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Abstract. Despite of the fast development of highly effective vaccines to control the current
COVID−19 pandemic, the unequal distribution and availability of these vaccines worldwide
and the number of people infected in the world lead to the continuous emergence of SARS-
CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) variants of concern. It is likely
that real-time genomic surveillance will be continuously needed as an unceasing monitoring
tool, necessary to follow the spillover of the disease spread and the evolution of the virus. In
this context, new genomic variants of SARS-CoV-2 that may emerge as a response to selec-
tive pressure, including variants refractory to current vaccines, makes genomic surveillance
programs tools of utmost importance. Here propose a statistical model for the estimation
of the relative frequencies of SARS-CoV-2 variants in pooled samples. This model is built
by considering a previously defined selection of genomic polymorphisms that characterize
SARS-CoV-2 variants. The methods described here support both raw sequencing reads for
polymorphisms-based markers calling and predefined markers in the VCF format. Results
obtained by using simulated data show that our method is quite effective in recovering the
correct variant proportions. Further, results obtained by considering longitudinal data from
wastewater samples of two locations in Switzerland agree well with those describing the
epidemiological evolution of COVID-19 variants in clinical samples of these locations. Our
results show that the described method can be a valuable tool for tracking the proportions
of SARS-CoV-2 variants.

1. Introduction

The astonishing speed seen for the global spread of COVID-19 has prompted a large
global effort to control this outbreak. The first complete SARS-CoV-2 genome was published
on January 05, 2020 by [WZY+20]. Thenceforth, SARS-CoV-2 sequences recovered from
patients from most countries have been made available to the scientific community [MHG21],
allowing a better understanding of the geographical and temporal spreading of SARS-CoV-2,
including the indication of non-synonymous genomic variants that may explain the increased
replication rate and immune escaping of some variants [ZSZ+21] Today, the Global Initiative
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on Sharing Avian Influenza Data (GISAID) database is arguably the primary archive for
SARS-CoV-2 genome sequences [Max21].

Although vaccination is the most effective means of preventing COVID-19 illnesses and re-
lated deaths [CBH+21], additional efforts employing genomic surveillance have proven to be a
useful tool for guiding upcoming measures to control virus transmission [RAS+21, GL18]. The
sequencing of Viral RNA genomes directly recovered from wastewater has recently gained at-
tention for providing an opportunity to assess circulating viral lineages [BOWI+21, SAB+21,
FKH+21, PQBC+20, JDT+21]. These studies take advantage of shotgun-based sequenc-
ing protocols [ACA+17] followed by the most typical computational workflows to unveil the
genomic diversity present in a given sample, consisting of (1) sequencing quality profiling;
(2) removal of host/rRNA data; (3) assembly of reads; and (4) attribution of taxonomy
[ACA+17, HLZ+21]. It is also be clear that this approach can be applied in other sources of
urban metagenomic surveilance [D+21].

The main contribution of this article consists in the development of a statistical model to
infer the relative proportions and frequencies of the genomic variants of SARS-CoV-2 present
in varying amounts in a given sample. This task is far from trivial as the sequencing reads
deriving from a sample consist of relatively short sequences (≈ 100 − 200 bases long) that
can be mapped to multiple variants of the virus. The sequencing reads derived from a given
locus of the viral genome may be different across the individuals of the same variant due
to intra-clade variation. Also, the small proportion of sequenced reads likely to align to the
SARS-CoV-2 in the midst of a complex mixture of other RNAs (human, viral, bacterial and
others) may lead to reduced vertical coverage of the viral genome, therefore decreasing the
likelihood of an effective variant monitoring.

Here, we propose a viral composition deconvolution approach based on the relative fre-
quencies of genomic polymorphic markers found in SARS-CoV-2 variants. These markers,
either Single Nucleotide Polymorphisms (SNPs) or INsertion or DELetion of bases (INDELs),
are selected from public SARS-CoV-2 data [SM17, TTH+21] and their presence/absence in
known SARS-CoV-2 variants is used to fit a mixture model to viruses, derived from different
subjects, found in a complex mixture. Following this, our method calculates a maximum
likelihood estimate of the relative contributions of SARS-CoV-2 variants to the pool. The
performance of the test was evaluated in simulated and real data. Our analysis using 122 se-
quencing data-points from wastewater treatment plants collected in Switzerland, show close
correlation with epidemiological trends of COVID-19 in that region, which demonstrates the
utility of this approach to guide public policies

