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Abstract. With the rapid spread of COVID-19 worldwide, viral ge-
nomic data is available in the order of millions of sequences on public
databases such as GISAID. This Big Data creates a unique opportunity
for analysis towards the research of effective vaccine development for cur-
rent pandemics, and avoiding or mitigating future pandemics. One piece
of information that comes with every such viral sequence is the geograph-
ical location where it was collected — the patterns found between viral
variants and geographic location surely being an important part of this
analysis. One major challenge that researchers face is processing such
huge, highly dimensional data to get useful insights as quickly as pos-
sible. Most of the existing methods face scalability issues when dealing
with the magnitude of such data. In this paper, we propose an algorithm
that first computes a numerical representation of the spike protein se-
quence of SARS-CoV-2 using k-mers (substrings) and then uses a deep
learning-based model to classify the sequences in terms of geographical
location. We show that our proposed model significantly outperforms the
baselines. We also show the importance of different amino acids in the
spike sequences by computing the information gain corresponding to the
true class labels.

Keywords: Sequence Classification · SARS-CoV-2 · COVID-19 · k-mers
· Deep Learning · Viral Evolution · Geographic Location

1 Introduction

The adaptability of viruses like SARS-CoV-2, when coupled with a variety of
selection pressures from the various ecosystems, host immunities and approaches
to pharmaceutical intervention provide an evolutionary environment that leads
to the emergence of strains and variants in different geographical locations.
While SARS-CoV-2 has spread rather quickly to many parts of the globe since
the initial outbreak in Wuhan at the end of 2019 which led to the COVID-19
pandemic [42], it continues to raise global concerns as the virus persistently
evolves and accumulates new mutations. Consequently, new variants of SARS-
CoV-2 have emerged in different parts of the world: the Alpha variant (B.1.1.17)
emerged in the UK, Beta (B.1.351) in South Africa, Gamma in Brazil, Epsilon in
California, Iota (B.1.526) in New York, Delta (B.1.167.2) and Kappa (B.1.167.1)
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in India, to name a few. All of these variants possess some mutations that confer
increased transmissibility and higher binding affinity of their spike protein (see
Figure 1) to human host ACE2 receptors [14,19].

Fig. 1: The SARS-CoV-2 genome codes for several proteins, including the sur-
face, or spike protein. The spike protein is composed of 3821 (25384–21563) nu-
cleotides (and one “stop” character ‘*’). Therefore, the final length of the spike
protein is 3822/3 = 1274 (we divide by 3 because each amino acid corresponds
to 3 DNA characters, or codons) [19].

It is concerning that the longer SARS-CoV-2 has to propagate, its exposure
to wider ranges of immune response attacks across diverse communities and
geographically diverse environments may be incubating the virus to evolve new
variants and strains that are dangerous and extremely immunologically evasive
both locally and globally, as the pandemic prolongs. From the point of view
of evolution, this is like giving the virus robust evolutionary room and time to
learn, to evolve adaptations, gain of function, and escapes from host immune
arsenal and attacks. Sadly, this is gradually the case already, as the original
Wuhan strain is now almost completely replaced by new variants with different
characteristic behaviors and are hence less responsive to the currently available
vaccines [18, 20]. This is why it is important to characterize different strains
and variants of SARS-CoV-2 based on geographical location, to understand the
patterns of spread in hopes to contain, or at least cope with this virus.

The SARS-CoV-2 genome typically accrues 1 or 2 point mutations (SNVs)
in a month. According to a review, some 12,706 such mutations have so far been
detected by researchers since the advent of the COVID-19 pandemic. While
some changes have neutral effects, a few that occur in major proteins are criti-
cal to viral evolution, genomic stability, transmissibility, antigenicity, virulence,
adaptation and escape from host immune response [27, 29]. The SARS-CoV-2
Spike (S) Protein is a key player in the virus life cycle. The protein is com-
posed of 1274 amino acids encoded by the S-gene of the virus (see Figure 1). It
is the major target of the neutralizing antibodies from host immune response
and currently available vaccines for COVID-19. The virus uses the spike pro-
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tein to bind the host ACE2 receptor on the cell surface (found abundantly in
airways, lungs, mucous lines and the intestine) which facilitates the uptake of
the virus into host cells [24, 39]. Thus, mutations in the S gene have reportedly
imparted viral pathogenesis, binding activity of the spike protein to the host,
as well as causing conformational changes in the protein molecule. For instance,
mutation D614G was found to enhance the viral infectivity and stability of the
SARS-CoV-2 genome, which has been attributed to spike protein assembly on
the virion surface [20]. Currently, quite a number of novel variants are being
identified by the US Center for Disease Control and Prevention (CDC) and the
World Health Organization (WHO) [33]. Since all of these variants are charac-
terized by different spike protein content [14, 19], classification can help us to
discover also patterns in the geographic distribution of these variants.

