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Abstract

High-dimensional classification and feature selection tasks are ubiquitous with the
recent advancement in data acquisition technology. In several application areas such
as biology, genomics and proteomics, the data are often functional in their nature and
exhibit a degree of roughness and non-stationarity. These structures pose additional
challenges to commonly used methods that rely mainly on a two-stage approach
performing variable selection and classification separately. We propose in this work
a novel Gaussian process discriminant analysis (GPDA) that combines these steps
in a unified framework. Our model is a two-layer non-stationary Gaussian process
coupled with an Ising prior to identify differentially-distributed locations. Scalable
inference is achieved via developing a variational scheme that exploits advances in
the use of sparse inverse covariance matrices. We demonstrate the performance of
our methodology on simulated datasets and two proteomics datasets: breast cancer
and SARS-CoV-2. Our approach distinguishes itself by offering explainability as well
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as uncertainty quantification in addition to low computational cost, which are crucial
to increase trust and social acceptance of data-driven tools.

Keywords: Discriminant analysis, Gaussian process, High-dimensional analysis, Non-stationarity,
Variational inference
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1 Introduction

Technological advances for collecting and measuring information in the biomedical field

and beyond have led to an explosion in high-dimensional data. Such data can be used to

identify patterns or markers and predict an outcome of interest. However, in fields such

as genomics, proteomics, and chemometrics, the high-dimensional data is often functional

and possesses complicated correlation structures. These complexities pose challenges to

statistical and machine learning methods that are used for analyzing the data.

As a motivating concrete example, we consider the context of predicting phenotypes and

identifying biomarkers based on mass spectrometry (MS) data. MS technology measures

the mixtures of proteins/peptides of tissues or fluids and produces an MS spectrum (Cruz-

Marcelo et al., 2008). The resulting experimental data consists of discretely observed

functional spectra, with typically tens of thousands of observed locations and just a few

hundred samples. Moreover, data at neighboring locations tends to be highly correlated,

with the strength of such correlations varying across the mass-to-charge (m/z) range. In

addition, MS data tends to be noisy due to chemical noise, misalignment, calibration and

other issues (Cruz-Marcelo et al., 2008).

To overcome such technical challenges, many approaches have been proposed which

differ in how they deal with the complexity of the functional data. The most common

approaches rely on a two-stage process, where the first stage reduces the dimension of

the functional predictors (e.g. through functional principal component analysis), followed

by the second stage which applies a classification technique on the reduced features (e.g.

Hall et al., 2001; Ferré and Villa, 2006). More sophisticated techniques employ generalized

functional linear regression to estimate the functional coefficients through basis expansion.

Different choices of basis functions have been considered, including splines (James, 2002;

Cardot et al., 2003), wavelets (Brown et al., 2001), and step functions (Grollemund et al.,

2019). In addition, regularization is typically employed to avoid overfitting, through prior

3



distributions or penalty functions, including lasso (Zhao et al., 2012), Bayesian variable

selection priors (Zhu et al., 2010), and random series priors (Li and Ghosal, 2018). An

overview is provided in Reiss et al. (2017). However, most of these methods do not perform

variable selection to identify intervals or regions of the functional inputs which are relevant

for predicting the class labels. Variable selection is important in this setting as retaining a

large number of non-discriminative variables exacerbates the risk of overfitting. Moreover,

variable selection allows identification of disease markers and improves model interpretabil-

ity. Relevant literature has demonstrated the importance of including a variable selection

component in classification and prediction models with functional data, for example, fused

lasso and its Bayesian analogues (Tibshirani et al., 2005; Casella et al., 2010), Bayesian

fused shrinkage (Song and Cheng, 2019), and Bayesian sparse step functions (Grollemund

et al., 2019). For multivariate functions of the input space, various extensions of penaliza-

tions or Bayesian shrinkage and spike-and-slab priors have been proposed to incorporate

spatial smoothness in the functional coefficient and variable selection (e.g Goldsmith et al.,

2014; Li et al., 2015; Kang et al., 2018).

In this work, we focus on the discriminant analysis (DA) framework, which provides

an alternative approach to generalized functional regression for classification tasks. In DA,

the conditional distribution of the inputs x given the class label y is modelled, which is

then flipped via Bayes theorem to obtain the classification rule for y given x. The stan-

dard approach assumes that the class conditional distribution is a multivariate normal. A

number of extensions have been developed for high-dimensional functional data, including

penalized linear DA (Hastie et al., 1995) and functional linear DA (James and Hastie,

2001). Notably, Murphy et al. (2010) proposed a quadratic DA which incorporates vari-

able selection through constraints on the covariance matrices, whereas Ferraty and Vieu

(2003) proposed a nonparametric DA based on kernel density estimation. In the Bayesian

paradigm, Stingo and Vannucci (2011) developed a quadratic DA which includes latent
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binary indicators for variable selection with a Markov random field prior to incorporate

known structures. Stingo et al. (2012) extended this by applying a wavelet transformation

to account for smoothness in the functional inputs. Gutiérrez et al. (2014) developed a ro-

bust Bayesian nonparametric (BNP) version of quadratic DA through a two-stage approach

that first selects variables based on a fitted Gaussian process (GP) model for the functional

data and individual quadratic DA across variables, and at the second stage, employs BNP

mixture models for flexible discriminant analysis based on the selected variables.

