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ABSTRACT
Most current anomaly detection methods suffer from the curse
of dimensionality when dealing with high-dimensional data. We

propose an anomaly detection algorithm that can scale to high-

dimensional data using concepts from the theory of large deviations.
The proposed Large Deviations Anomaly Detection (LAD) algorithm

is shown to outperform state of art anomaly detection methods on a

variety of large and high-dimensional benchmark data sets. Exploit-

ing the ability of the algorithm to scale to high-dimensional data,

we propose an online anomaly detection method to identify anom-

alies in a collection of multivariate time series. We demonstrate the

applicability of the online algorithm in identifying counties in the

United States with anomalous trends in terms of COVID-19 related

cases and deaths. Several of the identified anomalous counties cor-

relate with counties with documented poor response to the COVID

pandemic.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection.

KEYWORDS
Large deviations, anomaly detection, high-dimensional data, multi-

variate time series

1 INTRODUCTION
Anomaly detection has been extensively studied over many decades

across many domains [9, 18]. Among the most useful applications

of anomaly detection is to simultaneously monitor multiple sys-

tems’ behaviors and identify the system that exhibits anomalous

behavior due to external or internal stress factors. For instance,

consider the example of the COVID-19 infection data. Studying the

confirmed case and death trends across various countries, states or

counties could highlight and identify the most (or least) significant

public policies. One possible approach to study the data could be to

monitor each time series [8, 20, 30] and identify sudden outbreaks

or significant causal events. However, such methods study each

time series individually and cannot not be used to detect the gradual

divergence from the normal trends or initial signs of such drift.

An alternate approach is to analyze each time series in the con-

text of a collection of time series, which can reveal anomalies be-

yond sudden and significant events, such as anomalous trends

and gradual drifts. Such methods typically require an appropriate

similarity measure [16]. Through appropriate combination with

state-of-the-art similarity-based models, these methods can identify

potential anomalous time series and cluster similar trends. Imple-

menting such methods in a time varying setting could even help

detect change points or anomalous events in individual time series

as well as identifying anomalous time series [5, 31]. However, these

methods are typically unable to scale to long time series [4, 31].

In this paper, we propose a new anomaly detection algorithm

called Large deviations Anomaly Detection (LAD), for large/high-

dimensional data and multivariate time series data. LAD uses the

rate function from large deviations principle (LDP) [14, 27, 28] to
deduce anomaly scores for the underlying data. Core ideas for

the algorithm are inspired from large deviation theory’s projection

theorem that allow better handling of high dimensional data. Unlike

most high dimensional anomaly detection models, LAD does not

incorporate feature selection or dimensionality reduction, which

makes it ideal to study multiple time series in an online mode. The

intuition behind the LAD model allows it to naturally segregate the

anomalous observations at each time step while comparingmultiple

multivariate time series simultaneously. The key contributions of

this paper are following:

(1) We propose the Large deviations Anomaly Detection (LAD) al-
gorithm, a novel and highly scalable LDP basedmethodology,

for scoring based anomaly detection.

(2) The proposed LAD model is capable of analyzing large and

high dimensional datasets without additional dimensionality

reduction procedures thereby allowing more accurate and

cost effective anomaly detection.

(3) An online extension of the LAD model is presented to detect

anomalies in an multivariate time series database using an

evolving anomaly score for each time series. The anomaly

score varies with time and can be used to track developing

anomalous behavior.

(4) We perform an empirical study on publicly available anomaly

detection benchmark datasets to analyze robustness and

performance of the proposed method on high dimensional

and large datasets.

(5) We present a detailed analysis of COVID-19 trends for US

counties where we identify counties with anomalous behav-

ior (See Figure 1 for an illustration).

The rest of this document is organized as follows. Section 2

provides an overview of relevant existing methods for anomaly

detection. Section 3 is a short background on underlying large

deviations theory motivating LAD. Section 4 details our LADmodel

for detecting unsupervised anomalies in multivariate time series.

Section 5 describes the experiments and demonstrate the state-of-

the-art performance of our method. Section 6 concludes the paper

and sketches direction for possible future work.