SARS-CoV-2 still circulates among human populations in different locations,
weather conditions and epidemiological descriptions. It is important to investi-
gate how this regional diversity contributes to viral evolution and emergence of
new variants in these regions. Research suggests possible selective mutations in
the SARS-CoV-2 genome: specific sites appear more subject to selective muta-
tion. Some mutational sites in ORF1ab, ORF3a, ORF8 and N region of SARS-
CoV-2 reportedly exhibit different rates of mutation [40]. A study involving the
analysis and characterization of samples from COVID-19 patients in different
parts of the world identify 8 novel recurrent mutational sites in the SARS-CoV-
2 genome. Interestingly, the studies also note changes at sites 2891, 3036, 14408,
23403, and 28881 to be common in Europe, while 17746, 17857, and 18060 are
common in North America [29]. A recent study also identified the ongoing evo-
lution of SARS-CoV-2 to involve purifying selection, and that a small number of
sites appear to be positively selected. The work also identifies the spike protein
receptor binding domain (RBD) and a region of nucleocapsid protein to be also
positively selected for substitutions. The work also highlighted trend in virus di-
versity with geographic region and adaptive diversification that may potentially
make variant-specific vaccination an issue [32].

Given all of the novel SARS-CoV-2 variants and strains that have emerged
from different geographical regions of the world, we need to investigate this
connection to the spread of the virus, e.g., weather factors possibly play a sys-
tematic role [30,34]. There is also diversity of immune system across the human
population. Genomic variations only cause 20–40% of this immune system vari-
ation, while the rest 60–80% is accounted for by age, environment factors like
where we live and our neighbors, cohabitation and chronic viral infections, etc.
Immune response is also known to show intra-species variation [26]. There is an
ongoing evolutionary arms-race between host and pathogens they are exposed to
which constantly changes the host anti-pathogen attack and in turn causes the
pathogen to refine or adjust its escape from host immune attack [11, 26]. This
is constantly taking place, with the virus under evolution pressure and natural
selection to propagate the most fit virus. It may be complex to characterize how
each factor contribute to this variation. The immune system variation is pos-
sibly an important driver on how new variants of SARS-CoV-2 are regionally
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emerging with positive selections for escaping immune neutralization, increased
infectivity and transmissibility as observed recently.

Classification of the SARS-CoV-2 Spike protein sequences based on geograph-
ical location of emergence is therefore an important and informative exploration
for possible unique patterns, trends and distribution. SARS-CoV-2 spike protein
must interact chemically with the host receptor molecule, ACE2 for cellular up-
take. Since millions of spike sequences are available now on public databases like
GISAID, classifying those sequences becomes a Big Data problem. When deal-
ing with big data, scalability and robustness are two important challenges. Some
algorithms are robust while other scale well, but give poor predictive perfor-
mance on larger datasets. The author of [7] proposed a scalable approach, called
Spike2Vec, which is scalable to larger sized dataset. When there is some structure
(natural clustering) in the data, Spike2Vec is proven to be useful as compared to
one-hot embedding [7]. However, we show in this paper that Spike2Vec does not
always work in all types of scenarios. To further improve the results of Spike2Vec
and that of one-hot embedding, using Deep learning method was compulsory.

In this paper, we propose to use a simple sequential convolutional neural
network along with a k-mers based feature vector representation for classifying
the geographical locations of COVID-19 patients using spike protein sequences
only. Our contributions in this paper are the following:

1. We show that our deep learning based model is scalable on a high volume of
data and significantly outperforms the baseline algorithms.

2. We show the importance of different amino acids within the spike sequence
by computing information gain corresponding to the class label.

3. We show that given the complexity of the data, our model is still able to
outperform the baselines while using only 1% of the training data.

4. We show that preserving the order of amino acids using k-mers achieve better
predictive performance that traditional one-hot encoding based embedding
approach.