In this article, we propose a novel and scalable Bayesian DA which performs variable

selection and classification jointly, by combining recent developments in deep GPs (Dunlop

et al., 2018) to flexibly model the functional inputs and incorporating Ising priors to iden-

tify differentially-distributed locations within a unified model framework. While powerful,

GP models suffer from a well-known computational burden due to the need to store and

invert large covariance matrices. Several approaches have been proposed in literature to

enable scalability of GP models (e.g. Kumar et al., 2009; Hensman et al., 2013; Salimbeni

and Deisenroth, 2017; Geoga et al., 2020). In this work, we develop a scalable inference

algorithm that ameloriates the computational burden by utilizing the link between GPs

and stochastic partial differential equations (SPDEs) to construct sparse precision ma-

trices (Lindgren et al., 2011; Grigorievskiy et al., 2017) and combine various variational

inference schemes. Specifically, we focus on a two-level architecture of deep GPs with

exponential covariance functions due to the attractive balance between flexibility and com-

putational efficiency, and describe how to extend this framework to other settings. We

apply and demonstrate the utility of our model on proteomics-related mass spectrometry

datasets, while also highlighting its relevance to other applications with functional data,

including temporal gene expression (Leng and Müller, 2006), nuclear magnetic resonance

spectroscopy (Allen et al., 2013), chemometrics (Murphy et al., 2010), agricultural produc-

tion based temporal measurements (Grollemund et al., 2019), speech recognition (Hastie
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et al., 1995), and pregnancy loss based on hormonal indicators (Bigelow and Dunson, 2009),

among others. Lastly, we emphasize that our proposed Bayesian model offers explainability

as well as uncertainty quantification, which are desirable qualities for increasing trust and

widespread acceptance of data-driven tools in biomedicine and other scientific fields.

The paper is structured as follows. We present our proposed model in Section 2 and the

developed posterior inference scheme in Section 3. In Section 4, we provide details of the

implementation tricks required for scalability and efficiency of the algorithm. In Section

5, we present numerical results to demonstrate the performance of our methodology in

simulated and real datasets. Section 6 summarizes and concludes with future directions.

2 Model

Consider a set of n functional inputs {xi(t)}ni=1 defined on the domain D ⊂ R and their

corresponding class labels {yi}ni=1, where xi(t) ∈ R, yi ∈ Y , and Y is a set of class labels. As

a motivating example, Figure 1 depicts a set of processed MS spectra for healthy controls

and SARS-CoV-2 positive patients (Nachtigall et al., 2020), with the x-axis indicating the

mass-to-charge ratio (m/z) and the y-axis indicating the intensity of the protein or peptide

ions. The commonly used pipeline for analysing such data follows a two-stage approach. At

the first stage, peak detection and extraction protocols are employed to yield a set of m/z

values and their intensity readings corresponding to the detected peaks (for SARS-CoV-2,

the class-averaged spectra and detected peaks are compared in Figure 1c). At the second

stage, information from these peak regions are used to predict the outcome of interest

and identify differentially-expressed proteins. However, the initial steps of peak detection

and extraction are critical for classification and may exclude important information from

regions along the functional trajectory which are useful for classification (Liu et al., 2009).

A viable solution is to build a unified data analysis framework that utilizes the en-

tire high-dimensional inputs and incorporates variable selection within the model. In the

6



(a) Controls (b) SARS-CoV-2

0.00

0.01

0.02

0.03

0.04

4000 8000 12000 16000
m/z

sq
rt

 in
te

ns
ity Class

control

SARS−CoV−2

(c) Class-averaged spectra

Figure 1: Illustration of the SARS-CoV-2 data (Nachtigall et al., 2020), with the square

root intensities of the preprocessed spectra for (a) healthy controls and (b) SARS-CoV-2

positive patients (class-average given in red). The class averages are compared in (c) and

the detected peaks, identified through the standard two-stage pipeline in Nachtigall et al.

(2020), are marked with stars.

context of DA, the classical vanilla model is well-known to suffer from poor classification

accuracy in high-dimensional datasets (Bickel and Levina, 2004; Fan and Fan, 2008). The

two-stage approach, which first selects variables according to specified criteria and then clas-

sifies with DA on the selected variables (some examples in Fan and Fan, 2008; Duarte Silva,

2011; Cui et al., 2015), provides some improvements. However, information is lost when
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variable selection and classification are performed in separate stages. For example, two

variables with adjusted p-values of 0.003 and 0.03 may be selected, but their difference in

significance levels is not accounted for at the classification stage. Some proposed methods

that circumvent this loss of information by incorporating variable selection directly within

a DA model have been proposed have led to good classification performance in several

examples (Witten and Tibshirani, 2011; Romanes et al., 2020).

In the same spirit, we propose a novel unified model that performs the variable selection

and the classification steps simultaneously. For brevity, we present our method in the

context of a binary classification problem (although an extension to more than two classes

is straightforward). Our proposed approach builds on a DA framework that employs GPs

to flexibly model the entire functional trajectory:

xi | yi = k, µk, σk, ψi
ind∼ GP(µk, Kψi

+ Ek), (1)

where yi = k ∈ {0, 1} refers to the class label; µk(t) ∈ R is the group-specific mean function;

Kψi
is a covariance function (or kernel) with observation-specific parameters ψi; Ek is a

white noise kernel with class- and location-dependent variance σ2
k(t) > 0; and GP(µ,K+E)

denotes a Gaussian process with mean function µ and covariance function K + E . Here, K

and E induce the marginal variance Var{xi(t)} = K(t, t)+E(t) and the pairwise covariance

Cov(xi(t), xi(t
′)) = K(t, t′). Each stochastic process may be decomposed as

xi(t) = µk(t) + zi(t) + εk,i(t),

where zi | ψi ∼ GP(0, Kψi
) is an observation-specific latent process and εk,i(t) ∈ R is a

white-noise process with variance σ2
k(t) > 0. Note the latent process zi accounts for the

covariances between the values of the stochastic process at multiple locations, and εk,i(t)

allows location-varying noisy errors, which are often present in functional data, such as

the MS trajectories in Figure 1. We allow for variable selection in our proposed model by
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defining a binary signal process γ(t) ∈ {0, 1} such that

µk(t) = γ(t)µ̃k(t) + (1− γ(t))µ̃∅(t) and σ2
k(t) = γ(t)σ̃2

k(t) + (1− γ(t))σ̃2
∅(t),

where µ̃k and σ̃2
k are the group-specific mean and noise variance processes at discrimi-

native locations and µ̃∅ and σ̃2
∅ are the common mean and noise variance processes at

non-discriminative locations. In the context of MS data, γ allows for detection of relevant

m/z values within the classification model. Thus, the entire aligned spectra are the inputs

of the classification model, combining the steps of peak detection, feature extraction, and

classification into a unified modeling framework. An example of a pair of µ1 and µ0 are

depicted in the Supplementary Material. The above parameterization allows us to directly

infer the components µ̃k and µ̃∅ for the mean functions and σ̃2
k and σ̃2

∅ for the noise variance

functions, as well as the signal process γ, which determines the regions where the mean

and variance differ between groups.

