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Abstract

We propose a novel framework that generates new inhibitor molecules for target

proteins by combining deep reinforcement learning (RL) with real-time molecular dock-

ing on 3-dimensional structures. We illustrate the inhibitor mining (iMiner) approach

on the main protease (MPro) protein of SARS-COV-2 that is further validated via

consensus of two different docking software, as well as for druglikeness and ease of

synthesis. Ultimately 54 molecules are proposed as potent Mpro inhibitors (7 of which
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have better synthetic accessibility), covering a much broader range than crowd-sourced

projects like the COVID moonshot, and our generated molecules exhibit an optimized,

precise, and energetically consistent fit within the catalytic binding pocket. Moreover,

our approach only relies on the structure of the target protein, which means it can

be easily adapted for future development of other inhibitors of any protein of disease

origin.

Introduction

The COVID-19 pandemic, caused by the spread and infection by a novel betacoronavirus

called SARS-CoV-2, has brought immense loss to our global society, causing more than 232

million infection cases and more than 4.7 million deaths globally as of the end of September,

2021.1 Even though effective vaccines have been developed,2 numerous infected patients can

still benefit from an effective antivirus drug targeting SARS-COV-2. While drug repurpos-

ing has led to the identification of some drugs as potential treatments for COVID-19 (for

example, remdesivir), these have been met with somewhat underwhelming performance in

clinical settings.3 Of course, drug re-purposing strategies also suffer the distinct limitation

in that they cannot identify novel molecules that would be highly potent for new targets.

Among all the proteins related to the SARS-COV-2 virus, Mpro has arguably received

the most attention with respect to drug re-purposing studies,4 in part because it is one

of the earliest SARS-COV-2 proteins in which the 3d structure has been fully determined

experimentally.5 It is also an attractive target due to its crucial role in the SARS-CoV-

2 replication cycle since it is a critical enzyme facilitating the cleavage of non-structural

proteins from two polyproteins translated from the SARS-CoV-2 replicase gene (Orf1).6,7

The substrate-binding pocket of Mpro is located at a cleft between Domain I (residues 8-

101) and Domain II (residues 102-184) of the protein, with a Cys-His catalytic dyad that

catalyses the cleavage of the polyprotein 1ab.5,8 Molecules inhibiting Mpro can induce a

conformational change of the protein which leads to its aggregration,9 or occupy the core
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of the substrate-binding pocket, blocking substrates from approaching the catalytic site.10

Besides its crucial biological function for virus viability, Mpro is also a promising target

for drug development because it is a cytosolic protein with better accessibility to ingested

antivirals, and has a well-defined concave binding pocket that allows for more consistent

design of small molecules.11Furthermore, the cleavage sites Mpro operates at do not have

known overlap with human proteases.8,12 Therefore, an inhibitor targeting Mpro is unlikely

to be toxic to humans.

Traditional methods for identifying specific small molecule inhibitors of a protein target

usually start with high throughput virtual screening of massive databases that attempt to

capture chemical space and diversity, e.g., ChEMBL,13 ZINC,14 Enamine Diversity Set,15

and PubChem.16 Due to the size of such data sets, screening these molecules with sophisti-

cated flexbile ligand docking protocols can become intractably expensive. Thus, less sophis-

ticated methods, such as pharmacophore modeling or rigid body docking, are often used to

initially screen molecules. Due to the simplicity of these models, the information used to

navigate through the small molecule chemical space becomes noisy, and false-positives are

ruled in while false-negatives, i.e. potential optimum lead molecules, can be ruled out.17,18

With the advent of modern machine learning, deep learning models have been proposed

that can generate new molecules for SARS-COV-2 and other viral diseases,19–29 and the

distribution can be skewed towards molecules with specific properties such as drug likeness

using techniques such as variational autoencoders (VAE),20,21 transfer learning22 and rein-

forcement learning (RL).23–29 However, most deep learning methods rely on 1-dimensional

sequence or 2-dimensional chemical representations of the drug and protein, and do not

take full advantage of 3-dimensional structural information of the putative drug, thereby

constraining the ability to generate drugs with shape and molecular compatibility with the

target active site. Recent work has also explored chemical space in the vicinity of some

starting molecular scaffold and running docking simulations on these derived molecules,30

however there has been no method that develops new drug molecules with real-time 3d struc-
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tural docking to guide the efficient exploration of an immense chemical space with the aid

of machine learning.

In this work, we propose a novel workflow dubbed ”iMiner” that mines chemical space

for new tight binding inhibitors by combining deep RL with real-time flexible ligand docking

against a protein binding site (Figure 1). We represent putative inhibitors as Self-Referencing

Embedded Strings (SELFIES)31 that are generated from an Average Stochastic Gradient De-

scent Weigh-Dropped Long Short Term Memory (AWD-LSTM)32 recurrent neural network

(RNN), allowing wide coverage of chemical space. We illustrate the RL training procedure

of iMiner that uses on-the-fly AutoDock Vina33 with the 3d structures of the Mpro substrate

binding pocket and the generated inhibitors. The Vina docking scores are used to adjust

the RNN so that the distribution of generated inhibitor molecules are shifted towards those

that more strongly interact with the Mpro catalytic site. We perform docking with a second

docking software, Schrödinger’s Glide SP,34 to build consensus for a drug’s strong binding

affinity to Mpro, and a final filtering based on synthetic accessibility (SA), druglikeness, and

elimination of PAINS35 molecules.

In our Covid-19 relevant example, we propose 54 molecules as potential Mpro inhibitors

that are worthy of experimental validation (work in progress). 7 out of the 54 molecules

have even better synthetic accessibility. Furthermore, we compare our top hits generated

with the iMiner workflow with the molecules submitted to the COVID moonshot project,36

a crowdsourcing effort aimed at developing a novel inhibitor for Mpro, and show that we

achieve a broader coverage of the inhibitor drug chemical space. We also find excellent

shape and molecular attributes of the inhibitors generated by our model in regard their

compatibility with the actual target cavity in Mpro, which is a direct consequence of the

real-time docking with actual 3d structures during the training procedure. Further analysis

of non-bonded interactions between the found inhibitors with specific binding pocket residues

in Mpro also create testable hypotheses in regards their potential role as antivirals to treat

COVID-19.
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Although we have illustrated the workflow’s first use on a pressing and timely test case

– i.e., inhibition of SARS-CoV-2 Mpro due to the desperate need for antiviral treatments of

COVID-19 – the iMiner method is highly generalizable. As our workflow only requires a 3D

structure of the target protein with a pre-defined binding site, iMiner can be readily adapted

to generate small molecules for other protein targets. Thus, we believe our ML algorithm

will be of great interest to the drug design community to rapidly screen novel regions of

chemical space in real-time for other anti-virals or small molecule therapeutics in the future.