5. Our approach allows us to predict the geographical region of the COVID
infected human while accounting for important local and global variability
in the spike sequences.

The rest of the paper is organized as follows: Section 2 contains the related
work. The proposed approach is given in Section 3. Dataset detail and experi-
mental setup are in Section 4. The results of our method and comparison with
the baseline is shown in Section 5. Finally, we conclude our paper in Section 6.

2 Related Work

Sequence classification is a widely studied problem in domains like sequence ho-
mology (shared ancestry) detection between a pair of proteins and Phylogeny
based inference [12] of disease transmission [21]. Previous studies on working
with fixed length numerical representation of the data successfully perform dif-
ferent data analytics tasks. It has applications in different domains such as
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graphs [16, 17], nodes in graphs [6, 15], and electricity consumption [3, 4]. This
vector-based representation also achieve significant success in sequence anal-
ysis, such as texts [35–37], electroencephalography and electromyography se-
quences [9, 38], Networks [1], and biological sequences [2]. However, most of
the existing sequence classification methods require the input sequences to be
aligned. Although sequence alignment help to analyze the data better, it is a
very costly process.

Kuzmin et al. in [23] show that viral-host classification can be done efficiently
using spike sequences only and applying different machine learning (ML) models.
They use one-hot encoding (OHE) to get numerical representation for the spike
sequences and then apply traditional ML classifiers after reducing the dimen-
sions of the data using the Principal Component Analysis (PCA) method [41].
Although OHE is proven to be efficient in terms of predictive performance, it
does not preserve the order of amino acids in the spike protein if we want to take
the pair-wise euclidean distance [5]. Another problem with the one-hot encoding
based approach is that it deals with the aligned sequential data.

Many previous studies propose the use of k-mers (substrings of length k),
which is an alignment-free approach, instead of traditional OHE based embed-
ding to get the numerical vector representation for the genomic data [5, 7, 8].
After getting substrings of length k, a fixed-length feature vector is generated,
containing the count of each unique k-mer in a given sequence. This k-mers based
method is used initially for phylogenetic applications [10] and showed success in
constructing accurate phylogenetic trees from DNA sequences. Authors in [5]
argue that better sequence classification results can be achieved using k-mers in-
stead of OHE because k-mers tends to preserve the order of amino acids within
a spike sequence.

After getting the numerical representation, a popular approach is to get the
kernel matrix and give that matrix as input to traditional machine learning
classifiers like support vector machines (SVM) [13, 22, 25]. Farhan et al. in [13]
propose an approximate kernel (Gram matrix) computation algorithm, which
uses the k-mers based feature vector representation as an input to kernel com-
putation algorithm.

3 Proposed Approach

In this section, we present our proposed model for classifying regions of people
based on spike sequences only. We start by explaining the basic MAJORITY
based model for the classification. We then show One-Hot Encoding based fea-
ture vector generation approach. After that, we show how we generate k-mers
based frequency vectors. In the end, we introduce the deep learning model, which
we are using for classification purpose.

3.1 MAJORITY

We start with a simple baseline model called MAJORITY. In this approach, we
simply take the class with majority representation in the data and declare it
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as the class label for all data points. We then measure the performance of this
baseline model using different evaluation metrics.

3.2 One-Hot Encoding [7]

In order to get the numerical representation for the sequence-based data, one
of the popular methods is using One-Hot Encoding (OHE) [5, 7, 8, 23]. Note
that the length of each spike sequence in our dataset is 1274, which contains
characters (amino acids) from a set of 21 unique alphabets “ACDEFGHIKLM-
NPQRSTVWXY ”. For OHE, since we need to have a 21 dimensional sub-vector
for each amino acid, the length of OHE based feature vector for each spike se-
quence will be 21× 1273 = 26, 733 (we take the length of spike protein as 1273
instead of 1274 because we have stopping character ‘*’ at the 1274th position).
After getting OHE for the whole data, since the dimensionality of the data will
be high, authors in [23] use the typical principal component analysis (PCA) ap-
proach for dimensionality reduction. Since the size of data is huge in our case,
we simply cannot use PCA because of high computational cost [7]. For this
purpose, we use an unsupervised approach for low dimensional feature vector
representation, called Random Fourier Features (RFF) [31].