1
In early November, these counties in North Dakota were exhibiting infection rates

that were six times the national rate - https://www.washingtonpost.com/opinions/

2020/11/06/north-dakota-covid-19-cases/
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(a) Total Confirmed Cases

(b) Total Deaths

Figure 1: Top 5 anomalous counties identified by the proposed LAD algorithm based on the daily multivariate time-series, consisting of
cumulative COVID-19 per-capita infections and deaths. At any time-instance, the algorithm analyzes the bi-variate time series for all the
counties to identify anomalies. The time-series for the non-anomalous counties are plotted (light-gray) in the background for reference. For
the counties in North Dakota (Burleigh and Grand Forks), the number of confirmed cases (top), and the sharp rise in November 2020, is the
primary cause for anomaly1. On the other hand, Wayne County in Michigan was identified as anomalous primarily because of its abnormally
high death rate, especially when compared to the relatively moderate confirmed infection rate.

2 RELATEDWORK
In this section, we provide a brief overview of relevant anomaly

detection methods which have been proposed for high-dimensional

data and for multivariate time-series data. We also discuss other

works that have used the large deviations principle for detecting

anomalies.

A large body of research exists on studying anomalies in high

dimensional data [1, 3] but challenges remain. Many anomaly de-

tection algorithms use dimensionality reduction techniques as a

pre-processing step to anomaly detection. However, many high

dimensional anomalies can only be detected in high dimensional

problem settings and dimensionality reduction in such settings can

lead to false negatives. Many methods exist that identify anomalies

on high-dimensional data without dimensional reduction or feature

selection, e.g. by using distance metrics. Elliptic Envelope (EE) [25]
fits an ellipse around data centers by fitting a robust covariance

estimates. Isolation Forest (I-Forest) [19] uses recursive partition-
ing by random feature selection and isolating outlier observations.

𝑘 nearest neighbor outlier detection (kNN) [23] uses distance from

nearest neighbor to get anomaly scores. local outlier factor (LOF) [7]
uses deviation in local densities with respect to its neighbors to de-

tect anomalies. k-means-- [12] method uses distance from nearest

cluster centers to jointly perform clustering and anomaly detection.

Concentration Free Outlier Factor (CFOF) [2] uses a “reverse nearest
neighbor-based score” whichmeasures the number of nearest neigh-

bors required for a point to have a set proportion of data within its

envelope. In particular, methods like I-Forest and CFOF are targeted

towards anomaly detection in high dimensional datasets.

In most settings, real time detection of anomalies is needed to

dispatch necessary preventive measures for damage control. Such

problem formulation requires collectively monitoring a high di-

mensional time series database to identify anomalies in real time.

Recently, large deviations theory has been widely applied in the

fields of climate models [13], statistical mechanics [26], networks

[22], etc. Specially for analysis of time series, the theory of large

deviations has proven to be of great interest over recent decades

[6, 21]. However, these methods are data specific, often study indi-

vidual time series and are difficult to generalize to other areas of

research.

Anomaly detection for time series have been extensively ex-

plored in the literature [17], though most focus has been on iden-

tifying anomalous events in a single time-series. While, the task

of detecting anomalous time series in a collection of time series

has been studied in the past [10, 11, 29], most of these works have

focused on univariate time series and have not shown to scale to

long time series data. Our proposed method addresses this issue by

using the large deviation principle.

3 LARGE DEVIATION PRINCIPLE
Large deviations theory provides techniques to derive the probabil-

ity of rare events
2
that have an asymptotically exact exponential

approximation[14, 27, 28]. In this section, we briefly go over the

large deviation theory and different ways to generate the rate func-

tions required for the large deviations principle.

2
In our context, these rare events include outlier/anomalous behaviors.
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The key concept of this theory is the Large Deviations Princi-

ple (LDP). The principle describes the exponential decay of the

probabilities for the mean of random variables. The rate of decay

is characterized by the rate function I. The theorem is detailed

below:

Theorem 3.1. A family of probability measures {`𝜖 }𝜖>0 on a
Polish space X is said to satisfy large deviation principle (LDP) with
the rate function I : X → [0,∞] if:

(1) I has compact level sets and is not identically infinite
(2) 𝑙𝑖𝑚𝑖𝑛𝑓𝜖→0𝜖𝑙𝑜𝑔`𝜖 (O) ≥ −I(O) ∀O ⊆ X open sets
(3) 𝑙𝑖𝑚𝑠𝑢𝑝𝜖→0𝜖𝑙𝑜𝑔`𝜖 (C) ≤ −I(C) ∀C ⊆ X closed sets

where, I(S) = 𝑖𝑛𝑓𝑥 ∈SI(𝑥), S ⊆ X

To implement LDP on known data with known distributions, it is

important to decipher the rate function I. Cramer’s Theorem pro-

vides the relation between the rate function I and the logarithmic

moment generating function Λ.

