FINAL

REMEDIAL INVESTIGATION REPORT ADDENDUM Camp Hero, Montauk, New York

Revision: 0

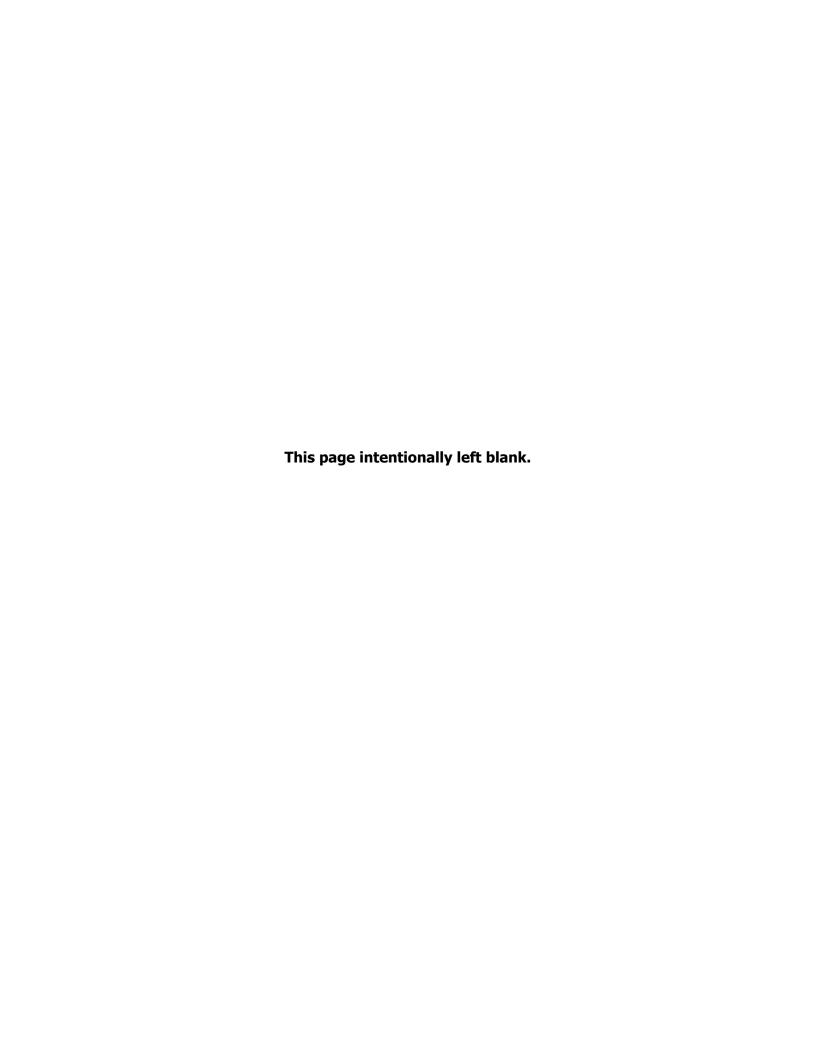
Prepared for:

Department of the Army

U.S. Army Corps of Engineers New England District 696 Virginia Road Concord, Massachusetts 01742

Prepared By:

A Joint Venture of AECOM - Tidewater


3101 Wilson Boulevard Suite 900 Arlington, VA 22201

Formerly Used Defense Site Project Number: C02NY002403

Contract Number: W912DR-13-D-0016

Order Number: DB01

August 2022

TABLE OF CONTENTS

EXEC	CUTIVE S	SUMMARY	ES-1
1	INTRO	DDUCTION	1-1
	1.1	Investigation Purpose	1-2
	1.2	Site Description and Background	1-3
	1.3	Summary of the Remedial Investigation and Proposed Plan	1-4
	1.4	Report Organization	1-5
2	FIELD	INVESTIGATION	2-1
	2.1	Coordination with Stakeholders	
	2.2	Site Reconnaissance	2-2
	2.3	Rare Plant Survey	2-2
	2.4	Anomaly Avoidance	2-3
	2.5	Community Air Monitoring	2-3
	2.6	Monitoring Well Installation	
	2.7	Soil Geotechnical Sample Collection	2-5
	2.8	Well Development and Redevelopment of UGA Wells	2-5
	2.9	Groundwater Sample Collection	
	2.10	Synoptic Groundwater Gauging	
	2.11	Land Surveying	
	2.12	Investigation-Derived Waste Management	2-9
	2.13	Deviations from the Phase IV RI QAPP Addendum	
	2.14	Data Validation	2-11
	2.15	Data Usability Assessment	2-13
		2.15.1 Precision	2-13
		2.15.2 Accuracy	2-14
		2.15.3 Representativeness	2-16
		2.15.4 Comparability	2-17
		2.15.5 Completeness	2-17
		2.15.6 Sensitivity	2-18
3	CONCEPTUAL SITE MODEL		3-1
	3.1	Site Description	
	3.2	Current Groundwater Use	
	3.3	Hydrology	
	3.4	Hydrogeology	
	3.5	Summary of Available Upper Glacial Aquifer Water Quality Data	3-5
	3.6	Potential Human Health Exposure Pathways and Receptors	
	3.7	Summary of Conceptual Site Model	
4		RE AND EXTENT OF CONTAMINATION	
4	4.1	Onsite UGA Groundwater Results	
	4.1	Offsite UGA Groundwater Results	
	4.3	Comparison of Onsite to Offsite Groundwater Results	
	4.4	Comparison to DU01 Shallow Groundwater Results	
_		·	
5		ICAL FATE AND TRANSPORT	
	5.1	VOCs	
	5.2	SVOCs	
	5.3	PAHs	
	5.4	PCBs	5-4

	5.5 5.6	Metals	
6	RISK A 6.1	SSESSMENT Data Evaluation	6-1 6-2 6-3
	6.2 6.3	6.1.3 Hexavalent Chromium	6-3 6-4 6-4 6-5
	6.4 6.5 6.6 6.7	Toxicity Assessment	6-6 6-7 6-7 6-7 6-7
7	CONCL	USIONS AND RECOMMENDATIONS	7-1
8	RECOM	1MENDATIONS	8-1
9	REFER	ENCES	9-1

LIST OF APPENDICES

Appendix A	Figures
Appendix B	Tables
	B1 Report Tables
	B2 Tables of All Analytical Results
Appendix C	Field Documentation
	C1 Daily Field Reports
	C2 Community Air Monitoring Data
	C3 Well Boring and Construction Logs
	C4 Well Development Forms
	C5 Groundwater Sampling Forms
	C6 Land Surveying Report
	C7 Investigation-Derived Waste Documentation
Appendix D	Analytical Results and Validation
	D1 Eurofins Lancaster Laboratories Environmental Laboratory Reports
	D2 Data Validation Reports
	D3 GeoTesting Express Laboratory Report

Appendix E Evaluation of Analytical Data

E1 Summary Statistics

E2 PAH/PCB Totals Calculation Results

Appendix F Human Health Screening Evaluation Tables

This page intentionally left blank.

Revision Number: 0

Revision Date: August 2022

LIST OF FIGURES (APPENDIX A)

Revision Number: 0

Revision Date: August 2022

Figure 1-1	General Location Map
Figure 1-2	Site Map
Figure 2-1	Upper Glacial Aquifer Wells
Figure 2-2	Upper Glacial Aquifer Groundwater Contours, December 2020
Figure 2-3	Upper Glacial Aquifer Groundwater Contours, February 2021
Figure 3-1	Summary of Geologic Strata and Hydrogeologic Units in the Montauk Area
Figure 3-2	General Hydrology Cross Section
Figure 4-1	December 2020 and February 2021 Sample Results Exceedances Above Screening Levels
Figure 6-1	Risk Assessment Process Flow Chart

LIST OF TABLES (APPENDIX B)

Table 2-1	Monitoring Well Construction Information
Table 2-2	Phase IV Soil Geotechnical Results
Table 2-3	Phase IV Groundwater Analytical Sample Summary
Table 2-4	Phase IV UGA Groundwater Elevations
Table 2-5	Phase IV Soil and Liquid IDW Results
Table 3-1	Existing Upper Glacial Aquifer Well Summary
Table 3-2	Upper Glacial Aquifer Existing Groundwater Data
Table 4-1	Summary Statistics and Screen Results for Onsite Groundwater Study Area
Table 4-2	Summary Statistics and Screen Results for Offsite Groundwater Study Area
Table 4-3	Frequency of Exceedances to Screening Values
Table 4-4	Comparison of DU01 Shallow Perched Water and Phase IV On-Site UGA Groundwater Data
Table 6-1	Summary of Chemicals of Potential Concern
Table 6-2	Onsite and Offsite Groundwater Study Areas Cumulative Screen Evaluation Results
Table 6-3	Onsite Well-By-Well Cumulative Screen Evaluation Results
Table 6-4	Offsite Well-By-Well Cumulative Screen Evaluation Results

This page intentionally left blank.

ACRONYMS AND ABBREVIATIONS

μg/L micrograms per liter
ADR automated data review

AOC Area of Concern

AST aboveground storage tank

ATSDR Agency for Toxic Substances and Disease Registry

AWT Environmental Services, Inc.

BaP benzo(a)pyrene

BaP PAHs benzo(a)pyrene equivalent polycyclic aromatic hydrocarbons

bgs below ground surface

CAMP Community Air Monitoring Plan

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC chemical of concern

COPC chemical of potential concern

CSM conceptual site model DD Decision Document

DER Division of Environmental Remediation
DERP Defense Environmental Restoration Program

DL detection limit

DNA deoxyribonucleic acid DO dissolved oxygen DoD Department of Defense DSA data sensitivity analysis

DU decision unit

ELCR excess lifetime cancer risk

ELLE Eurofins Lancaster Laboratories Environmental, LLC.

EM Engineer Manual

EMCX Environmental and Munitions Center of Expertise

EPC exposure point concentration ecological risk assessment

FedEx Federal Express

FPS Fixed-Pulse Radar Surveillance
FUDS Formerly Used Defense Site
GPS global positioning system
HHRA Human Health Risk Assessment
HHSE Human Health Screening Evaluation

HI hazard index

HTRW hazardous, toxic, and radioactive waste

IDW investigation-derived waste

JV joint venture KM Kaplan Meier

LCS laboratory control sample

LCSD laboratory control sample duplicate

LICAP Long Island Commission for Aquifer Protection

LNAPL light non-aqueous phase liquid

LOD limit of detection LOQ limit of quantitation

MCL maximum contaminant level
MDC maximum detected concentration
MEC munitions and explosives of concern

MEK methyl ethyl ketone mg/L milligram per liter MS matrix spike

MSD matrix spike duplicate

NAD North American Vertical Datum NAVD North American Vertical Datum

ND non-detect

NOAA National Oceanic and Atmospheric Administration

NRHP National Register of Historic Places

NTU nephelometric turbidity unit

NYNHP New York Natural Heritage Program

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

NYSOPRHP New York State Office of Parks, Recreation, and Historic Preservation

ORP oxidation-reduction potential PAH polycyclic aromatic hydrocarbon

PARCCS Precision, Accuracy, Representativeness, Comparability, Completeness, and

Sensitivity

PCB polychlorinated biphenyl
PDT project delivery team
PID photoionization detector
PM particulate matter
PP Proposed Plan
PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

QC quality control

QA

QSM Quality Systems Manual

RAGS Risk Assessment Guidance for Superfund

quality assurance

RI Remedial Investigation
RPD relative percent difference
RSL regional screening levels
RTK real time kinematic
SC specific conductivity

SCWA Suffolk County Water Authority

SEA stream exposure area STORET Storage and Retrieval

SVOC semivolatile organic compound TEF toxicity equivalence factor

TEQ toxicity equivalence

THQ target hazard quotient

TOGS Technical & Operational Guidance Series

TR target risk

UCL upper confidence limit UFP Uniform Federal Policy UGA Upper Glacial Aquifer

US United States

USACE United States Army Corps of Engineers
USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency
USFWS United States Fisheries and Wildlife Service

USGS United States Geological Survey UST underground storage tank

UU/UE unlimited use and unrestricted exposure

UXO unexploded ordnance

VI vapor intrusion

VISL vapor intrusion screening levels VOC volatile organic compound

This page intentionally left blank.

Revision Number: 0

Revision Date: August 2022

EXECUTIVE SUMMARY

This Remedial Investigation (RI) Report Addendum is being submitted by the United States (US) Army Corps of Engineers (USACE) for the former Camp Hero (referred to as "Camp Hero") located in Montauk, New York. This work is being completed under the Defense Environmental Restoration Program (DERP) for Formerly Used Defense Sites (FUDS) for Hazardous, Toxic, and Radioactive Waste (HTRW), Project Number C02NY002403. The project elements are performed under the DERP FUDS program in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process (42 US Code, 1980), as amended by the Superfund Amendments and Reauthorization Act of 1986.

Revision Number: 0

Revision Date: August 2022

Camp Hero was utilized by the Department of Defense (DoD) for various activities from 1942 to 1982 and is now a New York State (NYS) Park. The USACE has conducted several environmental studies and response actions at the Camp Hero to date. Extensive field investigations were conducted between 2016 and 2017, as part of the RI, to evaluate whether potential releases related to former military operations may pose a risk to humans or the environment. An RI Report was issued in January 2019 (AECOM-Tidewater JV, 2019a), and a Proposed Plan (PP) was issued in September 2019 (AECOM-Tidewater JV, 2019b), both of which indicated that no further action (no action) is required for all media throughout the FUDS. The documents were issued in coordination with support agencies consisting of the NYS Department of Environmental Conservation (NYSDEC), NYS Department of Health (NYSDOH), and NYS Office of Parks, Recreation, and Historic Preservation (NYSOPRHP). Both the RI and PP were accepted by the regulatory stakeholders.

A public meeting for the PP was hosted by USACE in October 2019 and interested members of the public were invited to comment on the PP during a 45-day Public Comment Period from 1 October 2019 to 15 November 2019. During the public meeting and comment period for the PP, public concerns were raised regarding to the potential for historical Camp Hero activities to have impacted deep groundwater (i.e., the Upper Glacial Aquifer [UGA]) that may be used as a drinking water source. The Phase IV RI activities described in this document were designed to address those public concerns.

As stated in the January 2021 Final Phase IV RI Quality Assurance Project Plan (QAPP), the purpose of the Phase IV RI was to determine if chemical constituents attributable to historical DoD activities at Camp Hero are present in the groundwater of the UGA at unacceptable risk levels for a small set of residential receptors to the southwest of Camp Hero. The Phase IV RI accomplished the following goals:

 A well reconnaissance and synoptic gauging event was completed of six offsite UGA wells and eight onsite UGA wells screened within the UGA in the vicinity of Camp Hero. Three rounds of synoptic water level gauging were completed to refine the understanding of the groundwater flow direction in the UGA. • Deep boreholes with continuous soil sampling was conducted to document the lithology and hydrogeologic units at two locations between area of known subsurface impacts at decision unit (DU)01 and potential receptors (drinking water wells) along Old Montauk Highway, to the southwest of Camp Hero. Soil samples were analyzed for geotechnical parameters (grain size and percent moisture) to support understanding of lithologic units. The depth of the UGA and well screen intervals for two permanent nested monitoring wells were determined using lithology of the borings at each location.

Revision Number: 0

Revision Date: August 2022

- DU01 is a 1.0-acre area at Camp Hero established during the RI QAPP (AECOM-Tidewater JV 2017b) to assess potential impacts from former Building 203 and associated underground storage tanks (USTs). The purpose of establishing DU01 was to provide a realistic exposure area surrounding Building 203 and the USTs that is representative for both human health and ecological receptors risk analysis. DU01 data were compared with Phase IV RI data to determine if historical DoD activities at Camp Hero have impacted UGA groundwater between known subsurface impacts associated with DU01 and potential receptors (drinking water wells) along Old Montauk Highway, to the southwest of Camp Hero.
- Four new permanent monitoring wells were installed in two locations in the south-southwest corner of Camp Hero, between DU01 and the closest potential human receptors along Old Montauk Highway. The four new wells consist of two well pairs, one in the shallow portion of the UGA, and one in the deeper horizon in an attempt to mimic the depths of the older and newer drinking water wells servicing the private residences along Old Montauk Highway, respectively. as well as three existing UGA wells within Camp Hero boundary and seven offsite UGA wells.
- Two rounds (December 2020 and February 2021) of groundwater samples were collected from seven onsite and seven offsite UGA monitoring wells. The samples were analyzed for a comprehensive list consisting of 71 volatile organic constituents (VOCs), 49 semi-volatile organic compounds (SVOCs), 17 polycyclic aromatic hydrocarbons (PAHs), 9 polychlorinated biphenyls (PCBs), and 26 metals to evaluate the deep aquifer at and in the vicinity of Camp Hero. In total, each sample collected was analyzed for 172 unique constituents. The data were compared to human health screening levels to determine if the potential for unacceptable risk levels exist. Statistics were used to determine that the two rounds of data were statistically similar enough to combine when comparing to screening levels and performing risk assessment. Statistics were also used to evaluate levels of naturally occurring constituents (iron and manganese) to local/background groundwater conditions.

The UGA flow direction from DU01 is west, southwest, south, and southeast based on the three synoptic water gauging events, including one at low and one at high tide. The south and southwesterly flow direction from DU01 is generally toward the closest potential human receptors (drinking water wells)

located south of Old Montauk Highway. The geological mapping and geotechnical analysis confirmed a competent clay confining layer in the southwest corner of Camp Hero where the four new UGA wells were installed. Review of available boring logs of existing deep wells also indicated a thick clay later exists in other areas of Camp Hero. However, the UGA is recharged with fresh water somewhere within Montauk Point and Camp Hero could include pathways to the UGA that have not yet been identified.