3.3 Random Fourier Features (RFF) Based Embedding

To compute pair-wise similarity between two feature vectors, a popular method
is to compute kernel (similarity) matrix (gram matrix) and give it as input to
popular classifiers such as support vector machine (SVM) [13]. However, exact
kernel methods are expensive in terms of computation (scale poorly on training
data [31]), and they require huge space to store an n× n matrix (where n is the
total number of data points). To overcome this problem, we can use the so-called
kernel trick.

Definition 1 (Kernel Trick). It is a fast way to compute the similarity be-
tween feature vectors using the inner product. The kernel trick’s main goal is to
avoid the explicit need to map the input data to a high-dimensional feature space.

The Kernel Trick relies on the assumption that any positive definite function
f(a,b), where a, b ∈ Rd, defines an inner product and a lifting φ so that we can
quickly compute the inner product between the lifted data points [31]. It can be
described in a formal way using the following expression:

〈φ(a), φ(b)〉 = f(a, b) (1)

Although kernel trick is effective in terms of computational complexity, it is still
not scalable for multi-million sized data. To overcome these computational and
storage problems, we use RFF [31], an unsupervised approach that maps the in-
put data to a randomized low dimensional feature space (euclidean inner product
space). It can be described in a formal way using the following expression:

z : Rd → RD (2)



Classifying Spike Sequences from Geographic Location 7

In RFF, we approximate the inner product between a pair of transformed points,
which is almost equal to the actual inner product between the original data
points. More formally:

f(a, b) = 〈φ(a), φ(b)〉 ≈ z(a)′z(b) (3)

In Equation (3), z is (transformed) low dimensional (approximate) representa-
tion of the original feature vector (unlike the lifting φ). Since z is the approximate
representation of the original feature vector, we can use z as an input for different
machine learning (ML) tasks such as classification.

3.4 Spike2Vec

The Spike2Vec is a recently proposed method that uses k-mers and RFF to
design low dimensional feature vector representation of the data and then per-
form typical ML tasks such as classification and clustering [7]. The first step of
Spike2Vec is to generate k-mers for the spike sequences.

k-mers Computation The main idea behind k-mers is to preserve the order
of amino acids within spike sequences. The k-mers is basically a set of substrings
(called mers) of length k. For each spike sequence, the total number of k-mers
are the following:

Total number of k-mers = N − k + 1 (4)

where N is the length of spike sequence (1274), and k is a user-defined parameter
for the size of each mer. An example of k-mers (where k = 3, 4, and 5) is given
in Figure 2. In this paper, we are using k = 3 (selected empirically).

Fig. 2: Example of different length k-mers in a spike sequence “MDPEG”.

For OHE and Spike2Vec, we use three classifiers, namely Naive Bayes (NB),
Logistic Regression (LR), and Ridge Classifier (RC). For all these classifiers,
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default parameters are used for training. To measure the performance, we use
average accuracy, precision, recall, weighted and macro F1, receiver operating
characteristic curve (ROC) area under the curve (AUC). We also show the train-
ing runtime (in sec.) for all methods.

3.5 Keras Classifier

Although Spike2vec is scalable on the multi-million dataset and proved to per-
form better than typical OHE, it is not efficient in terms of overall predictive
performance. To further increase the predictive performance, we use a deep
learning-based model called the Keras Classification model (also called Keras
classifier). For this purpose, we use a sequential constructor. We create a fully
connected network with one hidden layer that contains 9261 neurons (which is
equal to the length of the feature vector). The activation function that we are
using is ”rectifier”. In the output layer, we use “softmax” activation function.
At the end, we use the efficient Adam gradient descent optimization algorithm
with “sparse categorical crossentropy” loss function (used for multi-class classi-
fication problem), which computes the crossentropy loss between the labels and
predictions. The batch size that we are taking is 100, and we take 10 as num-
ber of epochs for training the model. Note that we use OHE and k-mers based
frequency vectors (separately) as input for the Keras classifier.

Remark 1. Note that we are using “sparse categorical crossentropy” rather than
simple “categorical crossentropy” because we are using integer labels rather than
one-hot representation of labels.

