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ABSTRACT

In this paper, we propose a deep learning-based framework for de-
tecting COVID-19 positive subjects from their cough sounds. In
particular, the proposed framework comprises two main steps. In
the first step, we generate a feature representing the cough sound by
combining embedding features extracted from a pre-trained model
and handcrafted features, referred to as the front-end feature extrac-
tion. Then, the combined features are fed into different back-end
classification models for detecting COVID-19 positive subjects. The
experimental results on the Second 2021 DiCOVA Challenge - Track
2 dataset achieve the top-3 ranking with an AUC score of 81.21
on the blind Test set, improving the challenge baseline by 6.32 and
showing competitive with the state-of-the-art systems.

Index Terms— COVID-19, deep learning, feature extraction,
embedding, handcrafted feature.

1. INTRODUCTION

The cumulative number of COVID-19 positive subjects reported
globally is now over 231 million and the cumulative number of
deaths by COVID-19 is more than 4.7 million [1]. Furthermore, the
COVID-19 crisis now is spanning across 200 countries quickly and
the number of COVID-19 infections per day is always counted in
thousands without a sign of going down. It is vital that one of the
effective solutions to prevent and control the current epidemic is to
conduct a large number of COVID-19 testing in popularity which
has been widely applied in many countries. Indeed, if COVID-19
positive subjects can be detected early, it is very useful for self-
observation, isolation, and effective treatment methods. However,
take a large number of rapid antigen or RT-PCR tests shows a very
high cost of both time and money. As a result, the DiCOVA Chal-
lenges are designed to find scientific and engineering insights to
the question - Can COVID-19 be detected from the cough, breath-
ing, or speech sound signals of an individual? In particular, while
the First 2020 DiCOVA Challenge [2] provides a dataset of cough
sound, the Second 2021 DiCOVA Challenge [3] provides different
sound signals of cough, speech, and breath. The audio recordings
are gathered from both COVID-19 positive and non-COVID-19
individuals 1. Given the cough, speech, and breath recordings, re-
search community can propose systems for detecting the COVID-19,
which is potentially applied on edge devices as a COVID-19 testing
solution.

Focusing on cough sound, recent researchers show that it po-
tential to detect COVID-19 through evaluating coughing. For an
example, a machine learning-based framework proposed in [4],
which uses handcrafted features and Support Vector Machine (SVM)

1https://competitions.codalab.org/competitions/34801#learn the details

model, achieved the best AUC score of 85.02 on the First 2020 Di-
COVA dataset [2]. Focusing on feature extraction, Madhu et al. [5]
combined the Mel-frequency cepstral coefficients (MFCC) with the
delta features (i.e. The delta features are extracted from a compli-
cated framework using Long Short-Term Memory (LSTM), Gabor
filter bank, and the Teager energy operator (TEO) in the order). By
using the combined feature and the LightGBM model, the authors
can achieve the AUC score of 76.31 on the First 2020 DiCOVA
dataset [2]. Similarly, Vincent et al. [6] conducted extensive experi-
ments to evaluate the role of the feature extraction. In particular, they
proposed to use three types or features: (1) Handcrafted features ex-
tracted by openSMILE toolkit [7], (2) the deep features extracted
from different pre-trained VGGish networks which are trained with
AudioSet [8], and (3) the deep features extracted from different stan-
dard pre-trained models (ResNet50, DenseNet121, MobileNetV1,
etc.) trained with Imagenet dataset. They then obtained the best
AUC score of 72.8 on the First 2020 DiCOVA dataset [2] by using
the deep features extracted from the pre-trained VGG16 (i.e. The
pre-trained VGG16 was trained with AudioSet) and the back-end
LSTM-based classification. Recently, a benchmark dataset of cough
sound for detecting COVID-19 [9, 10], which was recorded on mo-
bile phone, has been published. Notably, the current achievement of
98% accuracy on this dataset shows potential to apply as an effective
solution of COVID-19 testing.

In this paper, we also aim to explore cough sounds, then propose
a framework for detecting COVID-19. We mainly contribute: (1) By
conducting extensive experiments, we indicate that a combination of
handcrafted feature and embedding-based feature is effective to rep-
resenting cough sound input, and (2) we propose a robust framework
which can be further developed on edge devices for an application of
COVID-19 testing. Our experiments were conducted on the Second
2021 DiCOVA Challenge - Track 2 dataset (i.e. The Track 2 dataset
only contains cough sounds).