Revision Number: 0

Revision Date: August 2022

Groundwater data obtained from the onsite and offsite wells detected a variety of low-level detections of VOCs, SVOCs, PAHs, PCBs, and metals. A total of 44 constituents were detected at least once with only two VOCs, one SVOC, and twelve metals exceeding the most conservative screening level (SL). None of the individual PAHs or PCBs exceeded a SL. Seven non-hazardous CERCLA metals and essential nutrients were not screened (barium, calcium, iron, magnesium, manganese, potassium, and sodium). Data was compared to the following criteria (SLs):

- USEPA 2021 residential tap water risk screening levels (RSLs)
- USEPA 2021 residential vapor intrusion screening levels (VISLs)
- USEPA 2018 maximum contaminant levels (MCLs)
- New York State (NYS) Department of Environmental Conservation, Technical and Operational Guidance Series (TOGS), 1.1.1. Groundwater Effluent Limitations (Table 5; Class GA) (1998, 1999, 2000, and 2004)
- NYS 2022 Department of Health MCLs

Figure ES-1 provides a summary of where detected compounds above SLs were identified. CERCLA hazardous constituents that exceeded the most conservative SL was advanced to the human health screening evaluation (HHSRE).

A fate and transport analysis was completed on the detected constituents including a review of source identification. A summary of the source identification is provided below:

- Metals with relatively high results are naturally occurring and non-hazardous CERCLA (barium, iron, and manganese)
- Low level detections of constituents with mostly spatial distribution throughout onsite and offsite wells.
- Determining if the source of detected constituents is from Department of Defense activities is difficult to determine due to the 40+ years of elapsed time since Camp Hero FUDS was

operational, natural degradation likely for some constituents such as VOCs, and the relative immobility of others (SVOCs, PAHs, and PCBs)

Revision Number: 0

Revision Date: August 2022

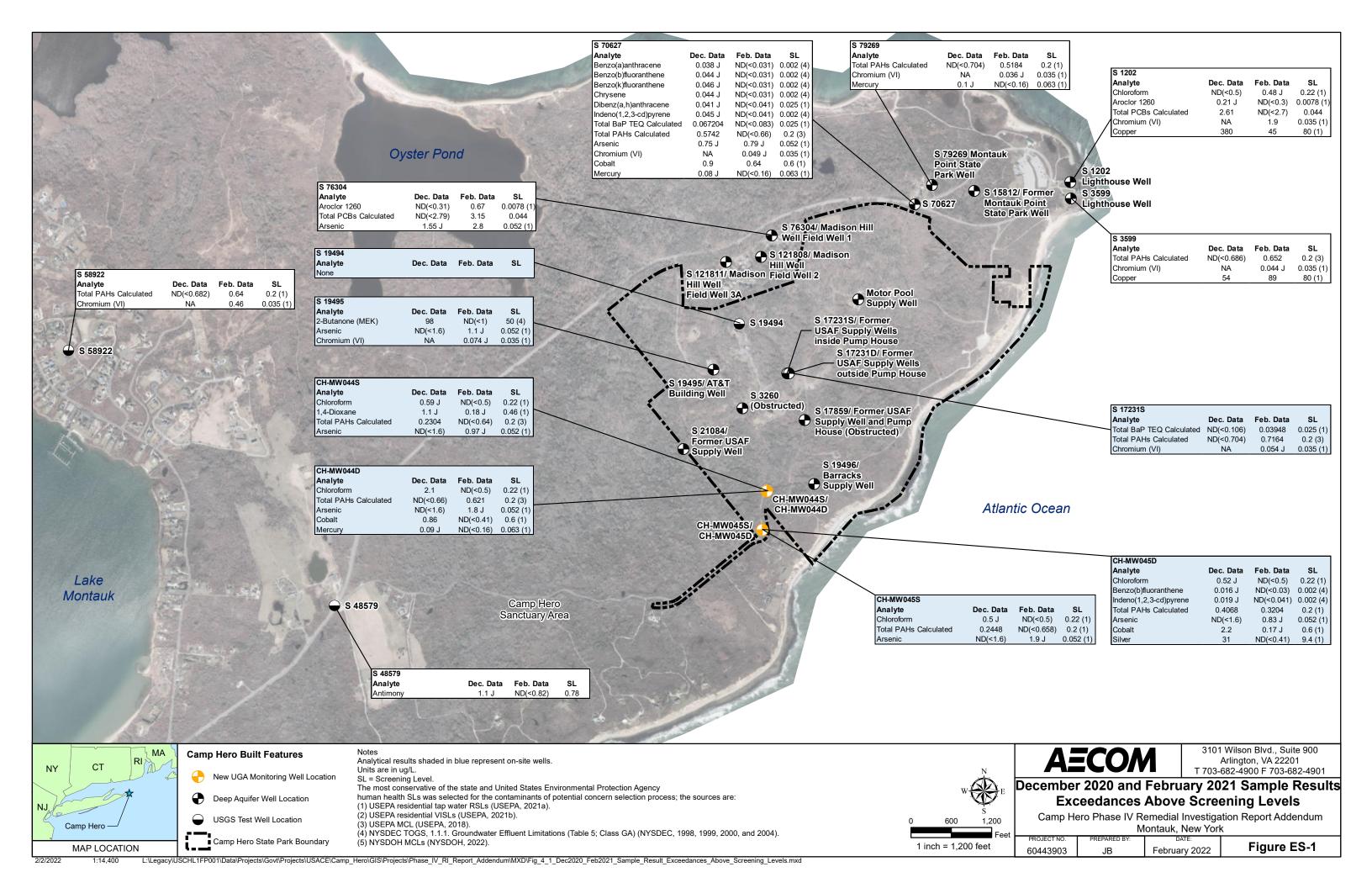
 Spatial distribution of constituents between onsite and offsite wells indicates strong potential source from the widespread use of septic drain fields throughout Montauk Point and/or anthropogenic.

The HHSE is a screening level evaluation using risk-based screening levels and standard exposure parameters and toxicity factors. This evaluation was conducted to determine the potential for adverse health effects due to the most conservative risk which is based on a resident's exposure to tap water. The goal of the HHSE was to determine if constituents attributable to historical DoD activities at Camp Hero are present in the UGA groundwater at concentrations that produce unacceptable risk to a hypothetical future onsite resident, current and future offsite residents living southwest of Camp Hero, onsite Park workers, and the public that visits the Montauk Point State Park and the Montauk Lighthouse and Museum located northeast and adjacent to Camp Hero.

The HHSE treated the onsite and offsite groundwater data as separate study areas. In addition, each monitoring well was treated as its own drinking water source. Risk-based screening and a cumulative screen evaluation were conducted for the onsite study area, offsite study area, and for each onsite and offsite well (i.e., well-by-well evaluation).

The tap water screening levels addressed the following groundwater-related exposure pathways: ingestion of drinking water, dermal contact, and inhalation of vapors (if volatile groundwater chemicals of potential concern [COPCs] were identified). Also, US Environmental Protection Agency (USEPA) residential vapor intrusion screening levels (VISLs) were used to conservatively evaluate the potential for vapor intrusion (VI). The risk-based screening results identified one chemical, chloroform, as a potential groundwater VI COPC; however, the cumulative screening evaluation results were acceptable (i.e., below the USEPA cumulative cancer risk and non-cancer hazard thresholds of 1E-04 and 1, respectively). Thus, VI was eliminated as a groundwater pathway of concern.

The HHSE did not identify any adverse health effects from drinking water from the UGA groundwater for onsite hypothetical residents, offsite residents living southwest of Camp Hero, and the public at the Montauk Point State Park and the Montauk Lighthouse and Museum located northeast and adjacent to Camp Hero.


In conclusion, the four goals of the Phase IV RI were completed. Most constituents analyzed were at non-detected or very low concentrations. The source of detected constituents could be attributed to Camp Hero FUDS activities, widespread use of septic tanks in Montauk Point, and/or anthropogenic. Regardless of the source, a HHSE concluded that there were no actionable risks from drinking the UGA groundwater directly beneath or in the vicinity of Camp Hero. Thus, based on this limited deep

Revision Date: August 2022

Revision Number: 0

groundwater aquifer investigation, the no action determination that was recommended at the conclusion of the RI remains appropriate for Camp Hero under CERCLA.

It is recommended that the Decision Document proceed with a no action determination, including a Responsiveness Summary to address the public comments received in writing and verbally during the public meeting. The shallow monitoring wells used in the previous phases of the RI should be properly abandoned including the wells associated with DU01 since this non-CERCLA petroleum site is officially closed by NYSDEC.

1 INTRODUCTION

The United States (US) Army Corps of Engineers (USACE) is completing a Remedial Investigation (RI), Proposed Plan (PP), and Decision Document (DD) for the former Camp Hero (referred to throughout this report as "Camp Hero"), located in Montauk, Suffolk County, New York. This work is being completed under the Defense Environmental Restoration Program (DERP) for Formerly Used Defense Sites (FUDS) for Hazardous, Toxic, and Radioactive Waste (HTRW), Project Number C02NY002403. The project elements are performed under the DERP FUDS program in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process (42 US Code 1980), as amended by the Superfund Amendments and Reauthorization Act of 1986. This Phase IV RI Report Addendum was prepared by the AECOM—Tidewater Joint Venture (JV), in coordination with the USACE New England and New York Districts, as well as the USACE Environmental and Munitions Center of Expertise (EMCX). This group of professionals is referred to within this report as the project delivery team (PDT).

Revision Number: 0

Revision Date: August 2022

The USACE has conducted several environmental studies and response actions at Camp Hero to date. Extensive field investigations were conducted between 2016 and 2017, as part of the RI, to evaluate whether potential releases related to former military operations may pose a risk to humans or the environment. An RI Report was issued in January 2019 (AECOM-Tidewater JV, 2019a), and a PP was issued in September 2019 (AECOM-Tidewater JV, 2019b), both of which indicated that no further action (no action) is required for all media throughout the FUDS. The documents were issued in coordination with support agencies consisting of the New York State (NYS) Department of Environmental Conservation (NYSDEC), NYS Department of Health (NYSDOH), and NYS Office of Parks, Recreation, and Historic Preservation (NYSOPRHP). Both the RI and PP were accepted by the regulatory stakeholders.

A public meeting for the PP was hosted by USACE in October 2019 and interested members of the public were invited to comment on the PP during a 45-day Public Comment Period from 1 October 2019 to 15 November 2019. During the public meeting and comment period for the PP, public concerns were raised regarding to the potential for historical Camp Hero activities to have impacted deep groundwater (i.e., the Upper Glacial Aquifer [UGA]) that may be used as a drinking water source. The public concerns primarily referenced the historic petroleum release at Decision Unit (DU) 01 from former Building 203 underground storage tanks (USTs) and operations. DU01 is a 1.0-acre area at Camp Hero established during the RI QAPP (AECOM-Tidewater JV 2017b) to assess potential impacts from former Building 203 and associated USTs. The purpose of establishing DU01 was to provide a realistic exposure area surrounding Building 203 and the USTs that is representative for both human health and ecological receptors risk analysis. During the RI, petroleum was identified in the subsurface at former Building 203, where two large USTs and associated contaminated soils were previously removed in 1993. The RI activities at DU01 are summarized in this report in **Section 1.3**, Summary of the Remedial Investigation

and Proposed Plan. The Phase IV RI activities described in this document were designed to address those public concerns.

Revision Number: 0

Revision Date: August 2022

1.1 Investigation Purpose

The purpose of the Phase IV RI is to determine if chemical constituents attributable to historical Department of Defense (DoD) activities at Camp Hero are present in the groundwater of the UGA at unacceptable risk levels for a small set of residential receptors to the southwest of Camp Hero. The RI Report concluded that the shallow perched groundwater lenses beneath the areas investigated at Camp Hero, called Decision Units (DUs), were not hydraulically connected to drinking water resources in Suffolk County, and that there was limited to no potential for migration of chemical constituents from the shallow perched groundwater to the deeper groundwater in the UGA. Although the shallow perched groundwater lenses beneath Camp Hero were sampled and evaluated as part of the RI, the deep groundwater in the UGA was not characterized due to the presence of confining layers underlying the perched water lenses that impede vertical movement of water and because there was no evidence of vertical or horizontal contaminant migration in soil, sediment, surface water, or groundwater at the identified release areas. However, due to the complex geology of the glacial deposition environment, there was potential for perched water to leach into the UGA through areas where more permeable subsurface units may exist, or the subsurface confining units may be thin. Due to this uncertainty, the USACE decided to conduct sampling of the UGA to address the public's concern about potential impacts from Camp Hero activities to drinking water sources.

The goals of the Phase IV investigation were as follows:

- Goal 1 Complete a well reconnaissance and synoptic gauging event of up to 20 existing wells
 screened within the UGA in the vicinity of Camp Hero. The groundwater gauging data will be used
 to refine the understanding of the groundwater flow direction in the UGA.
- Goal 2 Complete deep boreholes with continuous soil sampling to document the lithology and hydrogeologic units at two locations between known subsurface impacts associated with DU01 and potential receptors (drinking water wells) along Old Montauk Highway, to the southwest of Camp Hero. Analyze soil samples for geotechnical parameters (grain size and percent moisture) to support understanding of lithologic units. Based on the lithology of the borings, determine the depth of the UGA and select well screen intervals for two permanent nested monitoring wells at each location.
- Goal 3 Determine if historical DoD activities at Camp Hero have impacted UGA groundwater between known subsurface impacts associated with DU01 and potential receptors (drinking water wells) along Old Montauk Highway, to the southwest of Camp Hero. Collect groundwater samples from four new permanent monitoring wells installed in the boreholes described in Goal 2 above and up to three existing UGA wells within Camp Hero boundary to determine whether volatile

organic constituents (VOCs), semivolatile organic constituents (SVOCs), polychlorinated biphenyls (PCBs), and metals attributable to Camp Hero FUDS activities are present or absent in the UGA. Compare the data to human health screening levels to determine if the potential for unacceptable risk levels exist, as well as complete a statistical comparison of data to local/background groundwater conditions in order to evaluate levels of naturally occurring constituents (e.g., dissolved iron).

Revision Number: 0

Revision Date: August 2022

 Goal 4 – Collect groundwater samples from up to eight existing UGA wells in close proximity of Camp Hero that could reasonably be considered representative of local UGA groundwater conditions, with analysis of similar constituents provided in Goal 3 above. Use statistical methods (including, but not limited to, BTVs, geochemical evaluations, or hypothesis testing) to compare on-site groundwater data to local/background groundwater conditions.

1.2 Site Description and Background

Camp Hero was established in early 1942 as a Coastal Defense Installation to defend the approaches to New York. Three self-sufficient weapon batteries and supporting facilities were constructed, which included barracks, mess halls, hospital facilities, a motor repair shop, a recreation facility, sentry boxes, and water supply and sewage facilities. Ammunition stored at Camp Hero included anti-aircraft munitions, high explosive rounds, armor piercing rounds, and various other projectiles. Camp Hero's weaponry was periodically test-fired over water.

Camp Hero was placed on inactive status in 1947 and ultimately declared surplus by the Department of the Army in late 1949. Between 1949 and 1980, portions of the property were transferred to the Department of the Air Force for an aircraft control and warning station or used for firing range and field exercises by the Department of the Army.

In 1974, when some of the on-site military uses were still active, portions of the property were transferred from the DoD to the state of New York. Following the departure of the last military personnel in 1980, the DoD declared the remainder of the property to be surplus federal land. Over the next few years, the property was divided and deeded to the state and the Town of East Hampton, with the final land transfer to the state occurring in 1984.

Camp Hero is now used as Camp Hero State Park (**Figure 1-1**), and it is owned by the state of New York and operated under the jurisdiction of the NYSOPRHP. The park consists of 469 acres and is bound by Montauk Highway (Route 27) to the north, the Atlantic Ocean to the south, Montauk Point State Park to the east, and an undeveloped sanctuary area to the west. The landscape includes wooded areas, freshwater wetlands, and seaside bluffs (**Figure 1-2**).

The park contains hiking trails and roadways leading to former military buildings, picnic areas, and recreational areas. Although the Fixed-Pulse Radar Surveillance (FPS)-35 Radar Tower and Antenna

("Radar Tower") was listed under the National Register of Historic Places (NRHP) in 2002, only two facilities on the park are active at this time: a vehicle maintenance shop used by the NYSOPRHP, and a building utilized as a residence for a park officer. The developed portion of the site is fenced, and the inactive buildings and bunkers have been sealed; however, some portions of these areas may be accessible to trespassers.

Revision Number: 0

Revision Date: August 2022

1.3 Summary of the Remedial Investigation and Proposed Plan

An RI was completed at Camp Hero to identify and summarize the nature and extent of potential releases and impacts in site media from former military operations, and to subsequently quantify whether unacceptable risks are posed to human health or ecological receptors associated with exposure to constituents from these historical operations. A historical records review conducted in 2015, as part of the RI, identified 45 potential Areas of Concern (AOCs) at Camp Hero; two additional AOCs were identified in 2016, for a total of 47 AOCs. These AOCs included former waste disposal and coal storage areas, abandoned drum locations, formerly documented and alleged USTs and aboveground storage tanks (ASTs), a Motor Pool building, and other areas associated with historical DoD operations. Previous investigations at Camp Hero have included UST and AST closures and reports, focused site assessments, and sitewide surveys and reports. Refer to the Final RI Report for Camp Hero (AECOM-Tidewater JV, 2019a) for a detailed discussion of historical investigation reports and the soil, sediment, surface water, and groundwater sampling and evaluations conducted in support of the RI.

The RI Report compiled and evaluated data obtained from approximately 1,300 soil, sediment, surface water, and groundwater samples collected between May 2016 and June 2017 during three phases of field investigation: Phase I, Phase II, and Phase III. The analyses performed varied between AOCs based on the reasons for concern at that AOC, and included VOCs, SVOCs, energetics (munitions), PCBs, and metals. After the first two phases of investigation, the AOCs warranting further evaluation were grouped into 18 geometric DUs for the assessment of soil. Streams in the vicinity of the DUs were grouped into eight stream exposure areas (SEAs) for the assessment of surface water and sediment. The RI data evaluation focused on surface soil and subsurface soil collected from the DUs, surface water and sediment collected from the downgradient SEAs, and groundwater data collected from across the site. The RI Report included a human health risk assessment (HHRA) and an ecological risk assessment (ERA) that evaluated the potential for risks to human and ecological receptors exposed to environmental media associated with the DUs and SEAs at Camp Hero. The RI concluded that there is no unacceptable site-related risk to human health or the environment due to releases regulated under CERCLA.