4 Experimental Evaluation

4.1 Data Visualization

The spread rate of 3 popular variants of coronavirus (in USA) from March 2020
till July 2021 are given in Figure 3. We can see that the Alpha variant (also
known as UK variant [7]) was clearly the variant of concern when it touched
its peak in April 2021. We can see the drop in peak for all variants after April
2021. This is because a significant proportion of the population got vaccinated
till this point; hence the total cases started decreasing [7]. To evaluate natural
clustering in the data (if any exist), we use t-distributed stochastic neighbor
embedding [28]. The t-SNE approach maps the data into the 2-dimensional real
vector, which can then be visualized using scatter plot. Since applying t-SNE
on the whole data is very costly and time consuming, we randomly sampled a
subset of data (≈ 80000 sequences) from the data and generated 2D real vector
using the t-SNE approach (see Figure 4).

Remark 2. The reason to (randomly) select ≈ 80000 sequences is because t-SNE
method is computationally very expensive (runtime is O(N2), where N is the
number of data-points [30]) and take a lot of time on 2.3 million sequences.
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Fig. 3: Spread rate of 3 popular coronavirus variants (in USA) from March 2020
till July 2021.

Fig. 4: t-SNE plot for the frequency vectors along with the country information.

4.2 Experimental Setup

All experiments are conducted using an Intel(R) Xeon(R) CPU E7-4850 v4 @
2.10GHz having Ubuntu 64 bit OS (16.04.7 LTS Xenial Xerus) with 3023 GB
memory. Implementation of our algorithm is done in Python and the code is
available online for reproducibility1. Our pre-processed data is also available
online2, which can be used after agreeing to the terms and conditions of GI-
SAID3. For the classification algorithms, we use 1% data for training and 99%
for testing. The purpose of using a smaller training dataset is to show how much

1 Available at https://github.com/sarwanpasha/COVID-19-Country-Classification
2 Available at https://drive.google.com/drive/folders/

1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
3 Available at https://www.gisaid.org/

https://github.com/sarwanpasha/COVID-19-Country-Classification
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://drive.google.com/drive/folders/1-YmIM8ipFpj-glr9hSF3t6VuofrpgWUa?usp=sharing
https://www.gisaid.org/
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performance gain we can achieve while using minimal training data. The dataset
statistics are given in Table 1.

Remark 3. Our data split and pre-processing follow those of [5, 7, 8].

Region Country Num. of sequences Region Country Num. of sequences

Europe

England 568202
North America

USA 663527
Germany 146730 Canada 91193
Denmark 138574 Mexico 20040
Sweden 78810 Total 3 774760

Scotland 69387 South America Brazil 26729
France 56247 Total 1 26729

Netherlands 49938
Asia

Japan 75423
Spain 48830 India 37943

Switzerland 48516 Israel 14361
Wales 46851 Total 3 127727

Italy 44728 Australia Australia 20985
Belgium 28758 Total 1 20985
Ireland 23441
Poland 16061
Norway 14684

Lithuania 13586
Luxembourg 12713

Finland 11254
Slovenia 17135

Total 19 1434445

Table 1: The Countries corresponds to 2384646 SARS-CoV-2 spike sequences.

5 Results and Discussion

In this section, we present results for three different granularity of class labels,
namely continents, countries, and finally states in a case study of the United
States of America (USA).

5.1 Continent Classification

In this section, we show classification results for 5 different continents, namely
Europe, North America, South America, Asia, and Australia (see Table 1). The
classification results are given in Table 2. In terms of predictive performance,
we can observe that the deep learning-based model with k-mers performs best
compared to the baselines. While comparing the two embedding methods (i.e.,
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OHE and k-mers), we can see that k-mers is better than OHE for the deep
learning method and comparable with other ML algorithms. Since k-mers can
preserve the order of amino acids more as compared to the OHE, it is able to give
richer information in the feature vector. In terms of runtime, RC with k-mers
(Spike2Vec [7]) is performing best. The deep learning model will take longer
to train the model compared to simple ML classifiers because of the tuning of
different parameters.

Approach
Embed.
Method

ML Algo. Acc. Prec. Recall
F1
weigh.

F1
Macro

ROC-
AUC

Train.
runtime
(sec.)

MAJORITY 0.60 0.36 0.60 0.45 0.15 0.50

ML Algo.