The remaining of our paper is organized as follows: Section 2
presents the Second 2021 DiCOVA Challenge as well as the Track-
2 dataset, evaluation setting, and metrics. Section 3 presents the
proposed deep learning framework. Next, Section 4 presents and
analyses the experimental results. Finally, Section 5 presents the
conclusion and future work.

2. THE SECOND 2021 DICOVA CHALLENGE - TRACK 2
DATASET OF COUGH SOUNDS

2.1. The second DiCOVA Challenge

The Second 2021 DiCOVA Challenge uses a subset of the Coswara
dataset [3] collected between April 2020 and July 2021 from the
age group of 15 to 90. The challenge provided a dataset of differ-
ent sound signals: cough, speech, and breath gathered from both
COVID-19 positive and non-COVID-19 individuals as shown in Fig.
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Fig. 1. The high-level architecture of deep learning framework proposed.

Fig. 2. The waveform of the Cough, Breathing, Speech sound from
the Second 2021 DiCOVA Challenge [3].

2. Given cough, speech, and breath sounds, the Second 2021 Di-
COVA Challenge proposes four tracks which aim to detect COVID-
19 positive subjects by exploring only breath (Track-1), only cough
(Track-2), only speech (Track-3), or all sound signals (Track-4).

As we focus on cough sounds, which is also the First 2020 DI-
COVA Challenge [2], only Track-2 dataset is explored in this pa-
per. The Second 2021 DiCOVA Challenge Track-2 dataset provided
a Development set of 965 audio recordings and a blind Test set of
471 audio recordings. All audio recordings are not less than 500
milliseconds and recorded with different sample rates. While the
Development set is used for training, and then obtaining the best
model, the Blind Test set is used for evaluating and comparing the
systems’ performance submitted. In the Development set, there are
totally 793 negative labels and 172 positive labels, which shows an
unbalanced dataset [11].

2.2. The evaluation setting

To evaluate on the Development set, the challenge requires to follow
five-fold cross-validation [3], each fold comprises Train and Valid
subsets as shown in Fig. 3. The evaluation result on the Develop-
ment set is the average of results on all five folds. To evaluate on
the blind Test set, the obtained result on this set is submitted to the
Second 2021 DiCOVA Challenge for evaluating, ranking, and com-
paring with the other submitted systems.

Fig. 3. The illustration of five-fold cross-validation from the Devel-
opment set of the Second 2021 DiCOVA Challenge Track-2[3].

2.3. The evaluation metrics

The ‘Area under the ROC curve’ (AUC) is used as the primary eval-
uation metric in the Second 2021 DiCOVA Challenge. The curve
is obtained by varying the decision threshold between 0 and 1 with
a step size of 0.0001. Additionally, the Sensitivity (Sen.) and the
Specificity (Spec.), which are computed at every threshold value,
are used as the secondary evaluation metrics (Note that Spec. is re-
quired to be equal or greater than 95%). The Leaderboard evaluates
the submitted systems on the blind Test set as well as the average
performance on five-fold cross validation from the Development set
(Avg. AUC) [3].

3. FRAMEWORK ARCHITECTURE PROPOSED

3.1. High-level framework architecture

The overall framework architecture is described as Fig. 1. As the
audio recordings show different sample rates, they are firstly re-
sampled to 44.1 kHz using mono channel. Then, the re-sampled
recordings are fed into the front-end feature extraction where
embedding-based features and handcrafted features are extracted
and concatenated to obtain the combined features. To deal with the
issue of unbalanced dataset mentioned in Section 2.1, SVM-based



SMOTE method [12] is applied on the combined features to make
sure the equal number of positive and negative samples. Finally,
the features after data augmentation are fed into different back-end
classification models for detecting COVID-19 positive cases.