2. Variant composition model

Our model is built over a previously defined selection of genomic polymorphisms, which
characterize SARS-CoV-2 variants, and a matrix P of ‘variant signatures’. Formally, let
P = (Pij) be a s×v matrix such that Pij corresponds to the probability of finding an alternate
sequence at polymorphism i from variant j. Details about the selection of polymorphisms of
interest and the construction of P are provided in Section 3.1. Given the matrix P and a data
sample containing the counts of DNA fragment readings aligned to the respective polymorphic
loci at SARS-CoV-2 genome, we aim at estimating the vector w = (w1, w2, . . . , wv) of the
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relative compositions of SARS-CoV-2 variants in the sample, such that

(1) 0 ≤ wj ≤ 1,
v∑

j=1

wj = 1.

Let {Polyi}, i = 1, 2, . . . , v, be the set of polymorphisms of interest. The data provided by
a sample consists of counts of reads supporting the reference sequence cri and those supporting
an alternate sequence, cai at each Polyi. Two crucial remarks about the data are that the
coverage, that is cai + cri , may vary among polymorphisms, and that the data does not shows
which variants account for the actual observed counts cri and cai . The latter occurs because:

• the reads that constitute the sample are relatively small segments of the viral genomes,
• variants may share few Polyi events,
• there is random variability among the polymorphisms across the individuals of the

same variant.

A relation between counts and variants is made by introducing the latent variables Zr
ij and

Za
ij, representing respectively the counts of reads bearing the reference sequence for a Polyi

event originating from variant j and those bearing the reference base at the position i from
the variant j. In this case

(2)
v∑

j=1

Zr
ij = cri and

v∑
j=1

Za
ij = cai .

Let Cr
i and Ca

i be random variables which for a given sample take on the values cri and cai .
Let Z be the set of possible values of Za

ij and Zr
ij satisfying the constraints imposed by (2).

For each i = 1, 2, . . . , s, let Ci = (Cr
i , C

a
i ) and Zi = (Zr

i , Z
a
i ), where Zn

i = (Zn
i1, . . . , Z

n
iv),

n ∈ {a, r}. Denote by t = (t1, t2, . . . , ts) the coverage vector, namely a vector such that
ti corresponds to the total number of reads at the locus of Polyi observed in given sample,
ti = cai +cri . The values taken by the latent variables are denoted by using lower case symbols
accordingly. Assuming independence between the events Polyi, i = 1, 2, . . . , s, the likelihood
function for w at a given sample and a given P matrix is determined by

L(w) = P
(
C = c | w,P, t

)
=

s∏
i=1

∏
n∈{r,a}

P
(
Cn

i = cni | w,P, ti
)

Thus, by considering the latent variables, the likelihood can be written as

L(w) =
s∏

i=1

∏
n∈{r,a}

∑
zi∈Z

P
(
Cn

i = cni | Zn
i = zni , w, P, ti

)
P
(
Zn

i = zni | w,P, ti
)

=
s∏

i=1

∏
n∈{r,a}

∑
zi∈Z

1{∑
j Z

n
ij=cni

}P(Zn
i = zni | w,P, ti

)
,

where the summation over zi ∈ Z considers all possible values for the latent variables subject
to the constraints (2).

Since the sequencing process picks DNA fragments at random from the studied pool, let
us assume that the distribution of the latent variables is multinomial with parameters given
by the relative proportions of RNAs from each variant, supporting or not a mutation. If the
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proportion of the j-th variant is wj and the probability that this variant presents a mutation
at position i is Pij, then the fraction of total RNA originated from variant j supporting
an altered base at Polyi equals Pijwj. Likewise, the fraction of total RNA originated from
variant j supporting the reference base at Polyi is (1−Pij)wj. So, conditionally on w, P and
ti, the law of the latent variables, P

(
Zi = zi | w,P, ti

)
, equals(

ti
zai1, . . . , z

a
iv, z

r
i1, . . . , z

r
is

) v∏
j=1

(
Pijwj

)zaij((1− Pij)wj

)zrij .
As shown by the following lemma, the log-likelihood for the model of variant proportions

presented so far admits a closed form. The proof of this lemma is presented in the Appendix.

Lemma 1. For a given sample with counts ci, 1 ≤ i ≤ s, and a given signature matrix P ,
the log likelihood function for the variant proportions up to a constant equals

(3) `(w) ∝
s∑

i=1

cai log

( v∑
j=1

Pijwj

)
+

s∑
i=1

cri log

(
1−

v∑
j=1

Pijwj

)
.