OHE
NB 0.49 0.63 0.49 0.50 0.38 0.63 1457.2
LR 0.67 0.66 0.67 0.64 0.33 0.58 1622.4
RC 0.67 0.66 0.67 0.64 0.28 0.57 1329.1

Spike2Vec
NB 0.48 0.63 0.48 0.49 0.36 0.63 970.6
LR 0.67 0.67 0.67 0.64 0.34 0.58 1141.9
RC 0.67 0.66 0.67 0.64 0.29 0.57 832.3

Deep
Learning

One-Hot
Keras
Classifier

0.75 0.76 0.75 0.72 0.47 0.65 30932.0

k-mers
Keras
Classifier

0.77 0.78 0.77 0.74 0.49 0.65 18631.7

Table 2: Continent Classification Results (1% training set and 99% testing set)
for 5 continents (2384646 spike sequences). Best values are shown in bold.

5.2 Country Classification

After classifying the continents, we take countries as the class label and train
all ML and deep learning models again with the same parameter settings. The
classification results for countries is given in Table 3. In terms of predictive
performance, we can observe that the deep learning-based model is performing
better than all baselines. In terms of runtime, RC with OHE is the best clas-
sifier. An important observation here is the drop in overall performance of all
classification models as compared to the continent classification. The reason for
this behavior is that there is no such natural clustering or other information in
the spike sequences corresponding to the location of patients (see Figure 4). This
lack of knowledge in data makes country classification a difficult task. However,
we can see that the deep learning-based model can still classify the countries
better than the baselines.

5.3 A Case Study of the United States of America (USA)

After classifying continents and countries, we investigate our model with more
high granular class labels. For this purpose, we first take the single country with
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Approach
Embed.
Method

ML Algo. Acc. Prec. Recall
F1
weigh.

F1
Macro

ROC-
AUC

Train.
runtime
(sec.)

MAJORITY 0.27 0.07 0.27 0.12 0.01 0.5

ML Algo.

OHE
NB 0.11 0.44 0.11 0.11 0.10 0.55 1308.4
LR 0.40 0.46 0.40 0.33 0.15 0.55 2361.8
RC 0.40 0.38 0.40 0.31 0.11 0.54 746.4

Spike2Vec
NB 0.13 0.41 0.13 0.151 0.109 0.555 1315.3
LR 0.40 0.45 0.40 0.33 0.16 0.55 2736.8
RC 0.39 0.37 0.39 0.31 0.11 0.54 779.4

Deep
Learning

One-Hot
Keras
Classifier

0.49 0.53 0.49 0.43 0.24 0.6 28914.8

k-mers
Keras
Classifier

0.51 0.57 0.51 0.45 0.28 0.60 10383.6

Table 3: Country Classification Results (1% training set and 99% testing set)
for 27 countries (2384646 spike sequences). Best values are shown in bold.

the highest spike sequences in the data. Since the USA contains most of the spike
sequences in our data (see Table 1), we took it as a case study to further explore
different states within the USA. The pie chart showing the distribution of top
affected states of the USA are given in Figure 5. The classification results for
different states are given in Table 4. We can again observe the drop in predictive
performance for all ML and Deep learning models. This again proves that as we
increase the granularity of the class labels, it becomes difficult for any model to
classify with higher accuracy. We can also observe that the deep learning based
model with the k-mers is performing better than all the baselines.

Fig. 5: Distribution of USA’s states. Total number of sequences are 663527.
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Approach
Embed.
Method

ML Algo. Acc. Prec. Recall
F1
weigh.

F1
Macro

ROC-
AUC

Train.
runtime
(sec.)

MAJORITY 0.33 0.11 0.33 0.17 0.04 0.50

ML Algo.

OHE
NB 0.18 0.32 0.18 0.14 0.13 0.54 860.2
LR 0.37 0.45 0.37 0.26 0.13 0.53 1036.2
RC 0.37 0.41 0.37 0.25 0.12 0.52 707.7

Spike2Vec
NB 0.19 0.37 0.19 0.14 0.14 0.55 273.7
LR 0.38 0.44 0.38 0.29 0.16 0.54 374.2
RC 0.37 0.42 0.37 0.27 0.14 0.53 197.1

Deep
Learning

One-Hot
Keras
Classifier

0.38 0.44 0.38 0.34 0.22 0.57 7881.3

k-mers
Keras
Classifier

0.47 0.50 0.47 0.42 0.33 0.61 4908.6

Table 4: Classification results for different states of USA (1% training set and
99% testing set). The best values are shown in bold.