Two-level non-stationary Gaussian processes. In several examples such as in our

motivating example of MS data, the observed functions are often unevenly rough which is

indicative of a non-stationary covariance structure. This behavior is evident in Figure 1,

where the spectra are flatter in some regions and change more rapidly in others. To account

for this behavior, we assign a non-stationary covariance kernel (Paciorek and Schervish,

2003) for Kψi
. Specifically, the kernel parameter, ψi = (τ, νi), consists of the magnitude

τ > 0 and a location-varying log length-scale process νi, i.e., Kψi
= KNS;τ,νi , and hence we

may write

zi|τ, νi ∼ GP(0, KNS;τ,νi).

At the second level, we place Gaussian process priors on the log length-scale processes with

νi(t) = R(t) + ζi, and R ∼ GP(µν , KS;τ2,λ),

where KS;τ2,λ is a stationary covariance kernel with marginal scale τ2 and length scale

λ. Here, each observation-specific log length-scale process has been decomposed into a
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Figure 2: Illustration of the two-level non-stationary GP. Larger/smaller values of the

common log-length scale process R(t) in (a) result in flatter/more wiggly behavior for

all observed latent zi(t). In addition, the log-length scale process for each observation is

perturbed by ζi, allowing for some zi(t) (e.g. with ζi = 4) to be flatter than others across

the entire domain.

common component R(t) to account for the location-varying covariance structure common

across all observed functions, and an observation-specific perturbation ζi ∈ R to allow

for between-spectra variation in smoothness across the entire domain. This behavior is

illustrated in Figure 2. This decomposition is flexible yet also reduces the computational

cost of having to infer n observation-specific location-varying log length-scales (details are

provided in the Supplementary Material).

Due to the observed roughness in our motivating dataset (refer to Figure 1), we focus on

the exponential covariance function, a member of the Matérn family with smoothness pa-

rameter ν = 1/2. In one-dimension, this is also known as the Ornstein-Uhlenbeck process,

and it is the continuous-time counterpart of the first-order autoregressive model AR(1).

Motivated by the link between GPs and SPDEs (Lindgren et al., 2011; Monterrubio-Gómez
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et al., 2020), we employ an SDE representation of the nonstationary processes:

dzi = − 1

exp(νi)
zidt+

√
2τ

exp(νi)
dω1, (2)

dR = −1

λ
Rdt+

√
2τ2
λ
dω2, (3)

where νi(t) = R(t) + ζi and ω1 and ω2 are Wiener processes. While appropriate for rough

MS data, the SDE representation can be extended to other choices of covariance functions,

such as Matérn processes with smoother realisations (Grigorievskiy et al., 2017). The

resulting two-level GP model provides the flexibility needed to capture non-stationarities,

but this could be further extended with a non-stationary covariance kernel also for the log

length-scale process by using deeper architectures (Dunlop et al., 2018; Zhao et al., 2021).

2.1 Finite-time discretization

In practice, the functional realizations xi = (xi(t1), . . . , xi(tT )) are discretely-observed at

locations t1 < . . . < tT
1. Following our proposed model for the process xi in (1), the

likelihood of the discretely-observed vector xi is a multivariate normal density:

xi | yi,µyi ,νi, τ,σ2
yi
∼


N(µ1, Q

−1
NS;τ,νi

+Dε1), if yi = 1;

N(µ0, Q
−1
NS;τ,νi

+Dε0), if yi = 0,

where µk = (µk(t1), . . . , µk(tT ))>; σ2
k = (σ2

k(t1), . . . , σ
2
k(tT ))> ; νi = ζi + R with R =

(R(t1), . . . , R(tT ))>; Dεk = dg(σ2
k(t1), . . . , σ

2
k(tT )); dg forms a diagonal matrix from ele-

ments of a vector, and QNS;τ,νi is a precision matrix parameterized τ and νi. Again, the

discretely-observed xi can be decomposed as:

xi = µk + zi + εk,i, for yi = k,

1For ease of notation, we assume the locations t1 < . . . < tT are common across all observations, but

the discretized model could be extended accordingly.
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where zi = (zi(t1), . . . , zi(tT ))> is the observation-specific latent vector with precision ma-

trix QNS;τ,νi ; εk,i is the white noise vector with covariance matrix Dεk;

µk = γ � µ̃k + (1− γ)� µ̃∅, and σk = γ � σ̃k + (1− γ)� σ̃∅,

where � denotes element-wise product. At the second level, the common log length-scale

vector R has a multivariate normal distribution,

R |λ, τ2 ∼ N(0, Q−1S;λ,τ2).