During the RI, residual light non-aqueous phase liquid (LNAPL) was identified in the subsurface at the former Building 203 (DU01), where two large USTs and associated contaminated soils were previously removed in 1993. A sample of the LNAPL was submitted for fingerprint analysis and was found to be consistent with weathered diesel/Number 2 fuel oil. Data collected during the RI field investigation delineated the vertical and horizontal extent of LNAPL. The data also indicated the LNAPL is stable (i.e.,

immobile) and not recoverable, and natural processes are depleting the LNAPL source mass. Despite the presence of LNAPL, chemicals of concern (COCs) representing human health and ecological risk under CERCLA were not identified in soil, groundwater, surface water, or sediment associated with DU01. Because no COCs presenting risk were identified at DU01 during the risk evaluation, no action for DU01 is required under the CERCLA program.

Revision Number: 0

Revision Date: August 2022

Although petroleum is exempt under CERCLA, the USACE is voluntarily working with the NYSDEC to address LNAPL in perched groundwater at the former Building 203 (DU01). A NYSDEC Spill Number (PC-1602757) was opened, and a Technical Memorandum was prepared under the NYSDEC Spills Response Program in accordance with Article Twelve of the NYS Navigation Law. The Technical Memorandum indicated that, based on the 1993 site remediation efforts (over excavation and off-site disposal of soil at the UST locations), LNAPL stability, lack of mobility/recoverability, and evidence of active source depletion, no action is required under the NYSDEC program. The Technical Memorandum was approved by the NYSDEC, and the NYSDEC Spill Number was subsequently closed.

The sitewide groundwater sampling and evaluation in the RI focused on the perched groundwater lenses to assess whether groundwater were being impacted by historical activities associated with the DUs. The 43 monitoring wells installed to support this evaluation had total depths ranging from 15 to 40 feet below ground surface (bgs), and the depth to groundwater in these wells ranged from 6 to 28 feet bgs across the site. As reported in the RI, the shallow perched groundwater at Camp Hero is unsuitable for drinking based on the perched groundwater characteristics and Suffolk County drinking water well standards (AECOM-Tidewater JV, 2019a).

The USACE issued a PP in September 2019 that indicated that no action is required for all media throughout the FUDS (AECOM-Tidewater JV, 2019b). The PP was issued in coordination with support agencies consisting of the NYSDEC, NYSDOH, and NYSOPRHP. The USACE hosted a public meeting for the PP in October 2019 and invited interested members of the public to comment on the PP during a 45-day Public Comment Period from 1 October 2019 to 15 November 2019. Public concerns were raised relative to the potential for impacts to drinking water from historical activities at Camp Hero. Sampling of the deeper groundwater in the UGA was not conducted as part of the previous RI field efforts. Therefore, sampling of the UGA is being conducted as part of the Phase IV RI to assess the potential for contaminants associated with historical activities to have migrated down to this deeper aquifer and potentially have migrated downgradient of the Camp Hero boundary.

1.4 Report Organization

This Phase IV RI Report Addendum is organized into the following sections:

• **Section 1.0: Introduction** – provides an introduction to the project, including the investigation purpose, the site description and history, a summary of the RI and PP for the site, and the organization of this report.

Revision Number: 0

Revision Date: August 2022

- Section 2.0: Field Investigation provides descriptions of the field investigation activities for
 the Phase IV field effort, deviations from the Phase IV RI Quality Assurance Project Plan (QAPP)
 Addendum (AECOM-Tidewater JV, 2021), and a data usability assessment, including a discussion
 of Precision, Accuracy, Representativeness, Comparability, Completeness, and Sensitivity
 (PARCCS).
- **Section 3.0: Conceptual Site Model** presents the conceptual site model (CSM), which describes the relationship between environmental study areas within Camp Hero and the deep groundwater of the UGA. The CSM is intended to supplement the CSM of the investigation areas presented in the RI Report (AECOM-Tidewater JV, 2019a).
- **Section 4.0: Nature and Extent of Contamination** presents the nature and extent of the detected chemicals in deep groundwater within the UGA at and surrounding Camp Hero during the Phase IV field effort.
- Section 5.0: Chemical Fate and Transport presents the fate and transport of chemicals posing potential risks in the UGA at Camp Hero.
- Section 6.0: Risk Assessment contains the Human Health Screening Evaluation (HHSE),
 which evaluates whether chemicals present in deep groundwater within the UGA that are
 attributable to past Camp Hero activities have the potential to cause unacceptable adverse health
 effects to human receptors.
- Section 7.0: Conclusions and Recommendations provides the conclusions and recommendations of the Phase IV RI.
- Section 8.0: References lists the references used in this report.

The following appendices are included in this Phase IV RI Report Addendum:

- **Appendix A** contains the figures referred to in this report.
- Appendix B includes the tables referred to in this report. Appendix B1 provides the tables referenced in the main body of the report. Appendix B2 provide a comprehensive table of Phase IV RI groundwater analytical results.
- **Appendix C** provides the field documentation from the Phase IV RI, including the following sub-appendices:

Appendix C1 – includes the daily reports completed during the Phase IV field effort. The daily reports also include photographs from the field effort.

Revision Number: 0

Revision Date: August 2022

- Appendix C2 contains the community air monitoring results. Continuous air monitoring was completed during Phase III field investigation downwind of intrusive activities, in accordance with the modified generic NYSDOH Generic Community Air Monitoring Plan (CAMP), Attachment 1A of the NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010).
- Appendix C3 includes the well boring and construction logs for the new permanent monitoring wells installed during the Phase IV field effort.
- Appendix C4 provides the well development forms for the new permanent monitoring wells installed during the Phase IV field effort and existing UGA wells that were redeveloped prior to sampling.
- Appendix C5 contains the groundwater sampling forms for all wells sampled during the Phase IV field effort.
- Appendix C6 includes the land surveying report and data form the Phase IV field effort.
- Appendix C7 provides the investigation-derived waste (IDW) disposal documentation from the Phase IV field effort.
- Appendix D contains the analytical laboratory reports and data validation reports for the Phase
 IV field effort, including the following sub-appendices:
 - Appendix D1 provides the Eurofins Lancaster Laboratories Environmental, LLC (ELLE) laboratory reports.
 - Appendix D2 includes the data validation reports for the analytical data.
 - Appendix D3 contains GeoTesting Express laboratory report for the geotechnical data.
- Appendix E includes reference material documenting significant components of the analytical data evaluation, including summary statistics of the Phase IV analytical results and documentation of the PAH/PCB totals calculations.
- Appendix F provides the tables references in the HHSE (Section 6.0).

This page intentionally left blank.

Revision Number: 0

Revision Date: August 2022

2 FIELD INVESTIGATION

This section provides an overview of the field tasks completed as part of the Phase IV RI. The Phase IV RI field effort consisted of three separate mobilizations. The first mobilization was conducted from 5 to 8 October 2020 and included site reconnaissance to locate existing monitoring and supply wells screened in the UGA for purposes of groundwater gauging and potential redevelopment and sampling. A synoptic round of groundwater elevations was also collected from available wells.

Revision Number: 0

Revision Date: August 2022

The second mobilization was conducted from 30 November to 13 December 2020 and included a rare plant survey, community air monitoring and anomaly avoidance during intrusive activities, the installation and development of four new permanent UGA monitoring wells onsite at Camp Hero, redevelopment of existing UGA monitoring and supply wells onsite and offsite, collection of groundwater samples from new and existing UGA wells onsite and offsite, collection of soil samples for geotechnical laboratory analysis, collection of synoptic groundwater elevations, IDW management, collection of IDW samples, and land surveying.

The third mobilization was conducted from 22 to 27 February 2021 and included redevelopment of one existing UGA well (Madison Hill Well Field #1), collection of groundwater samples from new and existing onsite and offsite UGA wells, collection of synoptic groundwater elevations, and IDW management. One field team member returned to the site on 10 May 2021 to oversee removal of IDW from the site. Additional details for each task are provided in the subsections below.

The field investigation was conducted in accordance with the approved Phase IV RI QAPP Addendum, except as specifically noted in **Section 2.13** (AECOM-Tidewater JV, 2021). Figures discussed in this section are presented in **Appendix A**. Tables discussed in this section are presented in **Appendix B1**, while tables of all analytical results are presented in **Appendix B2**. Field documentation is provided in **Appendix C**, including daily field reports (**Appendix C1**), community air monitoring data (**Appendix C2**), well boring and construction logs for the wells installed during the Phase IV RI (**Appendix C3**), well development forms (**Appendix C4**), groundwater sampling forms (**Appendix C5**), the land surveying report (**Appendix C6**), and IDW documentation (**Appendix C7**).

2.1 Coordination with Stakeholders

Project kick-off meetings were held prior to the Phase IV field effort to initiate coordination with stakeholders. Each mobilization was coordinated with the Camp Hero State Park Superintendent, Tom Dess, to ensure activities did not impact park visitors or conflict with seasonal work restrictions. USACE-coordinated access to US Geological Survey (USGS) monitoring wells in the vicinity of Camp Hero with the USGS prior to accessing the wells. Additionally, USACE coordinated access to offsite wells at the Madison Hills neighborhood, to the north of Camp Hero, with the Town of East Hampton and Suffolk County Water Authority (SCWA) prior to visiting the wells. USACE coordinated access to the existing wells at the Montauk Point Lighthouse facilities with the site manager prior to sampling the wells.

During prior phases of the RI, the New York Natural Heritage Program (NYNHP) and NYSOPRHP were consulted regarding Camp Hero RI activities, with particular focus on the botanical survey of rare and endangered species. The information obtained at that time was used to minimize impacts to vegetation and local threatened and endangered species during the Phase IV field effort, consistent with Phases I through III of the RI.

Revision Number: 0

Revision Date: August 2022

Additionally, during prior phases of the RI, coordination letters were submitted to the NYSDEC Region 1 Office, the US Fish and Wildlife Service (USFWS) New York Field Office and the Shinnecock Nation regarding planned Camp Hero activities. The coordination letters indicated the USACE's intent to conduct a RI at Camp Hero, with the purpose of assessing whether the former DoD activities may have resulted in adverse environmental conditions. Copies of coordination correspondence are available in RI Report (AECOM-Tidewater JV, 2019a).

2.2 Site Reconnaissance

The locations of historic and currently active UGA supply and observation wells on and in the vicinity of Camp Hero within Montauk Point were researched using available online databases and publications. The UGA wells considered for sampling were limited to the Montauk Point area since there is a saltwater divide between the aquifer beneath Camp Hero and the one west of Montauk Point that was not considered to be of similar groundwater conditions due to differing subsurface geology. The well locations were mapped, and site reconnaissance was conducted in October 2020 to document the presence or absence and condition of each of the wells. An assessment of whether or not a well could be utilized for potential groundwater sampling and the depth to groundwater were gauged at each existing well. Active supply wells were not gauged for safety reasons. In addition to the four newly installed onsite wells, a total of three onsite and seven offsite existing UGA wells were identified within the Montauk Point that could be accessed and sampled. The location and condition of existing UGA wells identified during the site reconnaissance, and the Phase IV RI Addendum UGA new well locations are shown on **Figure 2-1 (Appendix A)**.

The groundwater was gauged at six offsite UGA wells and eight onsite UGA wells during the site reconnaissance. Three former supply wells were not gauged due to blockages in the well casing or were inaccessible, and three current supply wells were active and were not gauged. Two of three former Madison Hills Well Field wells, #2 (S 121808) and #3A (S 121811), were equipped with pit-less adaptors in the well casings, which restricted groundwater gauging and prevented sampling access in those wells. Additional details on groundwater gauging are provided in **Section 2.10**.

2.3 Rare Plant Survey

A botanical survey for rare and threatened species at Camp Hero was completed during the Phase IV field event, prior to any vegetation removal activities. Prior to the earlier phases of the RI, the NYNHP

identified four rare plant species that have been historically reported within Camp Hero State Park: Little-leaf Tick-trefoil, Fringed boneset, Blunt mountain-mint, and Southern arrowwood (NYNHP, 2010).

Revision Number: 0

Revision Date: August 2022

Prior to the botanical survey field activities, the AECOM botanist researched the habitat requirements, phenology, critical diagnostic characteristics, and morphologically similar congeners for the target plant species identified as potentially occurring in the vicinity of the Camp Hero DUs by the NYNHP. Botanical references and regional field manuals were consulted for the northeastern US as well as Flora of North America.

During the Phase IV field investigation, the new monitoring well installation locations were surveyed for the four rare plant species. If any rare plant species were identified, they were marked with flagging. Consistent with the past phases of the RI, one of the target rare plant species, *Viburnum dentatum* var. *venosum* (Southern arrowwood), was encountered with frequently within the work areas. While all larger specimens were flagged, a small number of sites also had numerous seedlings that were almost impossible to avoid without employing extraordinary measures. In consultation with the NYSDEC, NYNHP, and NYSOPRHC during previous phases of the RI, it was concluded that the destruction of a few seedlings during the course of further remedial investigation at Camp Hero would be acceptable, in light of the large and stable population of *Viburnum dentatum* var. *venosum*.

2.4 Anomaly Avoidance

An unexploded ordinance (UXO) Probability Assessment for Intrusive Investigation at Camp Hero, completed by USACE Baltimore District, determined that the Camp Hero RI activities had a low probability of encountering munitions and explosives of concern (MEC), except for areas H and K, which would not be entered at any point during RI field activities (USACE 2016a; 2016b). However, as a precautionary measure, anomaly avoidance was conducted by a UXO Technician II during intrusive Phase IV field investigation with a hand-held magnetometer, in accordance with Engineer Manual (EM) 385-1-97. "Anomaly avoidance" is defined as the avoidance of surface MEC and any subsurface anomalies where the specific activity can be moved to another location. The new permanent monitoring well installation locations were examined by the UXO Tech II. No munitions items were observed during investigation activities. Additionally, all field personnel, including AECOM employees and subcontractors, completed Ordnance Recognition Training prior to the start of field activities.

2.5 Community Air Monitoring

Continuous air monitoring was completed downwind of the drill rig during intrusive activities (i.e., monitoring well installation), in accordance with the modified generic NYSDOH Generic CAMP, Attachment 1A of the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation. The CAMP establishes air monitoring activities that were to be implemented to protect the community from any potential airborne releases that could result from field activities associated with the RI, as necessary (NYSDEC, 2010). Parameters monitored included VOCs and aerosol concentrations corresponding to

particulate matter (PM)₁, PM_{2.5}, and PM₁₀ size fractions. No exceedances of thresholds established in the NYSDOH Generic CAMP were observed during Phase IV field investigation. Data from Phase IV field investigation air monitoring are included in this report as **Appendix C2**.

2.6 Monitoring Well Installation

In December 2020, four new UGA monitoring wells (two sets of "nested" wells) were installed via sonic drilling methods to assess the UGA at two locations. The well locations are approximately 1,250 feet south and topographically downgradient of investigation area DU01. Potential residential receptors (drinking water wells) are located further south and southwest of the new UGA well locations on the south side of Old Montauk Highway. The locations of the new UGA wells are shown on **Figure 2-1** in **Appendix A**. A shallow and a deep well were installed into the UGA at each of the two nested well locations. At each nested well location, the top of the 10-foot shallow well screen was installed immediately below the clay confining unit (Montauk Till Member) and into the top portion of the UGA. The top of the 10-foot deep well screen was installed 40 feet below the clay confining unit and UGA interface, into a deeper portion of the UGA, to mimic potential receptor drinking water well screen depths prescribed by local well construction permit requirements.

Nested monitoring wells CH-MW044S (shallow) and CH-MW044D (deep) were installed to a total depth of 120 and 157 feet bgs, respectively. Nested monitoring wells CH-MW045S (shallow) and CH-MW045D (deep) were installed to 95 and 136 feet bgs, respectively. Well construction information is provided in **Table 2-1** in **Appendix B**. The wells were constructed with new 2-inch diameter poly-vinyl chloride (PVC) 10-foot screens and casing. The nested UGA well heads were completed as above ground stick-up type wells inside a locking protective well cover in a concrete well pad at each of the nested well locations. Well boring and construction logs are provided in **Appendix C3**.

The drilling method to install the wells utilized a 5-inch outside diameter (4-inch inside diameter) core barrel and a 7-inch outside diameter (6-inch inside diameter) override casing to core and case the borehole to the total depth of each well. The 7-inch override casing was utilized to keep the borehole open and to prevent potential vertical migration of water from the overlying till to seep downward to the UGA. The two monitoring wells at each nested well location were constructed inside the same 7-inch sonic casing with the deep well screen and riser, filter sand, bentonite seal, and choker sand all emplaced first followed by the shallow well construction. The 7-inch casing was pulled upward incrementally as the wells were constructed. The incremental pulling and vibration of the 7-inch sonic casing assisted in condensing of well materials emplaced around the well screen and riser and also helped to prevent potential bridging of well materials.

Equipment used for subsurface sonic drilling was decontaminated prior to each use. The drilling team placed plastic sheeting under the sonic drill rig to act as a potential containment barrier should an unexpected leak occur. Subsurface drilling and well installation were conducted in accordance with the approved Phase IV RI QAPP Addendum (AECOM-Tidewater JV, 2021).

2.7 Soil Geotechnical Sample Collection

Continuous soil cores were collected during drilling of new UGA wells for lithologic logging and collection of grain size analysis (ASTM D6913/D7928) and percent moisture (ASTM D2216) samples to document subsurface lithology at each nested well location. Soil within each 5-foot long core barrel was extruded from the core barrel into a plastic sleeve within the sonic drive casing. The soil core was placed horizontally on clean plastic sheeting for logging and sampling. The soil core was screened for VOCs immediately with a photoionization detector (PID) upon opening the sleeve. The soil core was logged for descriptions by the AECOM field geologist, and observations and measurements were recorded on a soil boring log. At a minimum, depth interval, recovery thickness, PID concentrations, moisture, relative density, color (using a Munsell soil color chart), and texture were recorded using the Unified Soil Classification System (USCS). Additional observations included groundwater or perched water depth, organic material, and/or color changes.