All scripts required to run our workflow on an arbitrary protein target can be found on a

public GitHub repository1.

The iMiner Machine Learning Workflow

Figure 1 illustrates the entire iMiner life cycle for generating new inhibitor molecules. Here

we describe its components in more detail.

SELFIES representation of inhibitor molecules. An arbitrary molecule can be

represented as a topological graph using two main approaches: adjacency matrix based

methods and string based methods. The former uses an N by N matrix to encode a molecule,

where N is the number of atoms in the molecule, and the values of the matrix are typically

bond orders between atoms. An adjacency matrix is not ideal for generative tasks, because

the size of the molecule that can be generated should not be fixed, and the learning of

chemical knowledge by a ML model through adjacency matrix can be difficult. Instead,

string based methods are more suited for molecular generation tasks, and SMILES strings

have been the standard for molecular representation due to its conciseness and readability.

However, SMILES strings have relatively complex syntax, require matching of open and close

brackets for branching, and ring modeling/modification is not trivial. Therefore, generating

novel, chemically correct compounds through use of SMILES strings can be challenging.

The SELFIES molecular representation31 is specifically designed to ensure that all gen-

1https://github.com/THGLab/Covid19
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Figure 1: Illustration of the overall structure of the iMiner workflow which highlights the
two major machine learning components, the generative and evaluative models and their
interplay, and the subsequent filtering process for chemical and biological feasibility. (A)
The generative model uses SELFIES representations for molecules and a recurrent neural
network to “mine” for new molecules that are presented to the evaluative model for 3D
docking using AutoDock vina. Vina scores are used in the loss function to drive gradient
updates of the neural network. (B) The filtering procedure from molecules collected from
intermediate training iterations is based on both favorable Vina and Glide SP docking scores,
high drug-likeliness scores, no PAINS and no Lipinski’s Rule violations.

erated strings correspond to valid molecules. By utilizing [Branch] and [Ring] tokens

with predefined branch lengths and ring sizes, as well as generating symbols using derivation

rules, the SELFIES representation guarantees that valence bond constraints are met, and

any combinations of tokens from its vocabulary corresponds to a valid molecule. Therefore,

we have used SELFIES in our generative model to encode molecules since it does not need to

learn chemical syntax rules, and can allocate more of its learning capacity towards generating

valid molecules with properties of interest as shown in Figure 1A.

Pre-training the inhibitor molecule generation. Conceptually, generating molecules

using string representation is similar to how text is generated in a natural language process-
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ing task. Our method starts with a specific [Break] token, and for each molecule, we

utilized an RNN that takes in the last token in the string, together with the hidden state

from last step to predict a distribution of tokens following the current string. In this work

a specific variant of the RNN, known as the AWD-LSTM, was used due to its exceptional

performance in similar generative tasks (Figure 1A).32 The network was pre-trained using

supervised-learning (SL) of all molecules from the ChEMBL database to learn the conditional

probability distributions of tokens that correspond to drug-like molecules. When our trained

generative model is used for generating new molecules, a new token is sampled according to

the predicted probabilities, and this new token is concatenated to the input string to sample

the next token, until the [Break] token is sampled, in which case a complete molecule has

been generated.

The performance of our pre-trained generative model was evaluated using the GuacaMol

benchmarks,37 which probe 5 different aspects of the distribution of generated molecules

with respect to the training dataset (Table 1). Model “validity” reports the proportion

of molecules that are syntactically correct. Because we generated molecules via SELFIES

representations, we achieved close to 100% validity for all generated molecules. Invalid

molecules were either empty strings, or molecules for which the SELFIES package failed to

convert into a SMILES string and therefore were discarded before subsequent workflow steps.

Model “uniqueness” reports how many generated molecules are duplicates vs. those which are

genuinely distinct. Our pretrained models illustrated high uniqueness, indicating the model

is able to generate a wide variety of non-redundant molecules. Model “novelty” is defined as

the proportion of generated molecules that do not exist in the training dataset. Our model’s

high novelty indicates that it is not memorizing molecules from the training dataset, but is

indeed generating molecules that it has not seen before. Kullback–Leibler (KL) divergence

measures differences in probability distributions of various physicochemical descriptors for

the training set and the model generated molecules. As defined by GuacaMol, a high KL

divergence benchmark such as predicted for our model suggests that our generated molecules
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have similar physicochemical properties to that of training dataset. Finally, Frechet ChemNet

Distance (FCD) utilizes a hidden representation of molecules in a previously trained NN

to predict biological activities, and thus captures both chemical and biological similarities

simultaneously for two sets of molecules.38 Molecules generated by our pre-trained model also

have high FCD values, indicating that our molecules are expected to have similar biological

activities as molecules from the ChEMBL training dataset.

Table 1: GuacaMol benchmarks for the pretrained generative model and after RL training

Benchmark Pretrained model After RL
Validity 0.998 0.998
Uniqueness 0.999 0.983
Novelty 0.867 0.999
KL divergence 0.985 0.791
Frechet ChemNet Distance 0.870 0.007

We then validated our pre-trained distributions using 13 drug-likeliness properties be-

tween our generated molecules and randomly sampled molecules from ChEMBL database

that we used for training. The molecular properties considered are well-recognized chemical

features related to the drug-likeliness of a molecule which can be obtained through 2D topo-

logical connectivity of the molecule: fraction of sp3 hybridized carbons, number of heavy

atoms, fraction of non-carbon atoms in all heavy atoms, number of hydrogen bond donors

and acceptors, number of rotatable bonds, number of aliphatic and aromatic rings, molecular

weight, quantitative estimate of drug-likelihood (QED) value,39 approximate log partition

coefficient between octanol and water (alogP),40 polarizable surface area (PSA), and the

number of structural alerts.41 Despite the fact that during pre-training only token distribu-

tions were used as training targets, all distributions collected from our generated molecules

closely follow the distributions from the ChEMBL database (Figure S1). This result sug-

gests our pre-trained model has learned key concepts of “drug-likeness” and provides a good

starting point for the RL procedure.

The evaluation module. After our generative model was pre-trained, we employed
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an RL workflow to bias the distribution of generated molecules towards specific properties

of interest. RL training allows the model to interact with an environment by performing

actions according to a policy model, and uses the feedback from the environment to provide

training signals to improve the model. In this work, the pre-trained generative model is

taken as the policy, and in each iteration 2000 molecules were generated and sent to the

evaluation module (Figure 1A).