To overcome the computational bottleneck of GPs, we construct sparse precision matri-

ces QNS;τ,νi and QS;λ,τ2 by discretizing the SDE representations in (2) and (3), respectively,

on the grid t1 < . . . < tT using the Euler-Maruyama scheme:

zi(tj) = zi(tj−1)−
1

exp(νi(tj−1))
zi(tj−1)δj +

√
2τ

exp(νi(tj−1))
w1,j, (4)

R(tj) = R(tj−1)−
1

λ
R(tj−1)δj +

√
2τ2
λ
w2,j, (5)

where νi(tj) = ζi + R(tj); w1,j ∼ N(0, δj) ⊥⊥ w2,j ∼ N(0, δj); and δj = tj − tj−1. For nota-

tional simplicity, we assume the locations are equally-spaced, i.e., tj − tj−1 = δ. Through

(4) and (5), the precision matrices of zi and R have a tridiagonal structure (specific form in

the Supplementary Material), which alleviates the complexity and enhances the efficiency

of our posterior inference algorithm. A detailed discussion is provided in Section 4.

2.2 Choice of priors

To reflect our prior belief that the underlying variable selection process γ is smooth, we

assign a linear chain Ising prior (Li and Zhang, 2010) to account for smoothness. Follow-

ing this choice of prior, the conditional distribution of γ(t) given its corresponding set of

neighbors with locations in Nt ⊂ {t1, . . . , tT} is

P(γ(t) = 1 | {γ(t′)}t′∈Nt) = expit

{
−α +

∑
t′∈Nt

β(t, t′)γ(t′)

}
,
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where expit(x) = {1 + exp(−x)}−1, α ∈ R, and β(t, t′) > 0. Here, a larger value of

α corresponds to more sparsity in γ, whereas β controls the correlation and smoothness

between the values of γ at neighboring locations. In our context, we defineNt = {t−1, t+1}

and β(t, t′) = β.

Motivated by the non-stationary behavior also evident in the class-averaged functions

(see Figure 1), we also assign hierarchical GP priors for the mean functions

µ̃k(t) | τ̃k, ν̃k ∼ GP(0, KNS;τ̃k,ν̃k),

ν̃k(t) | η̃, λ̃ ∼ GP(µν̃ , KS;η̃,λ̃),

with hyperpriors τ̃k ∼ InvGa(Aτ̃ , Bτ̃ ) for k = 0, 1, ∅; η̃ ∼ InvGa(Aη̃, Bη̃); and λ̃ ∼

LogN(µλ̃, σ
2
λ̃
). Here, the hyperparameters of the length scale λ̃ are specified such that the

resultant prior is weakly informative to mitigate potential non-identifiability issues (Betan-

court, 2017, and further details in the Supplementary Material). For the noise variance,

we assign an independent prior at each location

σ̃2
k(t) ∼ InvGa(Aε, Bε), for k = 0, 1, and σ̃2

∅(t) ∼ InvGa(Aε, Bε).

For the magnitude τ of the zi and the magnitude τ2 of R, we assume τ ∼ InvGa(Aτ , Bτ )

and τ2 ∼ InvGa(Aτ2 , Bτ2), respectively. The observation-specific perturbations are assigned

the priors ζi
iid∼ N(0, σ2

ζ ), where σ2
ζ = 1. For the length scale λ, we assign the weakly

informative hyperprior λ ∼ LogN(µλ, σ
2
λ). A directed acyclic graph (DAG) that summarizes

the parameters in our proposed model is provided in Figure 3.

3 Inference and prediction

While Markov chain Monte Carlo is a popular technique for computing posterior distribu-

tions in Bayesian modelling, an alternative approximate Bayesian inference method known

as variational Bayes has gained popularity in the literature. Variational Bayes has been
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Figure 3: DAG representation of the proposed model. The colour fills denote the inference

approach adopted: blue for MAP; red for SVB; white for CAVI; and gray denotes observed

data. More details of the various inference approaches is provided in Section 3.

shown to be a fast posterior computation method that yields reasonably accurate approxi-

mations in several problems. Consider fitting a model parameterized by θ to the observed

data D. In variational Bayes, the actual posterior p(θ | D) is approximated by a density

q(θ) from a family of distributions F that maximizes the evidence lower bound (ELBO)

Eq(θ)
[
log

{
p(θ,D)

q(θ)

}]
. (6)

A common choice for F is the mean-field family on the partition {θ1, . . . ,θL} of θ:

q(θ) =
L∏
l=1

ql(θl),

where L ≤ dim(θ). Without any further parametric assumptions, it has been shown

(Ormerod and Wand, 2010) that the optimal choice for each product component ql is

ql(θl) ∝ exp [E−θl log{p(θ,D)}] , (7)
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where the above expectation is taken with respect to
∏

l′ 6=l ql′(θl′). This choice of product

component is known as coordinate ascent variational inference (CAVI). Note that in some

cases, the RHS in (7) is intractable. In such cases, we adopt alternative methods such

as stochastic variational Bayes (SVB) or maximum a posteriori (MAP) to circumvent the

intractability.

3.1 Posterior inference

Let θ denote the vector of all model parameters (excluding the hyperparameters ζi, λ, τ2,

λ̃, η̃, α, and β). We specify the mean-field family for the approximate posterior:

q(θ) = q(τ)q(R)
n∏
i=1

{q(zi)} ×
∏

k∈{∅,0,1}

{
q(µ̃k)q(ν̃k)q(τ̃k)

T∏
j=1

q(σ̃2
kj)

}
×

T∏
j=1

{q(γj)}.

In the following, we provide details on the functional form of each product component.

Note that the product components for the location-varying log length-scales, i.e. R and

νi, are computed using SVB updates, while CAVI updates are employed for all other

parameters in θ. The remaining hyperparameters ζi, λ, τ2, λ̃, η̃, α, and β are optimized

using MAP estimation, with the marginal likelihood approximated by the ELBO (6). In

Figure 3, parameters in white, red, and blue fill are updated with CAVI, SVB and MAP

respectivly, whereas gray fill denotes observed quantities. For the rest of this section, we

use the notation E to denote an expectation with respect to the variational posterior and

a subscript j to denote the value of the functional at location tj, e.g. µ̃k(tj) = µkj and

γj = γ(tj). Furthermore, as proof of concept, we present our approximate posteriors in

the case whereby each stochastic process xi is observed at the same set of equally-spaced

locations t1, . . . , tT , with tj+1 − tj = δ.