Estimates for w, the proportion of each variant in a sample, are obtained by maximization
of `(w) in (3). These are hereafter denoted by ŵ and eventually, to emphasize their depen-
dence upon the sample c, also by ŵ(c). The maximization of `(w) is made as described in
Section 3.4. Standard error estimates for w are obtained via bootstrapping, see Section 3.5.

3. Methods

3.1. Variant characterization by polymorphism-based markers. This study takes ad-
vantage of publicly available data from GISAID [SM17]. Pre-defined SARS-CoV-2 lineages
were assigned to variant groups (denoted hereafter as VG, see supplementary Table 2), ac-
cording to variants currently defined by the World Health Organization (WHO, https:

//www.who.int/en/activities/tracking-SARS-CoV-2-variants/). Next, a list of man-
ually curated genome designations (v1.2.60, https://github.com/cov-lineages/pango-

designation) was obtained from the Pango Lineage Designation Committee [RHO+20] and
each genome was assigned to the corresponding VG. These genomes were mapped to the
SARS-CoV-2 reference genome [WZY+20] using minimap2 v2.22 with map-pb mode [Li18].
GATK Mutect2 v4.2.2.0 was then used with default settings [DBP+11] to call all polymor-
phisms (SNP and INDELs) in the aligned sequences for each VG. Finally, polymorphism-
based markers, denoted hereafter as PBM, were extracted from well-characterized variants
(Figure 1). Alternatively, we also created a equivalent marker matrix from the phylogenetic
tree compiled by [TTH+21], available at https://hgdownload.soe.ucsc.edu/goldenPath/
wuhCor1/UShER_SARS-CoV-2, for further validation of the former matrix signature. Only
polymorphic sites with allele frequencies greater than 80% in at least one VG were consid-
ered as valid markers. Although our pipeline can provide a useful wrapper for marker calling,
it is important to note that it offers flexibility for the user to load its own selection of markers
in the variant call format (VCF) file.

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://github.com/cov-lineages/pango-designation
https://github.com/cov-lineages/pango-designation
https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2
https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2
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3.2. Wastewater dataset, dilution experiments and polymorphism calling. A real
data set constituted by longitudinal samples from two wastewater treatment plants in Switzer-
land [JDT+21], including Zürich (64 samples, Jul 2020-Feb 2021) and Lausanne (49 samples,
Sep 2020-Feb 2021) were downloaded from Sequence Read Archive (SRA,https://www.ncbi.
nlm.nih.gov/sra) under project accession number PRJEB44932. In addition, replicate di-
lution series experiments containing RNA samples of cultivated Wild type [WZY+20] and
Alpha/B.1.1.7 solutions mixed (ratios of 10:1, 50:1 and 100:1) were also obtained from the
same study. The raw sequences were previously aligned to the SARS-CoV-2 reference genome
[WZY+20] as described in [JDT+21] and then loaded into GATK-Mutect2 v4.2.2.0 with the
optional argument -alleles [DBP+11] to report the coverage of all PBM sites.

3.3. Simulation study. In order to test our method, we simulated samples with randomly
generated variant compositions. Aiming at reproducing real data, the wastewater dataset
described in Section 3.2 was used as a template to generate the coverage distribution of
simulated samples.

For each simulated sample, a real wastewater sample was randomly selected and its total
coverage was reproduced. The distribution of reads covering each polymorphism was gener-
ated by considering a multinomial distribution, in which the probabilities of a read covering
each locus were proportional to the total number of reads observed at the respective loci in
the selected sample. This gives a mock coverage t = (t1, t2, . . . , ts), which stores the simulated
number of reads covering the locus of each Polyi.

Relative variant frequencies, wsim
j , were also generated randomly and, for each Polyi, ti

reads were distributed among variants according to those frequencies using a multinomial
distribution. This procedure generates Rij, the number of reads aligned to Polyi originating
from variant j. Finally, for each Rij, the number of reads supporting the alternate sequence
at Polyi was generated by a Binomial(n, p) distribution with n = Rij and p = Pij. Simulated
data were then obtained by summing up the number of simulated reads supporting the
reference or the alternate sequence for each polymorphism. These were inputed to the model
and estimated compositions were compared to those used in each simulation. The accuracy
of the results was measured by the mean absolute error

(4)
1

v

v∑
j=1

|ŵj − wj|

3.4. Likelihood maximization. Let S be the convex set defined by the unitary (v − 1)-
simplex, that is S = {w ∈ Rv : w satisfies (1)}, with v as the number of SARS-CoV-2 variants
in a pool. The following lemma ensures that the maximization of the log-likelihood function
defined by Lemma 1 is a well posed problem.