The central component of our evaluation model is docking with AutoDock Vina executed

through cloud computing in parallel with the RL. Within our evaluation model, the Vina

score calculator is set up to take a SMILES string representing the ligand, and the 3D

structure of the protein target, together with a predefined docking region as input. AutoDock

Vina then explores dihedral degrees of freedom and identifies the optimal conformation of the

input inhibitor for placement in the designated protein binding site. Finally, AutoDock Vina

returns the Vina score as an approximation of the binding energy between the ligand and

the protein. Multiple instances of the Vina score calculator tasks were established through

Microsoft Azure Batch to allow high-throughput evaluation of the generated molecules. Vina

scores were then cycled back to the generative model to improve molecule generation through

proximal policy optimization (PPO),42 as will be discussed in next section. We emphasize

that by using a physics-based docking model which utilizes full 3D structure of our target

protein and generated molecules as the critic, the training of the policy model is less likely

to be contaminated due to exploiting failure modes of a neural-network based critic, an issue

called wireheading .43 Instead, we benefit from a more reliable training signal and reduce the

false positive and false negative rates of the generated molecules.

Vina scores alone are not sufficient to reliably train a molecule generator, as shown in

the Supporting Information (Figure S2) because it will not always satisfy requirements for

drug-likeness. To ensure that our generated molecules still bear drug-like properties, we

incorporated an additional metric into the reward, SDL, which is a weighted average of

the log likelihood for the 13 different drug-like properties used in pre-training assessment.
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Formally, our drug-likeliness score SDL is defined as:

SDL(X) =
∑

i

σi log pi(propi(X)) (1)

where propi(X) calculates the ith property of a molecule X and pi is defined by the proba-

bility distribution of property i by all molecules in the ChEMBL database. The parameter

σi is defined as:

σi = S−1
i /

∑

j

S−1
j (2)

where Si is the entropy of the distribution of property i,

Si = −
∑

x

pi(x) log pi(x) (3)

such that a narrower distribution from the ChEMBL database contribute more to the drug

likeliness score, and defines the weights for each property as proportional to the inverse of the

entropy. Introducing this additional reward ensures our model also accounts for similarity

of generated molecules to the drug-likeliness present in the ChEMBL database, and ensures

that our generated molecules are more likely to be optimal leads for further drug design

endeavors.

Reinforcement learning with multiple rewards. Our pretrained policy model de-

fines a probability distribution for an arbitrary sequence of tokens from the SELFIES vo-

cabulary, since the generation of the sequence is a Markovian decision process (MDP), and

can be written as:

pΘ(sT ) = pΘ(s1|s0)pΘ(s2|s1)...pΘ(sT |sT−1) (4)

where s0 corresponds to a starting state with [Break] as the only token in the string,
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st corresponds to an intermediate state with a finite length string of SELFIES tokens not

ended with the [Break] token, and sT corresponds to the terminal state, with the last token

being [Break], or the length of the string exceeding a predefined threshold. p(st|st−1) is

the transition probability at timestep t, which is the probability distribution of the next

token from the generative RNN with network parameters Θ. For each terminal state not

exceeding the length limit, a corresponding molecule can be decoded, and the Vina score

Svina and drug-likeliness score SDL can be calculated. The total reward for a terminal state

with a decoded molecule X is then defined as:

r(sT ) = λmax(SDL(X), 0)−min(Svina(X), 0) (5)

since the drug-likeliness score needs to be maximized and Vina score needs to be minimized.

The λ parameter controls the balance between the physical Vina score and the drug-likeliness

score in the reward function, but in this work we simply used λ = 1. Negative SDL is upward

clipped to 0 and positive Svina is downward clipped to 0 to ensure the reward is non-negative.

The expected reward under the MDP is then

J(Θ) = EsT∼pΘ(sT )[r(sT )] (6)

Further details of the RL training procedure are given in the Methods section.

Figure 2 compares the distribution of Vina docking scores for molecules generated from

the model prior (the pre-trained model) and after RL training which shows a clear shift

towards more favorable vina scores. The average Vina score of molecules decreased from -

6.95 ± 0.94 kcal/mol to -8.01 ± 0.94 kcal/mol, showing that on average more molecules have

stronger interactions with the predefined Mpro docking region. In addition, the GuacaMol

benchmarks were also evaluated for the model after RL training, which are also shown in

Table 1. Except the Frechet ChemNet Distance (FCD), all other benchmarks are relatively

close to the pretrained model, indicating that the RL training does not hurt the quality of
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Figure 2: Comparison of AutoDock Vina score distributions for the pre-trained model (blue)
and the model trained by reinforcement learning (orange). The mean vina score decreased
from -6.95 kcal/mol to -8.01 kcal/mol after RL training.

the generated molecules, and they are still similar to the structures from ChEMBL database.

However, FCD has changed significantly, which means the newly generated molecules have

different biological activities than the molecules from ChEMBL database. The changes

seen in FCD are expected, since, after training, the generated molecules should target a

specific cavity of SARS-CoV-2 Mpro, a target for which there are currently no FDA approved

treatments. Thus, the FCD differences validate that RL is properly steering the distributions

of generated molecules away from its initial distribution.

Validation and filtering of new inhibitor molecules. Validating results from, or

checking for consensus between, one docking program with another is often considered stan-

dard practice as scoring functions from different programs may have limited accuracy or be

parameterized for differing test cases.44 Furthermore it is desirable to filter out molecules

that are non-specific binders (Pan-assay interference compounds or PAINS) in which we use

swissADME45 to check for any PAINS alerts,35 as well as Lipinski rule violations,46 and to

evaluate the synthetic accessibility (SA) scores of these molecules. Figure 1B illustrates the

procedures for post-filtering using these additional metrics, which we describe in more detail

here.

We start by collecting all molecules from intermediate RL training iterations with a Vina
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score <-9.0, arriving at our “vina-selected set” containing 33,105 molecules (the number of

molecules from each training iteration is provided in Figure S3). As expected, more molecules

from later iterations were selected, since molecules from later iterations were driven towards

having lower Vina scores. Glide Standard Precision (SP)34 docking was performed on all

molecules in our vina-selected set with the flexibility to optimize the conformation again

with respect to the Glide scoring function. This way we could fully exploit Glide docking

as a cross-validation for the generated molecules. Even though the molecules were all good

candidates according to Vina score, their glide docking score still showed a wide distribution.