3.2. Front-end Feature Extraction

In this step, we propose a method to create a combined feature by
combining handcrafted features and embedding features extracted
from pre-trained models. Regarding handcrafted features, 64 Mel-
frequency cepstral coefficients (MFCCs), 12 Chromatic (Chroma),
128 Mel Spectrogram (Mel), 1 Zero-Crossing rate, 1 Gender and
1 Duration are used in this paper. These handcrafted features are
used as they are popular adoption in speech processing and show
robust in the First 2020 DiCOVA Challenge [5, 6, 4]. To extract these
handcrafted features, Librosa [13], a powerful library of audio signal
processing, is used in this paper. As MFCC, Chromatic and Mel
spectrogram are two-dimensional features, they are converted into
one-dimensional shape before concatenating with the other features.

As regards the embedding features, we evaluate different em-
bedding features which are extracted from different pre-trained mod-
els: YAMNet [14], Wave2Vec [15], TRILL [16], and the COMPARE
2016 feature sets [17] using OpenSMILE [7] toolkit. As using these
pre-trained models shows effective for a wide range of classification
tasks (i.e. For an example, the pre-trained TRILL model with Au-
dioSet [8] proved robust for a wide range of classification tasks on
non-semantic speech signal such as speaker identity, language, and
emotional state in [16]), these embeddings are expected to work well
with the 2021 DiCOVA Track-2 dataset of cough sounds. By us-
ing the pre-trained models, when we feed the cough recordings into
the pre-trained models, two-dimensional embeddings are extracted.
We then compute mean and standard deviation across the time di-
mension, concatenating mean and standard deviation to obtain one-
dimensional embeddings. The embeddings are then concatenated
with the handcrafted features mentioned above to create the com-
bined features. Finally, the combined features are scaled into the
range of [0:1] before doing data augmentation and then feeding into
the back-end classification models.

3.3. Back-end Classification Models

In this paper, we evaluate different back-end classification mod-
els: Light Gradient Boosting Machine (LightGBM), Random For-
rest (RF), Support Vector Machine (SVM), Multi-layer Perceptron
(MLP), and Extra Tree Classifier (ETC). The setting of these back-
end classification models are described in Table 1 and all these
models are implemented by using Scikit-Learn toolkit [18]. To ob-
tain results, each classification model is run with 10 seeds numbered
from 0 to 9. The output of the cross-validation session will calcu-
lated by using soft voting [20] between seeds. The GTX 1080 Titan
GPU environment is used for running classification experiments.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Performance comparison across different features

To evaluate different features, we keep the back-end classification
model of LightGBM unchanged while replacing different input fea-
tures: handcrafted, YAMNet based embedding, COMPARE 2016
based embedding, Wave2Vec based embedding, TRILL based em-
bedding, handcrafted & YAMNet, handcrafted & COMPARE 2016,
handcrafted & Wave2Vec, and handcrafted & TRILL features. As

Table 1. Back-end classification models and setting parameters.

Models Setting Parameters
Support Vector Machine (SVM) C=1.0

Kernel=‘RBF’
Random Forest (RF) Max Depth of Tree = 20,

Number of Trees = 100
Two hidden layer (4096 nodes),

Multilayer Perceptron (MLP) Adam optimization,
Max iter = 200
Learning rate = 0.001,
Entropy Loss

ExtraTreesClassifier (ETC) Max Depth of Tree = 20
learning rate = 0.03

LightGBM [19] objective = ‘binary’
metric = ‘auc’
subsample = 0.68
colsample bytree = 0.28
early stopping rounds = 100
num iterations = 10000
subsample freq = 1

Table 2. Performance comparison across different features with
the back-end LightGBM model (the best performance results are in
bold).

Extracted Features AUC Sens. Spec. Avg. AUC
(blind test) (blind test) (blind test) (development)

Handcraft 76.36 36.66 95.13 72.62
YAMNet [14] 67.24 21.51 95.13 67.31
COMPARE 2016 [17] 63.18 15.00 95.13 71.00
Wave2Vec [15] 58.86 06.66 95.13 58.75
TRILL [16] 80.57 43.33 95.13 73.77
Handcraft + YAMNet 77.27 41.67 95.13 77.33
Handcraft + COMPARE 2016 69.14 25.00 95.13 77.19
Handcraft + Wave2Vec 71.00 25.00 95.13 71.47
Handcraft + TRILL 81.21 48.33 95.13 77.18

the results are shown in Table 2, it can be seen that TRILL-based
embedding outperforms the other single features, reporting an Avg.
AUC score of 73.77 on the Development set. When we combine
the handcrafted feature with different embedding-based features of
YAMNet, COMPARE 2016, and TRILL, it is effective to improve
the performance, reporting Avg. AUC scores of 77.33, 77.19, and
77.18, respectively compared with 72.62 of using handcrafted fea-
ture only. The best performance is obtained from the combination
of the handcrafted feature and TRILL-based embedding feature,
achieving the AUC, Sen., and Spec. scores of 81.21, 48.33, and
95.13 respectively on the blind Test set.