Lemma 2. The function ` : S→ R defined in Lemma 1 is concave.

The proof of Lemma 2 is presented in the Appendix. The maximization of the log-likelihood
is implemented with CVXPY v1.1.15 [DB16], a Python-embedded modeling language for
convex optimization problems. CVXPY uses disciplined convex programming, a system for
constructing mathematical expressions with known curvature.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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3.5. Standard errors of estimates. Estimates for the standard error of ŵ are obtained
by bootstrapping. For a given sample c = (cai , c

r
i ), i = 1, 2, . . . , s, let c∗b, b = 1, 2, . . . , B, be

a set bootstrap replications, see [ET93], Chapter 2. A bootstrap estimate of the standard
error of ŵ is then given by

ŝeboot =

{ B∑
b=1

(
ŵ(c∗b)− ŵboot

)2
/(B − 1)

} 1
2

where ŵboot =
∑B

b=1 ŵ(c∗b)/B. Results described here were obtained by using B = 100
bootstrap samples.

3.6. Code and markers availability. The markers matrix and the computational pipeline,
including the construction of variant markers, polymorphism calling, the likelihood maximiza-
tion and standard error estimates described in Sections 3.1, 3.2, 3.4 and 3.5, are available at
https://github.com/rvalieris/LCS.

4. Results

4.1. Generating polymorphism-based markers of SARS-CoV-2 variants. We have
built a list of polymorphism based markers to distinguish known SARS-CoV-2 variants. A
list of SARS-CoV-2 variant groups (VG) defined by WHO was initially considered. These
variants were assigned to a list of manually curated genomes from pango lineage designation.
We performed alignment and variant calling in all groups, generating a total of 371 polymor-
phisms (343 SNPs, 28 InDels). Lastly, polymorphisms with high frequency (>80%) in each
group were used in an unsupervised clustering procedure. As a result, Figure 1 shows that
this procedure was capable to define clusters of polymorphic sites that are predominantly
associated to each SARS-CoV-2 VG. We also compared the markers found by this analysis
with SNPs from the phylogenetic tree compiled by [TTH+21] coupled with the respective fre-
quency in each VG. The obtained SNPs allowed the identification of the same SARS-CoV-2
VGs (Supplementary Figure 4A) detected by the former approach (Figure 1). Further, the
predictions made by using both markers are very similar (Supplementary Figure 4B). We
conclude that either the pango-designation sequences or the phylogenetic tree [TTH+21] ap-
proach can be used to select the polymorphic markers of SARS-CoV-2 variants required by
our method.

4.2. Simulation study. To evaluate the performance of our method in predicting SARS-
CoV-2 variant composition, we generated a synthetic dataset with 2000 simulated samples,
considering non uniform coverage. As shown by Figure 2, our method performed well when
applied to this data set. As expected, estimations are more accurate when based in variants
found in higher relative frequencies (Figure 2A). Mean absolute errors (see (4)) were below 1%
in most cases, specially for variants with relative frequencies above 25% (Figure 2B). Figure
2C shows that the mean absolute error strongly depends on sample coverage (the distribution
of simulated samples coverage reflects the respective distribution on the wastewater dataset
considered in Section 4.3). Finally, the adopted bootstrap estimates of standard errors can
provide accurate limits for the true error, as shown in Figure 2D. Results obtained while
analyzing few simulated data samples are summarized in Table 1. In particular, this table

https://github.com/rvalieris/LCS
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Zeta

Theta

B.1.1.318

Epsilon

Iota

Beta

B.1.623

Lambda

A.23.1

Mu

Gamma

Alpha

Eta

Delta

B.1.617.3

B.1.177

Kappa

B.1.1

AV.1

B.1

0.0 0.7 0.8 0.9 1.0
allele frequency  

Figure 1. Polymorphism-based markers across the SARS-CoV-2 VG. The
selected markers and SARS-CoV-2 VG are listed respectively as columns and
rows. Cells in the heatmap are colored according to the relative frequency of
each polymorphism.

presents how results are sensitive to sample coverage and composition complexity, as well as
the accuracy of adopted bootstrap approach to error estimation.