Definition 3.2. The logarithmic moment generating function of

a random variable 𝑋 is defined as

Λ(𝑡) = log 𝐸 [exp(𝑡𝑋 )] (1)

Theorem 3.3 (Cramer’s Theorem). Let 𝑋1, 𝑋2, . . . 𝑋𝑛 be a se-
quence of iid real random variables with finite logarithmic moment
generating function, e.g. Λ(𝑡) < ∞ for all 𝑡 ∈ R. Then the law for
the empirical average satisfies the large deviations principle with rate
𝜖 = 1/𝑛 and rate function given by

I(𝑥) := sup
𝑡 ∈R

(𝑡𝑥 − Λ(𝑡)) ∀𝑡 ∈ R
(2)

Thus, we get,

lim
𝑛→∞

1

𝑛
log

(
𝑃

(
𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑛𝑥

))
= −I(𝑥), ∀𝑥 > 𝐸 [𝑋1] (3)

For more complex distributions, identifying the rate function

using logarithmic moment generating function can be challenging.

Many methods like contraction principle and exponential tilting

exist that extend rate functions from one topological space that

satisfies LDP to the topological spaces of interest[14]. For our work,

we are interested in the Dawson-Gärtner Projective LDP, that gen-

erates the rate function using nested family of projections.

Theorem 3.4. Dawson-Gärtner Projective LDP: Let {𝜋𝑁 }𝑁 ∈N
be a nested family of projections acting on X s.t. ∪𝑁 ∈N𝜋𝑁 is the
identity. Let X𝑁 = 𝜋𝑁X and `𝑁𝜖 = `0 ◦ (𝜋𝑁 )−1, 𝑁 ∈ N. If ∀𝑁 ∈ N ,
the family {`𝑁𝜖 }𝜖>0 satisfies the LDP on X𝑁 with rate function I𝑁 ,
then {`𝜖 }𝜖>0 satisfies the LDP with rate function 𝐼 given by,

I(𝑥) = 𝑠𝑢𝑝𝑁 ∈NI𝑁 (𝜋𝑁 𝑥) 𝑥 ∈ X

SinceI𝑁 (𝑦) = 𝑖𝑛𝑓{𝑥 ∈X |𝜋𝑁 (𝑥)=𝑦 }I(𝑥), 𝑦 ∈ Y, the supremum defin-
ing I is monotone in N because projections are nested.

The theorem allows extending the rate function from a lower

projection to higher projection space. The implementation of this

theorem in LAD model is discussed in Section 4.

4 METHODOLOGY
Consider the case of multivariate time series data. Let {tn}Nn=1 be a

set of multivariate time series datasets where tn = (tn,1, . . . , tn,T)
is a time series of length 𝑇 and each tn,t has 𝑑 attributes. The

motivation is to identify anomalous tn that diverge significantly

from the non-anomalous counter parts at a given or multiple time

steps.

The main challenge is to design a score for individual time series

that evolves in a temporal setting as well as enables tracking the

initial time of deviation as well as the scale of deviation from the

normal trend.

As shown in following sections, our model addresses the problem

through the use of rate functions derived from large deviations prin-

ciple. We use the Dawson-Gärtner Projective LDP (See Section 4.2)

for projecting the rate function function to a low dimensional set-

ting while preserving anomalous instances.

The extension to temporal data (See Section 4.3) is done by

collectively studying each time series data as one observation.

4.1 Large Deviations for Anomaly Detection
Our approach uses a direct implementation of LDP to derive the

rate function values for each observation. As the theory focuses on

extremely rare events, the raw probabilities associated with them

are usually very small [14, 27, 28]. However, the LDP provides a

rate function that is useful as a scoring metric for our LAD model.

Consider a dataset 𝑋 of size 𝑛. Let a = {a1, . . . , an} and I =

{I1, . . . , In} be anomaly score and anomaly label vectors for the

observations respectively such that 𝑎𝑖 ∈ [0, 1] and 𝐼𝑖 ∈ {0, 1}
∀𝑖 ∈ {1, 2, . . . , 𝑛}.

By large deviations principle, we know that for a given dataset

𝑋 of size 𝑛, 𝑃 (𝑋 = 𝑝) ≈ 𝑒−𝑛I(𝑝)
. Assuming that the underlying

data is standard Gaussian distribution with mean 0 and variance 1,

we can use the rate function for Gaussian data where I(𝑝) = 𝑝2

2 .