5.4 Importance of Attributes

To evaluate importance positions in spike sequences, we find the importance of
each attribute with respect to class label (using Weka tool4). For this purpose,
a randomly selected subset of spike sequences (≈ 80, 000) is taken from the
original dataset. We then compute the Information Gain (IG) between each
attribute (amino acid) and the true class label (country). More formally, IG can
be computed as follows:

IG(Class, position) = H(Class)−H(Class|position) (5)

where H(Class) and H(Class|position) are entropy and conditional entropy,
respectively. The entropy H can be calculated using following expression:

H =
∑

i∈Class

−pi log pi (6)

where pi is the probability of the class i. The IG values for each attribute is
given in Figure 6. The IG values for each attribute is also available online5.

6 Conclusion

This paper proposes a deep learning-based model that uses k-mers based rep-
resentation as input and efficiently classifies the COVID-19 patients using spike

4 Available at https://www.cs.waikato.ac.nz/ml/weka/
5 Available at https://github.com/sarwanpasha/COVID-19-Country-Classification/

blob/main/attributes correlation.csv

https://www.cs.waikato.ac.nz/ml/weka/
https://github.com/sarwanpasha/COVID-19-Country-Classification/blob/main/attributes_correlation.csv
https://github.com/sarwanpasha/COVID-19-Country-Classification/blob/main/attributes_correlation.csv
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Fig. 6: Information Gain for each amino acid position corresponding to the class.

sequences only. We show that our proposed algorithm is outperforming the base-
lines in terms of predictive performance. Using the information gain, we also show
the importance of attributes (amino acids) in the spike sequences. In the future,
we will explore more sophisticated models like LSTM and GRU and also use
other attributes like months information to increase the predictive performance.
Using other alignment-free methods such as Minimizers is another possible future
direction.
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lanova, A.: Approximated and user steerable tsne for progressive visual analytics.
IEEE transactions on visualization and computer graphics 23(7), 1739–1752 (2016)

31. Rahimi, A., Recht, B., et al.: Random features for large-scale kernel machines. In:
NIPS. p. 5 (2007)

32. Rochman, N.D., Wolf, Y.I., Faure, G., Mutz, P., Zhang, F., Koonin, E.V.: Ongoing
global and regional adaptive evolution of sars-cov-2. Proceedings of the National
Academy of Sciences 118(29) (2021)

33. SARS-CoV-2 Variant Classifications and Definitions: https://www.cdc.gov/
coronavirus/2019-ncov/variants/variant-info.html (2021), [Online; accessed 1-
October-2021]

34. Segovia-Dominguez, I., Zhen, Z., Wagh, R., Lee, H., Gel, Y.R.: Tlife-lstm: Fore-
casting future covid-19 progression with topological signatures of atmospheric con-
ditions. In: Advances in Knowledge Discovery and Data Mining. pp. 201–212.
Springer International Publishing, Cham (2021)

35. Shakeel., M., Karim, A., Khan, I.: A multi-cascaded deep model for bilingual
sms classification. In: International Conference on Neural Information Processing
(ICONIP). pp. 287–298 (2019)

36. Shakeel, M., Karim, A., Khan, I.: A multi-cascaded model with data augmenta-
tion for enhanced paraphrase detection in short texts. Information Processing &
Management 57, 1–19 (2020)

37. Shakeel, M.H., Faizullah, S., Alghamidi, T., Khan, I.: Language independent sen-
timent analysis. In: International Conference on Advances in the Emerging Com-
puting Technologies (AECT). pp. 1–5 (2020)

38. Ullah, A., Ali, S., Khan, I., Khan, M., Faizullah, S.: Effect of analysis window and
feature selection on classification of hand movements using emg signal. In: SAI
Intelligent Systems Conference (IntelliSys). pp. 400–415 (2020)

39. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., Thiel, V.: Coronavirus biology
and replication: implications for sars-cov-2. Nature Reviews Microbiology 19(3),
155–170 (2021)

40. Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T., Zhang, Z.: The establish-
ment of reference sequence for sars-cov-2 and variation analysis. Journal of medical
virology 92(6), 667–674 (2020)

https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html


Classifying Spike Sequences from Geographic Location 17

41. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics
and intelligent laboratory systems 2(1-3), 37–52 (1987)

42. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W.,
Tian, J.H., Pei, Y.Y., et al.: A new coronavirus associated with human respiratory
disease in china. Nature 579, 265–269 (2020)


	Classifying COVID-19 Spike Sequences from Geographic Location Using Deep Learning