We then applied a filter with Glide Gscore (Glide Score) <-8.0 and a drug-likeliness score

filter of >2.7 to exclude any structure that is not sufficiently drug-like. After applying these

filters we obtained the glide-selected set with 321 molecules in total. The final step was to

run these 321 molecules through a final set of filters requiring no PAINS alerts, no Lipinski

rule violations and SA scores <3.5.

Results

The outcome of the iMiner workflow formulated a final set of 54 molecules shown in Figure

3. These molecules are predicted to be consensus Mpro inhibitors by both AutoDock Vina

and Glide SP, they satisfy drug-likeliness criterion, and are relatively easy to synthesize due

to their predicted low SA scores. The full SMILES representations of these molecules, along

with their Vina scores, Glide Gscores, and SA scores are provided in Table S1.

Comparison of chemical diversity of inhibitors discovered by iMiner. Fig-

ure 4 compares the total chemical space coverage of molecules generated using iMiner and

molecules from ChEMBL and the COVID-moonshot project,36 by performing dimension re-

duction on the hidden representation of these molecules encoded through ChemNet. Chem-

Net is a deep network trained on canonized SMILES strings of molecules as input and encodes

each molecule into a 512-dimensional latent vector to predict their chemical and biological
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Figure 3: Prediction of 54 molecules that are tight binding inhibitors of Mpro in the final
set generated from the iMiner workflow. We propose further experimental validations on
these molecules as potential SARS-CoV-2 Mpro inhibitors (work in progress). The first 7
molecules in the dashed frame have better synthetic accessibility scores than the rest. The
diversity over chemical space of these proposed inhibitors is evident from metrics described
in Table 1 and Figure 4.
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properties,38 and the dimensions were further reduced to 2 through the t-distributed Stochas-

tic Neighbor Embedding (t-SNE) algorithm47 for better visualization. Plot points on the

resultant figure indicate individual molecules, and points are drawn close to or far from one

another based on their degree of chemical similarity: points closer to one another indicate

chemically similar molecules and therefore correspondingly low coverage of chemical space,

while widely dispersed points indicate dissimilar molecules and therefore broad coverage of

chemical space. The nearly 1500 COVID-moonshot molecules are also color-coded with their

experimentally determined pIC50 values, and our generated molecules in the vina-selected

set are color-coded with their Vina scores.

The visualization clearly shows that the molecules generated by iMiner covers a broader

chemical space and are spread evenly within plotting range than those molecules published on

the COVID-moonshot website which form several tight clusters. We recognize that one of the

reasons for the COVID moonshot molecules to be clustered in chemical space is that many

of these molecules are generated through an inspirational approach, i.e., later molecules

are borrowing designing ideas and sub-structures from molecules submitted earlier. By

comparison, our final-54 set of molecules are dispersed throughout chemical space, which is

an important characteristic of our workflow, since it provides a wide variety of structures as

candidates for lead optimization. Interestingly, even compared to samples from the training

dataset (ChEMBL), the molecules in the vina-selected set are still more diverse, which

suggests the model was encouraged to explore more of chemical space during RL training

while still reporting low Vina scores. Finally, we also see that the 54 molecules from iMiner

are coming from different regions of the chemical space spanned by molecules generated

from the model. As drug leads built on single or closely related scaffolds might be ruled out

entirely during drug development, a wider coverage of the chemical space gives us a better

chance of developing an effective lead for an Mpro inhibitor for treating SARS-CoV-2.

The molecular interactions between generated inhibitors of Mpro’s catalytic

site. In this section we analyzed some of the molecules in the final-54 set through vi-
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Figure 4: Dimensionality-reduced latent space scatter plot for molecules from the COVID-
moonshot project (crosses), generated molecules from the RL model (dots), molecules ran-
domly sampled from the ChEMBL database (diamonds) and molecules in the final-54 set
(circles). Molecules on the figure are encoded by ChemNet38 and the latent space vectors
undergo dimensionality reduction by principal component analysis (PCA)48 and t-distributed
stochastic neighbor embedding (t-SNE).47 Molecules from the COVID-moonshot project are
color coded by their experimental pIC50 values according to the color bar on the right, and
molecules generated by our model are color coded by Vina docking scores according to the
color bar on the left.
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sualizing their interactions with Mpro’s catalytic site. In Figure 5A, we show an overlay

of several iMiner generated molecules in their optimal binding conformations determined

through AutoDock Vina with respect to the surface of the binding pocket in which the pre-

dicted binding orientations fit nicely into the Mpro’s catalytic pocket. Additionally, ligand

functional groups mirror the hydrophobicity requirements imposed by the Mpro binding site

topography, meaning the generated molecules indeed have optimized interactions with the

pocket. These results are no doubt due to our inclusion of real-time, explicit, flexible ligand

docking in our evaluation model as well as a result of requiring minimization of Vina score

distributions. Through this visualization we also see an interesting and encouraging result:

although our final set of 54 molecules represent vastly different regions of chemical space,

these molecules are relatively similar in size (i.e., similar number of heavy atoms), and the

optimal docking conformations adopt similar shapes. These results illustrate the true power

of our model, that we can quickly enumerate and expand upon the searched chemical space

while still ensuring all generated molecules appropriately fit in the target protein pocket.

Figure 5B-E provide two representative examples of the molecular interactions between

an iMiner predicted inhibitor and the Mpro binding site residues. Many and various types of

favorable ligand-target interactions are observed, including hydrogen bonds, halogen bonds,

and different types of π interactions. For example, CYS145 contributes to the π-Sulfur

interaction in the first molecule illustrated in 5B and C, but it participates in a conventional

hydrogen bond to the SO2 group in the second molecule illustrated in 5D and E. Furthermore,

when comparing the two proposed inhibitors each molecule exhibits unique interaction types

to a different or complementary set of MPro protein residues. This variety in intermolecular

interaction types stemming from the same protein binding site is a direct result of our

enumeration of chemical space and our construction of novel ligand scaffolds.
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Figure 5: Conformational and chemical compatibility of inhibitors predicted from iMiner
for the MPro catalytic pocket.(A) Randomly selected molecules from the final set of 54
inhibitors with their docking conformation determined by AutoDock Vina overlayed onto
the surface of the binding pocket, with the surface color coded by hydrophobicity. Blue
parts are hydrophilic and red parts are hydrophobic. (B) 3D interactions between molecule
1 and residues near the binding pocket (C) 2D illustrations for the interactions between
molecule 1 and residues near the binding pocket (D) 3D interactions between molecule 2 and
residues near the binding pocket (E) 2D illustrations for the interactions between molecule
2 and residues near the binding pocket. All figures generated by BIOVIA Discovery Studio
Visualizer.49
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Conclusions