Then the resulting probability that the sample mean is 𝑝 is given

by:

𝑃 (𝑋 = 𝑝) ≈ 𝑒−𝑛
𝑝2

2 (4)

Now, in presence of an anomalous observation 𝑥𝑎 , the sample

mean is shifted by approximately 𝑥𝑎/𝑛 for large 𝑛. Thus, the proba-

bility of the shifted mean being the true mean is given by,

𝑃 (𝑋 = 𝑥𝑎/𝑛) ≈ 𝑒−
𝑥2
𝑎

2𝑛 (5)

However, for large n and |𝑥𝑎 | << 1, the above probabilities

decay exponentially which significantly reduces their effectiveness

for anomaly detection. Thus, we use
𝑥2
𝑎

2𝑛 as anomaly score for our

model. Thus generalizing this, the anomaly score for each individual

observation is given by:

𝑎𝑖 = 𝑛I(𝑥𝑖 ) ∀𝑖 ∈ {1, 2, . . . , 𝑛} (6)

4.2 LDP for High Dimensional Data
High dimensional data pose significant challenges to anomaly de-

tection. Presence of redundant or irrelevant features act as noise

making anomaly detection difficult. However, dimensionality reduc-

tion can impact anomalies that arise from less significant features

3



of the datasets. To address this, we use the Dawson-Gärtner Pro-

jective theorem in LAD model to compute the rate function for

high dimensional data. The theorem records the maximum value

across all projections which preserves the anomaly score making it

optimal to detect anomalies in high dimensional data. The model

algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm 1: LAD Model

Input: Dataset 𝑋 of size (𝑛,𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟 ,

threshold 𝑡ℎ.

Output: Anomaly score a
Initialization: Set initial anomaly score and labels a and I
to zero vectors and, entropy matrix 𝐸 = 0(𝑛,𝑑) where
0(𝑛,𝑑) is a zero matrix of size (𝑛,𝑑).
for each 𝑠 → 1 to 𝑁𝑖𝑡𝑒𝑟 do

(1) Subset 𝑋𝑠𝑢𝑏 = 𝑋 [𝐼𝑖 == 0]
(2) 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [:, 𝑑𝑖 ] =

𝑋 [:,𝑑𝑖 ]− ¯𝑋𝑠𝑢𝑏 [:,𝑑𝑖 ]
𝑐𝑜𝑣 (𝑋𝑠𝑢𝑏 [:,𝑑𝑖 ]) , ∀𝑑𝑖 ∈ {1, . . . , 𝑑}

(3) 𝐸 [𝑖, :] = −𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝑖]2/2𝑛, ∀𝑖
(4) 𝑎𝑖 = −𝑚𝑎𝑥 (𝐸 [𝑖, :])
(5) a =

a−min(a)
max(a)−min(a)

(6) 𝑡ℎ =𝑚𝑖𝑛(𝑡ℎ, 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (a, 0.95)
(7) 𝐼𝑖 = 1 if 𝑎𝑖 > 𝑡ℎ, ∀𝑖

4.3 LAD for Time Series Data
The definition of an anomaly is often contingent on the data and

the problem statement. Broadly, time series anomalies can be cate-

gorized to two groups [10]:

(1) Divergent trends/Process anomalies: Time series with

divergent trends that last for significant time periods fall

into this group. Here, one can argue that generative process

of such time series could be different from the rest of the

non-anomalous counterparts.

(2) Subsequence anomalies: Such time series have temporally

sudden fluctuations or deviations from expected behavior

which can be deemed as anomalous. These anomalies occur

as a subsequence of sudden spikes or fatigues in a time series

of relatively non-anomalous trend.

The online extension of the LAD model is designed to capture

anomalous behavior at each time step. Based on the mode of analy-

sis of the temporal anomaly scores, one can identify both divergent

trends and subsequence anomalies. In this paper, we focus on the

divergent trends (or process anomalies). In particular, we try to

look at the anomalous trends in COVID-19 cases and deaths in

US counties. Studies to collectively identify divergent trends and

subsequence anomalies is being considered as a prospective future

work.

In this section, we present an extension of the LADmodel to mul-

tivariate time series data. Here, we wish to preserve the temporal

dependency as well as dependency across different features of the

time series. Thus, as shown in Algorithm 2, a horizontal stacking

of the data is performed. This allows collective study of temporal

and non-temporal features. To preserve temporal dependency, the

anomaly scores and labels are carried on to next time step where

the labels are then re-evaluated.