4.3. Wastewater data tests. As SARS-CoV-2 variants are continuously spreading and
evolving, the environment surveillance has come into play in help bringing the pandemic
under control. Thus, considering that wastewater samples provide a screenshot of circulating
viral lineages in the community [MBHP20], we assess the reliability and utility of our method
to unveil the SARS-CoV-2 diversity from genomic sequencing data of samples collected over
time in two Swiss wastewater treatment plants of Zürich (located in the canton of Zürich) and
Lausanne (located in the canton of Vaud), [JDT+21]. Figure 5 in the Supplementary material
provides an overview of the polymorphism frequencies of all markers in the pooled samples.
We first recovered the relative frequencies of all SARS-CoV-2 variants (Figure 3A) from the
cantons of Zürich and Vaud, previously deposited in GISAID database. Next, we compared
these with the proportion of SARS-CoV-2 VGs decomposed by our method considering
the viral sequencing reads obtained from the wastewater samples (Figure 3B). A loess

regression, implemented in the R statistical programming language, was used to interpolate
the proportion of variants between the missing time periods in the actual longitudinal data
samples (Figure 3C). The evolution of the inferred relative frequencies for the Alpha variant
are shown in Supplementary Figure 6. Results show the quick spread of the Alpha variant in
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Table 1. Results for 4 simulated samples. Mean Coverage (MC): average
number of reads aligned to each considered polymorphism, that is s−1

∑s
i=1 ti.

w: relative frequencies of each VG present in the simulation (ground truth); ŵ:
estimates of relative frequencies; ŵboot: estimated mean of bootstrap samples;
ŝeboot: bootstrap standard error estimate for ŵ.

Sample MC VG w ŵ ŵboot ŝeboot

S 53 2.03

B.1 0.123 0.187 0.112 0.156
B.1.1.318 0.137 1.4e-08 1.63e-3 0.0163
B.1.177 0.0411 0.0756 0.0708 0.0504
B.1.617.3 0.0548 0.0627 0.111 0.138
B.1.621 0.0822 0.0578 0.0503 0.0385
Delta 0.137 0.215 0.196 0.0903
Epsilon 0.0822 0.181 0.176 0.0951
Iota 0.0959 0.0316 0.0314 0.0319
Lambda 0.137 0.122 0.12 0.0795
Zeta 0.11 0.0682 0.0704 0.043

S 1583 2.94

B.1 0 0.498 0.377 0.181
B.1.1 0.323 6.16e-08 0.0275 0.106
B.1.1.318 0.0323 4.7e-09 5.89e-09 3.52e-09
B.1.177 0.0323 3.86e-08 0.014 0.0866
B.1.617.3 0.258 0.0877 0.0959 0.048
B.1.623 0.258 0.237 0.253 0.053
Epsilon 0 0.0849 0.125 0.125
Gamma 0.0968 0.0916 0.0942 0.0325

S 221 732.37

Alpha 0 6.43e-4 6.71e-4 2.52e-4
AV.1 0.0722 0.0748 0.0747 2.38e-3
B.1 0.0928 0.107 0.108 0.0206
B.1.1 0.0825 0.0588 0.0592 0.0203
B.1.1.318 0.0515 0.048 0.048 2.19e-3
B.1.177 0 1.35e-3 1.33e-3 7.32e-4
B.1.617.3 0.103 0.105 0.106 3.39e-3
B.1.621 0.103 0.104 0.104 2.37e-3
B.1.623 0.103 0.104 0.104 2.59e-3
Beta 0 1.64e-3 1.71e-3 5.7e-4
Delta 0.103 0.101 0.101 3.34e-3
Gamma 0.0722 0.0752 0.0752 2e-3
Iota 0 4.11e-3 3.95e-3 1.37e-3
Kappa 0.103 0.104 0.103 4.29e-3
Lambda 0.0515 0.0522 0.0522 1.89e-3
Theta 0 5.95e-4 5.87e-4 2.09e-4
Zeta 0.0619 0.0575 0.0572 3.3e-3

