1.05 2.36

JMSM-DT Random forests 0.43 0.90 1.03 1.11 3.65
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S3.2 Treatment classes for COVID-19

In Table 3, we provide detailed definitions of the four treatment classes for COVID-19 whose

comparative effectiveness on in-hospital death was investigated in Section 6.

Table 3: Definitions of four treatment classes for COVID-19. iv:intravenous; po: by mouth.

Treatment classes Medication (route)

Dexamethasone Dexamethasone (iv), Dexamethasone (po)

Remdesivir Remdesivir (iv)

Corticosteroids other

than dexamethasone

Hydrocortisone (po), Hydrocortisone (iv), Methylprednisolone (po), Methyl-

prednisolone (iv), Prednisolone (iv), Prednisone (po), Prednisone (iv)

Anti-inflammatory

medications other than

corticosteroids

Alpha-1-Proteinase Inhibitor (iv), Anakinra (iv), Azathioprine (po), Belat-

acept (iv), Dexamethasone (iv), Dexamethasone (po), Eculizumab (iv), En-

varsus (iv), Sarilumab (iv), Gengraf (po), Gengraf (iv), Hydrocortisone (po),

Hydrocortisone (iv), Ibrutinib (po), Immune Globulin (iv), Infliximab (iv),

Methylprednisolone (po), Methylprednisolone (iv), Montelukast (po), Pred-

nisolone (iv), Prednisone (po), Prednisone (iv), Ruxolitinib (po), Tocilizumab

(iv), Apremilast (po), Celecoxib (po), Dasatinib (po), Everolimus (iv), Gem-

tuzumab (iv), Ibuprofen (iv), Ibuprofen (po), Ifosfamide (iv), Leflunomide

(po), Mesalamine (iv), Methotrexate (iv), Methylphenidate (iv), Mycopheno-

late (iv), Naproxen (po), Rituximab (iv), Sulfasalazine (po), Tacrolimus (iv),

Pacritinib (po), Risankizumab (iv), Daratumumab (iv), Talquetamab (iv)
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S3.3 Patient oxygen levels

We describe how patient oxygen levels are categorized based on the use of ventilator in Table 4.

Table 4: Definitions of patient oxygen levels based on the use of ventilator

Patient oxygen level Ventilator status

0 Room air

1 Cannula

2 Mask, Blow-by, Face tent, Oxyhood, Non-rebreather, RAM cannula

3 Continuous positive airway pressure machine, High flow nasal cannula,

Hudson prongs

4 Bilevel positive airway pressure machine, Tracheostomy mask

5 Tracheotomy, Transtracheal oxygen therapy, Ventilator, Endotracheal tube,

T-shaped tubing connected to an endotracheal tube, Nasal synchronized

intermittent mandatory ventilation
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S3.4 Stratified causal analysis of COVID-19 treatment effects

Figure 2: Counterfactual survival curves under each of four treatment classes among COVID-19

patients who had never been admitted into ICU. The outcome is time to death.
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Figure 3: Counterfactual survival curves since admission into ICU under each of six treatment

strategies among post-ICU COVID-19 patients. The outcome is time to death.
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