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Abstract
As summer in the northern hemisphere comes to an end, changes in daylight, temperature,
and weather — and people’s reaction to them — will be the drivers of a disadvantageous
seasonality of SARS-CoV-2. With the seasonal odds against us, stabilization of new COVID-
19 cases and hospitalizations requires high immunity levels in the population or sufficient
non-pharmaceutical interventions (NPIs). However, compliance with mandatory NPIs,
vaccine uptake, and individual protective measures depend on individual opinions and
decisions. This in turn depends on the individuals’ communication network, as well as access
to and personal consumption of information, e.g about vaccine safety or current infection
levels. Therefore, understanding how individual protection-seeking behavior affects disease
spread is crucial to prepare for the upcoming winter and future challenges.

As summer in the northern hemisphere comes to an end, changes in daylight, temperature, and weather
— and people’s reaction to them — will be the drivers of a disadvantageous seasonality of SARS-CoV-2.
With the seasonal odds against us, stabilization of new COVID-19 cases and hospitalizations requires high
immunity levels in the population or sufficient non-pharmaceutical interventions (NPIs). However, compliance
with mandatory NPIs, vaccine uptake, and individual protective measures depend on individual opinions and
decisions. This in turn depends on the individuals’ communication network, as well as access to and personal
consumption of information, e.g about vaccine safety or current infection levels. Therefore, understanding
how individual protection-seeking behavior affects disease spread is crucial to prepare for the upcoming winter
and future challenges.

Protection-seeking behavior can be triggered, for instance, when COVID-19 incidence and ICU occupancy and
thus personal risk is perceived to be high. Due to this inter-dependency between information and behavior, a
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The winter dilemma

dilemma arises for the coming winter. On the one hand, maintaining NPIs to keep the reproduction number
R low implies lower COVID-19 incidence — thus diminishing incentives to reduce contacts or get vaccinated;
thereby, one risks a severe wave as soon as restrictions are lifted (especially considering waning immunity
from those immunized before winter). On the other hand, relaxing restrictions more than current vaccination
levels allow can lead to excess morbidity and mortality [1, 2].

To demonstrate the extent of this dilemma, we use a standard susceptible-exposed-infected-recovered (SEIR)
model with explicit compartments for fatalities, intensive care units (ICUs), and vaccination (first time
and booster vaccines), and also waning immunity, and seasonality. To account for behavioral changes that
are induced by the perceived risk, we include a feedback-loop between information on ICU occupancy and
the level of contacts, i.e., the reproduction number, and vaccination willingness (cf. Figs S1 and S2, and
Supplementary Material). Explicitly, we assume that increases in ICU occupancy i) decrease the spreading
rate of COVID-19, accounting for protection-seeking behavior and voluntary reduction of mobility [3, 4], and
ii) increase vaccine acceptance among hesitant individuals [5]. We model these two loops to act on different
timescales, as individuals can adapt their number of contacts and their intensity on a daily basis, while
deciding to get vaccinated takes longer. Using state-of-the-art parameters and survey results reported in
literature (Table S1, Supplementary Material), we analyze three scenarios of government-imposed NPIs over
winter: 1) immediately lifting all NPIs, 2) maintaining mild NPIs, and 3) maintaining moderate NPIs to
sustain low case numbers (cf. Fig1A). Note that the parameters are characteristic for a country with moderate
(50–70 %) immunity among the population.

We find that assuming no restrictions throughout winter will trigger a steep increase in case numbers and
hospitalization (Fig 1, black lines). As a consequence, individuals would voluntarily reduce their contacts
and be more inclined to accept a vaccine offer (Fig 1D, E). However, this surge will increase morbidity and
mortality because the effect of vaccination is not instantaneous. In contrast, countries with higher levels of
immunity will likely not overwhelm their ICUs with a seasonal wave even if abolishing NPIs (cf. Fig. S3).
In the opposite corner scenario —sustaining moderate NPIs and low case numbers— might lead to low
COVID-19 incidence through winter but risks a rebound wave in spring (Fig 1, blue). This is because the low
incidence over winter may imply i) low natural immunity, ii) lacking incentives for vaccination, and iii) lower
chances of refreshing immune memory upon re-exposure to the virus [6]. The resulting low immunity levels
(cf. Fig 1 E) can then fuel a high rebound wave. Similar rebound waves have been observed for other seasonal
respiratory viruses [7, 8].