In this work we have shown that combining real-time docking of 3D structures with state-

of-the-art reinforcement learning algorithms, we can efficiently navigate through uncharted

regions of chemical space while maintaining good metrics for synthetic feasibility and drug-

likeness. As illustrated using the exemplar target, the Mpro catalytic site, the ultimate

final set of 54 inhibitor molecules proposed by our model are optimized with respect to

shape and intermolecular interactions to the target protein, but are also diverse enough

when compared to other predicted Mpro inhibitor datasets, i.e. molecules submitted to the

COVID-moonshot project.36 We understand the true effectiveness of these molecules as Mpro

inhibitors can only be determined through experimental screening. Nevertheless, as we have

seen agreement between AutoDock Vina and Glide SP results, and since we have visually

inspected the predicted binding modes revealing consistency in intermolecular interactions

to the Mpro pocket, we strongly believe there is good evidence that these molecules may be

potent Mpro inhibitors.

Furthermore, every aspect of this work is generalizable. There are many well defined

proteins vital to the replication of SARS-CoV-2 with 3D structures available including the

RNA-dependent, RNA polymerase protein (RdRp),50 the Papain-like protease (PLpro),51

and the exonuclease (ExoN).52 Although we have focused our current work on targeting

SARS-CoV-2’s Mpro, extension of this work to these other targets would be relatively trivial.

Although identifying antiviral treatments for SARS-CoV-2 is of pressing concern at the

time of this publication, our model could be quickly applied to design novel inhibitors for

proteins relevant to other global diseases. For example, bacterial resistance to antibiotics

is of preeminent concern in the medical community,53 and our iMiner workflow approach

could be used to target novel bacterial biomolecules, such as bacterial Ribosomes, or target

resistance conferring bacterial proteins such as β-lactamase.53

Overall, we believe our tool will be of great benefit to the computational and medicinal

chemistry fields at large, and potentially aid traditional drug-design workflows as well. For
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example, molecules that are experimentally validated through a traditional HTVS approach

as good binders could utilize the iMiner algorithm as an optimization or refinement step for

elaborating on these existing leads or scaffolds. The potential of the method in this direction

will be explored in future work.

Methods

Neural network architecture. The generative model employed in this study was an

ASGD Weight-Dropped LSTM (AWD-LSTM),32 which is a specific variant of the Long

Short Term Memory (LSTM) recurrent neural network with shared DropConnect for weight

regularization, and was trained through a non-monotonically triggered average stochastic

gradient descent (NT-ASGD) algorithm.32,54 The basic LSTM cell contains two internal

states, the hidden state ht and the cell state ct, and can be described through the following

set of equations:

it = σ(W ixt + U iht−1) (7)

ft = σ(W fxt + U fht−1) (8)

ot = σ(W oxt + U oht−1) (9)

c̃t = tanh (W cxt + U cht−1) (10)

ct = it � c̃t + ft � ct−1 (11)

ht = ot � tanh ct (12)

where [W i,W f ,W o,W c, U i, U f , U o, U c] are the trainable parameters of the model, xt is the

input to the cell at the current timestep, c̃t contains the information to be added to the cell

state, and it, ft, ot represent the update gate, forget gate and output gate respectively, which

are numbers between (0, 1) that controls how much information should be updated, discarded
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or retrieved from the cell state. σ denotes the sigmoid function, and � represents element-

wise multiplication. The DropConnect mechanism55 was applied to the hidden-to-hidden

weight matrices [U i, U f , U o, U c] by randomly zeroing out a small portion of the parameters in

these weight matrices to prevent overfitting and ensured that the same positions in the hidden

vectors were treated consistently throughout the forward and backward pass in regards to

whether or not to be dropped.

The inputs into the RNN cells were tokens embedded as vectors of length 400, and

3 LSTM cells were stacked sequentially, that had 1152, 1152 and 400 units each. The

hidden state from the last timestep of the last RNN cell was then connected to a linear

decoder with output size of 56 and softmax activation, representing the probabilities of

the 56 possible tokens from the vocabulary. The dropout values used in the model were:

embedding dropout=0.002, LSTM weight dropout=0.02, RNN hidden state dropout=0.015

and output dropout=0.01. The neural network was implemented using pyTorch56 and the

fastai package.57

Supervised pretraining of the network The generative model was pretrained using

molecules from ChEMBL 24,13 and a total of 1,440,263 molecules were selected for training.

All molecules were first converted to SELFIES strings using the selfies python package,31

and the tokens were extracted from the SELFIES strings with fastai language model. We

used categorical cross entropy loss:

LΘ = − 1

N

N∑

i=1

∑

ti

p̂(ti|t1, t2, ..., ti−1) log pΘ(ti|t1, t2, ..., ti−1) (13)

where N represents the number of tokens in a molecule, p̂(ti|t1, t2, ..., ti−1) represents the

actual probability of a specific token in the string at position i and with all previous defined

tokens t1 through ti−1, and pΘ(ti|t1, t2, ..., ti−1) the probability predicted by the neural net-

work with parameters Θ. The model was trained using Adam optimizer58 in batches of size

512, and we employed the “one cycle” learning rate policy59 with the maximum learning rate
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of 0.0005 to achieve superconvergence.60 During this pretraining stage we also used weight

decay=0.01 and the dropout multiplier of 0.2. The model was pretrained for 30 epochs.

Reinforcement learning procedure. Our RL training target goal is to maximize J(Θ)

from formula(6) by taking steps along ∂ΘJ(Θ). The exact value for J(Θ) is intractable to

evaluate, but can be approximated through sampling the distribution of sT , which gives

J(Θ) ≈
∑

ST

pΘ(sT )r(sT ) (14)

and then

∂ΘJ(Θ) =
∑

sT

[∂ΘpΘ(sT )]r(sT ) (15)

=
∑

sT

pΘ(sT )[
T∑

t=1

∂Θ log pΘ(st|st−1)]r(sT ) (16)

Directly taking gradients according to (16) corresponds to the REINFORCE algorithm.61 In

this work we further utilized the PPO algorithm,42 which estimated the gradients through

a clipped reward and with an extra entropy bonus term:

J ′(Θ) =
∑

sT

pΘ(sT )[
T∑

t=1

JCLIP
t (Θ) + αS[pΘ(st|st−1)]] (17)

where

JCLIP
t (Θ) = min(Rt(Θ)r(sT ), clip(Rt(Θ), 1− ε, 1 + ε)r(sT )) (18)

with

Rt(Θ) =
pΘ(st|st−1)

pΘold
(st|st−1)

(19)

denoting the ratio between the probability distribution in the current iteration and the prob-
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ability distribution from the previous iteration (the iteration before last gradient update). A

PPO algorithm reduces variance in the gradient, stabilizes training runs, and also encourages

the model to explore a wider region of the chemical space through the introduction of an

entropy bonus term. The two hyperparameters in the algorithm, α and ε, were taken as

α = 0.02, ε = 0.1 in this work.