Mean function parameters. The product component for µ̃k is:

q(µ̃k) = N(mµ̃k
, Q−1µ̃k

),
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where, for k = 0, 1 and k = ∅, respectively, we have

mµ̃k
= Q−1µ̃k

E(D̃−1εk )W
(
X(k) −m(k)

Z

)>
1nk

and Qµ̃k
= nkWE(D̃−1εk ) + EQNS;τ̃k,ν̃k ,

mµ̃∅ = Q−1µ̃∅
E(D̃−1ε∅ )(I −W ) (X −mZ)> 1n and Qµ̃∅ = n(I−W)E(D̃−1ε∅ ) + EQNS;τ̃∅,ν̃∅ ;

with nk denoting the number of training observations in group k = 0, 1 and 1n denotes a

column-vector of size n with all entries equal to one. Here, w = E(γ), W = dg(w), and

mZ = E(Z) with Z = [z1, . . . ,zn]>, X = [x1, . . . ,xn]>, and X(k) and m
(k)
Z denoting the

rows of X and mZ , respectively, corresponding to training observations from class k. The

product component for the magnitude τ̃k is:

q(τ̃k) = InvGa(aτ̃k , bτ̃k),

where aτ̃k = Aτ̃ +T/2 and bτ̃k = Bτ̃ +tr[E(µ̃kµ̃
>
k )ECNS;ν̃k ]/2, and tr denotes the trace oper-

ator. Here, CNS;ν̃k = τ̃kQNS;τ̃k,ν̃k represents the non-stationary precision matrix with unit

marginal scale (computational details in the Supplementary Material). For the location-

varying log length-scale ν̃k, non-conjugacy between the priors for ν̃k and µ̃k leads to an

intractable CAVI update. To circumvent this intractability, we adopt SVB and specify a

Gaussian form for q(ν̃k), i.e.,

q(ν̃k) = N(mν̃k , (Ων̃kΩ>ν̃k)−1),

where mν̃k and Ων̃k are chosen to maximize the evidence lower bound:

ELBO(mν̃k ,Ων̃k) = E [log p(µ̃k | ν̃k) + log p(ν̃k)− log q(ν̃k)]

= 1
2
1>E(ν̃k)− 1

2
m1/τ tr[E(µ̃kµ̃

>
k )ECNS;ν̃k ]

− 1
2
E
{

(ν̃k − µν̃)>QS;η̃,λ̃(ν̃k − µν̃)
}
− E log q(ν̃k;mν̃k ,Ων̃k),

and m1/τ̃k = E(1/τ̃k). To reduce the computational complexity, we specify a sparse

Cholesky decomposition for the variational precision matrix. In particular, Ων̃k is a 1-

banded lower triangular matrix, leading to a tridiagonal precision matrix. Note that, in
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addition to the computational savings, this form is further motivated as the approximate

posterior precision matrix maintains a similar structure to the prior precision matrix. De-

tails about the steps for this SVB update are provided in the Supplementary Material.

The magnitude η̃ and length-scale λ̃ of the log length-scale processes are updated as MAP

estimates, i.e., the maximizer of the objective

OBJ(η̃, λ̃) =
∑

k∈{0,1,∅}

E log φ(ν̃k;µν̃ , Q
−1
S;η̃,λ̃

) + log p(η̃) + log p(λ̃).

Noise variance parameters. The product component for σ̃2
k is:

q(σ̃2
kj) = InvGa(rkj, skj).

Here, for k = 0, 1 and k = ∅, respectively, we have

rkj = Aε + nkwj/2, and skj = Bε +
wj

2

∑
i:yi=k

E(xij − µ̃kj − zij)2;

r∅j = Aε + n(1− wj)/2, and s∅j = Bε +
1−wj

2

n∑
i=1

E(xij − µ̃∅j − zij)2,

where, E(xij − µ̃kj − zij)
2 = (xij − mµ̃kj − mzij)

2 + (Q−1µ̃k
)jj + (Q−1zi )jj, E(µ̃kj) = mµ̃kj ,

V(µ̃k) = Q−1µ̃k
, V(zi) = Q−1zi , and the subscript jj denotes the (j, j)-th entry of a matrix.

Latent process. The product component for zi:

q(zi) = N(mzi , Q
−1
zi

),

where

Qzi = WE(D̃−1εyi ) + (I −W )E(D̃−1ε∅ ) + E(QNS;τ,νi), (8)

mzi = Q−1zi

{
WE(D̃−1εyi )(xi −mµ̃yi

) + (I −W )E(D̃−1ε∅ )(xi −mµ̃∅)
}
. (9)

Covariance parameters. For the magnitude τ of the latent process, q(τ) = InvGa(rτ , sτ )

where, rτ = Aτ + nT/2 and

sτ = bτ + 1
2

[
n∑
i=1

tr
(
E[ziz

>
i ]E[CNS;νi ]

)]
,
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with CNS;νi = τQNS;τ,νi denoting the precision matrix with unit precision. For the common

log length-scale vector R, we adopt a SVB update by specifying its approximate density:

q(R) = N(mR, (ΩRΩ>R)−1),

where the variational parameters mR and ΩR are chosen to maximize:

ELBO(mR,ΩR) = E
[ n∑
i=1

log φ(zi; 0, Q
−1
NS;τ,νi

) + log φ(R; 0, Q−1S;τ2,λ)− log q(R;mR,ΩR)
]
.

The details of the SVB update are similar to the update for ν̃k and thus are omitted. The

observation-specific perturbations ζi are updated as the maximizers of the objective:

OBJ(ζi) = E
[

log φ(zi; 0, Q
−1
NS;τ,νi

)
]

+ log p(ζi).