Altogether, the way we face this winter will impact long-term COVID-19 transmission dynamics and thus
determine i) the morbidity and mortality burden to societies, ii) the probability of having an off-seasonal
COVID-19 wave when lifting NPIs, iii) the magnitude of the self-regulation effect induced by the information-
behavior feedback loop, and iv) whether and when we will reach appropriate immunity levels to transit
from epidemicity to endemicity smoothly. Whether the solution to this winter dilemma is to accept high
case numbers is not obvious; aside from higher mortality and morbidity (Fig 1F) we would accept higher
probabilities of generating new SARS-CoV-2 variants and risk the long-term success of vaccination [9,10]. An
upcoming challenge for authorities is to find ways to engage individuals with vaccination programs without
requiring high case numbers for that. Further research on this interaction between information and disease
spread is highly needed to offer better preparedness for current and future global health infectious disease
threats.
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Figure 1: COVID-19 restrictions planning through winter: a long-term dilemma. The interplay of non-
pharmaceutical interventions (NPI), that are sustained through winter 2021/2022, with people’s protection-seeking
behavior will determine case numbers and ICU occupancy over winter and beyond. A: We explored three scenarios of
mandatory NPI stringency in winter, gradually lifting all restrictions in March 2022. B, C: Scenario 1: having no
restrictions causes a steep increase in case numbers and ICU occupancy that triggers protection-seeking behavior
among the population. In this situation, the self-regulation of contacts, growing vaccine uptake, and higher rates of
natural immunization would contribute to stabilizing case numbers (D, E), bearing, however, high mortality and
morbidity in winter (F). Scenario 2: Maintaining mild restrictions would curb the overwhelming of ICUs while allowing
for higher vaccine uptakes and natural immunity rates. Scenario 3: Maintaining moderate restrictions throughout
winter will minimize COVID-19 cases and hospitalizations in winter, generating a shared perception of safety across
the population. However, low vaccine uptake and rates of naturally acquired immunity through winter together with
waned immunity will cause a severe rebound wave when restrictions are completely lifted in March (D–F).
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Supplementary Material

Data availability

Source code for data generation and analysis is available online on GitHub https://github.com/
Priesemann-Group/covid19_winter_dilemma.

S1 Model

We model the spreading dynamics of SARS-CoV-2 following a mean-field SEIRD-ICU deterministic formalism
through a system of differential equations. Our model incorporates disease-spreading dynamics, ICU stays,
and the roll-out of an single-dose vaccine, that is equivalent to the two doses of most COVID-19 vaccines.
Both vaccine-induced and naturally-acquired immunity wane over time, but vaccine-induced immunity wanes
faster. For a graphical representation of the infection and core dynamics, see Fig. S1. In our model, susceptible
individuals can acquire the virus from infected individuals and subsequently progress to the exposed (S → E)
and infectious (E → I) compartments. The waning immunity is modelled via a compartment (W ) which
features no protection against infection but against severe course of the disease (W → EB), and also differs
from S in respect to the vaccination dynamics. We assume that vaccines offer no perfect sterile immunity and
that a fraction of vaccinated people is infected upon contact with the infectious groups, i.e., we follow a leaky
vaccination implementation. In contrast to unvaccinated individuals, vaccinated individuals and those with
waned immunity move to different exposed (V,W → EB) and infectious (EB → IB) compartments. These
breakthrough infections still offer a certain protection against a severe course of the disease, i.e., have reduced
probabilities to go to ICU or die. Individuals exposed to the virus (E,EB) progress from the exposed to
the infectious compartments (I, IB) at a rate ρ. The infectious compartments have three different possible
transitions: i) direct recovery (I, IB → R) with rate γ, ii) progression to ICU (I, IB → ICU) with rate δ
(reduced by (1−κ) for IB) or iii) direct death (I, IB → D) with rate θ (reduced by (1−κ) for IB). Individuals
receiving ICU treatment recover either at a rate γICU (ICU→ R) or die at a rate θICU (ICU→ D). Another
important property of this model is the self-regulation of contacts and vaccine acceptance that influences the
disease and vaccination dynamics based on the current and past ICU occupancy.

