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ABSTRACT

We present ‘wake-cough’, an application of wake-word spot-
ting to coughs using Resnet50 and identifying coughers using
i-vectors, for the purpose of a long-term, personalised cough
monitoring system. Coughs, recorded in a quiet (73±5 dB)
and noisy (34±17 dB) environment, were used to extract i-
vectors, x-vectors and d-vectors, used as features to the clas-
sifiers. The system achieves 90.02% accuracy from an MLP
to discriminate 51 coughers using 2-sec long cough segments
in the noisy environment. When discriminating between 5
and 14 coughers using longer (100 sec) segments in the quiet
environment, this accuracy rises to 99.78% and 98.39% re-
spectively. Unlike speech, i-vectors outperform x-vectors and
d-vectors in identifying coughers. These coughs were added
as an extra class in the Google Speech Commands dataset
and features were extracted by preserving the end-to-end
time-domain information in an event. The highest accuracy
of 88.58% is achieved in spotting coughs among 35 other
trigger phrases using a Resnet50. Wake-cough represents a
personalised, non-intrusive, cough monitoring system, which
is power-efficient as using wake-word detection method can
keep a smartphone-based monitoring device mostly dormant.
This makes wake-cough extremely attractive in multi-bed
ward environments to monitor patient’s long-term recovery
from lung ailments such as tuberculosis and COVID-19.

Index Terms— x-vector, i-vector, d-vector, cougher iden-
tification, keyword spotting

1. INTRODUCTION

Wake-words (WW) are used as trigger phrases which enable
keyword spotting (KWS) systems to initiate certain tasks such
as speech recognition, providing a bridge between the end-
user and either the device or the cloud [1]. For example, some
widely-used trigger phrases for voice assistants on smart de-
vices are: Google’s ‘OK Google’, Apple’s ‘Hey Siri’, Ama-
zon’s ‘Alexa’, Microsoft’s ‘Hey Cortana’ [2] and they are
highly sensitive in both quiet and noisy environment [3], mak-
ing them extremely useful in hands-free situations like driving
[4]. Coughing is the forceful expulsion of air to clear up the

airway and a common symptom of respiratory diseases, such
as tuberculosis (TB) [5], asthma [6], pertussis [7], COVID-
19 [8], which can be identified using machine learning clas-
sifiers. To successfully implement cough as a WW in com-
mercial smartphones, it is necessary to accurately identify the
cougher [9] in a noisy and quiet environment and the cough
among various other commonly used trigger phrases [10].

Vocal audio such as speech can be identified using i-
vectors, which present a low-dimensional speaker and chan-
nel dependant space using factor analysis [11]. The perfor-
mance can be improved by using x-vectors [12] and d-vectors
[13], which use the data augmentation and DNN based em-
beddings to map speaker embeddings.

Coughers have been identified using x-vectors on natural
coughs in an open world environment for 8 male and 8 female
subjects after implementing data augmentation to address the
issue of background noise [14] and using d-vectors on forced
coughs [15]. Here, we identify both natural and forced coughs
among other trigger phrases in the Google Speech commands
dataset [16] while also identifying the coughers in noisy and
quiet environment using i-vectors, x-vectors and d-vectors.

2. DATASET PREPARATION

For the cougher identification task, two datasets which will
be referred to as TASK and Wallacedene (Table 1), were both
manually annotated using ELAN [17]. The TASK dataset
was collected inside a multi-bed ward at a 24h tuberculosis
(TB) clinic near Cape Town, South Africa and contains nat-
ural coughs [18]. A plastic enclosure, attached to the bed-
frames, holds a Samsung Galaxy J4 smartphone connected to
a BOYA BY-MM1 cardioid microphone (Figure 1) and the
distance from the cougher and the microphone was between
30 and 150 cm. The dataset includes 6000 cough events, sam-
pled at 22.05 kHz and collected from 14 adult male patients
over a 6 month period, totalling 3.16 hours of cough audio
with an average SNR of 73 ±5 dB. No other information of
the patients was collected due to ethical constraints. Wallace-
dene dataset was collected inside an outdoor booth next to a
busy primary health clinic in Wallacedene, near Cape Town,



South Africa representing a real-world environment where a
TB test would likely to be deployed [19] (Figure 1). Patients
were asked to count from 1 to 10, then cough, take a few
deep breaths, and cough again, thus producing forced coughs.
These counts were used as speech to provide a baseline to
compare the performance of cougher identification. The au-
dio, sampled at 44.1 kHz, was recorded using a RØDE M3
condenser microphone from 38 males and 13 females, keep-
ing a 10 to 15 cm gap between the microphone and the pa-
tients. The environmental noise was present in both cough
and speech, having the average SNR of 34 dB and 33 dB re-
spectively with a standard deviation of 17 dB (Table 1).