Algorithm 2: Algorithm 2: LAD for Time series anomaly

detection

Input: Time series dataset {tn}Nn=1 of size (𝑁,𝑇 ,𝑑),
number of iterations 𝑁𝑖𝑡𝑒𝑟 , threshold 𝑡ℎ, window𝑤 .

Output: An array of temporal anomaly scores a, an array of

temporal anomaly labels 𝐼

Initialization: Set initial anomaly score and labels a and I
to zero matrices of size (𝑁,𝑇 ) and, entropy matrix 𝐸 to a

zero matrix of size (𝑁,𝑇 ,𝑑).
for each 𝑡 → 1 to 𝑇 do

𝑋 = ℎ𝑠𝑡𝑎𝑐𝑘 ( ¯𝑡𝑛,𝑡 ) where ¯𝑡𝑛,𝑡 = {𝑡𝑛,𝑡−𝑤 , . . . 𝑡𝑛,𝑡 }
𝐼 [𝑖, 𝑡] = 𝐼 [𝑖, 𝑡 − 1]
a[:, t] = a[:, t − 1]
for each 𝑠 → 1 to 𝑁𝑖𝑡𝑒𝑟 do

(1) Subset non-anomalous time series

𝑋𝑠𝑢𝑏 = {𝑋 [𝑖, :] |𝐼 [𝑖, 𝑡] == 0,∀𝑖}
(2) 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [:, 𝑑𝑖 ] =

𝑋 [:,𝑑𝑖 ]− ¯𝑋𝑠𝑢𝑏 [:,𝑑𝑖 ]
𝑐𝑜𝑣 (𝑋𝑠𝑢𝑏 [:,𝑑𝑖 ]) , ∀𝑑𝑖 ∈

{1, 2, . . . , 𝑑 ∗𝑤}
(3) 𝐸 [𝑖, :] = −𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝑖]2/2𝑛, ∀𝑖
(4) a[i, t] = −max(E[i, :])
(5) a[:, t] = a[:,t]−min(a[:,t])

max(a[:,t])−min(a[:,t])
(6) 𝑡ℎ =𝑚𝑖𝑛(𝑡ℎ, 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (a[:, t], 0.95)
(7) 𝐼 [𝑖, 𝑡] = 1 if a[i, t] > th, ∀i

As long term anomalies are of interest, time series with tempo-

rally longer anomalous behaviors are ranked more anomalous. The

overall time series anomaly score 𝐴𝑛 for each time series tn can be

computed as:

𝐴𝑛 =

∑𝑇
𝑡=1 𝐼 [𝑛, 𝑡]

𝑇
∀𝑛 (7)

For a database of time series with varying lengths, the time series

anomaly score is computed by normalizing with respective lengths.

5 EXPERIMENTS
In this section, we evaluate the performance of the LAD algorithm

on multi-aspect datasets. The following experiments have been

conducted to study the model:

(1) AnomalyDetection Performance: LAD’s ability to detect real-

world anomalies as compared to state-of-the-art anomaly

detection models is evaluated using the ground truth labels.

(2) Handling Large Data: Scalability of the LAD model on large

datasets (high observation count or high dimensionality) are

studied.

(3) Speed: The computation and execution times of different

algorithms are studied and evaluated.

(4) COVID-19 Time Series Data: We study the performance of

LAD model on multiple multivariate time series datasets to

identify anomalous instances within each time step as well

anomalous time series amongst many.

4



5.1 Datasets
We consider a variety of publicly available benchmark data sets

from Outlier Detection DataSets /ODDS [24] (See Tables 1) for the

experimental evaluation. For the time series data, we use COVID-19

deaths and confirmed cases for US counties from John Hopkins

COIVD-19 Data Repository [15].

Name 𝑁 𝑑 𝑎

HTTP 567498 3 0.39%

MNIST 7603 100 9.207%

Arrhythmia 452 274 14.602%

Shuttle 49097 9 7.151%

Letter 1600 32 6.25%

Musk 3062 166 3.168%

Optdigits 5216 64 2.876%

Satellite Image 6435 36 31.639%

Speech 3686 400 1.655%

SMTP 95156 3 0.032%

Satellite Image-2 5803 36 1.224%

Forest Cover 286048 10 0.96%

KDD99 620098 29 29 0.17%

Table 1: High Dimensional and Large Sample Datasets: Description
of the benchmark data sets used for evaluation of the anomaly de-
tection capabilities of the proposedmodel.𝑁 - number of instances,
𝑑 - number of attributes and 𝑎 - fraction of known anomalies in the
data set.