Revision Number: 0

Revision Date: August 2022

The continuous soil cores were collected from ground surface to 137 feet and 157 feet bgs at the nested well locations. The soil samples for geotechnical laboratory analysis of percent moisture and grain size were collected at a rate of one sample per 10 feet of boring. Discrete soil samples were collected at 10-foot intervals at CH-MW044D and composite soil samples were collected over each 10-foot interval at CH-MW045D. The geotechnical sample results are provided in **Table 2-2** (**Appendix B1**). Well boring logs that present the field lithologic logging of the continuous borehole cuttings, including the laboratory geotechnical sample analysis, are also provided in **Appendix C3**. The geotechnical laboratory report is provided in **Appendix D3**.

2.8 Well Development and Redevelopment of UGA Wells

Initial development of the newly installed Phase IV RI UGA wells CH-MW044S, CH-MW44D, CH-MW045S, and CH-MW045D was conducted by using air lift methodology. Using the air lift method, compressed air was injected through decontaminated hosing near the bottom of each well screen and surged up and down the well. The groundwater in each well was lifted by the air pressure to the top of the well and diverted into IDW containers. A total of 500 gallons of groundwater were removed from the nested well pair CH-MW044S and CH-MW44D, and 200 gallons of groundwater were removed from the nested well pair CH-MW045S and CH-MW045D. This volume includes the volume of water used during the sonic well boring installation at each of the nested wells and development of the well. Water quality parameters, including dissolved oxygen (DO), specific conductance (SC), oxidation reduction potential (ORP), pH, temperature, and turbidity were measured using a multi-parameter water quality meter and recorded to determine progress of development. The water volume and water quality parameters are provided in **Appendix C4.**

Following initial development of the Phase IV RI UGA wells, the wells were further developed with a submersible pump. A minimum of three times the standing water volume was removed from the Phase IV RI UGA wells during development activities. Water quality parameters, including DO, SC, ORP, pH,

Revision Date: August 2022

Revision Number: 0

temperature, salinity, and turbidity were measured using a multi-parameter water quality meter and recorded to determine progress of redevelopment. Each well was developed until clear (silt-free) water was produced with a minimum of three stable water quality readings. The multi-parameter water quality meter was calibrated initially and continually throughout its usage each day during all development activities, as needed. A calibration check was performed at the end of each day. The well development forms are provided in **Appendix C4.**

Redevelopment of former UGA supply and observation wells onsite and in the vicinity of Camp Hero scheduled for sampling in the Phase IV RI QAPP Addendum was completed by a combination of surging the pump intake up and down in the wells and over-pumping groundwater from the wells as described above for the newly installed Phase IV RI UGA wells. At certain former UGA supply and observation wells, redevelopment proved difficult in the field because of a combination of factors: the supply wells were dormant for decades in some cases; former well supply equipment remaining in well casings; and the deep depth and large diameter of former supply wells. At a limited number of wells, the targeted turbidity water quality parameter of 10 nephelometric turbidity units (NTUs) could not be attained during development activities due to well conditions.

Redevelopment (and groundwater sampling) of Madison Hills Well Field #2 (S 121808) and Madison Hills Well Field #3A (S 121811) could not be accomplished due to the presence of a pit-less adapter in each well casing below ground. The pit-less adapter acts as a sanitary seal and prevented sampling equipment from being placed down the wells. The Former Madison Hill supply wells have also been disconnected from the former electrical supply, and the pumps could not be turned on as an alternative sample collection method. At Madison Hills Well Field #1 (S 76304) a restriction on the groundwater pumping equipment that could be used was encountered due to former well supply piping in the well. The restriction resulted in a lower rate of groundwater that could be pumped during redevelopment activities. The depth and large diameter of Madison Hills Well Field #1 (S 76304), in combination with the restricted pumping methods, resulted in a loss of pumping efficiency during redevelopment. During the redevelopment of Madison Hills Well Field #1 (S 76304) in December 2020, only 260 gallons of the targeted 290 gallons were removed during development prior to sampling. In addition, the turbidity water quality parameter did not stabilize during redevelopment and was recorded at 41 NTUs, above the target level of 10 NTUs, when redevelopment was terminated prior to the December 2020 groundwater sample collection. During the February 2021 sampling event at this well, turbidity in the pre-sample development water stabilized below 10 NTUs prior to sampling. Based on groundwater sample results discussed in **Section 4.0**, there appeared to be no impact from the higher NTUs in the December 2020 sample.

All reusable development equipment was properly decontaminated after each use in accordance with the Phase IV RI QAPP Addendum (AECOM-Tidewater JV, 2021). Development groundwater generated was containerized, managed, and disposed of as IDW.

2.9 Groundwater Sample Collection

Two rounds (December 2020 and February 2021) of groundwater samples were collected from a total of 14 UGA wells: seven onsite UGA wells, including the four newly installed permanent monitoring wells, and seven offsite UGA wells, as summarized on **Table 2-3**. The locations of the wells are shown on **Figure 2-1**. Newly installed wells were sampled at least 24 hours after completion of development/redevelopment in accordance with the QAPP Addendum (AECOM-Tidewater JV, 2021). Groundwater sampling forms are provided in **Appendix C5**.

Revision Number: 0

Revision Date: August 2022

For monitoring wells and supply wells where the well was accessible, wells were purged via low-flow sampling techniques using a bladder or peristaltic pump and disposable tubing. Water clarity was visually monitored, and water quality parameters, including DO, SC, ORP, pH, temperature, and turbidity, will be measured using a flow-through cell. Readings were collected every 5 minutes until the well produced clear (silt-free) water with a minimum of 3 stable water quality readings. The multi-parameter water quality meter was calibrated initially and continually throughout its usage each day, as needed, and a calibration check was performed at the end of each day. Samples were collected once the water quality parameters reach stabilization, as described below. Non-disposable sampling equipment was decontaminated between each well.

As described above, at Madison Hills Well Field #1 (S 76304), a restriction on the groundwater pumping equipment that could be used was encountered due to former well supply piping in the well. resulting in a loss of pumping efficiency during redevelopment and sampling. For this reason, the well was sampled using a Waterra pump and disposable tubing, rather than a peristaltic pump. In December 2020, although the turbidity of the water was recorded at 41 NTUs at the time redevelopment was terminated, the turbidity did not decrease below 248 NTU when the field crew returned to sample the well approximately 48 hours later. During the February 2021 sampling event at this well, a Waterra pump was again used for sampling, and the turbidity in the pre-sample development water stabilized below 10 NTUs prior to sampling.

For wells being actively used for drinking water, groundwater samples were collected from an existing tap. The samples were collected from taps in areas free of excessive dust, rain, snow, or other sources of cross-contamination. Taps were selected that were free of devices that could cause potential cross-contamination, such as screens, aeration devices, hoses, purification devices, or swiveled faucets. The faucet was visually checked to be sure it was clean. Samples were collected from a tap which is high enough to put a bottle underneath without contacting the mouth of the container with the faucet. The tap was opened and allowed to thoroughly flush for approximately 2 to 3 minutes. Once the lines were flushed, the flow was adjusted to fill the sample bottleware.

Samples were collected in laboratory-supplied bottleware for VOCs, SVOCs, PCBs, and metals, including hexavalent chromium and mercury. Both total (unfiltered) and dissolved (filtered) samples were collected for metals (including hexavalent chromium and mercury). Filtered samples were field-filtered using a

clean, disposable, in-line filter. The pH of dissolved and total hexavalent samples was adjusted in accordance with the procedures outlined in the QAPP Addendum (AECOM-Tidewater JV, 2021).

Revision Number: 0

Revision Date: August 2022

2.10 Synoptic Groundwater Gauging

The depth to groundwater was measured at available UGA wells at Camp Hero and in the vicinity of Camp Hero in October 2020, December 2020, and February 2021. The four newly installed Phase IV RI Addendum wells (CH-MW044S, CH-MW044D, CH-MW045S, and CH-MW045D) were included in the December 2020 and February 2021 gauging events. A total of 10 UGA wells on Camp Hero and four UGA wells offsite (in the vicinity) were gauged in December 2020 and February 2021. The wells included in the gauging events and a summary of the data are shown on **Table 2-4**.

A consistent flow direction of the UGA at Camp Hero was observed from the UGA well gauging events in October 2020, December 2020, and February 2021. **Figure 2-2** shows the location of UGA wells gauged at Camp Hero, a summary of the UGA groundwater measurements, and the groundwater contours based on the December 2020 gauging. **Figure 2-3** shows the location of UGA wells gauged at Camp Hero, a summary of the UGA groundwater measurements, and the groundwater contours based on the February 2021 gauging. **Figure 2-3** also shows contours based on low tide and high tide gauging. The groundwater flow direction was found to be consistent between the low and high tide measurements, and the UGA flow direction at Camp Hero is from topographically high areas radially outward toward lower areas under artesian pressure. Additional interpretation of the groundwater elevation data is presented in **Section 3.3** below.

2.11 Land Surveying

The top of well casing and ground surface for the four newly installed monitoring wells (CH-MW044S, CH-MW044D, CH-MW045S, and CH-MW045D) and UGA wells utilized for groundwater gauging (except USGS wells with available survey data) were surveyed by a New York licensed surveyor during the Phase IV field investigation. The land surveying report is included as **Appendix C6**.

Data were obtained using the State Plane Coordinate System, Long Island Zone 3104, with horizontal data using the North American Datum (NAD 83) and vertical data using the North American Vertical Datum (NAVD 88). The horizontal control for the locations was surveyed to at least (+/-) 0.10 foot and the vertical control for the locations was surveyed to at least (+/-) 0.01 foot. Equipment utilized included a Trimble R8 Global Positioning System (GPS) with a tripod data system Ranger collector and Nikon NIVO 5M Prismless Total Station.

The Trimble R8 GPS was utilized with the real time kinematic (RTK) satellite navigation GPS system connected in real time to New York Precision's RTK Base Network. This is a spatial reference network of continuously operating Global Navigation Satellite System reference stations encompassing Long Island, New York City, and parts of Westchester, New York, into Connecticut. The equipment and associated procedures achieve sub-centimeter positioning for surveying applications or sub-meter positioning for

GIS mapping applications. The locations of all Base Stations are determined using the National Oceanic and Atmospheric Administration's (NOAA) Online Positioning User Service, and raw GPS data are automatically processed using standard National Geodetic Survey data and models to compute an accurate position. All base stations are constantly monitored for movement and positional accuracy. The Nikon NIVO 5M Prismless Total Station was utilized in locations of heavy tree and brush cover for a portion of collected points.

Revision Number: 0

Revision Date: August 2022

2.12 Investigation-Derived Waste Management

IDW generated during the Phase IV field activities was managed pursuant to applicable Federal, State, and local regulations and guidance, including the US Environmental Protection Agency (USEPA) Management of Investigation-Derived Wastes during Site Inspections (USEPA, 1992), USACE guidance (USACE, 2013), and NYSDEC Technical Guidance for Site Investigation and Remediation (NYSDEC, 2010).

Liquid IDW from well installation, development, and sampling was stored in a 6,300-gallon poly tank provided by the waste hauler. Solid (soil) IDW from well installation was stored in eight 55-gallon drums. The drums and poly tank were properly labeled and indicated the generator, contact information, contents, and date of generation. The drums and tank were stored at the Camp Hero State Park Motor Pool building, with the permission of State Park Superintendent Mr. Tom Dess.

Analytical samples of the solid and liquid IDW were collected on 13 December 2020 and submitted to the laboratory for waste classification. **Table 2-5 (Appendix B1)** presents the IDW analytical results compared to regulatory levels. Based on the results, the liquid IDW was characterized as non-hazardous. Because the pH levels in the soil in the drums (pH 12.4) exceeded the disposal criteria, the solid IDW was treated as hazardous waste.

AWT Environmental Services, Inc. (AWT) (Sayreville, New Jersey) was contracted to transport and dispose of IDW accumulated on site. AWT transported the liquid IDW (2,353 gallons from the poly tank) to disposal facility Clean Water of New York (Staten Island, New York) on 10 May 2021 under non-hazardous waste manifest (#17349-1). AWT transported the solid IDW (eight drums with soil cuttings) to Cycle Chem (Elizabeth, New Jersey) for disposal on 10 May 2021 under hazardous waste manifest (#021325245 JJK). Final waste documentation, including the analytical laboratory package of results, is included in **Appendix C7**.

2.13 Deviations from the Phase IV RI QAPP Addendum

The Phase IV field investigation was generally completed to the scope that was provided in the Phase IV RI QAPP Addendum (AECOM-Tidewater JV, 2021). However, some deviations to the QAPP and field decisions made within the contingencies established in the QAPP occurred during the field effort following discussions between the USACE and AECOM team.

Deviations from the Phase IV RI QAPP Addendum included the following:

At Madison Hills Well Field #1 (S 76304) a restriction on the groundwater pumping equipment that could be used was encountered due to former well supply piping in the well. The restriction resulted in a lower rate of groundwater that could be pumped during redevelopment activities. The depth and large diameter of Madison Hills Well Field #1 (S 76304), in combination with the restricted pumping methods, resulted in a loss of pumping efficiency during redevelopment. During the redevelopment of Madison Hills Well Field #1 (S 76304) in December 2020, only 260 gallons of the targeted 290 gallons were removed during development prior to sampling. In addition, the turbidity water quality parameter did not stabilize during redevelopment and was recorded at 41 NTUs, above the target level of 10 NTUs, when redevelopment was terminated prior to the December 2020 groundwater sample collection. When the field crew returned to sample the well approximately 48 hours later, the turbidity did not decrease below 248 NTUs. During the February 2021 sampling event at this well, turbidity in the pre-sample development water stabilized below 10 NTUs prior to sampling. Due to the pump restrictions at this well, samples were collected via Waterra pump and disposable tubing, rather than a peristaltic pump.

Revision Number: 0

Revision Date: August 2022

- In December 2020, six samples (CH-MW044S-1220, CH-MW044D-1220, CH-MW045D-1220, S70627-1220, S76304-1220, and S76304-1220D) did not meet the recommended method prep hold times for SVOCs via 8270D and 8270D SIM due to delayed delivery via Federal Express (FedEx) delivery services. Analyte detects were qualified as described below in Section 2.14.
- Redevelopment and groundwater sampling of Madison Hills Well Field #2 (S 121808) and Madison Hills Well Field #3A (S 121811) could not be accomplished due to the presence of a pit-less adapter in each well casing below ground. The pit-less adapter acts as a sanitary seal and prevented sampling equipment from being placed down the wells. The Former Madison Hill supply wells have also been disconnected from the former electrical supply and the pumps could not be turned on as an alternative sample collection method.

Field decisions made within the contingencies established in the QAPP included the following:

 At certain former UGA supply and observation wells, redevelopment proved difficult in the field because of a combination of factors: the supply wells were dormant, for decades in some cases; former well supply equipment remaining in well casings; and the deep depth and large diameter of former supply wells. At a limited number of wells, the targeted turbidity water quality parameter of 10 NTUs could not be attained during development activities due to well conditions.

2.14 Data Validation

Data validation was conducted on the FUDSChem Automated Data Review (ADR) output for the Camp Hero analytical data. The program performed an ADR of the project samples and produced validation outlier reports and assigned qualifiers; the reports and qualifiers were reviewed and approved by the AECOM chemists. Analytical data packages were validated at a Level 2a to ensure compliance with specified analytical, Quality Assurance (QA)/Quality Control (QC) requirements, data reduction procedures, data reporting requirements, and required accuracy, precision, and completeness criteria. These criteria includes, but is not limited to, the following:

Revision Number: 0

Revision Date: August 2022

- Sample preservation and holding times;
- Blanks (method, rinse, and trip);
- Matrix spike (MS) and MS duplicate (MSD) samples;
- Laboratory and field sample duplicate samples;
- Surrogates; and
- Laboratory control samples.

Analytical results were assessed for accuracy and precision of laboratory analysis to determine the limitations and quantity of data. The quality of the data collected in support of the sampling activity was considered acceptable. Data validation reports are provided in **Appendix D2**.

The data validation process assigned data qualifiers to results that did not meet specified laboratory protocols (J, U, and UJ flags) but were still considered acceptable via the data validation process as well as the "X" qualifier for data that were affected by serious deficiencies and exclusion of the data is recommended by data validation. The validation qualifiers assigned are:

- J: The result is positively identified, and the associated numerical value is an estimated quantity with an unknown bias.
- UJ: The result is not detected above the reported limit of detection (LOD); however, the reported limit is approximate and may or may not represent the actual limit necessary to accurately and precisely measure the analyte in the sample.
- U: The result is not detected above the reported sample LOD.
- X: The sample results (including non-detects) were affected by serious deficiencies in the ability
 to analyze the sample and to meet published method and project quality control criteria. The
 presence or absence of the analyte cannot be substantiated by the data provided. Acceptance

or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Revision Number: 0

Revision Date: August 2022

Hold Time Issues: Six samples (CH-MW044S-1220, CH-MW044D-1220, CH-MW045D-1220, S70627-1220, S76304-1220, and S76304-1220D) did not meet the recommended method prep hold times for 8270D and 8270D SIM due to delayed delivery via FedEx delivery services. Analyte detects were qualified "J" and non-detected (ND) values were qualified "UJ" in the samples.

Nonconformance Issues: The nonconformance concerns addressed during the Phase IV field investigation data validation are listed below by analytical method:

SVOCs via Method SW8270D:

Issue: laboratory control samples (LCSs) recovered outside acceptable limits for dimethyl phthalate and butyl benzyl phthalate. The lab re-extracted the samples outside of recommended extraction hold times.

The first set of data was reported and qualified. **Affected Samples**: S19494-1220 (in sample delivery group [SDG] number 410-23193); S79269-1220D (in SDG number 410-23807); CH-MW044S-0221, S48579-0221, S19494-0221, S19495-0221, S1202-0221, S70627-0221, S3599-0221, CH-MW045S-0221, CH-MW044D-0221, CH-MW045D-0221, and S58922-0221 (in SDG number 410-30212); S17231S-0221, S17231S-0221D, S79269-0221, S79269-0221D (in SDG number 410-30714); and S76304-0221 (in SDG number 410-30726).

SVOCs via method SW8270D:

Issue: The original analyses of several samples had low surrogate recoveries; the lab re-extracted the samples outside of recommended extraction hold times and all samples have acceptable surrogate recoveries. First set of data was reported and qualified.