S1.1 Reproduction Number

Our model includes the effects of governmental non-pharmaceutical interventions, individuals self-regulating
their contacts based on perceived risk, and seasonality. Each is represented by a multiplicative factor on the
gross reproduction number Rt, i.e., the total number of offspring infections that a single case would generate
in a fully susceptible population.

The base reproduction number (no self-regulation, no seasonality) Rbase
t is chosen to represent one of the three

scenarios modeled (see Fig. 1): The immediate lifting of all restrictions (high Rbase
t ), moderate restrictions

over winter (moderate Rbase
t ) and strong restrictions over winter (low Rbase

t ). It is assumed that in March
next year all restrictions will be lifted in all scenarios. Easy-to-follow measures such as improved hygiene
might still be kept in place which results in a small reduction of the natural reproduction number R0. The
abolishment of NPIs is modeled by a linear increase in Rbase

t that lasts four weeks and is centered around
1.March. Independent of governmental decisions, each individual has the freedom to adapt his or her behavior
in accordance with perceived risk, which plays out not only in regards to vaccination willingness but also in
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Supplementary Figure S1: Figure S1: Compartmental model with feedback loops between hospital occu-
pancy and spreading rate and vaccination willingness. Transition rates are listed in Table S1, but omitted in
the figure for clarity purposes.

regards to contact regulation. An exponential term is thus multiplied onto the reproduction number and
depends on the past ICU occupancy HR (see sec. S1.1.1) and a sensitivity constant αR. At last, seasonality
is modeled by a time dependent sinusoidal modulation factor Γ(t) that depends on the sensitivity µ and the
day with the highest effect on seasonality dµ, which for our purpose can be set to zero, corresponding to
January 1 [11]. The full reproduction number is then given by

Rt(HR, t) = Rbase
t exp (−αRHR) Γ(t)

Γ(360− d0) , (1)

Γ(t) = 1 + µ cos
(

2π t+ d0 − dµ
360

)
(2)

where 1
Γ(360−d0) is for normalization such that seasonality only decreases Rt, i.e. neglecting the behavior term

Rbase
t corresponds to the peak value in winter. For simplicity in our model one month has 30 days and a full

year thus 360 days which does not affect the results on our time horizon.

S1.1.1 Memory on perceived danger

Perceived danger for the individual, transmitted by e.g., mass media or affected acquaintances, depends on
ICU not only at the present moment but also on the past. That way, self-regulation of contacts and vaccine
uptake is a function of the past development of the ICU occupancy H. We assume that the memory of
past ICU development is smooth, meaning that ICU occupancies long ago are remembered less and less as
time passes. To incorporate this into our model we calculate the convolution of the ICU with a gamma
distribution, effectively "weighting" the past development of ICU. That way, ICU occupancy a few days
ago is "remembered" more and thus influences people’s behavior at the present moment more than the ICU
occupancy that lies further in the past. That way, the reproduction number becomes dependent on HR(t) via

HR(t) := ICU ∗ Gp=1,bR
=
∫ t

−∞
dt′ ICU(t′)Gp=1,bR

(−t′ + t) , (3)
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where the arguments of the gamma distribution are set to p = 1 and bR = 4.

Time memory for vaccination willingness is assumed to work in the same way but with different gamma
distributions. First of all, there is a delay between the decision to be vaccinated and the onset of immunity.
Secondly, vaccination willingness is assumed to depend on a longer time interval of the ICU occupancy.
Combined, it translates into a gamma distribution that is shifted in time and looks flatter which is characterized
by the parameters τu, τw and bv = 14:

Hu,w(t) := ICU ∗ Gp=1,bv =
∫ t

−∞
dt′ ICU(t′)Gp=1,bv (−t′ − τu,w + t). (4)

The subscripts u and w indicate first and booster doses respectively. The parameter τu is larger than τw
because we include the delay of around 6 weeks for most vaccines that need two doses. Booster doses
are usually only a single dose so τw is just the delay between administration of the dose and onset of
immunity which we assume to be 2 weeks. For the initial conditions of H and HR we set ICU to a constant
ICU(t < 0) = ICU(t = 0) in the past. This simplification affects the results only negligibly for a short initial
time.