5.2 Baseline Methods and Parameter
Initialization

As described in Section 4, LAD falls under unsupervised learning

regime targeted for high dimensional data, we do not compare

with supervised algorithms. For this we consider Elliptic Enve-
lope (EE) [25], Isolation Forest (I-Forest) [19]3, local outlier factor
(LOF) [7], and Concentration Free Outlier Factor CFOF [2]. The CFOF
and LOF models assign an anomaly score for each data instance,

while the rest of the methods provide an anomaly label. As above

mentioned methods have one or more user-defined parameters, we

investigated a range of values for each parameter, and report the

best results. For Isolation Forest, Elliptic Envelope and CFOF, the

contamination value is set to the true proportion of anomalies in

the dataset.

The LAD model relies on a threshold value to classify observa-

tions with scores the value as strictly anomalous. Though this value

is iteratively updated, an initial value is required by the algorithm.

In this paper, the initial threshold value for the experiment is set to

0.95 for all datasets.

All the methods for anomaly detection benchmark datasets are

implemented in Python and all experiments were conducted on a

2.7 GHz Quad-Core Intel Core i7 processor with a 16 GB RAM.

3
The I-Forest model returns both anomaly scores and anomaly labels. As classification

model outperforms its score based counterpart on above discussed datasets, we only

present results on the classification model.

Table 2: Comparing LAD with existing anomaly detection algo-
rithms for large/ high dimensional datasets using ROC-AUC as the
evaluation metric.

Data LOF I-Forest EE CFOF LAD

SHUTTLE 0.52 0.98 0.96 - 0.99

SATIMAGE-2 0.57 0.95 0.96 0.70 0.99

SATIMAGE 0.51 0.64 0.65 0.55 0.6

KDD99 0.51 0.85 0.54 - 1.0

ARRHYTHMIA 0.61 0.67 0.7 0.56 0.71

OPTDIGITS 0.51 0.52 0.45 0.49 0.48

LETTER 0.54 0.54 0.6 0.90 0.6

MUSK 0.5 0.96 0.96 0.49 0.96

HTTP 0.47 0.95 0.95 - 1.0

MNIST 0.5 0.61 0.65 0.75 0.87

COVER 0.51 0.63 0.52 - 0.96

SMTP 0.84 0.83 0.83 - 0.82

SPEECH 0.5 0.53 0.51 0.47 0.47

5.3 Evaluation Metrics
As LAD is an score based algorithm, we study the ROC curves by

comparing the True Positive Rate (TPR) and False Positive Rate

(FPR), across various thresholds. The final ROC-AUC (Area under

the ROC curve) is reported for evaluation. For time series anomaly

detection, we present the final outliers and study their deviations

from normal baselines under different model settings.

5.4 Anomaly Detection Performance
Table 2 shows the performance of LOF, I-Forest, EE, CFOF and

LAD on anomaly detection benchmark datasets. Due to relatively

large run-time
4
, CFOF results are shown for datasets with samples

less than 10k. For all the listed algorithms, results for best param-

eter settings are reported. The proposed LAD model outperforms

other methods on most data sets. For larger and high-dimensional

datasets, it can be seen from Table 2 that the LAD model outper-

forms all the models in most settings.
5

To study the LAD model’s computational effectiveness, we study

the computation time and scaling of LAD model on large and high

dimensional datasets. We consider datasets with more than 10k

observations or over 100 features for our analysis. Figures 2 and

3 show the computation time in seconds for benchmark datasets.

It can be seen that the LAD model is relatively low computation

time second only to Isolation Forest in most datasets. In fact, the

computation time is more stable for our model as opposed to others

in high dimensional datasets.

Figure 4 shows the scalability of LAD with respect to the number

of records in the data. We plot the time needed to run on the first

k records of the KDD-99 dataset. Each record has 29 dimensions.

Figure 5 shows the scalability of LAD with respect to the number

of dimensions (linear-scale). We plot the time needed to run on

the first 1, 2, ..., 29 dimensions of the KDD-99 dataset. The results

4
The CFOF model is computationally expensive relative to the rest of the algorithms.

As it is aimed to study high-dimensional data, only results on datasets with <10k

observations are presented.