Affected Samples: S19494-1220 (in SDG number 410-23193); S79269-1220 (in SDG number 410-23807); and CH-MW045S-0221, CH-MW045D-0221 (in SDG number 410-30212).

PAHs via Method SW8270D SIM:

Issue: Due to a known mis-spike of LCS for prep batch 410-77182, the associated samples were re-prep but outside holding time with acceptable limits. First set of data was reported and qualified. The qualified field sample results were considered usable as estimated values with a negative bias.

Affected Samples: CH-MW044S-1220, S3599-1220, S1202-1220, and S58922-1220 (in SDG number 410-23807).

PAHs via method SW8270D SIM:

Issue: The original analyses of several samples had low surrogate recoveries; the lab re-extracted the samples outside of recommended extraction hold times and all samples have acceptable surrogate recoveries. First set of data was reported and qualified.

Revision Number: 0

Revision Date: August 2022

Affected Samples: S79269-1220 (in SDG number 410-23807); CH-MW044D-1220 and S70627-1220 (in SDG number 410-24516); and S17231S-1221D (in SDG number 410-30714).

Hexavalent Chromium via Method USEPA 218.6:

Issue: The pH was found to be approximately 8.0-8.5. Data were reported and qualified.

Affected Samples: S19494-1220 (in SDG number 410-23193); S19495-1220, S48579-1220, S79269-1220, S79269-1220D, CH-MW045S-1220, S58922-1220, S3599-1220, S1202-1220, S17231S-1220 (in SDG number 410-23807); and CH-MW044S-1220, CH-MW044D-1220, CH-MW045D-1220, S70627-1220, S76304-1220, and S76304-1220D (in SDG number 410-24516).

VOCs via Method SW8260C:

Issue: Sample was received with headspace. Data were reported and qualified.

Affected Samples: CH-TB-0221-03 (in SDG number 410-30726).

For additional details regarding the nonconformance issues, see **Appendix D2** (data validation reports).

2.15 Data Usability Assessment

Although the Phase IV data are considered generally usable, some degree of uncertainty is typically encountered. Specific factors that may contribute to the uncertainty of the data evaluation are described below. The following Data Quality Indicators, including PARCCS are important components in assessing data usability. The data validation reports for Phase IV are presented in **Appendix D2** and provide explanations for all qualified data in greater detail, as well as an assessment of data usability.

The percentages in the following sections represent the percent of outliers when compared to the entire dataset. Percentages of QC exceedances were calculated by using all the analytes per method that had an issue divided by the total number of usable analytes multiplied by 100. Overall, the dataset is considered acceptable except for a few rejected results presented in the completeness section.

2.15.1 Precision

Precision refers to the reproducibility of measurements. It is strictly defined as the degree of mutual agreement among independent measurements as the result of the repeated application of the same process under similar or prescribed conditions. Precision reflects random error and may be affected by systematic error. It also reflects variation imposed by a given matrix.

Laboratory precision is measured by the variability associated with duplicate (two) analyses. Multiple LCS analyses, LCS/LCS duplicate (LCSD) relative percent differences (RPDs), and MS/MSD RPDs were evaluated to assess laboratory precision. The LCS recoveries, LCS/LCSD RPDs, and MS/MSD RPDs were within QAPP-specified QC limits, excluding the anomalies presented in the data validation reports, which are summarized in the following sections. Total precision is the measurement of the variability associated with the entire sampling and analytical process. The project QC limits for field duplicate samples are RPD \leq 30% for water. Field duplicates do not characterize total measurement precision. The statistical design automatically takes the variability of these duplicates into account. Therefore, the non-compliant RPDs summarized in this section of the document do not actually affect any decisions. The RPDs for field duplicate pairs for aqueous matrices outside of the QC limits are as follows:

Revision Number: 0

Revision Date: August 2022

- VOCs by SW-846 8260C at 0%
- SVOCs by SW-846 8270D at 0%
- PAHs by SW-846 8270D SIM at 0.93%
- PCBs by SW8082A at 0%
- Metals by SW-846 6020B/7470A at 1.37%
- Hexavalent chromium by USEPA Method 218.6 at 1.43%

2.15.2 Accuracy

Accuracy is a measure of confidence between a measured value and an expected or true value. A smaller difference between the measured value of a parameter and its expected value indicates a more accurate measurement. A more precise or reproducible result is more reliable or accurate. Accuracy was assessed for each method, analyte, and matrix by comparing surrogate, LCS, LCSD, and MS/MSD recoveries to the QAPP-specified QC limits. Low percent recoveries indicate a low bias, while high percent recoveries indicate a high bias.

LCSs are prepared by the addition of known concentrations of each analyte to media known to be free of target analytes. LCSs were analyzed for every analytical batch to demonstrate the accuracy of the analytical systems. LCS accuracy limits are matrix- and method-specific. Laboratory control spike duplicate accuracy was expressed as percent recovery and QC limits range between 12% and 140%; laboratory control spike duplicate precision was expressed as RPD and QC limits range between 15% and 35%).

The LCS displayed percent recoveries outside of the QC limits is as follows:

VOCs by SW-846 8260C at 0%

- SVOCs by SW-846 8270D at 5.52%
- PAHs by SW-846 8270D SIM at 11.28%
- PCBs by SW8082A at 0%
- Metals by SW-846 6020B/7470A at 0%
- Hexavalent chromium by USEPA Method 218.6 at 0%

An MS pair is prepared, analyzed, and reported for all preparation batches. MS pairs demonstrate that the analytical system was in control for the matrix being tested. MS pairs were analyzed for every analytical batch to demonstrate the ability of the laboratory to recover a concentration of a known quantity in site matrix media. MS/MSD accuracy limits are matrix- and method-specific. MSD accuracy was expressed as percent recovery and QC limits range between 10% and 140%; MSD precision was expressed as RPD, and QC limits ranged between 15% and 24%.

Revision Number: 0

Revision Date: August 2022

The MS/MSD performed on parent samples displayed percent recoveries outside of the QC limits as follows:

- VOCs by SW-846 8260C at 0%
- SVOCs by SW-846 8270D at 0.10%
- PAHs by SW-846 8270D SIM at 0.81%
- PCBs by SW8082A at 0%
- Metals by SW-846 6020B/7470A at 0.12%
- Hexavalent Chromium by USEPA Method 218.6 at 0%

Surrogate constituents were added to all field samples and QC samples for organic analyses during sample preparation. Surrogate constituents are substances with properties that mimic the analytes of interest. Surrogate constituents are unlikely to be found in field samples and are added to demonstrate the laboratory's ability to detect a similar constituent at a known concentration. Expected surrogate recovery percentages vary depending on the method, range between 10% and 148%.

Surrogate percent recoveries not within QC limits are as follows:

- VOCs by SW-846 8260C at 0%
- SVOCs by SW-846 8270D at 2.71%
- PAHs by SW-846 8270D SIM at 6.74%

PCBs by SW8082A at 0%

Calibration and method blanks consist of media containing no constituents of interest. Calibration blanks are reagent water and are used to determine the zero point for initial and continuing instrument calibrations; calibration blanks above the LOD require laboratory investigation and correction. Method blanks are comprised of media similar to the batch of associated samples; they are prepared and analyzed using the same methodologies as field samples and are used to determine accuracy bias. Analytes in method blanks detected at concentrations greater than the detection limit (DL) may lead to high bias and false positive data.

Revision Number: 0

Revision Date: August 2022

Percentages of data qualified due to method blank contamination are as follows:

- VOCs by SW-846 8260C at 0%
- SVOCs by SW-846 8270D at 0%
- PAHs by SW-846 8270D SIM at 0.12%
- PCBs by SW8082A at 0%
- Metals by SW-846 6020B/7470A at 0%
- Hexavalent chromium by USEPA Method 218.6 at 0%

2.15.3 Representativeness

Representativeness qualitatively expresses the degree to which the data accurately and precisely depict the characteristics of a population, whether referring to the distribution of chemicals within a sample, a sample within a matrix, or the distribution of a chemical at a site. Factors that affect the representativeness of analytical data include appropriate sample population definitions, proper sample collection and preservation techniques, analytical holding times, use of standard analytical methods, and determination of matrix or analyte interferences.

Field sample collection, preservation, and shipping were performed in accordance with the Uniform Federal Policy (UFP)-QAPP and field SOPs. No quality issues were observed by the field lead during field activities. All preservation techniques were followed by the field staff, and all technical and analytical holding times were met by the laboratory. The laboratory used approved standard methods, as outlined in the UFP-QAPP, for all analyses.

Analytes in field-related blanks were detected at concentrations greater than the DL in either the trip blank or equipment blank samples.

Percentages of data qualified due to blank contamination are as follows:

VOCs by SW-846 8260C at 0%

- SVOCs by SW-846 8270D at 0%
- PAHs by SW-846 8270D SIM at 0%
- PCBs by SW8082A at 0%
- Metals by SW-846 6020B/7470A at 0.01%
- Hexavalent chromium by USEPA Method 218.6 at 0%

2.15.4 Comparability

Comparability is a qualitative indicator of the confidence with which one dataset can be compared to another dataset. The objective for this QA/QC program is to produce data with the greatest possible degree of comparability. The number of matrices that are sampled and the range of field conditions encountered are considered in determining comparability. Comparability was achieved by using standard methods for sampling and analysis, reporting data in standard units, normalizing results to standard conditions, and using standard and comprehensive reporting formats. Complete field documentation using standardized data collection forms supported the assessment of comparability.

Revision Number: 0

Revision Date: August 2022

Comparability is the extent to which data from one study can be compared directly to either past data from the current project or data from another study. Using standardized sampling and analytical methods, units of reporting, and site selection procedures helps ensure comparability. Standard field sampling, field documentation using standardized data collection forms, and typical laboratory protocols were used in this investigation.

2.15.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount of data expected under normal conditions. Project completeness is determined by evaluating the planned versus actual quantities of data. The number of valid results divided by the number of possible individual analyte results, expressed as a percentage, determines the completeness of the dataset. Results for 2-methylphenol, 4-chloro-3-methylphenol, 4-methylphenol, and benzoic acid in sample CH-MW045D-0221 were qualified "X" by the data validation because the recoveries of acid surrogates in the sample were below 10%. During data usability assessment, these "X" qualified results were reviewed by the AECOM and USACE project team and were considered unusable. ("R" qualifier was used as the final qualifier). For completeness requirements, valid results are all results not qualified with an R-flag after a usability assessment was performed.

Percent completeness for parameters is as follows:

VOCs by SW-846 8260C at 100%

• SVOCs by SW-846 8270D at 99.7% (constituent acid surrogates were below 10%. For the SVOC analyte group, four non-detect acid constituents were qualified "R" [rejected results] in sample CH-MW045D-0221).

Revision Number: 0

Revision Date: August 2022

- PAHs by SW-846 8270D SIM at 100%
- PCBs by SW8082A at 100%
- Metals by SW-846 6020B/7470A at 100%
- Hexavalent chromium by USEPA Method 218.6 at 100%

2.15.6 Sensitivity

Sensitivity is the capability of a test method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest. The DoD Quality Systems Manual (QSM) measures analytical sensitivity in terms of the DL, LOD, and limit of quantitation (LOQ). To meet the needs of the data users, project data must meet the measurement performance criteria for sensitivity and project limits specified in the QAPP. To meet measurement quality objectives for analytical sensitivity, the LOD for NDs and the LOQs for detected concentrations need to be less than the project's decision limits. To achieve the DQOs for sensitivity outlined in the QAPP, the laboratory reported all field sample results at the lowest possible dilution. QLs may be greater than the project required LOQs due to dilutions. The data validators also flagged all positive results greater than the DL and less than the LOQ "J," as these positive estimate detections were less than the lowest calibration standard. All dilutions were performed appropriately and correctly.

3 CONCEPTUAL SITE MODEL

This section presents the CSM summarizing the hydrology, hydrogeology, and potential receptors and exposure pathways for the UGA at Camp Hero and the surrounding area. The data collected during the Phase IV RI is intended to supplement the CSM of the environmental assessment areas presented in the RI Report (AECOM-Tidewater JV, 2019a).

Revision Number: 0

Revision Date: August 2022

The 2019 RI presented a CSM that included comprehensive sampling of surface water, sediment, soil, and perched groundwater underlying and adjacent to environmental assessment areas at Camp Hero. In order to further assess the deeper underlying UGA, the Phase IV RI conducted sampling of available UGA wells at Camp Hero and in the vicinity of Camp Hero. In addition, four new UGA wells were installed and sampled at Camp Hero, downgradient of environmental assessment areas to further define the geology, hydrogeology, and the groundwater quality of the UGA.

3.1 Site Description

Camp Hero State Park is located on the eastern tip of the south fork of Long Island, New York, approximately 5 miles east of the Village of Montauk. The park consists of 469 acres and is generally bound by Montauk Highway (Route 27) and Montauk Point State Park to the north, the Atlantic Ocean to the south, the Montauk Point Lighthouse and Museum to the east, and Camp Hero State Park's undeveloped sanctuary area to the west. A residential area is located adjacent to the northwest boundary of the park (Madison Hills) and to the southwest boundary of the park (Old Montauk Highway). Future land use at Camp Hero and the surrounding areas described above are anticipated to remain the same.

3.2 Current Groundwater Use

Groundwater is not currently obtained for drinking water use from the UGA at Camp Hero State Park. Groundwater was historically obtained from several UGA supply wells at Camp Hero by the DoD during use of the property from 1942 to 1974. A portion of Camp Hero (the former AT&T Building/ current park officer building) is now supplied drinking water by SCWA. A UGA well for non-potable purposes also exists at the Camp Hero Motor Pool Building. Although groundwater is not currently obtained for drinking water use from the UGA at Camp Hero State Park, potential future use of the UGA as a drinking water source cannot be ruled out and is included in the risk assessment evaluation of this Phase IV RI Report Addendum.

Groundwater from the UGA is currently obtained for drinking water use via privately owned wells at residences located along Old Montauk Highway to the southwest of Camp Hero State Park. Additionally, groundwater from the UGA is currently obtained for drinking water use at the Montauk Point State Park and the Montauk Lighthouse and Museum located northeast and adjacent to Camp Hero. The Madison Hills residential area located northwest of Camp Hero historically obtained drinking water from the UGA via community supply wells, but this community is now supplied drinking water by SCWA.

3.3 Hydrology

Surface water features at Camp Hero consist primarily of small unnamed drainage streams and wetland areas. The surface water flow at Camp Hero occurs primarily through drainage channels to three small unnamed streams. Two of the streams collect water from the western portion of Camp Hero and flow northwestward to Oyster Pond; the third stream receives surface water from the eastern portion of Camp Hero and flows north to south and discharges to the Atlantic Ocean. Some of the drainage channels and wetlands contain water most of the year because they are underlain by deposits of low permeability till, which inhibit infiltration. Most of these drainage features become seasonally dry at Camp Hero when precipitation is low and evapotranspiration is high (USGS, 1986).

Revision Number: 0

Revision Date: August 2022

Precipitation that is not lost through evapotranspiration or surface discharge to drainage channels percolates downward into the underlying till and stratified drift unit. The downward movement of water through the till and stratified drift is impeded by interbedded lenses of clay and silt. The water forms perched water lenses due to the presence of silty and clayey sand lenses interbedded with the less permeable lenses of silt and clay. Some perched water moves laterally along the interbedded layers and discharges as seepage into drainage channels, wetlands, and shoreline areas. The remaining water is available to continue moving downward as recharge (USGS, 1986).

The net amount of precipitation that results in recharge of the UGA in the area of Camp Hero and the areas where recharge occurs is difficult to assess. Despite the numerous lenses of perched water, the underlying till and stratified drift unit functions primarily as confining layers that largely inhibit recharge to the underlying UGA (USGS, 1986). Based on review of site conditions, the areas of Camp Hero where the greatest recharge of the UGA would likely occur is in downgradient wetland areas, streams, and swales, where water accumulates most of the year, and infiltrated water is under a downward vertical hydraulic head pressure.

3.4 Hydrogeology

The following section provides a summary of the hydrogeology at Camp Hero. A detailed discussion of the hydrogeology and related figures can be referenced in the RI Report (AECOM-Tidewater JV 2019a). The regional aquifer system in Suffolk County consists of a sequence of unconsolidated deposits overlying crystalline bedrock. The hydrogeologic units, in descending order, are as follows: Pleistocene-aged glacial deposits that form the undifferentiated till and stratified drift that contain perched water; a confining unit consisting of the Montauk Till Member; the UGA, the underlying Marine Clay; the Cretaceous-aged deposits that compose the Magothy aquifer; the underlying Raritan Clay; and the Lloyd aquifer. **Figure 3-1** (**Appendix A**) shows the regional geologic strata and hydrogeologic units. Note that, in the Montauk area, the subsurface lithology below the UGA are saturated with saltwater (USGS, 1986).

The upper 200 feet of these glacial deposits at Camp Hero can be broadly divided into an upper unit, consisting of undifferentiated till and stratified deposits and a lower unit of stratified deposits. Within the

upper unit, the lower 20 to 40 feet consist of interbedded clay, silt, and thin lenses of fine brown clay (Montauk Till Member) that act as a confining unit above the UGA. The middle unit is compact clayey and gravelly till (Glaciofluvial deposits), occasionally grading laterally into fine-grained stratified sand deposits. Overlying the compact till are typically moraine and outwash deposits (Ronkonkoma Drift) that range from 0 to 30 feet thick bgs and are composed mostly of lenses of silt, fine to medium sand, and clayey sand (USGS, 1963).

Revision Number: 0

Revision Date: August 2022

During the previous phases of the RI at Camp Hero, shallow, perched water lenses were encountered in the shallow subsurface, due to the presence of silty sand and clayey sand lenses interbedded with units and less permeable silt and clay, which impede downward movement of water. The perched water lenses are generally small, discontinuous pockets of water temporarily stored in isolated lenses of permeable material. The thicknesses of the interbedded layers of silty sand, silt, and clay layers encountered in the subsurface during the RI were variable at the environmental assessment areas.