After the pretraining finished, we copied the weights to a separate model with identical

architecture and trained with reinforcement learning using PPO. In each iteration 2000

molecules were sampled, and model weights were updated by taking gradient steps on the

target function through formula (17), using a batch size of 1024 and Adam optimizer with

fixed learning rate of 0.0001. In each iteration, all collected data were used for training

the model for a maximum of 10 epochs. The trainer would continue into next iteration

and collect new molecules for training if the K-L divergence between the latest predicted

probability and the old probability exceeded 0.03.

The model was trained with RL for 400 iterations, until the mean entropy of the predicted

probability of the tokens from the RNN started to decrease drastically. The change of mean

entropy and mean vina score during the RL training can be found in Figure S4.
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Methodology Details

Tokens in the generative model. Here we provide a complete list of tokens used in the generative

model:

• Standard SELFIES tokens: [’#C’, ’#N’, ’#O’, ’#S’, ’=B’, ’=C’, ’=I’, ’=N’, ’=O’, ’=P’,

’=S’, ’=Se’, ’=Si’, ’B’, ’Br’, ’Br+2’, ’Branch1 1’, ’Branch1 2’, ’Branch1 3’, ’Branch2 1’,
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’Branch2 2’, ’Branch2 3’, ’C’, ’Cl’, ’Cl+2’, ’Cl+3’, ’Expl=Ring1’, ’Expl=Ring2’, ’F’, ’I’,

’I+2’, ’I+3’, ’N’, ’O’, ’P’, ’Ring1’, ’Ring2’, ’S’, ’Se’, ’Si’]

• Modifier tokens: [“H+expl”, “H2+expl”,“H3+expl”,“+expl”,“Hexpl”,“H2expl”,“H-expl”,“H2-

expl”,“H3-expl”,“-expl”,“expl”]

• Functional tokens: [“Break”]

When sampling molecules represented as SELFIES strings, the first token was always selected

as the “Break” token. Then each token was sampled with probability distribution predicted by

the generative model. Once the “Break” token was selected again, or the total number of tokens

exceeded 500, a single molecule sampling process was considered complete. For each modifier

token in the sampled string, it was combined into the previous token and was connected by the

“ˆ” symbol. For example, ...[C][Hexpl]... would be converted to ...[CˆHexpl] to satisfy SELFIES

syntax. If the token before a modifier token could not be modified, the sampled string would be

considered invalid and was discarded.

Docking Preparation and Procedures. Stzain et al.? simulated SARS-CoV-2 Mpro (PDB

ID 6LU7? ) with Gaussian Accelerated Molecular Dynamics to characterize active site and dimer

interface dynamics, as well as elucidate the presence of cryptic binding pockets. In total, Sztain

et al. produced 6 microseconds of enhanced-sampled Mpro conformations.? These extensive sim-

ulations represent an invaluable resource for SARS-CoV-2 antiviral design, and as such Sztain et

al. shared their trajectories publicly (https://amarolab.ucsd.edu/covid19.php) in

accordance with the data sharing philosophy put forth by Amaro and Mulholland.? To ensure we

were selecting biologically relevant Mpro conformations for use in our molecule generation work-

flow, we selected receptor structures from Sztain et al.’s simulations. Selection of each receptor

structure and subsequent protein preparation steps are described below.

Mpro Active Site Receptor Selection and Preparation: To generate molecules targeting the

Mpro active site, we selected the representative structure from the most populated cluster identified

2



in Sztain et al.’s enhanced sampling trajectories of Mpro dimer,? simulated with a covalently bound

inhibitor called N3. From Sztain et al.’s freely available files, the filename of the selected protease

structure was “5.0_2.0_147.0_147.0_295.0_c0.pdb”. We deleted the covalently bound

N3 from this structure, taking care not to delete the catalytic Cysteine atoms (resids 145 and 451).

We then modified the C145 and C451 atom names so that they reflected canonical Cysteine atom

names. The Mpro structure was then prepared with AutoDockTools? and Schrödinger’s Protein

Preparation Wizard for docking in AutoDock Vina and Glide Ligand Docking, respectively (see

Protein Preparation section below for more details). The cartesian coordinates for the active site

center were found by calculating the center of mass of the C145 bound N3I covalent inhibitor

before the inhibitor was deleted ([atomselect top “resname N3I and resid 145”]). This center of

mass (x=54.58, y=45.92, z=75.06) was used to define the center of the active site during receptor

grid generation steps in AutoDock Vina and Glide docking.

Scoring Generated Molecules with AutoDock Vina. AutoDockTools? was used to convert

Mpro .pdb files to AutoDock Vina? compatible .pdbqt files. Additionally, AutoDockTools?

was used to convert generated molecule structure files to AutoDock Vina compatible .pdbqt

files. Gastieger charges were used for all AutoDock Vina structures. A cubic receptor grid of

30Å x 30Å x 30Å was centered around binding site’s central coordinate (listed above), with a grid

spacing of 1.0Å.

Re-scoring Generated Molecules with Schrödinger’s Glide Ligand Docking. As Schrödinger’s

Grid-Based Ligand Docking and Energetics (Glide) protocol? ? ? is one of the most well-trusted

docking protocols available, we re-scored all our generated molecules in each Mpro binding site

with Glide Standard Precision docking.? ? To do so, we prepared each Mpro protein/receptor struc-

ture and all generated molecule structures for Glide docking. Schrödinger’s Protein Preparation

Wizard? ? was used to prepare the Mpro receptor structures selected from Sztain et al.’s trajecto-

ries for Glide docking according to the following settings: Bond orders were calculated, missing

hydrogens were added, and disulfide bonds were created all according to default options. Protein

protonation states were assigned with PropKa around pH=7.0.? ? A restrained minimization of all

3



hydrogen atoms was then conducted according to the OPLS4 force field.?