WALLACEDENE DATASET: COLLECTED IN A NOISY 

ENVIRONMENT (SNR: 34±17 dB) 

TASK DATASET: COLLECTED IN A QUIET ENVIRONMENT  

(SNR: 73±5 dB) 
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Fig. 1. Data collection process for cougher identification:
TASK, containing only coughs, was collected in a quiet en-
vironment. Wallacedene, containing both cough and speech
(counting from 1 to 10), was collected in a noisy environment.

Table 1 shows that the TASK dataset is less-noisy, con-
tains much longer cough audio for each subject, whereas Wal-
lacedene dataset is noisier but has cough and speech audio
from a larger number of subjects. All audio recordings were
downsampled to 16 kHz, required for kaldi ASR system [20].

For cough spotting, we randomly selected 3795 coughs
from the TASK and Wallacedene datasets. Each cough was
normalised to a 1-sec duration by either trimming or padding
with silence and downsampled to 16 kHz. These ‘cough’
events were added as an extra class to the 2nd version of
Google Speech Commands dataset containing 1-sec long
109,624 events, sampled at 16 kHz, belonging to 35 classes
[16]. These events were mixed with the background noises
(Section 5.8 of [16]) with a randomly selected SNR between
73 and 34 dB (Table 1). A subset of this dataset was also cre-

Table 1. Data used in cougher & speaker identification:
TASK and Wallacedene datasets contain different noise level.

Dataset Subjects Events Avg SNR Avg Length
Cougher identification

TASK 14 6000 73±5 dB 1.87±0.2 sec
Wallacedene 51 1358 34±17 dB 0.77±0.1 sec

Speaker identification
Wallacedene 51 510 33±17 dB 0.99±0.2 sec

ated with only 42,341 events belonging to 10 classes, which
can be used as commands in IoT or robotics [16]. For spot-
ting cough as a trigger phrase, we note these two datasets as
SC-36 and SC-11, containing 36 and 11 classes respectively.

3. FEATURE EXTRACTION

For cougher identification, We have extracted x-vectors and
i-vectors using extractors pre-trained on the under-resourced
languages [21], which are spoken by the subjects in the TASK
and Wallacedene datasets (Figure 2). t-sec long audio from
each of N coughers are concatenated by following the data
preparation requirements of Kaldi ASR toolkit [20]. i-vectors
are generated for each non-overlapping 0.1 sec audio from
each utterance ID, with a dimension of (t× 10, 100) for each
cougher [11]. Unique x-vectors are generated for each 1.5
sec of utterance with 0.75 sec overlap, having a dimension
of (1, 512) [12]. Thus for each t sec long audio from each
cougher, there are x-vectors of dimension ( t

0.75 , 512). We
have also extracted d-vectors using extractor pre-trained on
VCC 2018, VCTK, Librispeech, and CommonVoice English
datasets and generalized using end-to-end loss function [13].
Every t sec cough is split into non-overlapping 0.5 sec au-
dio clips, thus producing d-vectors of dimension ( t

0.5 , 256)
for every cougher, suggesting that the i-vectors have a higher
dimensionality than x-vectors and d-vectors. The number of
subjects (N ) and the cough-time (t) were the hyperparame-
ters in cougher identification task (Table 3). For speakers, we
used all counts, having only N as the hyperparameter. For
TASK and Wallacedene datasets, N has been varied between
5 & 14 and 5 & 51 respectively with a step size of 5.

For spotting cough as a trigger phrase, we have extracted
STFT, ZCR and kurtosis from overlapping frames (F) of the
audio, where the frame overlap is computed to ensure that the
audio signal is always divided into exactly S frames, so that
the entire audio event is always captured within a fixed num-
ber of frames, allowing a fixed input dimension to be main-
tained while preserving the general overall temporal structure
of the event. Such fixed two-dimensional features are partic-
ularly useful for the training of DNN classifiers [8]. Table 2
shows that in our experiments each audio signal is divided
into between 70 and 150 frames, each between 512 and 4096
samples i.e. 32 msec and 256 msec long, varying the spectral
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Fig. 2. Feature extraction for cougher identification: t sec
long coughs (COUGHi1, COUGHi2, COUGHi1, . . ., where,
1 ≤ i ≤ N ) from each cougher are concatenated as they
appear in the audio recording for N coughers. i-vector, x-
vector and d-vector are extracted from this t × N sec long
audio and they are fed to the classifiers with N neurons at the
final layer to distinguish the cougher using cross-validation.

information of each event in SC-11 and SC-36 datasets.