S1.1.2 Waning Immunity

Our model includes two types of immunity: immunity as a result of vaccination and immunity as a result of
natural infection. In both cases immunity wanes over time although it is believed that natural immunity
lasts longer and thus has a lower waning rate. On average, vaccine-induced immunity wanes after (Ωbase

v )−1

months and naturally-acquired immunity after (Ωbase
n )−1 months. Furthermore, we assume that immunized

individuals can refresh their immune memory upon contact with the virus which translates into infection
level- and Rt-dependent waning rates Ωv,n(Ieff , Rt), where the effective incidence Ieff corresponds to the
total size of the infectious pools I and IB but acknowledges reduced virulence of breakthrough infections
(see sec. S1.3. Furthermore an influx of Ψ was added to account for infections from abroad. In the limit of
high infection levels the waning rate should converge to zero and in the limit (Ieff → 0), where no refreshing
happens, it should be at its base value Ωbase

v,n . Using a logistic function that meets these requirements and
decreases linearly for low infection levels, we can express the waning immunity as a function of Ieff and the
reproduction number Rt:

Ωv(Ieff , Rt) = 2Ωbase
v

(
1− 1

1 + exp (−cvRtIeff)

)
, (5)

Ωn(Ieff , Rt) = 2Ωbase
n

(
1− 1

1 + exp (−cnRtIeff)

)
. (6)

If the "effective refreshing rate" is IeffRt = 1
cv,n

we get the approximation Ωv,n ≈ Ωbase/2 so we can get an
estimate for cv,n: An incidence of Ieff = 1

Rtcv,n
corresponds to the case when the rate of waning immunity is

halved, meaning that every second individual had his immunity refreshed in a given time frame. To find cv,n
we consider the incidence necessary such that, in this given time frame, half of the population was infected.
Using that a typical infection lasts O( 1

γ+δ+θ ) days, the incidence at which after a certain amount of time
T half the population was infected is I = M

2
1

γ+δ+θ
1
T . Because every individual on average refreshes the

9
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immunity of Rt individuals we divide by Rt and set this equal to Ieff = 1
Rtc

. The time frame should be the
waning immunity time frame T =

(
Ωbase
v,n

)−1. Thus, we can obtain an estimate for cv,n as

cv,n ≈
2
M

(γ + δ + θ)
Ωbase
v,n

. (7)

S1.2 Model Equations

The combined contributions of the infection-spreading and vaccination dynamics are represented by the set
of equations below. The time evolution of our model is then completely determined by the initial conditions
of the system. The first order transition rates between compartments are given by the probability for an
individual to undergo this transition divided by the average transition time e.g., the recovery rate γ is the
probability that an individual recovers from the disease divided by how the time span of the recovery process.
Note that in principle γ should be different for the I and IB compartment, as the probability to recover is
larger for breakthrough infections. We neglect this difference as it is negligible within the margin of error
since the probability to recover is close to 1 in both cases.

dS

dt
=− γRt(HR) S

M
Ieff︸ ︷︷ ︸

unvaccinated infections

− φ(Hu)M︸ ︷︷ ︸
first vaccinations

(8)

dV

dt
=− (1− η) γRt(HR) V

M
Ieff︸ ︷︷ ︸

breakthrough infections

+ (φ(Hu) + ϕ(Hw))M︸ ︷︷ ︸
vaccinations

− ΩvV︸︷︷︸
waning vaccine immunity

(9)

dW

dt
=− γRt(HR)W

M
Ieff︸ ︷︷ ︸

waned infections

− ϕ(Hw)M︸ ︷︷ ︸
booster vaccinations

+ ΩvV + ΩnR︸ ︷︷ ︸
waning immunity

(10)

dE

dt
= γRt(HR) S

M
Ieff︸ ︷︷ ︸

unvaccinated exposed

− ρE︸︷︷︸
end of latency

(11)

dEB

dt
= γRt(HR) (1− η)V +W

M
Ieff︸ ︷︷ ︸

vaccinated and waned exposed

− ρEB︸︷︷︸
end of latency

(12)

dI

dt
= ρE︸︷︷︸

start of infectiousness

− (γ + δ + θ) I︸ ︷︷ ︸
→ICU, death and recovery

(13)