S 1645 24740.78

AV.1 0.353 0.353 0.353 5.63e-4
B.1.621 0.118 0.117 0.117 3.91e-4
Beta 0 6.98e-4 6.54e-4 2.22e-4
Gamma 0.118 0.118 0.118 4.31e-4
Iota 0.118 0.116 0.116 7.6e-4
Theta 0.294 0.294 0.294 4.67e-4
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R = 0.87, p < 2.2e−16
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Figure 2. Performance measures for the proposed estimator. The number
of points within each hexagon is reflected by its color, according to the scale
on the right side. A. Model estimated proportions vs proportions actually
used in simulations. B. Absolute errors in model estimations vs simulated
proportions. C. Mean absolute error in model estimations vs mean sample
coverage. D. Bootstrap standard error for model estimations vs absolute error.

both cantons in early December 2020 and January 2021. The trend observed in wastewater
samples of both regions matches quite well the one observed in the GISAID data for COVID-
19 patients.

We also explored RNA samples of SARS-CoV-2 used to assess the reproducibility of B.1.1.7
prevalence in a dilution series experiment described in [JDT+21]. These samples contain a
mixture of wild type and Alpha/B.1.1.7 SARS-CoV-2 at ratios 10:1, 50:1 and 100:1, and each
one was sequenced five times. We observed that the estimated composition is consistent with
the respective dilutions (Supplementary Figure 7 and 8A). By merging the 5 replicates into a
single sample, the overall coverage improves the estimates of variant composition predictions
(Supplementary Figure 8B). However, we noted a small proportion of the VG A.23.1 and
looking back at the marker heatmap (Supplementary Figure 7), all dilution samples reveal a
mutation (S:V367F ) in high frequency which is a known marker of A.23.1 [BPS+21]. Since
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the frequency of this mutation is not consistent with the dilution amounts as expected, we
believe this is likely to be a sequencing artifact or contamination.
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Figure 3. (A) Area plot showing the longitudinal surveillance of Alpha (red)
and other SARS-CoV-2 variants based on submitted sequences from GISAID
for the Cantons of Vaud (left) and Zürich (right) between October 2020 and
February 2021. (B) Viral composition estimated from sequencing data of
wastewater longitudinal samples collected in the sewage treatment plants of
Lausanne (Canton of Vaud) and Zürich (Canton of Zurich). (C) Evolution of
viral composition obtained by a loess interpolation of (B).
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5. Discussion

The ability to implement continuous molecular surveillance of SARS-CoV-2 has helped to
accurately detect the prevalence of viral strains. For example, measurement of SARS-CoV-2
RNA in wastewater has been shown to be a useful tool to track SARS-CoV-2 and thus may
help to support public health policies. In addition to this approach, a promising genomic
surveillance initiative in the city-scale monitoring encompasses the swabbing of surfaces in
highly accessed locations including hospitals, airports, parks, subway and bus stations. These
efforts will allow the tracking of diverse pathogens and, for COVID-19 they may accelerate
the discovery of new variants and anticipate the detection of variants of clinical interest, that
may lead to new waves of disease and the potential failure of some vaccines to offer long-term
protection. These large-scale efforts underscore the development of novel analytical tools to
identify the prevalence of viral diversity from Next-Generation Sequencing data.

This paper describes a new end-to-end approach to assess the presence of SARS-CoV-
2 variant groups throughout mixed DNA samples. First, we propose a model considering
the relative frequencies of polymorphic markers found in samples positive for SARS-CoV-2
genomes, likely to be derived from multiple subjects, allowing the determination of variant
frequencies. Then, we systematically evaluate its performance by simulating different se-
quencing depths and variant relative frequencies. These dry runs highlighted the method
accuracy and the sensibility of its performance to low coverage.

Next we evaluate the estimation of the relative frequency of SARS-CoV-2 lineages in
public genomic sequencing data constituted by 122 wastewater samples from two cantons in
Switzerland. Our results show trends in conformity with data from SARS-CoV-2-positive
clinical samples, and recovered the evolution of the lineages observed in these cities. Our
findings endorse the utility of viral RNA monitoring in municipal wastewater for SARS-CoV-2
infection surveillance at a population-wide level.

In addition, our pipeline uses multi-threading for efficient parallelization, and is designed
on a scalable workflow engine [KR18]. The software provides a wrapper for marker calling in
a bioconda environment [GDS+18], but it also allows the user to load their own marker se-
lection in the variant call format (VCF). The output consists of two files, including a flat file
with diversity estimation and a VCF file containing annotation of other, non-marker polymor-
phisms, for further analysis. The flexibility allowed by the choice of custom polymorphism-
based markers, considerably widens the scope of the tools described throughout, allowing
either the analysis of other viruses or regional epidemiological studies.