4.2. Performance comparison across different classification
models

As we obtained the best handcrafted & TRILL-based embedding
feature from the experiments above, we now evaluate how back-
end classification models affect the performance. To this end, we
keep the handcrafted & TRILL-based embedding feature unchanged
while replacing the different back-end classification models: Light-
GBM, Support Vector Machine (SVM), Random Forest (RF), Extra
Trees Classifier (ETC), and Multi-layer perceptron (MLP). As the
results are shown in Table 3, the LightGBM model, which is used to
evaluate different features, achieves the best scores. Meanwhile, the
other models show competitive results, reporting Avg. AUC scores
of 75.54, 74.04, 72.50, and 74.87 for SVM, RF, MLP, and ETC, re-
spectively.



Table 3. Performance comparison across different back-end classi-
fication models with handcrafted and TRILL based embedding fea-
tures (the best performance results are in bold).

Back-end AUC Sens. Spec. Avg. AUC
Classification (blind test) (blind test) (blind test) (development)
SVM 76.27 36.66 95.13 75.54
RandomForest 78.72 36.66 95.13 74.04
Multi-layer Perceptron 76.34 31.66 95.13 72.50
ExtraTreesClassifier 77.51 38.33 95.13 74.87
LightGBM 81.21 48.33 95.13 77.18

Table 4. Performance comparison across the top-10 systems sub-
mitted and the challenge baseline (the best performance results are
in bold).

Systems AUC Sens. Spec. Avg. AUC
(blind test) (blind test) (blind test) (development)

1st system 83.31 43.33 95.38 72.10
2rd system 81.96 40.00 95.13 76.61
3rd (Our system) 81.21 48.33 95.13 77.18
4th system 80.12 35.00 95.13 89.04
5th system 79.06 35.00 95.13 74.13
6th system 77.85 46.67 95.13 49.31
7th system 77.60 33.33 95.13 77.49
8th system 76.98 40.00 95.13 78.60
9th system 76.36 30.00 95.13 78.12
10th system 75.95 40.00 95.13 74.58
Challenge baseline 74.89 36.67 95.13 75.21

4.3. Performance comparison across the top-10 systems submit-
ted for the Second 2021 DiCOVA Challenge Track-2

The Table 4 presents the performance comparison across the top-10
systems submitted for the Second 2021 DiCOVA Challenge Track-2.
As shown in Table 4, our best results from handcrafted & TRILL-
based embedding features and LightGBM model achieve the top-3
ranking, reporting the AUC score of 81.21, the Sen. score of 48.33,
the Spec. score of 95.13 on the blind Test set, and the Avg. AUC
score of 77.18 on the Development set. Notably, our Sen. result
on blind Test set and Avg. AUC on the Development set achieve
the top-1 ranking. These results prove that our proposed system is
robust, competitive, and has the potential to be further applied on
edge devices for detecting COVID-19.

5. CONCLUSION AND FUTURE WORK

This paper presents a deep learning-based framework for detect-
ing COVID-19 positive subjects by exploring their cough sounds.
By conducting extensive experiments on the Second 2021 DiCOVA
Challenge Track-2 dataset, we showed that our best model, which
uses a combination of handcrafted & TRILL-based embedding fea-
tures and LightGBM model, achieve the top-3 ranking of the chal-
lenge and are competitive to the state-of-the-art systems.

Our further research are to focus on different sound representa-
tions such as Chroma Feature, Spectral Contrast, Tonnetz, etc [21],
as well as to explore breathing, speech sounds provided by the Sec-
ond 2021 DiCOVA Challenge.
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[4] I. Södergren, M. P. Nodeh, P. C. Chhipa, K. Nikolaidou,
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