dIB

dt
= ρEB︸︷︷︸

start of infectiousness

− (γ + (δ + θ)(1− κ)) IB︸ ︷︷ ︸
→ICU, death (reduced) and recovery

(14)

dICU
dt

= δ
(
I + (1− κ)IB

)
︸ ︷︷ ︸
transition to ICU

− (γICU + θICU)ICU︸ ︷︷ ︸
recovery from ICU

(15)

dD

dt
= θ

(
I + (1− κ)IB

)
︸ ︷︷ ︸
death without ICU

+ θICUICU︸ ︷︷ ︸
death in ICU

(16)

dR

dt
= γ

(
I + IB

)
︸ ︷︷ ︸
direct recovery

+ γICUICU︸ ︷︷ ︸
recovery from ICU

− ΩnR︸︷︷︸
waning natural immunity

(17)

10
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ducurrent

dt
= Mφ(Hu)︸ ︷︷ ︸

current first vaccinations

(18)

dwcurrent

dt
= Mϕ(Hw)︸ ︷︷ ︸

current booster vaccinations

(19)

Ieff =
(
I + σIB + Ψ

)
︸ ︷︷ ︸
effective incidence

(20)

Table S1: Model parameters. The range column either describes the range of values used in the various scenarios.

Parameter Meaning
Value
(default)

Range Units Source

Rbase
t Max. Reproduction number (gross) {2.0, 3.5, 5.0} 0–5 − [1, 12,13]

η Vaccine eff. against transmission 0.75 0.6–0.85 − [14–17]
κobs Observed vaccine eff. against severe

disease
0.95 0.75–0.98 − [17–20]

κ Vaccine eff. against severe disease 0.8 − Eq. 22
σ Relative virulence of vaccinated to

unvaccinated individuals
0.5 0.5 – 1 − [21, 22]

τu, τw Memory time of the ICU capacity
and delay to immunization

2, 6 – weeks Assumed

ρ Latency rate 0.25 – day−1 [23, 24]
γ Recovery rate 0.1 0.088 – 0.1 day−1 [25–27]
γICU Recovery rate from ICU 0.13 0.08 – 0.2 day−1 [1, 28–30]
δ Av. hospitalization rate I → ICU 0.0019 10−5 – 0.007 day−1 [1, 28–30]
θ Av. death rate 5.4 10−4 2 10−6 – 0.005 day−1 [1, 28–30]
θICU Av. ICU death rate 0.0975 0.088 – 0.100 day−1 [1, 28–30]
α Sensitivity of the population to ICU

occupancy
– – day−1 Estimated

Ωbase
v Waning imm. rate (base, vaccina-

tion)

2/3
360 – day−1 [31, 32]

Ωbase
n Waning imm. rate (base, natural) 1

360 – day−1 [33, 34]
µ Sensitivity to seasonality 0.267 0.141–0.365 – [11]
dµ Day with the strongest effect on sea-

sonality
0 – day [11]

d0 Day when the time series starts 240 – day [11]

φ0, ϕ0 Administration rate (first-time and
refreshing doses resp.)

0.0025 – day−1 [1]

χ0, χ1 Fraction of the population refusing
vaccine (first and booster resp.).

0.1, 0.2 – – [35]

ubase Base acceptance of first dose 0.5 – – [36]
Ψ Influx of infections 1 – People/day assumed

11
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Table S2: Model variables.

Variable Meaning Units Explanation

M Population size People Default value: 1000000
S Susceptible pool People Non-infected people that may acquire the virus.
V Vaccinated pool People Non-infected, vaccinated people. Less likely to be infected

or develop severe symptoms
W Waned immunity pool People Non-infected people whose immunity (vaccine-induced or

natural) has already waned, thus may acquire the virus.
E Exposed pool People People exposed to the virus.
EB Exposed pool (break-

through infection)
People People exposed to the virus (breakthrough infection).

I Infectious pool People Infectious people.
IB Infectious pool (break-

through infection)
People Infectious people (breakthrough infection).

ICU Hospitalized (total) People Hospitalized people.
R Recovered (total) People Recovered people (naturally or after requiring intensive

care).
H Av. ICU occupancy People Auxiliary variable measuring the average ICU occupancy.
ucurrent, wcurrent Vaccinated individuals, in-

dependent of the compart-
ment

People Integral over the vaccination rates

Rt Reproduction number
(gross)

− Eq. 1

N New infections (Total) cases day−1 N = γRt(ICU) Ieff
M (S +W + (1− η)V ).