Table 2. Feature extraction hyperparameters. Table 4 and
5 show classification results for these hyperparameters.
Hyperparameter Description Range

Cougher identification
Subject (N ) no. of coughers or speakers 5 to 51 with step of 5

Cough-time (t) cough from each subject 2, 5 to 100 with step of 5
Cough spotting

Frame length (F ) used to extract features 2k , k = 9, . . . 12
No. of frames (S) extracted from audio 10× k, k = 7, 10, 12, 15

LR, LDA, SVM and MLP were used in identifying
coughers and CNN, LSTM and Resnet50 were used in
spotting coughs as a trigger phrase. Table 3 lists the hy-
perparameters considered for these classifiers and they were
optimised using 5-fold cross-validation and the standard de-
viation among the outer folds is noted as σACC in Table 4.
For Resnet50, the 50-layer architecture in [22] has been used.

4. RESULTS AND DISCUSSION

Table 4 shows the results using the best two features for
both TASK (less-noisy) and Wallacedene (noisier) datasets.
The highest accuracy (99.78%) has been achieved by an
MLP when using i-vectors to identify coughers from 100 sec
(t = 100) long cough collected from each of 5 coughers. By
increasing the number of coughers to 10 and 14, the perfor-
mance of the MLP classifier decreased to 98.87% and 98.39%
respectively for i-vectors (Table 4 and Figure 4).

Table 3. Classifier hyperparameters used in both identify-
ing ‘coughers’ and ‘cough’ as a trigger phrase for KWS.

Hyperparameters Classifier Range

co
ug

he
rs

Regularisation LR & SVM 10i where i = −7, . . . 7
l1 penalty LR 0 to 1 in steps of 0.05
l2 penalty LR, MLP 0 to 1 in steps of 0.05

Kernel coeff. SVM 10i where i = −7, . . . 7
No. of neurons MLP 70 to 150 in steps of 20

co
ug

h

Batch size CNN & LSTM 2k where k = 6, 7, 8
No. of epochs CNN & LSTM 10 to 200 in steps of 20

No. of conv filters CNN 3× 2k where k = 3, 4, 5
kernel size CNN 2 and 3

Dropout rate CNN & LSTM 0.1 to 0.5 in steps of 0.2
Dense layer size CNN & LSTM 2k where k = 4, 5

LSTM units LSTM 2k where k = 6, 7, 8
Learning rate LSTM 10k where k = −2,−3,−4

Fig. 3. The t-SNE cluster of i-vectors extracted from 2-
sec long cough audio from 14 coughers in TASK dataset.
The MLP produces 95.11% accuracy using these i-vectors in
discriminating 14 coughers (Table 4).

All classifiers performed well in identifying both coughers
and speakers on the noisier Wallacedene dataset. The speaker
identification is used as the baseline and Table 4 shows that
using x-vectors produced better classification scores than
using i-vectors for speaker identification, also found by oth-
ers [12]. The highest accuracy (99.91%) has been achieved
from the MLP while discriminating only 5 speakers using
x-vectors. This accuracy drops to 98.14% using MLP while
differentiating 30 speakers and it drops further to 95.24%
while discriminating all 51 speakers in Wallacedene dataset.
For a lower number of coughers such as 5, MLP classifier has
achieved the highest accuracy of 98.49% using i-vectors. The
accuracy of MLP has dropped to 97.82%, 96.69%, 94.87%
and 93.32% and the σACC has increased sharply while the
number of coughers is increased to 15, 25, 40 and 51 respec-
tively. These scores show that although cougher identification
is not as accurate as speaker identification, the performance
is close, especially for the smaller number of subjects.

The results also show that cougher identification on less-
noisy TASK dataset is more accurate than noisier Wallace-



Fig. 4. Classifier performance. The accuracies from the
MLP classifier decrease while discriminating more subjects.

dene dataset. Although longer coughs from each subject im-
prove the classifier accuracy in general, similar performance
is achieved (accuracy of 95.11% & 90.02% on less-noisy &
noisy data) for coughs as short as only 2 sec (Figure 3). Al-
though the performance is close, i-vectors performed better
than x-vectors in cougher identification. MLP is the classifier
of choice and it shows lower σACC across the cross-validation
folds for the less-noisy data than noisier data. d-vectors are
outperformed by i-vectors and x-vectors for both the speech
and cough, as also found by [23], thus excluded from Table 4.

Table 4. Classifier accuracies in identifying coughers for
both TASK and Wallacedene (WD) datasets.