The magnitude τ2 and length-scale λ of the common location-varying log length-scale R

are updated as MAP estimates, i.e., maximizers of the objective

OBJ(τ2, λ) = E log φ(R; 0, Q−1S;τ2,λ) + log p(τ2) + log p(λ).

Feature selection parameter. For the binary indicator γj at each location,

wj = q(γj = 1) = expit
[
−uj

2
− 1

2
1>gj − α + β(wj+1 + wj−1)

]
,

where uj = n1

2
E log(σ̃2

1j) + n0

2
E log σ̃2

0j)− n
2
E log(σ̃2

∅j), gj = (g1j, . . . , gnj)
>, and

gij = E(σ̃2
yij

)
{

(xij −mµ̃yij
−mzij)

2 + (Q−1µ̃yi
)jj + (Q−1zi )jj

}
− E(σ̃2

∅j)
{

(xij −mµ̃∅j −mzij)
2 + (Q−1µ̃∅

)jj + (Q−1zi )jj

}
.

The hyperparameters α and β controlling sparsity and correlation of the Ising prior are

updated as the maximizer of the objective:

OBJ(α, β) = E [log p(γ |α, β) + log p(α) + log p(β)] ,

where in the case of the linear chain Ising prior, a closed form expression is available for

the partition function (see Salinas (2001) and details in the Supplementary Material).
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3.2 Classification

Upon convergence of the variational parameters in the posterior inference phase, we proceed

to derive a classification rule for a new process xn+1(t) that follows the distribution as

described in equation (1). This requires the predictive distribution p(yn+1, zn+1 | D,xn+1),

where D denotes all observed data. To simplify computations, we make the following mean

field approximation for the predictive distribution of yn+1 and zn+1:

p(zn+1, yn+1 | D,xn+1) ≈ q(zn+1)q(yn+1).

Following equation (7), we adopt a CAVI update for zn+1, i.e.,

q(zn+1) = N(mzn+1 ,Σzn+1),

where mzn+1 and Σzn+1 are similar in form to the variational updates for zi in (8)-(9) but

also take into account the unknown class label yn+1:

Qzn+1 = W
{
ξ1ED̃−1ε1 + (1− ξ1)ED̃−1ε0

}
+ (I −W )ED̃−1ε∅ + E(QNS;τ,νn+1),

mzn+1 = Q−1zn+1
W
{
ξ1ED̃−1ε1 (xn+1 −mµ̃1) + (1− ξ1)ED̃−1ε0 (xn+i −mµ̃0)

}
+Q−1zn+1

(I −W )ED̃−1ε∅ (xn+i −mµ̃∅),

where ξ1 = q(yn+1 = 1). Note that Qzn+1 depends on the estimate of the observation-

specific log length-scale vn+1(t) = R(t) + ζn+1. Since the approximate posterior for R

has been computed in the posterior inference phase, we only need an estimate for the

perturbation ζn+1. This may be computed via MAP estimation as the maximizer of:

OBJ(ζn+1) = E
[

log φ(zn+1; 0, Q
−1
NS;τ,νn+1

)
]

+ log p(ζn+1).

For the group label yn+1, we adopt a CAVI update:

ξ1 = q(yn+1 = 1)

= expit

[
− 1

2
w>E

{
log(σ̃2

1)− log(σ̃2
0)
}
− 1

2
QDA(xn+1)− 1

2
tr
{
WE(D̃−1ε1 )(Q−1µ̃1

+Q−1zn+1
)
}

+ 1
2
tr
{
WE(D̃−1ε0 )(Q−1µ̃0

+Q−1zn+1
)
}

+ log

(
n1

n0

)]
,
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where log(σ̃2
k) denotes the element-wise log of the vector σ̃2

k and

QDA(xn+1) = (xn+1 −mµ̃1 −mzn+1)
>WE(D̃−1ε1 )(xn+1 −mµ̃1 −mzn+1)

− (xn+1 −mµ̃0 −mzn+1)
>WE(D̃−1ε0 )(xn+1 −mµ̃0 −mzn+1).

The posterior inference and classification phases of the algorithm are terminated when

the change in values of the variational parameters and MAP estimates are sufficiently

small. Pseudocodes for the posterior inference and classification algorithms are provided

in Algorithms S1 and S2 in the Supplementary Material.

4 Improving Scalability and Efficiency

A näıve implementation of the inference algorithm described in the previous section would

be impractical as it involves computationally costly operations with large matrices. For

example, the variational parameters for the latent processes zi require solving systems of

T linear equations for the evaluation of mzi and computing the diagonals of Q−1zi , with a

total cost of O(nT 3) for both operations. Moreover, if a full variational precision matrix is

specified for the location-varying length-scales, the SVB updates may be slow to converge

as the variational posterior would have O(T 2) variational parameters . In the motivating

SARS-CoV-2 example with T = 25, 001, these steps would clearly be infeasible.

In this section, we briefly describe the computational shortcuts that we have adopted

to reduce the computational complexity of our entire inference algorithm from O(nT 3)

to O(nT ), with further details in the Supplementary Material. In particular, a careful

inspection of all steps in the variational algorithm reveals that we can avoid the costly

O(nT 3) operations and only require two types of operations which admit computationally

efficient implementations: (1) solve a system of linear equations of the form Qa = b, where

Q is a T × T tridiagonal matrix and a,b ∈ RT ; (2) computing the main and first off-

diagonal entries of the inverse tridiagonal precision matrix. This can be attributed to both
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the tridiagonal structure of the precision matrices obtained through the specified kernel and

SDE discretization, detailed in Section 2.1, and the sparse Cholesky decomposition of the

variational precision matrix for the location-varying log length-scales, specified in Section

3.1. Additionally, the banded form of the Cholesky decomposition reduces the number of

variational parameters in the SVB updates to O(T ).