κ Effective vaccine efficacy
against severe course

cases day−1 κ = 1− 1−κobs
1−η

Γ Seasonal var. of SARS-
CoV-2 infectiousness

− Eq. 2.

cv, cn Inverse incidence at which
waning immunity is halved

People Eq. 7

φ(t), ϕ(t) Administration rate of
first-time and refreshing
vaccine doses (resp.)

doses/day Eq. 23, 26

12
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S1.2.1 Initial conditions

Our initial conditions are chosen to represent the current situation in different countries as best as possible.
Despite different population sizes of the countries we look at, the population size in our model is set to
M = 106 individuals. Thus, the difference between the countries is solely described by the initial distribution
of that population over the model compartments. Let x be the vector collecting the variables of all different
pools:

x = [S, V,W,E,EB , I, IB , ICU, R,D, ucurrent, wcurrent, H] (21)

In that way,
∑
i≤10 xi = M because ucurrent and , wcurrent are counted independent of their compartment

and H is a measure for past ICU. The base reproduction number Rbase
t is initially set corresponding to

one of our three different scenarios and then increased linearly to 5 in March 2022, which corresponds
to the natural reproduction number of the virus reduced only slightly by e.g., improved hygiene that is
kept in place. To find reasonable estimates for the initial conditions of each compartment we take data for
the total number of administered vaccines and total cases on 1. September. To estimate the size of W
we consider the exponential decay of V and R. The exponential decay constant Ωbase

v,n relates to the half
life T 1/2 of the decaying process via T 1/2

v,n = ln2
Ωbase

v,n
. Using the half life we can estimate how many people

vaccinated or recovered until a certain point in time would have moved to the W compartment. We neglect
first order corrections regarding individuals who have been vaccinated as well as infected and were thus
counted twice in the data. We calculate the initial conditions for the exposed and infected compartments
by first estimating E + EB as 1

ρ times the daily new cases and I + IB as 1
γ+δ+θ times the daily new cases.

To find the fraction of breakthrough infections among all infected individuals we calculate their fraction
as (V+R)(1−η)

S+(V+R)(1−η) and build up the compartments E, EB, I and IB accordingly. An under-reporting factor
is multiplied onto R and to the fraction of W that comes from R. It is estimated from seroprevalence
studies [37] and the total reported case number, dividing the two numbers. ucurrent is the total number of vac-
cinations administered and wcurrent is set to zero. For our base model the initial conditions are listed in Tab.S3.

Table S3: Initial conditions for Germany.

S V W E EB I IB ICU R D ucurrent wcurrent

317850 548356 39337 731 368 1785 897 13 90663 0 603900 0

S1.3 Vaccination effects

Our model includes the effect of vaccination, where vaccines are for simplicity administered with a single-
dosage delivery scheme. There is some evidence that the vaccines partially prevent the infection with and
transmission of the disease [15, 16]. Our model incorporates both the effectiveness against infection and
against severe course of the disease following a ’leaky’ scheme, i.e., vaccinated individuals have smaller chances
to be infected by a factor of (1− η), and those with a breakthrough infection or waned immunity have a lower
probability of going to ICU by a factor of (1− κ) than unvaccinated individuals, where κ can be obtained
from

(1− η)(1− κ) = (1− κobs), (22)
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with κobs denoting the full protection from severe disease as observed in studies. Furthermore, we assume
breakthrough infections carry a lower viral load and are thus less infectious by a factor of σ [21]. The infection
rate depends on the sum of the infected compartment, the breakthrough infected compartment with a lower
viral load and an external influx. It can be expressed via the effective incidence Ieff =

(
I + σIB + Ψ

)
. All

parameters and values are listed in Table S1. Note that that these parameters are to be understood as
averages across vaccine types.

S1.4 Vaccine uptake

Vaccine dynamics is an important aspect of our model because it has a strong influence on infection dynamics
due to reduced transmissibility. Incorporating willingness to be vaccinated into our model requires to make a
decision on how vaccines are administered. Vaccine uptake is described by two different functions, one for
susceptible individuals (φ) and one for individuals whose immunity has waned (ϕ). The idea is to vaccinate
only if willingness for vaccine uptake is larger than the fraction of already vaccinated. For Fig. 1 we use a
step-wise approach for this transition, described in S1.4.1. We compare it with a ramping approach described
in S1.4.2. A comparison between the outcomes of the two methods is shown in Fig. S2.