The greatest thickness of silt and clay units underlying perched groundwater in the upper unit was documented at DU01 during the 2019 RI. Subsurface silt and clay were encountered at soil boring DU01-S009 from 8.5 feet bgs to the total depth of the borehole at 17 feet bgs and at soil boring DU01-S015 from 8.5 feet bgs to the total depth of the borehole at 29 feet bgs. The result of geotechnical laboratory analysis of hydraulic conductivity of core samples taken at these borings were equivalent to 0.0001 feet per day to 0.0006 feet per day. The very low hydraulic conductivity results of the clay support the observations that the silt and clay layers represent confining lenses underlying the perched water-bearing zone lenses at DU01 (AECOM-Tidewater JV, 2019a).

As described in previous **Section 2.6**, four new permanent UGA monitoring wells (two sets of "nested" wells) were installed during the Phase IV RI via sonic drilling methods to assess the UGA at two locations between the RI site DU01 and the potential residential receptors (drinking water wells) along Old Montauk Highway to the southwest of Camp Hero. The geology encountered at UGA well locations CH-MW044S, CH-MW044D, CH-MW045S, and CH-MW045D is consistent with the summary of regional geologic strata and hydrogeologic units shown in **Figure 3-1**. Borehole logging of the continuous soil cores and grain size analysis at the well locations documented 73 to 93 feet of undifferentiated till and stratified drift overlying 12 to 15 feet of clay (confining unit) above the UGA. The UGA consisted primarily of quartz sand, which was encountered up to 50 feet in thickness at deep wells CH-MW044D and CH-MW045D. A cross-section depicting the lithology at the well locations is provided as **Figure 3-2**. A well-defined and abrupt change in lithology was encountered between the overlying undifferentiated till and stratified drift into the clay unit and also from the clay unit into the underlying UGA.

The upper unit of undifferentiated till and stratified drift consisted primarily of silty sand with interspersed lenses of clayey sand, silt with sand, and clayey sandy in the lower portion of the upper unit. The clay unit was primarily dark grayish brown, lean, with medium plasticity. The UGA consisted primarily of

alternating layers of well- to poorly graded quartz sand. Moist to very moist soils were encountered in the upper unit of undifferentiated till and stratified drift and in the clay unit. The quartz sand of the UGA is saturated with groundwater. Groundwater gauging at each newly installed UGA wells measured the potentiometric surface of the groundwater at approximately 40 feet above the interface of the clay unit and UGA.

Revision Number: 0

Revision Date: August 2022

Published horizontal hydraulic conductivity values of the UGA in the Montauk area range from 190 to 350 feet per day with an average value of 220 feet per day (USGS, 1986). The horizontal conductivity of the overlying clay unit and interbedded layers of silty sand, clayey sand, silt with sand, and silty clay varies considerably in the undifferentiated upper unit.

During previous phases of the RI, testing of the representative hydraulic conductivity of the perched water bearing soils at Camp Hero, was completed at five monitoring wells (CH-MW016, CH-MW018, CH-MW019, CH-MW020, and CH-MW021) at DU01. Wells where testing was completed were screened in stratified drift, undifferentiated deposits of till and with screens 5 feet bgs and 15.5 feet bgs. The hydraulic conductivity results showed that the hydraulic conductivity was variable and ranged at well locations on a sitewide basis from 0.006 feet per day to 1.9 feet per day. This variability of the hydraulic conductivity values across the site is due to the presence and various thicknesses of interbedded layers of silty sand, silt, and clay layers in the undifferentiated till that contains the perched groundwater (AECOM-Tidewater JV, 2019a).

As described in **Section 2.10**, the depth to groundwater was measured in UGA wells onsite at Camp Hero and offsite in the vicinity of Camp Hero in October 2020, December 2020, and February 2021. A consistent flow direction of the UGA at Camp Hero was observed during the three gauging events. As shown on **Figure 2-2** and **Figure 2-3**, the UGA flow direction at Camp Hero is from topographically high areas radially outward toward lower areas presumably under artesian pressure. A UGA groundwater divide trends from northeast to southwest along these elevated areas of Camp Hero, as shown on **Figure 2-2** and **Figure 2-3**.

The flow direction of the UGA from former DoD operational areas and Camp Hero RI environmental assessment areas in the middle to northern portion of Camp Hero is generally to the west and east on either side of the divide (**Figure 2-2** and **Figure 2-3**). The former Madison Hills Well Field potential receptors are located north of Camp Hero RI environmental assessment areas and are not downgradient based on the estimated UGA flow direction. The Montauk Point State Park supply well and the Montauk Point Lighthouse supply well are located in elevated areas northeast of environmental assessment areas and are not downgradient of environmental assessment areas based on the estimated UGA flow direction. In the southern portion of Camp Hero, including the environmental assessment area DU01, the UGA flow is west, southwest, south, and southeast from the UGA groundwater divide. The southwest flow direction radiant from Camp Hero DU01 is toward potential receptors (drinking water wells) south of Old Montauk

Highway. However, the UGA flow direction appears to trend more westerly near the southwest perimeter of Camp Hero and the area of potential receptors south of Old Montauk Highway.

Revision Number: 0

Revision Date: August 2022

A relatively low gradient of 1.0 to 1.5 feet of the UGA potentiometric surface was measured across Camp Hero during the Phase IV RI. Based on the gradient, the elevation of the potentiometric surface at 40 feet above the clay confining unit at the new UGA wells, and existing well logs showing the clay confining unit present at depth at other supply and observation wells at Camp Hero, it appears the UGA is under confining conditions across Camp Hero.

3.5 Summary of Available Upper Glacial Aquifer Water Quality Data

Available analytical data from historical and current UGA supply wells and monitoring wells in the vicinity of Camp Hero were reviewed from multiple sources. These sources included SCWA Water Quality Reports (SCWA, 2016a-b; SCWA, 2017a-b; SCWA, 2018a-b; SCWA, 2019a-b; SCWA, 2020a-b), USGS National Water Information System (USGS, 2019), Suffolk County Department of Health Services Bureau of Drinking Water supply well testing results, and various USGS peer reviewed reports (USGS, 1986; Perlmutter and DeLuca, 1963; Cartwright, 2004). The Long Island Commission for Aquifer Protection (LICAP) water quality mapping and database known as WaterTrag (LICAP, 2019) and USEPA's Storage and Retrieval (STORET) Water Quality Exchange (USEPA, 2019) were also reviewed for water quality data in the vicinity of Camp Hero. The location of UGA groundwater supply and monitoring wells identified in the Camp Hero area presented on Figure 2-1. A summary of information obtained for these UGA supply and monitoring wells in the Camp Hero area is provided in **Table 3-1**.

The water quality analytical data obtained for this review ranges from 1953 to 2016 and contained analyses for water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, and herbicides. The analytical data was reviewed and compared to USEPA primary and secondary maximum contaminant levels (MCLs) and New York State MCLs (specifically for lead). **Table 3-1** summarizes instances where MCLs were exceeded. Most of the groundwater data results shown on **Table 3-1** are raw data results, meaning the groundwater was not treated prior to analysis. **Table 3-1** provides a summary of the data grouped by location.

Review of the water quality analytical data shows that beyond the Camp Hero footprint, such as at the former Madison Hills residential neighborhood supply wells, there were historical exceedances of the NYSDOH MCL for lead and United States Environmental Protection Agency (USEPA) MCL for arsenic in raw water samples; however, it is extremely unlikely that these exceedances are associated with former Camp Hero FUDS activities. The exceedance of the NYSDOH MCL for lead was a single occurrence (in 1996) at one well, with later data showing no such exceedance for this metal. The occurrence of arsenic in the UGA of Long Island is believed to be naturally occurring and associated with erosion of rocks containing arsenic in the glacial till (SCWA, 2020a). As stated in the 2004 USGS arsenic study, "Aquifer zones with arsenic-bearing iron-oxides or sulfide minerals can be a source of arsenic under oxidizing and

reducing conditions, respectively." (USGS, 2004). Based on verbal interviews with an SCDHS representative, the SCWA extended public water supply to the Madison Hills residential neighborhood in 2010 to replace UGA supply wells due to arsenic concentrations in exceedance of the MCL.

Revision Number: 0

Revision Date: August 2022

Iron and manganese were also identified above the NYSDOH MCLs in many raw UGA water quality samples collected in the Camp Hero area and regionally in Suffolk County (SCWA, 2020). Manganese is a common element in rocks, soil, water, plants, and animals. Manganese occurs naturally in water after dissolving from rocks and soil, and it may also occur if manganese gets into surface or groundwater after improper waste disposal in landfills or steel production. Iron can be elevated in drinking water in areas where there are naturally occurring high concentrations of iron in soil and rocks, and where iron salts are used in the water treatment process. Iron (and lead) can also get into drinking water from corrosion of cast iron, steel, and galvanized iron pipes used for water distribution.

SCWA publishes a supplemental annual water quality report documenting the maximum and average concentrations of these metals measured in raw groundwater samples obtained from UGA supply wells in each SCWA water supply district, including the SCWA Camp Hero and Montauk Point water supply district (SCWA, 2016b; SCWA, 2017b; SCWA, 2018b; SCWA, 2019b; SCWA, 2020b). The SCWA Camp Hero and Montauk Point water supply district draws water from eight well fields located west of Camp Hero. The nearest well field is located approximately 3 miles west of Camp Hero. An annual SCWA water quality report provides the results of treated UGA sample analysis for the various water districts (SCWA, 2016a; SCWA, 2017a; SCWA, 2018a; SCWA, 2019a; SCWA, 2020a). The reports document the presence of iron, manganese, and other metals in the UGA within the region. Naturally occurring metals, which may exceed MCLs in groundwater samples obtained from the UGA during the Phase IV RI, were discussed in the risk characterization section as additional lines of evidence in the uncertainty assessment of the HHSE.

3.6 Potential Human Health Exposure Pathways and Receptors

Potential human receptors include an onsite and offsite future resident. A screening level evaluation was conducted using risk-based screening levels that incorporate standard exposure parameters and toxicity factors. This evaluation was conducted to determine the potential for adverse health effects due to the most conservative risk which is based on a resident's exposure to tap water.

Groundwater-related exposure pathways addressed in the risk-based screening levels include ingestion of drinking water, dermal contact, and inhalation of vapors (if volatile groundwater chemicals of potential concern [COPCs] were identified). The HHSE also evaluated vapor intrusion (VI) as a potential groundwater pathway of concern using USEPA's vapor intrusion screening levels (VISLs).

3.7 Summary of Conceptual Site Model

Precipitation that is not lost through evapotranspiration or surface water runoff to drainage channels percolates downward into the underlying fill material, till, and stratified drift unit. The water forms perched water lenses due to the presence of more permeable silty and clayey sand lenses interbedded with the less permeable lenses of silt and clay. Some perched water moves laterally and discharges as seepage into downgradient drainage channels, wetlands, and shoreline areas. The remaining water continues downward as recharge to the UGA.

Revision Number: 0

Revision Date: August 2022

The areas of Camp Hero and surrounding vicinity where recharge of the UGA primarily occurs are difficult to define. In elevated areas of Camp Hero where there is more till with greater clay content and steeper slopes, the amount of surface water runoff is greater and downward movement of water as recharge to the UGA is inhibited. Based on site observations and review of literature, the areas of Camp Hero and vicinity with the greatest potential for recharge are located in areas with less slope and less till thickness, such as wetland areas, stream beds, and drainage swales. These areas that accumulate water most of the year likely provide the greatest potential for infiltration and recharge to the UGA. The water that does infiltrate in these areas likely remains under a downward vertical hydraulic pressure that facilitates recharge to the UGA. The surface water, sediment, subsurface soil, and perched water in these areas, if present downgradient of environmental assessment sites, were comprehensively sampled during the first three phases of the Camp Hero RI with no evidence of contaminant migration from the sites.

Based on the Phase IV RI groundwater gauging of supply and observation wells on and in the vicinity of Camp Hero, the UGA flow direction at Camp Hero is from topographically high areas radially outward toward lower areas. A UGA groundwater divide trends from northeast to southwest along the elevated areas of Camp Hero. Based on the gauging results, the former Madison Hill supply wells are located north of Camp Hero and are not directly downgradient of Camp Hero. The Montauk Point State Park supply well and the Montauk Point Lighthouse supply well are located to the northeast of Camp Hero and are not directly downgradient. In the southern portion of Camp Hero, including investigation area DU01, the UGA flow is west, southwest, south, and southeast from DU01. The southwesterly flow direction from DU01 is generally toward potential receptors south of Old Montauk Highway. However, based on the gauging results, the flow direction of the UGA trends more westerly near the southwest perimeter of Camp Hero and the potential receptors.

A relatively low gradient of 1.0 to 1.5 feet of the UGA potentiometric surface was measured at supply wells and observation wells across Camp Hero during the Phase IV RI. The elevation of the potentiometric surface measured at 40 feet above the clay confining unit at the new UGA wells did not vary significantly across Camp Hero. Based on the potentiometric surface measurements and review of site-wide well logs showing the clay confining unit present above the UGA across Camp Hero, it appears the UGA is under confining conditions across Camp Hero and vicinity.

To further assess whether contaminants at historical FUDS activities at Camp Hero could have been transported by groundwater recharge from perched water bearing zones to the UGA, two rounds of groundwater data were collected from seven representative UGA wells at Camp Hero and seven UGA wells in the vicinity of Camp Hero. The groundwater samples were analyzed for a comprehensive list of constituents to determine if there were indications of contaminants at Camp Hero in the UGA that could be reasonably attributed to FUDS activities and have been transported in groundwater to the UGA. As discussed in detail in **Section 4.0** (Nature and Extent of Contamination), a comparison of analytical data in groundwater from onsite and offsite wells indicates a consistent pattern of elevated levels of naturally occurring metals such as iron, manganese, and sodium amongst both onsite and offsite wells. Several metals were found to have widespread distribution, in both the onsite wells and offsite wells, supporting the conclusion that the metals are naturally occurring and not the result of a CERCLA release. The metals and other comprehensive analytical results of the UGA sample analysis are discussed in **Section 4.0** and support the CSM findings that residual contaminants from Camp Hero have not been transported by groundwater from shallow, perched water-bearing zones to the UGA.

Revision Number: 0

Revision Date: August 2022

4 NATURE AND EXTENT OF CONTAMINATION

Section 4.0 summarizes the groundwater analytical data that were obtained during the Phase IV RI and used for evaluation of potential human health risks. The tables referenced in this section are provided in **Appendix B1.** A comprehensive table of the Phase IV groundwater analytical results is provided in **Appendix B2**, which includes **Tables 4-1**, **4-2**, **and 4-3** that present summary statistics and screen results for all constituents analyzed for the onsite and offsite groundwater study areas. **Table 4-4** presents a comparison of shallow groundwater data from DU01 collected during previous phases of the RI to the UGA (deep) groundwater from onsite wells collected as part of the Phase IV RI. This section provides a discussion of the results and extent of contamination but does not address whether any detected constituents have actionable risk to human receptors; those topics are addressed in **Section 6.0** (HHSE).

Revision Number: 0

Revision Date: August 2022

The nature and extent of contamination are based on the data collected during the Phase IV investigation only, which focused on the deep groundwater UGA. The 2019 RI Report addresses the full range of media beneath Camp Hero FUDS except for the UGA (AECOM-Tidewater JV, 2019a). While the Phase IV investigation was not intended to represent a comprehensive evaluation of the UGA, sufficient analytical data were obtained to determine the nature and extent of metals, VOCs, SVOCs, and PCBs within the UGA for both onsite and offsite locations. A few general notations are provided below, prior to the discussion of onsite and offsite data.

As noted in previous sections, four newly installed monitoring wells were installed onsite and downgradient from DU01 as part of the Phase IV field effort. These four wells are henceforth referred to as "sentinel wells" to simplify the nature and extent discussion. Also, two rounds of data were obtained to provide a more robust dataset.

A limited statistical evaluation was conducted on the data, as provided in **Appendix E**, and concluded that: (1) the data between the two sampling rounds were statistically similar such that the data could be evaluated together, (2) the data for the naturally occurring metal iron were statistically consistent between onsite and offsite wells for both rounds, and (3) naturally occurring metal total and dissolved manganese from both the December 2020 and February 2021 events were found to be significantly higher in the onsite wells compared to the offsite wells. Iron and manganese were selected for additional statistical evaluation as presented in **Appendix E** due to their elevated number of detections and concentrations compared to other detected constituents.

Data were initially screened against the most conservative SLs that were presented as project action levels in the Camp Hero Phase IV RI Work Plan including: (1) USEPA MCLs, (2) USEPA residential tapwater RSLs, (3) USEPA residential VISLs, (4) NYSDOH MCLs, and (5) NYS Technical and Operational Guidance Series (TOGS). Constituents that exceeded its respective SL was evaluated further in the human health risk assessment.

Due to limitations of chemical analysis procedures, small concentrations cannot be precisely measured. The laboratory instrument can produce a value that is below the LOQ and is referred to as an "estimated" value with a "J" qualifier next to the numerical number. Many of the reported detections from the Phase IV RI sampling events were estimated "J" values.

Revision Number: 0

Revision Date: August 2022

In both sampling events, hexavalent chromium was analyzed by Method 218.6 with a LOD of 9.0 ug/L. This LOD was well above the hexavalent chromium screening criteria of 0.035 ug/L. Total chromium was analyzed by Method 6020 with a LOD of 0.8 ug/L, which is an order of magnitude lower than the LOD of hexavalent chromium. Upon further evaluation of the data after the February 2021 event, it was determined that the detection level of the analytical method was not low enough, so the February 2021 samples were also sent to a different lab for analysis of hexavalent chromium. The samples were not re-analyzed for total chromium. The hexavalent chromium results were analyzed by a more sensitive method and calculated trivalent chromium values from February 2021 event were primarily used for evaluation due to the lower detection levels of the hexavalent chromium data. Hexavalent and trivalent chromium are the only valent states of chromium that have published screening values. The trivalent chromium was calculated by subtracting the hexavalent chromium result from the total chromium result. Note that this calculation method would conservatively estimate trivalent chromium since there are other valent states of chromium besides hexavalent and trivalent.