To compute efficiently the main diagonal and first off-diagonal entries, we adopt the

sparse inverse subset algorithm (Takahashi, 1973; Durrande et al., 2019). The algorithm

begins by computing the inverse of the 1-banded Cholesky decomposition of the precision

matrix, which also turns out to be a lower triangular 1-banded matrix, and then utilizes

a recursive algorithm for computing the required entries. For solving the required system

of linear equations, we utilize Thomas’ algorithm (Higham, 2002) that exploits efficiently

the tridiagonal structure of Q and results in a low computational complexity O(T ). Lastly,

we note that for applications with smoother functional realizations, Matérn kernels with

a larger smoothness parameter can be used. This also leads to sparse banded precision

matrices but with a higher bandwidth b and increased computational complexity of O(b2T ).

5 Numerical results

In this section, we study the performance of our proposed Gaussian process DA (GPDA) in

four simulation settings and two publicly available proteomics datasets. We compare with

seven other methods - variational nonparametric DA (VNPDA, Yu et al., 2020a), penalized

linear DA with fused lasso penalty (penLDA-FL, Witten and Tibshirani, 2011), random

forest, sparse linear DA (SparseLDA, Clemmensen et al., 2011), variational linear DA (VLDA,

Yu et al., 2020b), and both the L2-regularized and L1-regularized support vector machine

(SVM) with linear kernels (Cortes and Vapnik, 1995; Fan et al., 2008). For the proteomics

datasets, we also compare with the traditional two-stage algorithm which involves peak

detection and followed by classification using linear DA and quadratic DA. These classifiers
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are selected as competing methods as their implementations are publicly available, have

reasonably low computation time for high-dimensional datasets. Moreover, they perform

variable selection except the L2-regularized support vector machine.

5.1 Simulated datasets

In all simulations, we set T = 5000. Each simulation setting is repeated 50 times. At each

repetition, we draw a training dataset of size ntrain = 100 and a testing dataset of size

ntest = 500 from the distribution:

xi | yi,θ? ∼


NT (µ?1,Σ

?
i1), if yi = 1; and

NT (µ?0,Σ
?
i0), if yi = 0,

where the superscript ? denotes the simulation setting. The class labels are generated from:

yi ∼ Bernoulli(0.5). Full details on the simulation settings for the mean function and noise

variances are provided in the Supplementary Material.

Description. In Simulation 1, we study the performance of the methods when a large

proportion (40%) of the locations have weak predictive power, whereas the rest of the

locations do not have any predictive power. The GPDA model is correctly specified, i.e.,

the covariance function of the i-th observation is Σ?
ik = D?

ε,k + Q−1NS;τ?,ν?
i
, and R? ∼

N(0, Q−1S;τ?2 ,λ?), and we fix τ ? = 4.5, τ ?2 = 2, λ? = 500, and ζ?i = 0.5 exp{i0.05} − 1.5. For

Simulation 2, we consider a similar scenario to Simulation 1 but with a much smaller

proportion (5%) of the locations having strong predictive power, whereas the rest of the

locations do not have any predictive power. The GPDA model is again correctly specified.

We fix τ ? = 1.5, τ ?2 = 2, λ? = 500, and ζ?i = 0.5 exp{i0.05} − 1.5. For Simulation 3, we

assess the performance of the methods when the locations are mutually independent, the

noise variances are equal between groups, and a small proportion (10%) of the locations are

weak signals, i.e. VLDA is correctly specified. This is a boundary case whereby the true log
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Figure 4: Classification errors rates (%) for Simulations 1 to 4.

length scale νi → −∞. Lastly, Simulation 4 allows us to assess the performance of the

methods when the GPDA model is misspecified. In particular, the true covariance matrix

has a uniform structure with all diagonal entries equal 1 and the off-diagonal entries equal

0.95. A small proportion (10%) of the locations have strong predictive power.

Results. We assess the classification performance of the methods using the classification

error rate, true positive rate and true negative rate, and the variable selection performance

using the Matthews correlation coefficient. Results are provided in Figures 4 and 5, with

further details in the Supplementary Material. GPDA achieved good classification and vari-

able selection in comparison to the alternative methods. In Simulation 1, GPDA, SVM-L1,

and SparseLDA attained comparably high classification accuracies. Moreover, GPDA at-

tained the second highest mean MCC, whereas SVM-L1 and SparseLDA did not perform

23



0

10

20

30

40

50

G
P

D
A

V
N

P
D

A

pe
nL

D
A

−
F

L

R
an

do
m

F
or

es
t

V
LD

A

S
pa

rs
eL

D
A

S
V

M
−

L1

 

M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t Simulation1

0

25

50

75

G
P

D
A

V
N

P
D

A

pe
nL

D
A

−
F

L

R
an

do
m

F
or

es
t

V
LD

A

S
pa

rs
eL

D
A

S
V

M
−

L1

 

M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t Simulation2

10

20

30

G
P

D
A

V
N

P
D

A

pe
nL

D
A

−
F

L

R
an

do
m

F
or

es
t

V
LD

A

S
pa

rs
eL

D
A

S
V

M
−

L1

 

M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t Simulation3

−50

0

50

100

G
P

D
A

V
N

P
D

A

pe
nL

D
A

−
F

L

R
an

do
m

F
or

es
t

V
LD

A

S
pa

rs
eL

D
A

S
V

M
−

L1

 

M
at

th
ew

s 
C

or
re

la
tio

n 
C

oe
ffi

ci
en

t Simulation4

Figure 5: MCC × 100% for Simulations 1 to 4.