There are however shortcomings in our approach. The sequence coverage across the viral
genome is crucial for the detection of polymorphism-based markers, and the precise deter-
mination of SARS-CoV-2 variants. Given that the viral composition assessment relies on
polymorphic markers, we advise the use of a high sensitivity variant caller to detect all rele-
vant polymorphisms. Finally, the estimation of SARS-CoV-2 variant composition may carry
some uncertainty due to the stochastic nature of pool sequencing. We overcome this by
considering a bootstrap approach to estimate standard errors in predictions, thus providing
a measure of the reliability of each result.

In summary, we present an useful method to decompose reliable SARS-CoV-2 lineages
using sequencing reads obtained from mixed samples. The effectiveness of our method on
both synthetic and real data sets further demonstrates its utility for tracking SARS-CoV-2.
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We believe this will translate into applied tools that will aid in the environmental genomic
surveillance efforts against COVID-19 outbreaks or future pandemics.
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(FAPESP), grant 2021/05316-2.

Appendix

Proof of Lemma 1. Substitution of the expression for the law of Zi into L(w) and observing
that ti = cri + cai gives

L(w) =
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The assertion made by the lemma follows by considering the logarithm of the last expression.
�

Proof of Lemma 2. Throughout, let e and o be any two indices in {1, 2, . . . , v}. For any
sample c and i ∈ {1, 2, . . ., s} define

Qi(w) =
cai

(
∑v

j=1 Pijwj)2
+

cri
(1−

∑v
j=1 Pijwj)2

.
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Straightforward computations yield

∂2

∂w2
e

`(w) = −
s∑

i=1

P 2
ieQi(w)

and
∂2

∂we∂wo

`(w) = −
s∑

i=1

PiePioQi(w).

Let H be the Hessian of `(w) with respect to w, namely the v × v matrix with entries
Heo = ∂2`(w)/(∂we∂wo). For any u ∈ S it follows that

utHu =
∑
e,o

ueHeouo = −
∑
e,o

ueuo

s∑
i=1

PiePioQi(w)

= −
s∑

i=1

Qi(w)
∑
e,o

uePiePiouo = −
s∑

i=1

Qi(w)

(∑
e

Pieue

)2

.

The fact that Qi(w) ≥ 0 for all i and w leads to H being negative semi-definite, thus
concluding the proof. �
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Figure 4. (A) Heatmap showing the similarities of polymorphism frequencies
in SARS-CoV-2 variant groups, comparing pango-designation based markers
(horizontal axis) and the equivalent markers from phylogenetic tree [TTH+21]
(vertical axis). Similarities were calculated over polymorphisms present on
both sets and measured by cosine similarity, which ranges between 0 and 1
(1 meaning a perfect match). (B) Scatter plot displaying model predictions
for variant frequencies on wastewater samples, either obtained with pango-
designation based markers (horizontal axis) or markers derived from all public
sequences on UCSC phylogenetic tree 1 (vertical axis).
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Figure 5. Polymorphisms frequencies in all wastewater samples from the
Swiss dataset, ordered row-wise by collection date, with the respective mark-
ers from the 4 major VG annotated. Black cells denote no coverage in the
respective sample.
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Figure 7. Heatmap result of an unsupervised hierarchical clustering of poly-
morphism frequencies in the dilution samples. Alpha and A.23.1 VG markers
were added for comparison.
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Figure 8. (A) Model predictions for each of the dilution samples replicates.
(B) Model predictions after merging the replicates into a single sample.

Table 2. Variant Groups

Variant Group Pango Lineages

A.23.1 A.23.1
AV.1 AV.1
B.1.1.318 B.1.1.318
Alpha B.1.1.7
Beta B.1.351, B.1.351.2, B.1.351.3
Epsilon B.1.427, B.1.429
Eta B.1.525
Iota B.1.526
Kappa B.1.617.1
Delta B.1.617.2, AY.1, AY.2, AY.3, AY.3.1
B.1.617.3 B.1.617.3
Mu B.1.621, B.1.621.1
B.1.623 B.1.623
Lambda C.37
Gamma P.1, P.1.1, P.1.2, P.1.4, P.1.6, P.1.7
Zeta P.2
Theta P.3
B.1.177 B.1.177
B.1.1 B.1.1
B.1 B.1
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