PAHs and PCBs were analyzed and evaluated as individual PAHs and arochlors, respectively. In addition, for use in the risk assessments, several totals were also calculated, including total PCBs, total PAHs, and total benzo(a)pyrene (BaP) equivalent PAHs (referred to as total BaP PAHs). There were limited situations where the cumulative (aka "total") number for a group of constituents exceeded the SL, but the individual constituents did not. The approach for calculating these totals is provided in **Appendix E**.

As indicated in **Tables 4-1 and 4-2**, there are four metals (barium, iron, manganese, and sodium) that exceeded screening levels, but are not considered COPCs. Per DoD FUDS policy, constituents that are not classified as hazardous by CERCLA cannot be considered COPCs. Sodium is considered an essential nutrient and as such, was not considered a COPC as explained in the risk assessment section.

For the purposes of this section, constituents that were detected at least once are discussed below.

4.1 Onsite UGA Groundwater Results

The onsite deep UGA groundwater beneath Camp Hero was analyzed from seven wells for a comprehensive list of constituents to determine if there were indications of historical releases that could be reasonably attributed to FUDS activities and measured at levels requiring action. Many VOCs, SVOCs, and PAHs were detected at low levels close to the DL. Multiple metals were detected including arsenic, iron, manganese, and sodium, which are documented to be naturally occurring throughout the Montauk Point and Camp Hero area (AECOM-Tidewater JV, 2019a).

Table 4-1 provides the frequency of detections for each constituent in the onsite wells while **4-3** provides the frequency of detections above the most conservative screening value for detected constituents in groundwater. **Appendix B-2** provides a comprehensive table for all Phase IV data. Additional details for detections in onsite wells for each group of constituents are presented below.

Revision Number: 0

Revision Date: August 2022

VOCs

Eight VOCs were detected in at least one onsite well but below the most conservative screening level except for two constituents, 2-butanone and chloroform. Constituents detected include common petroleum-based compounds such as benzene, methyl tert-butyl ether (MTBE), o-xylene, and toluene. Other various VOCs were also detected: 2-butanone (also commonly known as methyl ethyl ketone or MEK), acetone, carbon disulfide, and chloroform. The following bulleted list provides a summary of the VOC data:

Constituents Above Screening Levels

- MEK was detected in 5 of the 7 onsite wells during the December 2020 sampling event, but at estimated values provided by the lab that were below the LOQ, except for the former AT&T Building well where MEK in groundwater was detected at 98 ug/L in December 2020, which is above the screening level of 50 ug/L. Of note is that MEK was ND (< LOD) in groundwater from all wells during the February 2021 sampling event including the former AT&T Building well.</p>
- Chloroform was detected in all the sentinel wells during the December 2020 sampling event, with groundwater from only one of the four sentinel wells exceeding the screening level (2.1 ug/L at CH-MW44D). All the groundwater data from the February 2021 sampling event were NDs (< LOD).

Constituents Detected Below Screening Levels

- Except for MTBE, the detections of the petroleum constituents were all estimated values provided by the lab. All results were below screening levels.
 - Benzene was detected as estimated values in sentinel wells CH-MW44S, CH-MW44D, and CH-MW45D in the December 2020 sampling event and only CH-MW44D in the February 2021 sampling event.
 - O-xylene was detected at estimated values in sentinel wells CH-MW44S and CH-MW44D during the December 2020 sampling event only.
 - Toluene was detected at an estimated value in the Former USAF Supply well during the December 2020 sampling event only.

 MTBE was detected in groundwater from one well (onsite USGS test well behind the former barracks building) during both sampling events with both detections at 1.2 ug/L versus the screening level of 10 ug/L.

Revision Number: 0

Revision Date: August 2022

- Acetone was detected in groundwater from 5 of 7 onsite wells during the December 2020 sampling event with the results estimated values in all but one location: Former AT&T Building well, 28 ug/L versus the screening level of 50 ug/L. In the February 2021 sampling event, 3 of 7 onsite wells had detections of acetone but all results were estimated values.
- Carbon disulfide was detected in only one onsite well during the December 2020 sampling event
 at a level that was an estimated value. During the February 2021 sampling event, carbon disulfide
 was detected in four wells, with the highest level of 23 ug/L versus the SL of 60 ug/L detected at
 CH-MW44D. The remaining three results were estimated values.

SVOCs

Three SVOCs (1,4-dioxane, 2-methylphenol, and 4-methylphenol) were detected in at least one onsite well as described below.

Constituents Above Screening Levels

• 1,4-dioxane was detected in three onsite sentinel wells. This emerging contaminant exceeded the NYSDOH MCL in one well at CH-MW044S from the December 2020 sampling event, with a value of 1.1 micrograms per liter (μg/L), which is just above the NYSDOH MCL of 1.0 μg/L; a federal MCL does not currently exist for this constituent. The detection of 1,4-dioxane groundwater from the same well during the subsequent sampling event in February 2021 was 0.18 μg/L (estimated value since it was reported below the LOQ). Note that analytical results are provided for 1,4-dioxane both in the VOC and SVOC categories, with the latter having a significantly lower LOD. The other two detections were estimated values below the LOQ.

Constituents Detected Below Screening Levels

- 2-methylphenol was detected in one well during the February 2021 sampling event at the former USAF Supply Well with the result an estimated value.
- 4-methylphenol was detected in the same former USAF Supply Well during both sampling events. The result from the December 2020 event was an estimated value while the result from the February 2021 event of 5.2 ug/L was significantly below the screening level of 93 ug/L.

PAHs

Fifteen PAHs were detected at least once in the offsite wells. All were detected at estimated concentrations below the LOQ. However, the BaP TEQ and Total PAH calculated values exceeded the SLs. As discussed further in Section 6 (Risk Assessment), the standard process of calculating the total

risk from PAHs conservatively includes the LOD value for each PAH in the calculation when the results are non-detect. Additional information is provided below:

Revision Number: 0

Revision Date: August 2022

Constituents Detected Above Screening Levels

- Total BaP TEQ (calculated) exceeded screening levels at two wells, CH-MW045D (December 2020) and the Former USAF Supply Well (February 2021). All other results were non-detect.
- Total PAHs (calculated) exceeded the screening level at three sentinel wells during the December 2020 sampling event. Total PAHs exceeded the SL at two sentinel and one additional well (Former USAF Supply Well) during the February 2021 sampling event. The highest level of total PAHs was 0.7 ug/L at Former USAF Supply well versus the SL of 0.2 ug/L.

Constituents Detected Below Screening Levels

Thirteen PAHs were detected in 5 of 7 onsite wells from both sampling events. A listing of the wells and constituents with detections are provided below:

- CH-MW044S: fluoranthene and phenanthrene (December 2020)
- CH-MW044D: fluoranthene (February 2021)
- CH-MW045S: fluoranthene and phenanthrene (December 2020)
- CH-MW045D: benzo(b)fluoranthene, benzo(ghi)perylene, indeno(1,2,3-cd)pyrene, naphthalene, and pyrene (December 2020 only); fluoranthene and phenanthrene (both December 2020 and February 2021)
- Former USAF Supply Well: acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene, phenanthrene, and pyrene (February 2021 only)

PCBs

All of the individual or total PCBs (calculated) were ND. However, it should be noted that the LOD was greater than the SL, so although all results were ND, a data sensitivity analysis was required as presented in Section 6 (Risk Assessment).

Revision Number: 0

Revision Date: August 2022

Metals

Only dissolved metals were compared to screening values to be consistent with federal and state guidelines. A total of 19 metals were detected in at least one onsite well with ten metals exceeding SLs one or more times. A comprehensive analysis of the metals detected in the onsite wells is presented below:

Constituents Detected Above Screening Levels

- Arsenic was detected above the SL in groundwater in 5 of 7 on-site wells. It should be noted that the LOD was higher than the SL for this metal. There were not any exceedances of the SL during the December 2020 sampling event whereas all four sentinel wells plus the Former AT&T well exceeded the SL during the February 2021 sampling event. The highest value was 1.9 ug/L (MW-CHMW045S) versus the SL of 0.052 ug/L, which was lower than the highest value found in the offsite wells.
- Chromium (VI) was detected above the SL in groundwater at one onsite well (Former USAF Supply Well) during the February 2021 sampling event (0.054 ug/L versus SL of 0.035 ug/L), which was significantly lower than the highest level detected in the offsite wells. As noted above, hexavalent chromium was not calculated from the December 2020 sampling event.
- Cobalt was detected above the SL in groundwater at one onsite well, CH-MW045D during the
 December 2020 sampling event only (2.2 ug/L versus SL of 0.6 ug/L), which was higher than the
 highest result from the offsite wells.
- Manganese was detected above the SL in groundwater at all seven onsite wells for both sampling
 events. The range of detections above the SL were 110 ug/L to the highest value detected was
 at well MW-CH045D with a value of 1,300 ug/L versus the SL of 43 ug/L.
- Mercury was detected above the SL in groundwater at one onsite well, CH-MW044D during the
 December 2020 sampling event with an estimated value of 0.09 ug/L versus the SL of 0.063 ug/L.
- Silver was detected above the SL in groundwater at one onsite well, CH-MW045D during the December 2020 sampling event with an estimated value of 31 ug/L versus the SL of 9.4 ug/L.

Constituents Detected Below Screening Levels

 Aluminum, antimony, calcium, chromium (III), copper, lead, nickel, potassium, and zinc were all detected at various levels below the SL.

Revision Number: 0

Revision Date: August 2022

4.2 Offsite UGA Groundwater Results

The offsite deep UGA groundwater in the vicinity of Camp Hero was analyzed at seven wells for a comprehensive list of constituents to provide a representation of local/background groundwater conditions. Multiple VOCs, SVOCs, PAHs, and PCBs were detected at low levels close to the DL. Multiple metals were detected, including arsenic, iron, and manganese, which are documented to be naturally occurring throughout the Montauk Point and Camp Hero area (AECOM-Tidewater JV, 2019a).

Table 4-2 provides the frequency of detections for each constituent in the offsite wells while Table 4-3 provides the frequency of detections above the most conservative screening value for detected constituents in groundwater. Appendix B-2 provides a comprehensive table for all Phase IV data. As described above, only dissolved metals were compared to screening values to be consistent with federal and state guidelines. Additional details for the offsite well data by constituent group is provided below:

VOCs

Five VOCs were detected only once in one offsite well, all at estimated values that were significantly below the SLs except for chloroform. None of these five SVOCs were detected in any other offsite wells and the detections were limited to one sampling event. Additional details are provided below:

Constituents Above Screening Levels

• Chloroform was detected at an estimated value that was above the SL in groundwater from the Lighthouse Gift Shop well during the February 2021 sampling event. The detected value was 0.5J ug/L versus the SL of 0.22 ug/L.

Constituents Detected Below Screening Levels

- MEK and toluene (Lighthouse Gift Shop well, February 2021 sampling event)
- Acetone and carbon disulfide (Madison Hill Well Field #1, December 2020 sampling event)

SVOCs

One SVOC (1,4-dixoane) was detected at estimated values in groundwater collected from two wells: the Lighthouse Gift Shop well during the December 2021 sampling event (0.1J ug/L versus the SL of 0.46 ug/L) and the Lighthouse Museum Shower well during the February 2021 sampling event (0.2J ug/L).

PAHs

Twelve PAHs were detected at least once in 4 of 7 onsite wells from both sampling events. All but naphthalene were detected at estimated concentrations below the LOQ. Of note is the USGS Route 27 offsite well, which is the shallowest deep aquifer offsite well, had the greatest number (10) of individual

constituent PAH detections. However, the BaP TEQ and Total PAH calculated values exceeded the SLs. Additional information is provided below:

Revision Number: 0

Revision Date: August 2022

Constituents Detected Above Screening Levels

- Total BaP TEQ (calculated) exceeded screening levels at one well during for one sampling event, USGS Route 27 MW (December 2020) with a value of 0.067 ug/L versus the SL of 0.025 ug/L. All other results were non-detect.
- Total PAHs (calculated) exceeded the SL at four offsite wells: Lighthouse Museum Shower well (February 2021 sampling event), USGS Pocahontas Road MW (February 2021 sampling event), USGS Route 27 MW (December 2020 sampling event), and Montauk Point State Park MW (February 2021 sampling event). The highest level of Total PAHs was 0.7 ug/L at the Lighthouse Museum Shower well versus the SL of 0.2 ug/L.

Constituents Detected Below Screening Levels

- Lighthouse Museum Shower Well: naphthalene (February 2021)
- USGS Pocahontas Road Well: fluoranthene (February 2021)
- USGS Route 27 Well: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene (December 2020)
- Montauk Point State Park Well: 2-methylnaphthalene and naphthalene (February 2021)

PCBs

One PCB, Arochlor 1260 was detected in groundwater from two wells: Madison Hills Well #1 (February 2021) and Lighthouse Gift Shop Well (December 2020). Both detections were above the SL with the highest level of Arochlor 1260 found in the Madison Hill Well Field #1 (0.67 ug/L versus the SL of 0.0078 ug/L). As noted in the onsite wells discussion, the LOD was greater than the SL, so although most of the results were ND, a data sensitivity analysis was required as presented in Section 6 (Risk Assessment). The total PCBs as calculated exceeded the SL in both the Madison Hills Well #1 and Lighthouse Gift Shop, with the highest value of 3.15 ug/L at the Lighthouse Gift Shop well versus the SL of 0.044 ug/L.

Metals

Similar to the onsite wells, iron, manganese, and sodium were commonly detected above the screening values at most offsite wells but less frequently than the onsite wells for iron and manganese. A total of 19 total metals were detected in the offsite wells with nine exceeding SLs including antimony and copper that were not detected in any onsite wells. Arsenic and mercury exceeded screening values in multiple offsite wells. Additional details are provided below:

Constituents Detected Above Screening Levels

 Antimony was detected above the SL in groundwater in one well (USGS Route 27 well) during the December 2020 sampling event with an estimated value of 1.1J ug/L versus the SL of 0.78 ug/L.

Revision Number: 0

Revision Date: August 2022

- Arsenic was detected above the SL in groundwater in two offsite wells during both sampling events: USGS Route 27 well and Madison Hill Well Field #1. The highest value was 2.8 ug/L (Madison Hill Well Field #1) versus the SL of 0.052 ug/L.
- Chromium (VI) was detected above the SL in groundwater in 5 of 7 offsite wells during the February 2021 sampling event. The highest value was 1.9 ug/L at the Lighthouse Gift Shop well during the February 2021 sampling event (versus SL of 0.035 ug/L). As noted above, hexavalent chromium was not calculated from the December 2020 sampling event.
- Cobalt was detected above the SL in groundwater at one offsite well, USGS Route 27 well during both sampling events, with the highest value at 0.9 ug/L versus SL of 0.6 ug/L.
- Copper was detected above the SL in groundwater at two offsite wells: Lighthouse Museum Shower well in February 2021 and Lighthouse Gift Shop well in December 2020, which had the highest level at 380 ug/L versus the SL of 80 ug/L.
- Mercury was detected above the SL in groundwater at 2 of 7 offsite wells during the December 2020 sampling event only. The two wells were: USGS Route 27 well and Montauk Point State Park well, which had the highest detected value of 0.1 ug/L versus the SL of 0.063 ug/L.

Constituents Detected Below Screening Levels

 Aluminum, cadmium, calcium, lead, magnesium, nickel, potassium, selenium, and zinc were all detected at various levels below the SL.

4.3 Comparison of Onsite to Offsite Groundwater Results

A comparison of analytical data in groundwater from onsite and offsite wells indicates a consistent pattern of elevated levels of naturally occurring metals iron, manganese, and sodium amongst both onsite and offsite wells. There is also some limited consistency with detections of chloroform, total PAHs (as calculated), arsenic, and mercury. The VOC/SVOC 1,4-dioxane was detected in three onsite and three offsite wells. Additional details are provided below:

VOCs

Due to the limited number of detections of VOCs, a comparison cannot be made with regards to VOCs in onsite and offsite wells that provides insight to their occurrences.

SVOCs

As described above, 1,4-dioxane was detected in three onsite and two offsite wells, but the wells were not near each other.

Revision Number: 0

Revision Date: August 2022

PAHs

Total BaP TEQ and total PAHs (both calculated amounts) exceeded SLs for both onsite and offsite
wells. Many PAHs were commonly detected in both onsite and offsite wells, but with spatially
diverse locations, possibly indicating anthropogenic sources.

PCBs

 PCBs were detected in two offsite wells, but none were detected onsite, thus indicating no correlation.

Metals

As described above, four naturally occurring metals (barium, iron, manganese, and sodium) were commonly detected in groundwater in multiple deep aquifer wells. Arsenic and a conservatively calculated chromium (VI) were detected in multiple onsite and offsite wells. Other metal constituents were sporadically detected but not correlated between the two well sets.

4.4 Comparison to DU01 Shallow Groundwater Results

A comparison was evaluated between the analytical results of the shallow perched groundwater lenses obtained in the previous phases of the RI to that of Phase IV to determine if there were any correlations. The analytical data from DU01 were used for this comparison, as this area had the most significant detections and was closest to the human receptors along Old Montauk Table 4-4 provides a comparison of the results between the shallow DU01 and onsite deep UGA groundwater results. Based on this evaluation, the only noteworthy consistency between the two results are the total PAHs (as calculated) and the naturally occurring metals that have been discussed above: iron and manganese. Note that 1,4-dioxane was not analyzed in previous RI phases at the low DL as part of the SVOC analysis; however, 1,4-dioxane was detected at 0.40 µg/L in the at well CH-MW019 on the southwest side of DU01 as part of an independent sampling and analysis effort conducted on behalf of NYSDEC in 2018 (Environmental Assessment & Remediation, 2018). As noted above, the highest detection of 1,4-dioxane in the deep groundwater during the Phase IV RI sampling events was 1.1 µg/L in monitoring well CH-MW044S that appears to be downgradient of DU01.

5 CHEMICAL FATE AND TRANSPORT

This section presents a discussion of properties that contribute to the fate and transport of the constituents that were detected in deep groundwater within the Phase IV RI study area of Camp Hero FUDS (onsite wells) and the immediate surrounding area (offsite wells), the distribution of constituents, and source identification (i.e., where each constituent might have originated). As discussed in Section 4 and below, a wide range of constituents were detected in both onsite and offsite wells with a vast majority of detections close to and/or slightly below the detection limits that were significantly below the respective SL. In general, the origins of the detected constituents in the deep groundwater aquifer are inconclusive given the 40+ years since the Camp Hero FUDS ceased all operations, the relatively low concentrations, and spatial distribution, including offsite wells that are not considered downgradient from historical Camp Hero FUDS activities. The sources of the detected constituents could be disposition of historical releases of common household chemicals via residential septic drain fields, which are widespread throughout Montauk Point since this area is mostly not served by a sanitary sewer system. Additional details by groups of constituents are provided below.