well for variable selection. penLDA-FL outperformed GPDA in feature selection in this sim-

ulation setting as it is well-known to perform well as a feature selector when the signal

strengths are weak. In Simulation 2, GPDA and SVM-L1 attained comparably low classifica-

tion errors, while GPDA yielded the highest mean MCC. In Simulation 3, GPDA achieved the

second lowest mean classification error rate. This demonstrates its ability to perform well

even in the case when a simpler model fits the data well. Moreover, it outperforms VLDA

in feature selection as the Ising prior works well when the true discriminative process γ? is

smooth. In Simulation 4, GPDA, SVM-L1, SVM-L2, and SparseLDA achieved comparably high

classification accuracies, while GPDA achieved the highest mean MCC. This demonstrates

our proposed method’s robustness when the true precision matrix is not sparse.
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5.2 Proteomics datasets

We consider two datasets that aim to predict and identify markers of 1) SARS-CoV-2

in nasal swabs using matrix-assisted laser desorption/ionization (MALDI) MS (Nachtigall

et al., 2020) 2) breast cancer in plasma using surface-enhanced laser desorption and ioniza-

tion (SELDI) protein MS (Shi et al., 2006). We assess the performance via five-fold cross

validation (CV) classification accuracies. Moreover, for methods that perform variable se-

lection, we compute the variable selection rate at each location. To investigate the utility of

a high-dimensional approach versus the traditional approach in bioinformatics, we include

a comparison of the competing methods with LDA-traditional and QDA-traditional as

benchmark methods. These methods are similar to the traditional approach in that they

first employ a peak detection method to identify peak locations, and followed by fitting a

low-dimensional classification model using the identified peak locations.

Data description. 1) COVID-19 has shaken up the world; in only a year and half from

its first appearance, approximately 190 million people have been infected, over four million

have died, and over half of the world population has experienced some form of lockdown2.

To improve testing capacity in countries that lack resources to handle large-scale PCR

testing, the SARS-CoV-2 dataset was collected using equipment and expertise commonly

found in clinical laboratories in developing countries. The dataset contains samples from

362 individuals, of which 211 were SARS-CoV-2 positive and 151 were negative by PCR

testing. The processed spectra contain T = 25, 001 variables and are depicted in Figure 1.

2) Breast cancer is a common and deadly disease, and improvements in early detection and

screening are needed for improved treatment and survival. Towards this goal, this dataset

was collected to investigate and identify markers from plasma that discriminate between

controls and breast cancer patients. The processed spectra contain T = 10, 451 variables.

Due to heterogeneity in breast cancers, in the following, we focus on discriminating between

2John Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/
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Figure 6: Classification accuracy (%) for SARS-CoV-2 (left) and breast cancer (right).

healthy controls and HER2 (with n = 119). More details on the raw data and required

processing steps for both examples are in the Supplementary Material.

Results. Classification accuracies of all methods for breast cancer and SARS-CoV-2 are

presented in Figure 6. Other supporting plots can be found in the Supplementary Mate-

rial. In both datasets, GPDA attained amongst the highest classification accuracy, with high

true positive and true negative rates (refer to the Supplementary Material). GPDA’s good

classification performance can be attributed to its ability to account for the highly non-

stationary correlation structure that is evident from the location-varying roughness in the

observed spectra in Figures 1 and S6 (Supplementary Material). Moreover, the posterior

expected log length-scales (Figures S8 and S10 in the Supplementary Material) exhibit an

overall increasing trend that is congruent with the spectra being flatter at higher values of

m/z. We also observe that methods which unify variable selection and classification in a

single framework generally performed better than the traditional peak detection methods,

suggesting that the two-stage peak-detection approach leads to a substantial loss of infor-

mation for both datasets. Figure 7 summarizes the variable selection frequencies. Note

that although both GPDA and SVM-L1 performed well in terms of classification accuracy in
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Figure 7: Variable selection rate for SARS-CoV-2 (left) and breast cancer (right).

the SARS-CoV-2 dataset, GPDA has identified many more locations as discriminative loca-

tions than SVM-L1. This disparity may be attributed to a subtle difference in the variable

selection component of both methods. Specifically, the variable selection component in

GPDA identifies all discriminative locations, whereas the L1 penalization in SVM-L1 identi-

fies the optimal set of locations that minimizes classification error. We see a different trend

for the breast cancer data where the classification accuracy of SVM-L1 is clearly lower. For

both datasets, SVM-L2 attains mean accuracy comparable to GPDA. However, unlike SVM-L2,

GPDA identifies discriminative locations and hence may be used to identify differences in

protein compositions. This information may be useful for developing new diagnostic tools

and an effective anti-viral treatment. The other competing methods considered showed less

comparable performance.
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6 Conclusion

In this paper, we developed a comprehensive and unified framework for classification and

variable selection with high-dimensional functional data. To account for the non-stationary

and rough nature of the realized functions, we introduced a two-level non-stationary GP

model with carefully chosen kernel structures, and in combination with the DA framework.

Moreover, this is coupled with an Ising prior to allow for smoothness in the variable selection

component. The model poses serious computational challenges due to its complexity and

high dependence between parameters, hierarchical layers, and latent variables. To deal

with these challenges, we proposed an inference scheme that exploits a number of advances

in GPs and variational methods, as well as computational tricks, to improve the scalability

and efficiency of our entire inference algorithm from O(nT 3) to O(nT ). The performance

of our approach in comparison to competing methods is demonstrated in several simulated

and real MS datasets. Results indicate that our method performs consistently as the

best or second best in all scenarios. In addition, for the proteomics data, we illustrated

how combining the steps of peak detection, feature extraction, and classification into a

unified modeling framework, that accounts for the complicated dependence structure in

both the inputs and variable selection, outperforms the traditional two-stage approaches

commonly used in practice. We focused in this work on one-dimensional functional data,

however future work will explore extensions for multivariate structured functional inputs,

e.g. images. Other choices of kernels and deeper architectures can also be implemented to

account for smoother and/or more complex structures arising in other applications.

Supplementary material

All supplementary content and codes for this article may be downloaded from the reposi-

tory: https://github.com/weichangyu10/GPDAPublic.
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