Dataset N t Feature LR LDA SVM MLP σACC

TASK

5 100 i-vector 98.91% 98.87% 99.44% 99.78% 0.0007
100 x-vector 96.71% 96.73% 97.54% 97.64% 0.0009

10 80 i-vector 97.54% 97.88% 98.19% 98.87% 0.0006
80 x-vector 96.31% 96.24% 96.55% 97.22% 0.0005

14
2 i-vector 94.41% 94.51% 94.55% 95.11% 0.0005

100 i-vector 96.46% 96.71% 97.48% 98.39% 0.0006
100 x-vector 97.26% 97.54% 98.78% 96.46% 0.0008

WD

5 20 i-vector 97.23% 97.19% 97.77% 98.49% 0.0054

(Cougher)

20 x-vector 95.54% 95.97% 96.72% 97.19% 0.0078

15 20 i-vector 97.16% 97.14% 97.31% 97.82% 0.0061
20 x-vector 95.41% 95.30% 95.72% 96.24% 0.0068

25 20 i-vector 95.04% 95.18% 95.94% 96.69% 0.0072
20 x-vector 93.31% 93.55% 94.07% 94.97% 0.0082

40 20 i-vector 93.38% 93.62% 94.09% 94.87% 0.0091
20 x-vector 90.23% 90.07% 90.97% 91.62% 0.0102

51
2 i-vector 89.26% 89.38% 89.22% 90.02% 0.0178
20 i-vector 90.27% 90.49% 91.89% 93.32% 0.0301
20 x-vector 84.61% 84.74% 85.83% 88.26% 0.0247

WD

5 — x-vector 98.57% 98.64% 99.48% 99.91% 0.0018

(Speaker)

— i-vector 97.21% 97.17% 97.70% 98.45% 0.0027

30 — x-vector 96.81% 96.85% 97.42% 98.14% 0.0081
— i-vector 94.81% 94.87% 95.18% 96.33% 0.0078

51 — x-vector 99.44% 99.44% 99.44% 95.24% 0.0229
— i-vector 90.01% 90.05% 90.34% 91.63% 0.0274

Coughs were successfully spotted among other trigger
phrases in both SC-11 and SC-36 datasets. Table 5 shows,
although LSTM and CNN has performed well, the best per-
formance of 92.73% accuracy (ACC) & mean Cohen’s Kappa
(K) of 0.9218 on SC-11 and 88.58% accuracy & K of 0.8757
on SC-36 have been achieved from Resnet50. The confusion
matrix using the best SC-11 system exhibits the high accura-
cies for spotting coughs in Figure 5. Table 5 also shows that
the best results of CNN and Resnet50 were obtained mostly

Fig. 5. The confusion matrix of detecting coughs among 10
other trigger phrases in SC-11 dataset using the Resnet50.

from 1024 sample (64 msec) long frames and 100 segments.

Table 5. Cough spotting: The best-three results for each
classifier shows Resnet50 has performed the best by achieving
92.73% & 88.58% accuracy on the SC-11 & SC-36 dataset.

Classifier SC-11 Dataset SC-36 Dataset
F S ACC K F S ACC K

LSTM
512 150 88.09% 0.8767 512 120 80.74% 0.7937
2048 120 87.66% 0.8614 1024 120 80.40% 0.7931
512 70 87.09% 0.8598 512 100 80.11% 0.7902

CNN
1024 100 91.25% 0.9007 1024 120 86.74% 0.8592
2048 100 90.72% 0.8981 1024 70 85.98% 0.8463
1024 70 90.11% 0.8945 2048 100 85.22% 0.8411

Resnet50
1024 100 92.73% 0.9218 2048 100 88.58% 0.8777
2048 120 92.69% 0.8733 2048 70 87.94% 0.8729
2048 100 92.55% 0.8715 1024 120 87.68% 0.8702

5. CONCLUSION

We propose a system using cough as a wake-word by spot-
ting coughs among other trigger phrases and identifying the
cougher. A less-noisy and noisier dataset, containing 14 and
51 subjects respectively, was used to extract i-vector, x-vector
and d-vector, to classify the cougher. The best performance
was achieved from an MLP, showing coughers as many as
51 can be identified with 90.02% accuracy, using i-vectors
from as short as 2 sec audio from each cougher in the noisy
environment. We also found, unlike speakers, coughers were
better identifiable using i-vectors. Coughs can also be spotted
as wake-words using a Resnet50 on features keeping end-
to-end time-domain information among 35 other keywords
in Google Speech Commands dataset with 88.58% accuracy.
Wake-cough represents a means of personalised, long-term
cough monitoring that is non-intrusive and, due to the use
of wake-word detection methods, power-efficient since a
smartphone-based monitoring device can remain mostly dor-
mant. Thus, it represents an attractive and viable means for
monitoring a patient’s long-term recovery from lung ailments
such as TB and COVID-19. Its ability to discriminate be-
tween coughers also makes it attractive in multi-bed ward
environments in monitoring patient’s recovery process.
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