5
The lowest AUC values for the LAD model are observed for Speech and Optdigits

data where multiple true clusters are noted.

5



Figure 2: Computation time for large datasets

Figure 3: Computation time for high dimensional datasets

Figure 4: LAD scales linearly with the number of records for KDD-
99 data

Figure 5: LAD scales linearly with the number of dimensions in
KDD-99 data.

confirm the linear scalability of LAD with number of records as

well as number of dimensions.

5.5 Anomaly Detection in Time Series Data
This section presents the results of LAD model on COVID-19 time

series data at the US county level. Multiple settings were used to

understand the data:

(1) Deaths and confirmed case trends were considered for anal-

ysis

(2) Daily New vs Total Counts: Both total cases as well daily

new cases were analyzed for anomaly detection.

(3) Complete history vs One Time Step: Two versions of the

model were studied where data from previous time steps

were andwere not considered. By this, we tried to distinguish

the impact of the history of the time series on identifying

anomalous trends.

(4) Univariate vs Multivariate Time Series data: To further un-

derstand the LAD model, the deaths and case trends were

studied individually as a univariate time series as well as

collectively in a multivariate time series data setting.

(5) Time Series of Uniform vs Varying Lengths: Finally, all the

above analyses were conducted on time series data with

varying lengths. Here, for each county level time series, the

time of first event was considered as initial time step to

objectively study the relative temporal changes in trends.

To bring all the counts to a baseline, the total counts in each time

series were scaled to the respective county population. Missing

information was replaced with zeros and counties with population

less than 50k were eliminated from the study.

5.6 Discoveries
Complete history vs One Time Step. The full history setting con-

siders the complete history of the time series and is aimed to capture

most deviant trends over time. The one time step (or any smaller

window) setting is more suitable to study deviations within the spe-

cific window. As we target long term deviating trends, the one time

step setting returns trends that have stayed most deviant through-

out the entire time range. This can be seen in Figures 6 and 7 where

the one time step setting returns trends that have stayed deviant

almost throughout the duration while the full history setting is able

to capture significantly wider deviations. For instance, counties like

Grand Forks (ND), Burleigh (ND) and Miami-Dale (FL), that had

massive outbreaks at later stages
6
were not captured as anomalous

in the one time step model as seen in Figure 7a and 7b. Similarly,

Hall, Nebraska, which has see a deviation in trend due to an out-

break in meat packing facility in late April 2020, was captured as

anomalous trend by the full history model in Figure 6a and 6b.

Univariate vs Multivariate Time series. In Figures 6, 7, 8 and 9 we

see the anomalous trends in multivariate time series, where total

confirmed cases and deaths were collectively evaluated for anomaly

detection. For instance, despite the near-normal trends in deaths

6
https://www.bloomberg.com/news/articles/2020-09-29/north-dakota-s-outbreak-

is-as-bad-as-florida-arizona-in-july

6

https://www.bloomberg.com/news/articles/2020-09-29/north-dakota-s-outbreak-is-as-bad-as-florida-arizona-in-july
https://www.bloomberg.com/news/articles/2020-09-29/north-dakota-s-outbreak-is-as-bad-as-florida-arizona-in-july


(a) Total Confirmed, Full History

(b) Total Deaths, Full History

(c) Total Confirmed, One Time Step

(d) Total Deaths, One Time Step

Figure 6: Top 5 Counties with Anomalous Trends : Varying lengths,
Total Counts, Multivariate Time Series

cases, Hall (NE)
7
in Figures 6a- 6b, and Randal (TX) in Figures 9a-

9b were identified anomalous due to their the deviant confirmed

case trends which significantly contributed to the anomaly scores.

This setting enables identification of time-series with at least one

deviating feature.

Similarly, in Figures 6c and 6d, Wayne, Michigan along with

Rockland, Richmond, Queens and Bronx in NY have been identified

as anomalous. In particular, Michigan was seen to have 3rd highest

deaths after NY and NJ in the early stages of the pandemic with

Detroit metro-area contributing to most cases
8
. Though Wayne

county has near normal trend in total confirmed cases where as the

total deaths trend has deviated significantly.

Daily New vs Total Counts. Figures 7 and 9, show anomalous

trends in multivariate time series for total and daily new counts

respectively. It can be seen that the anomaly score is erratic for

multivariate time series on new case counts. This is due to the fact

that the data for new case and death counts is more erratic leading to

fluctuating normal average as well as non-smooth anomaly scores.