S1.4.1 Step-wise approach

In this approach, we use functions that represent the willingness to be vaccinated in dependence of the ICU
occupancy. If the group of individuals who are willing to be vaccinated with a first dose (uwilling) is larger
than the group of already vaccinated (ucurrent), vaccinations are carried out at a rate proportional to the
difference of the two, or at a maximum administration rate φ0, depending on which one is lower:

φ(Hu) =

 min
{
φ0, u

willing(Hu)− 1
M
ucurrent

}
if uwilling(Hu) ≥ 1

M ucurrent,

0 else.
(23)

H is a function dependent on the past development of the ICU occupancy as discussed in S1.1.1 . The fraction
of people who are willing to be vaccinated for a first time can shift between a minimum and a maximum value
(ubase and umax = 1− χ0), representing the general observed acceptance for the first dose and people who
are strictly opposed to vaccines or cannot be immunized because of age or other preconditions respectively.
Willingness to be vaccinated depends on perceived danger, which the ICU occupancy is a suitable measure
for. The willingness is then represented by

uwilling = ubase + (umax − ubase) (1− exp (−αuHu)) . (24)

Willingness to accept booster doses is modeled in a similar way, without a base willingness:

wwilling = (1− χ1) (1− exp (−αwHw)) . (25)

If the number of people willing to be vaccinated with a booster dose is larger than the number of people that
already received one, vaccinations are carried out from the waned compartment W to compartment V at a
rate

14
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ϕ(Hw) =

 min
{
ϕ0, w

willing(Hw)− 1
M
wcurrent

}
if wwilling(Hw) ≥ 1

Mwcurrent,

0 else.
(26)

S1.4.2 Ramping approach

In our first step-wise appraoch vaccinations are only carried out if more people are willing to be vaccinated
than there are currently vaccinated. This hard transition might not be realistic because it can be assumed
that in a real world scenario the transition would be smooth, leading to vaccinations being carried out over a
longer time frame and not abrupt. We can twist our first approach to incorporate this effect by replacing the
step function φ(Hu) by

φ(Hu) =


0 if uwilling(Hu) ≤ 1

M ucurrent − ε
φ0 if uwilling(Hu) ≥ 1

M ucurrent + ε
φ0

2ε

(
uwilling(Hu)− 1

M
ucurrent + ε

)
else.

(27)

For booster doses, the replacement φ↔ ϕ and u↔ w has to be made. This corresponds to a linear increase
with a slope dependent on ε, where vaccinations are started to be carried out when vaccination willingness is
larger than the current vaccinated minus ε. That way, ε is a measure for the smoothness of the transition
between the state where vaccinations are carried out and the state where they are not.

S1.4.3 Tracking of vaccinated individuals

In our first two approaches, vaccination rates between the susceptible (S) and waned (W ) compartment
depend on the difference between willingness for vaccination uptake and the currently vaccinated. Thus, it is
necessary to keep track of how many people received a first and booster dose respectively. Implementing this
is achieved by integrating over the vaccination rates. It translates into two additional differential equations:

d

dt
ucurrent = Mφ(H) and d

dt
wcurrent = Mϕ(H) . (28)

The initial conditions for ucurrent and wcurrent are chosen according to the initial conditions of V and W .

S1.5 Assessment of the sensitivity to ICU occupancy

The opinion dynamics in our model depend on the parameters αR, αu and αw. To get an estimate for their
magnitude we look at estimated incidences that cause a change in the stability of the system due to change
in behavior. The effective reproduction number Reff

t is defined as the reproduction number times the fraction
of the population that is susceptible:

Reff
t ≈

S +W

M
Rt(HR) + V

M
(1− η)Rt(HR). (29)

If Reff
t = 1 the system is at an equilibrium which means that the incidence is constant. Imposing equilibrium

conditions at time t = teq, we can obtain an equation ruling the balance between all stabilizing and destabilizing
contributions:

exp (−αRHR,eq)Rbase
t Γ(teq)