Schrödinger’s Receptor Grid Generation tool was used to prepare the Mpro structure for Glide

docking according to the following settings: The center of the binding site was defined according

to the center calculated above. The outer grid box size was set to 30Å x 30Å x 30Å, inner grid

box size was set to 10Å x 10Å x 10Å. Grid points were placed every 1.0 Å. Receptor atom van der

Waal radii were not scaled (i.e., scaled by a factor of 1.00) and the charge cut off for polarity was

set to 0.25. Atom types were assigned according to OPLS 2005 atom types.?

To ensure we were utilizing identical molecules for comparison between AutoDock Vina re-

sults and Glide SP results, i.e. with respect to stereochemistry, we took output structures from

AutoDock Vina (in .pdbqt format) and converted (with Open Babel? ) first to .pdb files and

then (with Open Babel) to .sdf files (SDF files being compatible for Schrödinger’s LigPrep).

Schrödinger’s LigPrep module was then used to prepare all AutoDock Vina output structures

for docking with Glide according to the following settings: Max allowed number of atoms per

molecule was set to the default of 500. To again ensure that we docked structures identical to those

docked with AutoDock, ionization states were not generated, tautomers were not generated, and

chiral centers were not varied. Molecules were minimized according to the OPLS3 force field?

and structures were written to .mae format for docking with Glide.

Schrödinger’s Glide Ligand Docking? ? ? module was used to re-score all generated molecules

according to the Glide SP scoring function. The following settings were used during Glide SP

ligand docking: Ligands were docked into each respective receptor according to a flexible lig-

and/rigid receptor docking protocol in which ligand bonds, angles and dihedral degrees of freedom

were explored during docking. The top binding mode per molecule was saved and a Standard Pre-

cision Glide score was reported in kcal/mol for each molecule. The OPLS4 force field? was used

for energetic evaluations and scoring. Glide SP scores were then compared, for each molecule, to

AutoDock Vina scores.

All docking input files and protein structures will be shared in conjunction the data sharing

philosophy put forth by Rommie E. Amaro and Adrian Mulholland.?
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Supporting Tables

Table S1: The 54 molecules from the final set

Index Canonical SMILES Vina score Glide gscore SA score

1 Oc1cccc(c1)N1CCN(CC1)Cc1cccc(c1)NC(=O)c1cccc2c1cccc2

-9.10 -8.07 2.85

2 O=C(c1ccc2c(c1)[nH]nc2)NCc1ccc(cc1)S(=O)(=O)c1ccc(cc1)OC(F)(F)F

-9.40 -8.14 2.72

3 Fc1ccc(cc1C(=O)Nc1ccnc2c1cc[nH]c2=O)Oc1ccc2c(c1)cccc2

-9.40 -8.02 2.88

4 O=C(c1c[nH]c(n1)c1cccc2c1cccc2)c1cccc(c1)NC(=O)c1ccccc1

-9.10 -8.17 2.97

5 N#Cc1ccc(cc1)c1cccc(c1)C(=O)N1CCN(CC1)C(=O)c1cccc2c1cccc2

-9.40 -8.34 2.98

6 Oc1n(Cc2ccc(cc2)S(=O)(=O)c2[nH]c3c(n2)cccc3)nc2c1cccc2

-9.10 -8.09 2.85

7 O=S(=O)(c1cc(cc2c1nccc2)c1ccncc1)c1cccc(c1)C(F)(F)F

-9.20 -8.20 2.99

8 N#Cc1ccc(cc1)C(=O)Nc1cccc(c1)C(Nc1ncnc2c1cccc2C(=O)N)C

-9.10 -8.47 3.34

9 O=C(C(F)(F)F)N1CCN(CC1)C(=O)c1cc(ccc1F)Cc1nnc(c2c1cccc2)O

-9.30 -8.32 3.11

10 O=C(Nc1scc(n1)c1ccc(cc1)n1cncn1)Cn1nnc(c1)c1ccccc1

-9.10 -8.33 3.44

11 N#Cc1ccc(cc1)C(=O)N1CCN(CC1)C(=O)COC(=O)c1ccc(c(c1)c1ccccc1)O

-9.40 -8.71 3.29

12 Fc1ccc(cc1)S(=O)(=O)c1ccc(cc1)S(=O)(=O)Nc1ccc(cc1)C1=NCCN1
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Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score

-9.20 -8.10 3.35

13 FC(c1ccc(cc1)S(=O)(=O)Nc1cccc(c1)OCc1ccc2c(n1)cccc2)(F)F

-9.10 -8.01 3.07

14 OC(=NCc1ccc(cn1)S(=O)(=O)c1ccc(nc1)C(F)(F)F)c1cnc2n(c1)ccn2

-9.10 -8.18 3.47

15 O=C(c1ccc2c(c1)cccc2)NCc1ccc(cc1)S(=O)(=O)c1cccc(c1)N1CCOCC1

-9.20 -8.24 3.21

16 O=C(c1cccs1)NN=Cc1ccc(cc1)OCc1ccc(cc1)c1ccccc1

-9.10 -8.86 3.34

17 Fc1ccc(cc1)c1cncc(c1)C(=O)N1CC(C1)Oc1ccc2c(c1)c1cnccc1[nH]2

-9.50 -8.04 3.31

18 Fc1cnc(nc1c1cnc2c(c1)cccc2)Nc1cc(C)c(c(c1)c1[nH]cnn1)F

-10.00 -8.09 3.12

19 Fc1ccc(cc1)N1CCN(CC1)C(=O)Nc1nonc1NC(=O)c1ccc(cc1)F

-9.10 -8.10 3.33

20 O=S(=O)(c1cccc(c1)C(F)(F)F)Nc1cccc(c1)c1ccc(nn1)Nc1ccncc1

-9.30 -8.25 3.31

21 Fc1ccc(cc1)c1n[nH]c2c1cc(cc2)NS(=O)(=O)c1cccc(c1)c1ccc[nH]1

-9.30 -8.03 3.25

22 O=c1c2cccc3c2n(c2c1cccc2)sc3NS(=O)(=O)C=Cc1ccccc1

-9.20 -8.20 3.44

23 O=S(=O)(c1cccc(c1)C(F)(F)F)Nc1cccc(c1)c1ccc(nc1)Nc1ccccc1

-9.40 -8.54 3.35

24 Oc1cccc(c1)c1cccc(c1)S(=O)(=O)Nc1ccc(cc1)c1cccc(c1)c1nnn[nH]1

-9.60 -8.50 3.38
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Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score