7
https://www.omaha.com/news/state_and_regional/237-coronavirus-cases-tied-to-

jbs-beef-plant-in-grand-island-disease-specialists-are-touring/article_2894db56-

913a-5c61-a065-6860a8ae50ad.html

8
https://www.npr.org/sections/coronavirus-live-updates/2020/03/31/824738996/

after-surge-in-cases-michigan-now-3rd-in-country-for-coronavirus-deaths

(a) Total Confirmed, Full History

(b) Total Deaths, Full History

(c) Total Confirmed, One Time Step

(d) Total Deaths, One Time Step

Figure 7: Top 5 Counties with Anomalous Trends : Uniform lengths,
Total Counts, Multivariate Time Series

(a) New Confirmed, Full History

(b) New Deaths, Full History

Figure 8: Top 5 Counties with Anomalous Trends : Varying lengths,
Daily New Counts, Multivariate Time Series

The LAD model on the daily new counts data was able to cap-

ture the escalation in Greater Boston area, Essex, Massachusetts in

Figure 9a and 9b during March 2020. Though the total trends seem

to be normal, the multiple anomalous daily trends led to their high

anomaly scores. Similar patterns led to identification of Lincoln

7

https://www.omaha.com/news/state_and_regional/237-coronavirus-cases-tied-to-jbs-beef-plant-in-grand-island-disease-specialists-are-touring/article_2894db56-913a-5c61-a065-6860a8ae50ad.html
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(a) New Confirmed, Full History

(b) New Deaths, Full History

Figure 9: Top 5 Counties with Anomalous Trends : Uniform lengths,
Daily New Counts, Multivariate Time Series

(a) Total Confirmed, Full History

(b) Total Deaths, Full History

Figure 10: Top 5 Counties with Anomalous Trends: Varying lengths,
Total counts

(a) Total Confirmed, Full History

(b) Total Deaths, Full History

Figure 11: Top 5CountieswithAnomalousTrends: Uniform lengths,
Total counts

(a) New Confirmed,Full History

(b) New Deaths, Full History

Figure 12: Top 5 Counties with Anomalous Trends: Varying lengths,
Daily New Counts

(a) New Confirmed,Full History

(b) New Deaths, Full History

Figure 13: Top 5CountieswithAnomalousTrends: Uniform lengths,
Daily New Counts

(SD) and Minnehaha (SD) in Figures 12a and 13a respectively where

a subsequent spike occurred after August 2020
9
.

Uniform Length vs Varying Length Time Series. The US county
cases and deaths data consists of time series of uniform lengths.

However, not all counties have events recorded in the early stages.

Thus, studying the non-synchronized database creates a bias against

counties with early reported cases. This can be seen in Figures

6 where counties like Wayne, Michigan are flagged anomalous

despite starting after many counties in NY and NJ unlike in Figures

7 which reports counties in NY with an early start
10
. Similarly,

Putnam (WV) and Laramie (WY) are found anomalous in Figure 10b

where the recently evolved death trends show signs of significant

divergence. On the other hand, Potter (TX) and Anderson (TX) have

been identified anomalous in Figures 11a due to early increase in

June 2020.

9
https://www.usatoday.com/story/news/nation/2020/08/07/sturgis-motorcycle-

rally-what-know-masks-attendance-rules/3321223001/

10
https://www.npr.org/sections/coronavirus-live-updates/2020/03/31/824738996/

after-surge-in-cases-michigan-now-3rd-in-country-for-coronavirus-deaths

8
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6 CONCLUSION
In this paper, we propose LAD, a novel scoring algorithm for anom-

aly detection in large/high-dimensional data. The algorithm suc-

cessfully handles high dimensions by implementing large deviation

theory. Our contributions include reestablishing the advantages of

large deviations theory to large and high dimensional datasets. We

also present an online extension of the model that is aimed to iden-

tify anomalous time series in a multivariate time series data. The

model shows vast potential in scalability and performance against

baseline methods. The online LAD returns a temporally evolving

score for each time series that allows us to study the deviations in

trends relative to the complete time series database.

A potential extension to the model could include anomalous

event detection for each individual time series. Another possible

future work could be extending the model to enable anomaly detec-

tion in multi-modal datasets. Additionally, the online LAD model

could be enhanced to use temporally weighted scores prioritizing

recent events.
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