(
Seq +Weq

M
+ Veq

M
(1− η)

)
!= 1 (30)
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Thus, we can estimate αR as:

αR ≈
1

HR,eq
ln
(
Rbase
t Γ(teq)Seq +Weq + (1− η)Veq

M

)
. (31)

Solving for αR we need to assume at which ICU occupancy the behavioral changes are strong enough to
lead to a tipping of the system. This method is usable to obtain the right orders of magnitude. Setting
Rbase
t = 4 and Γ(teq) = 1 corresponds to an equilibrium situation in winter with mild restrictions. Estimating

the vulnerable fraction of the population at that point to be a half, we can estimate αR ≈ ln2
HR,eq

. Assuming
that under such conditions the behavioral changes only lead to a tipping of the system at full ICUs (≈ 70 per
million for Germany [1]) we get the estimate αR ≈ 0.1. For αu and αw we assume that the decision to get
vaccinated does not require as much self dicipline as contact reduction and estimate them as twice and three
times larger than αR respectively: αu ≈ 0.2, αw ≈ 0.3.
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Supplementary Figure S2: Modeling choices for the opinion-epidemic feedback loop, modulating vaccine
uptake and contacts, affects case development in comparable pandemic situations. A, B: Assuming that
individuals react protectively to the information they receive from the pandemic, self-regulation of contacts and
vaccine uptake could stabilize disease spread. The model approach to this affects disease spread. C, D: Assuming that
vaccine uptake and willingness are decoupled, we can represent vaccine uptake from an on-off perspective happening
when vaccine willingness (partially modulated by ICU occupancy) is higher than the current uptake. In this setting,
vaccination can be a step function or a ramp centered where vaccine uptake meets the vaccine willingness.

S2 Other countries

Our results were obtained using initial conditions that reflect the current situation in Germany. By simulating
scenarios that are realistic for other countries we can check our model for sensitivity in reagrds to initial
conditions. Of special interest are countries with different vaccination rates and that previously had differing
numbers of COVID-19 cases and thus a different structure with regards to the S, V , R and W compartments.
For this comparison we chose the countries Denmark, Portugal and the Czech Republic. Initial conditions
were calculated with data as described in Sec. S1.2.1 and using data from [38]. Aside from the different initial
conditions we incorporated different transition rates δ, θ and θICU that represent different age structures
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within the countries [39]. Using the age dependent rates reported in [1] we assume that the transition rates
for each age group is the same among all countries and calculated the overall transition rate as k̄ =

∑
i wiki

where i counts different age groups, wi = Mi

M is the fraction of each age group of the total population and ki
is the transition rate of age group i. All country specific parameters can be found in Tab. S4. Fig. S3 shows
the comparison between the countries.

Table S4: Country-dependent parameters for Fig. S3.

Example
Inspiring Country
initial conditions

V

M
[%] [38] R

M
[%] [37]

Under-reporting
factor

δ θ θICU

1 Germany 54.8 9.6 2.4 0.0019 5.4 · 10−4 0.0976
2 Czech Republic 32.3 41.5 3.3 0.0017 4.1 · 10−4 0.0979
3 Denmark 66.2 13.9 2.9 0.0017 4.3 · 10−4 0.0979
4 Portugal 70.0 14.2 1.7 0.0019 5.2 · 10−4 0.0976
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Supplementary Figure S3: Differences between the levels of immunity and their nature will determine
the extent of the winter dilemma across countries. Considering the same scenarios of Fig. 1 in the main
text (0, 25% or 50% of restrictions in winter), here we study the effect of different initial conditions in immunity
inspired by four countries (from left to right, Germany, Czech Republic, Denmark, and Portugal). We also adapted
the probability of requiring intensive care and the infection fatality ratio to capture population demographics in these
examples. Across scenarios, we see that countries with higher initial immunity will have less severe waves. However,
considering waning immunity and low vaccination rates, their preparedness for 2022 winter wave would be lower.
While these results can hold in the short-term, we expect them to be affected by differences in i) the definition of
intensive care and the hospital resources, ii) population’s risk perception and sensitivity to ICU occupancy, compliance
to NPIs, age-stratified vaccine uptake, and degree of solidarity, and iv) contact structure and intensity. Thus, the
above highlights the need for research in this direction.
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