25 O=C1NCc2c(C1)ccc(c2)S(=O)(=O)c1cn(nc1c1ccc(cc1F)F)c1ccccc1

-9.50 -8.29 3.45

26 O=C1Cc2c(N1)cc(cc2)c1cccc2c1ccc(c2)NS(=O)(=O)c1cccc(c1)C(F)(F)F

-9.60 -8.02 3.03

27 Fc1ccc(cc1)C(=O)Nc1cccc(c1)C(Nc1ncnc2c1cccc2C(=O)N)C

-9.10 -8.18 3.22

28 Fc1ccn2c(c1)ncc2c1cc(ccc1F)NS(=O)(=O)c1cccc(c1)c1ccccc1

-9.80 -8.23 3.40

29 O=S(=O)(c1cccc2c1cccc2)Nc1cc(c2n1cccc2)c1ccc2c(c1)[nH]cn2

-9.30 -8.05 3.25

30 O=S(=O)(c1ccc(cc1)Oc1cccc(c1)c1cc2c([nH]1)cccc2)Nc1ncn[nH]1

-9.20 -8.46 3.29

31 Fc1ccccc1CS(=O)(=O)Nc1ccc2c(c1)c(n[nH]2)c1nc2c([nH]1)cccc2

-9.20 -8.43 3.06

32 Fc1ccc(cc1)S(=O)(=O)c1ccc(cc1)NS(=O)(=O)c1ncnc(c1)c1ccccc1

-9.60 -8.32 3.26

33 Fc1ccccc1Nc1nc2c([nH]1)ccc(c2)S(=O)(=O)c1cccc2c1nccc2

-9.20 -8.02 3.10

34 Oc1ccc2c(c1)cc(o2)c1cccc(c1)S(=O)(=O)c1nc2c(s1)cccc2F

-9.40 -8.46 3.49

35 O=S(=O)(c1ccccc1)N(Cc1cccnc1)Cc1ccc(cc1)Oc1ccc(cc1)c1[nH]ccn1

-9.20 -8.36 3.32

36 O=S(=O)(c1cccc(c1)c1ccncc1)c1cccc(c1)C=Nc1nc2c([nH]1)cccc2

-9.50 -8.07 3.33

37 Fc1ccc(cc1)S(=O)(=O)c1ccc(cc1)NS(=O)(=O)c1ncnc(c1)c1ccccc1
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Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score

-9.60 -8.32 3.26

38 Oc1cccc(c1)C=Nc1cccc(c1)NS(=O)(=O)c1cccc(c1)c1ccccc1

-9.20 -8.16 3.38

39 O=S(=O)(N1CCc2c(C1)nc(nc2)Nc1ccccc1)c1ccc(cc1)c1ccccn1

-9.70 -8.16 3.44

40 O=S(=O)(c1cccc(c1)c1ccccc1)Nc1cccc(c1)c1ncc2c(c1)cccc2

-9.90 -8.06 3.25

41 Oc1cccc(c1)Nc1nc2c([nH]1)ccc(c2)S(=O)(=O)c1cccc(c1)c1ccccc1

-9.70 -8.16 3.21

42 O=S(=O)(c1cccc(c1)c1cnc2n1ccnc2)c1ccc(cc1)c1ccccc1

-9.20 -8.13 3.29

43 Fc1cnc2c(c1)ncn2c1cccc(c1)S(=O)(=O)c1nc2c(s1)cc(cc2)c1ccccn1

-9.30 -8.31 3.47

44 Oc1nccn1c1ccc2c(c1)cccc2NS(=O)(=O)c1cccc(c1)c1ccccc1

-9.60 -8.18 3.19

45 O=S(=O)(Oc1n[nH]c(c1)c1ccccc1)Oc1cccc(c1)c1cnc2n1cccc2

-9.20 -8.16 3.46

46 O=S(=O)(c1ccc2c(c1)cccc2)Nc1cccc(c1)c1coc(n1)c1ccccc1

-9.70 -8.46 3.48

47 O=S(=O)(c1cccc(c1)c1ccccc1)c1ccc(cc1)Nc1ncc2c(c1)ccnc2

-9.20 -8.21 3.24

48 O=S(=O)(c1cccc(c1)c1ccccc1)Nc1ccc2c(c1)cc(cc2)S(=O)(=O)N

-9.10 -8.03 3.08

49 Fc1ccc2c(n1)ncc(c2O)Cc1ccc(cc1)S(=O)(=O)c1ccc2c(n1)cccc2

-9.40 -8.03 3.09
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Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score

50 O=S(=O)(c1cccc(c1)c1ccccc1)Nc1cc2c(c1)cncn2Cc1[nH]cnn1

-9.20 -8.22 3.23

51 Fc1ccc(cc1OS(=O)(=O)c1ccc2c(c1)[nH]cc2)c1cccc(c1)N1CCNCC1

-9.30 -8.17 3.45

52 Oc1nn(O)[nH]c(c1)c1cccc(c1)S(=O)(=O)c1cccc(c1)c1cncnc1

-9.10 -8.71 3.47

53 Fc1ccc(cc1NS(=O)(=O)c1cccc(c1)c1cccnc1)c1[nH]c2c(n1)nccc2

-9.60 -8.01 3.21

54 Oc1ncc(cc1c1cccc(c1)S(=O)(=O)c1cccc(c1)c1ccccc1)c1ccncc1

-10.00 -8.30 3.44
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Supporting Figures
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Figure S1: Distribution comparisons for 13 different properties of the generated molecules from
the pretrained model with molecules from the training dataset (ChEMBL). The molecular proper-
ties considered are well-recognized chemical features related to the drug-likeliness of a molecule
which can be obtained through 2D topological connectivity of the molecule: fraction of sp3 hy-
bridized carbons(fracsp3), number of heavy atoms(heavy), fraction of non-carbon atoms in all
heavy atoms(hetero), number of hydrogen bond donors(hbd) and acceptors(hba), number of ro-
tatable bonds(rotb), number of aliphatic(alip) and aromatic rings(arom), molecular weight(mw),
quantitative estimate of drug-likelihood (QED) value,? approximate log partition coefficient be-
tween octanol and water (alogP),? polarizable surface area (PSA), and the number of structural
alerts(alerts).?
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Figure S2: Example molecules generated using reinforcement learning without utilizing the drug-
likeliness metric as additional reward. Many of these molecules are not drug-like, i.e. having large
rings, or having a high proportion of hetero atoms.
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Figure S3: Number of molecules selected into the vina-selected set from each RL training iteration
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Figure S4: Change of mean entropy of model-predicted token probabilities and mean Vina scores
of generated molecules during the training process. The model after RL is the model at iteration
400, and any molecules generated after iteration 400 are not considered for subsequent analysis.
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