Revision Number: 0

Revision Date: August 2022

5.1 VOCs

VOCs are a group of chemicals found throughout industrial manufacturing including petroleum-based end products and in common household products. Eight VOCs were detected in groundwater from onsite and offsite wells with two VOC constituents in exceedance of the most conservative screening levels: MEK and chloroform.

Uses, Chemical Properties, and Fate and Transport

MEK is used as a solvent in processes involving gums and resins, in the synthetic rubber industry, in the production of paraffin wax, and in household products such as lacquer, varnishes, paint remover, and glues (USEPA, 1990). MEK is often transported via air emissions due to its relatively low volatilization temperature, and it is partially soluble in water but can be transported via groundwater. It is known to be readily biodegradable.

Chloroform is mainly used in the production of hydrofluorocarbon 22 (HCFC-22), which is a gas used for refrigeration and a propellant. Historical uses of chloroform include extraction solvent for fats, dry cleaning spot remover, in fire extinguishers, and as a fumigant and anesthetic. This constituent is also a byproduct of the chlorination of drinking water and wastewater. Chloroform is very volatile and has a low soil absorption, so even though is not very soluble in water, it will tend to end up in groundwater and persist for a long period of time (Agency for Toxic Substances and Disease Registry [ATSDR], 1997).

The petroleum-based constituents that were detected (benzene, MTBE, toluene, and o-xylene) are typical components of gasoline and other lower molecular weight petroleum compounds. In greater concentrations they form light non-aqueous phase liquid that sits on the top of the water. In lower

concentrations, these constituents are soluble in water and will biodegrade over a relatively short time except for MTBE, which is recalcitrant to biodegradation.

Revision Number: 0

Revision Date: August 2022

Acetone is commonly used as a component of paints, coatings, cleaning products, personal care products, and industrial products such as lubricants and plastics. It is also found in the environment as plants, trees, insects, and microbes emit acetone. It is highly soluble in water and biodegradable, but typically only under anaerobic conditions (ATSDR, 2021).

Carbon disulfide can be found in small amounts in nature from releases of gases released to the earth's surface. It is also used in industry to make rayon, cellophane, and carbon tetrachloride. In air and on the water surface, this constituent is easily evaporated; however, if it is dissolved in groundwater, it is highly soluble and stable and thus, not likely to biodegrade very quickly (ATSDR, 1996).

Distribution

As presented in **Section 4.0**, chloroform is distributed more widely than MEK, with detections exceeding SLs in all four new deep groundwater wells during the December 2020 sampling event at the south-southeast area of Camp Hero and at the Lighthouse Gift Shop offsite well. However, as discussed above, the results are suspect since chloroform was ND in the groundwater from the same five wells during the February 2021 sampling event. Acetone was the most widely detected VOC that did not exceed its SL with detections in multiple onsite wells during both sampling events in addition to a detection in one offsite well. Carbon disulfide was also detected in multiple onsite wells and one offsite well. All other detected VOCs had very limited distribution.

Source Identification

A likely source of chloroform could be a laboratory artifact during the analysis process or result of water chlorination historically conducted at Camp Hero FUDS and other private water wells throughout Montauk Point. The source for the petroleum-based VOCs as well as MEK and acetone is not likely from Camp Hero FUDS activities due to 40+ years that has elapsed and the relatively high rate of biodegradation for all but the MTBE constituents. Acetone could also be a laboratory artifact during the analysis process. A link to the documented release at the Camp Hero DU01 site is also not likely since that release was No. 2 fuel oil, which does not include or degrade to the detected petroleum-based VOC compounds. A more likely explanation would be a historical release of gasoline either by visitors to Camp Hero State Park or State Park workers. The remaining detected VOC (carbon disulfide) cannot be definitively attributed to either Camp Hero FUDS, more recent State Park, or nearby residential uses.

5.2 SVOCs

Uses, Chemical Properties, and Fate and Transport

Historically, 1,4-dioxane was primarily used as a stabilizer for chlorinated solvents, mainly 1,1,1-trichloroethane, that were used in paint strippers, greases, and waxes. Because of its use,

1,4-dioxane is often found in conjunction with federal facilities but also from use and disposal of many common household items. This chemical was phased out 1995. It is highly soluble in water and can travel great distances in groundwater.

Revision Number: 0

Revision Date: August 2022

The chemical properties of 2-methylphenol and 4-methyphenol are very similar. They are both creosols and are formed by the combustion of wood or coal. They tend to not be very soluble in water, but if dissolved are readily biodegraded (ATSDR, 2011).

Distribution

As described above, 1,4-dioxane was detected in three onsite and two offsite wells not near each other indicating a random level of spatial distribution not limited to just onsite wells. The fact that this constituent was not detected during both sampling events in any well leads to question the repeatability of detections and indicates the very limited extent of this constituent in the deep aquifer. The distribution of 2-methylphenol and 4-methyphenol is limited to one onsite ell.

Source Identification

The source of 1,4-dioxane cannot be tied to any specific activity due to the random spatial distribution. Due to the ubiquitous use of this constituent, the source could just as easily be Camp Hero FUDS, more recent State Park, or nearby residential discharges of household items to septic systems. The source of 2-methylphenol and 4-methyphenol is likely to be remnant burning event(s) either during Camp Hero FUDS or subsequent State Park activities in the vicinity or upgradient of the USAF Supply Well where it was detected.

5.3 PAHs

Uses, Chemical Properties, and Fate and Transport

PAHs are a group of chemicals found throughout the environment, primarily as a result of the incomplete combustion of organic substances. While some individual PAHs are manufactured, commercial production is not a significant source of these chemicals in the environment. Anthropogenic sources include residential burning of wood; industrial power generation; coal tar, coke, and asphalt production; petroleum catalytic cracking; vehicle exhaust from gasoline and diesel-powered engines; and weathering and residuals of asphalt roads. Natural sources include volcanoes, forest fires, crude oil, and shale oil; however, anthropogenic sources predominate (ATSDR, 1995).

The movement of PAHs in the environment depends on properties like their water solubility, vapor pressure, and molecular weight. In general, PAHs do not easily dissolve in water. PAHs are present in air as vapors or adhere to surfaces of small solid particles. Some PAHs can evaporate into the atmosphere from surface water, but most sorb to solid particles and settle to the bottoms of rivers or lakes. Other properties of PAHs that impact their fate and transport in the environment are relatively low water solubility and potential for degradation by microorganisms in soil and sediment (ATSDR, 1995). Water

solubility for individual PAHs ranges from 8.0E-5 milligrams per liter (mg/L) to 3.1E+1 mg/L and indicates relatively low potential for dissolution into groundwater or surface water (USEPA, 2018).

Revision Number: 0

Revision Date: August 2022

Petrogenic PAHs are hydrocarbons formed by the geochemical alteration of organic matter at moderate temperature (50-150°C) and pressure over very long (i.e., geologic) timescales. These PAHs enter urban environments from anthropogenic sources such as petroleum (crude oil or fuels) spills/leaks, coal-fired power plants, and municipal sewage treatment plants. Pyrogenic PAHs form when fuels and other organic matter are incompletely or inefficiently combusted or pyrolyzed at moderate to high temperatures (>400°C) over very short time intervals (Battelle Memorial Institute et al. 2003).

Distribution

Total PAHs (as calculated) exceeded the most conservative screening levels in groundwater in 7 of the 14 onsite and offsite wells during both sampling events. None of the individual PAHs exceeded screening levels, but detected PAHs are widely distributed throughout both the onsite and offsite wells.

Source Identification

An analysis of the PAH data was conducted to assist in determining if the sources could be classified as petrogenic or pyrogenic using ratios of phenanthrene to anthracene and fluoranthene to pyrene. However, the analysis was mostly inconclusive due to the relatively limited number of detections.

Low levels of PAHs are typically ubiquitous/anthropogenic in suburban settings, and it would be difficult to determine whether the source of these constituents was from Camp Hero FUDS or State Park activities, residential releases to septic drain fields, or general anthropogenic releases from vehicle exhausts, eroding asphalt, etc.

5.4 PCBs

Uses, Chemical Properties, and Fate and Transport

Consumer products that may contain PCBs include old fluorescent lighting fixtures, electrical devices or appliances containing PCB capacitors made before PCB use was stopped, old microscope oil, and old hydraulic oil. The uses of Arochlor 1260, which was the only individual PCB detected, include transformers, hydraulic fluid, synthetic resins, and dedusting agents (ATSDR 2000). Manufacturing of PCBs were banned in the U.S. in 1977. Releases of PCBs to the environment typically came from leaks of old electrical transformers that contained oil with PCBs.

One of the key physical properties of PCBs are their inertness and thermal stability to withstand high heats, which is why they were previously used in transformer oils. They are relatively insoluble in water with solubility decreasing as the chlorine content of each Arochlor increases.

In groundwater, PCBs tend to partition to soils due to their hydrophobic tendency. Once dissolved in water, they tend to be persistent for long periods of time and not likely to readily biodegrade.

Distribution

Only one PCB, Arochlor 1260 was detected in two offsite wells that are not physically close to each other and/or connected hydraulically; thus, the distribution is significantly limited.

Revision Number: 0

Revision Date: August 2022

Source Identification

The source of Arochlor 1260 in the offsite Madison Hills Well #1 and Lighthouse Gift Shop Well could be an old transformer that might have been used to power these well pumps. Other potential sources could be discharges from local septic drain fields.

5.5 Metals

The twelve metals that were detected can be placed into five general categories: naturally occurring metals (barium, iron, and manganese), essential nutrient sodium, naturally occurring (but non-essential nutrients) metals (antimony, arsenic, copper, and cobalt), and not likely to be naturally occurring at this site (mercury).

Uses, Chemical Properties, and Fate and Transport

Antimony is naturally occurring and is also released through the production of metal alloys. It can dissolve in water but typically binds to soils (ATSDR, 2019).

Arsenic is naturally occurring throughout Earth, including the vicinity of Camp Hero. Inorganic forms of arsenic were used in pesticides, paint pigment, and wood preservatives (ATSDR, 2007). Many arsenic constituents can dissolve in water, although it is more common for arsenic to absorb onto soils or sediment.

Barium constituents are used by the oil and gas industries to make drilling muds and also used to make paint, bricks, ceramics, glass, and rubber (ATSDR, 2013). Barium is found in many different constituents, such as barium sulfate, barium carbonate, barium hydroxide, barium nitrate, and barium chloride. The barium constituent determines how it breaks apart once it is released to the environment.

Cobalt is a naturally occurring metal that is also used to produce alloys used in the manufacture of aircraft engines, magnets, grinding and cutting tools, and artificial joints; it is also used in paints, color glass, and ceramics (ATSDR, 2004). Similar to arsenic, cobalt tends to bind to soil and sediment particles, but it can disperse through via groundwater.

Copper is naturally occurring and is also extensively mined, primarily used as the metal or alloy in the manufacture of wire, sheet metal, pipe, and other metal products. It has similar properties in groundwater as other metals.

Iron and manganese are naturally occurring metals and are readily found in soils and rock formations in Long Island and Montauk Point, which includes Camp Hero. Both constituents have commercial uses, but

it is highly unlikely that iron and manganese found in deep groundwater originated from Camp Hero FUDS activities. Similarly, sodium is naturally occurring, which is most likely a result of saline intrusion and not Camp Hero FUDS activities.

Revision Number: 0

Revision Date: August 2022

Mercury is used in many products and was used heavily in industrial and residential applications such as chlorine gas, caustic soda, thermometers, gauges and dials, dental fillings, and batteries (ATSDR, 1999).

Distribution

As described in **Section 4.0**, the naturally occurring constituents of iron, manganese, and sodium are widespread in groundwater amongst most onsite and offsite monitoring wells. Antimony was only detected in one offsite well. Arsenic was detected in multiple onsite and offsite wells. Barium was detected above the screening level in groundwater from one onsite well in just one sampling event. Cobalt was detected only in the December 2020 sampling event in approximately half the onsite wells and one offsite well with no apparent distribution pattern. Copper was detected in two offsite wells only. Mercury was detected above the screening level in groundwater from just one well in one sampling event compared to detections below SLs in two offsite wells.

Source Identification

Iron, manganese, and sodium are naturally occurring and not a result of releases from Camp Hero FUDS activities. The sources of the other nine metals are a combination of naturally occurring and/or inconclusive due to Camp Hero FUDS or State Park activities, releases from residential septic drainage fields, or from anthropogenic deposition.

5.6 Summary of Fate and Transport

Most of these constituents were detected at relatively low concentrations with significantly limited distribution, often in just one monitoring well and not consistently detected in both sampling events. The most prevalent constituents were chloroform and several metals that are well documented to be naturally occurring in the Montauk area. Chloroform is most likely to be the result of chlorination of private water wells. Most other VOCs are not likely associated with Camp Hero FUDS activities due to the 40+ years since all operations were ceased and would have degraded by now had they been released prior to 1980 when the last parcels of land were transferred to the NY State Park department. The sources of the other detected constituents are inconclusive as to whether they are associated with Camp Hero FUDS or State Park activities, releases from residential septic drainage fields, or from anthropogenic deposition. Regardless of the original source or distribution, **Section 6.0** explores the human health risks to the constituents that exceeded the initial screening step.

6 RISK ASSESSMENT

This Section presents the HHSE that was conducted as part of the Phase IV RI. The HHSE was conducted with the data obtained during the Phase IV RI to determine if any unacceptable risks exist for an onsite and offsite residential scenario from exposure to UGA groundwater.

Revision Number: 0

Revision Date: August 2022

The objective of the HHSE is to determine if constituents attributable to historical DoD activities at Camp Hero are present in the UGA groundwater, at concentrations that produce unacceptable risk for a hypothetical future onsite resident, current and future offsite residents living southwest of Camp Hero, and the public that visits the Montauk Point State Park and the Montauk Lighthouse and Museum located northeast and adjacent to Camp Hero. The HHSE is compliant with CERCLA and was conducted in accordance with USEPA Risk Assessment Guidance for Superfund (RAGS) and subsequent guidance documents (USEPA 1989, 2001a, 2004, 2009, 2014).

Figure 6-1 presents a risk assessment flowchart that describes the steps taken to complete the HHSE, which are data evaluation, identification of COPCs, exposure assessment, toxicity assessment, risk characterization, uncertainty assessment, and risk assessment summary.

6.1 Data Evaluation

Groundwater samples were collected from seven onsite wells and seven offsite monitoring wells in December 2020 (Round 1) and again in February 2021 (Round 2), per the sampling design in the Camp Hero Phase IV RI QAPP Addendum (AECOM-Tidewater JV, 2021). **Table 2-3** in **Section 2.0** lists the groundwater monitoring wells that were sampled and evaluated in the HHSE.

As noted in **Section 2.9**, the samples were tested for VOCs, SVOCs, PAHs, PCBs, and metals (total and dissolved phase), including hexavalent chromium and mercury. The dissolved phase results for metals were used for the evaluation of potable use of groundwater for the residential scenario (i.e., the filtered results best represent the quality of water used for tap water).

Field duplicates during Round 1 were collected from samples S 76304 and S 79269 and from samples S 17231S and S 79269 during Round 2. The duplicates were resolved as follows: 1) when both the sample and duplicate are detected, the average of field and duplicate was used to calculate summary statistics; 2) when both the sample and duplicate are NDs, the sample with the lower LOD was used; and 3) when one of the pair is reported as not detected and the other is detected, the detected result was used (AECOM-Tidewater JV 2021).

With the exception of "R"-flagged (rejected data), flagged results, such as "J" flags (i.e., estimated values), were carried forward into the HHSE. A "J"-flagged result indicates that the analyte was positively identified, and the associated numerical value is an estimated quantity with an unknown bias. The "J"-flagged result was treated as a detected concentration, even though the chemical's true concentration is unknown (USEPA, 1989; AECOM-Tidewater JV, 2021).

The laboratory analysis included testing 1,4-dioxane under VOC Method 8260 and under SVOC Method 8270. The onsite and offsite VOC results for 1,4-dioxane were evaluated in the data sensitivity analysis (DSA) that is described in Section 6.2. The onsite and offsite SVOC results were evaluated in the risk-based screening; 1,4-dioxane was identified as an onsite groundwater COPC and was carried forward into the cumulative screen evaluation.

Revision Number: 0

Revision Date: August 2022

The essential nutrients calcium, magnesium, potassium, and sodium were eliminated in all exposure media from evaluation in the HHSE. Essential nutrients are toxic only at very high doses (i.e., much higher than those that could be associated with contact at Camp Hero) (USEPA, 1989). Arsenic was carried forward in the HHSE because arsenic is a CERCLA hazardous constituent and exceeded the risk-based screening level in onsite and offsite groundwater. However, neither statistical background comparisons nor geochemical evaluations were conducted to determine whether arsenic is actually a DoD-related contaminant.

The HHSE treated the onsite and offsite well groundwater data as separate DUs. In addition, each monitoring well was treated as its own tap water source, and a well-by-well evaluation was conducted. The samples used in the HHSE for the DUs and well-by-well evaluations are listed in **Appendix F (Table F-1)**.

In addition, the HHSE evaluated several summations that were calculated, including: total PCBs, total PAHs, and total BaP (referred to as total BaP toxicity equivalence [TEQ]). The approach for calculating these totals is briefly described below, and the totals calculations are provided in **Appendix E2**.

6.1.1 Polycyclic Aromatic Hydrocarbon Summations

Carcinogenic PAHs exhibit similar toxicological properties, but they differ in the degree of toxicity. The HHSE used toxicity equivalence factors (TEFs) to adjust measured concentrations of carcinogenic PAHs in relation to BaP, which is the most toxic PAH (USEPA, 1993 and 2021a). The Kaplan Meier (KM) method (Helsel, 2009) was used where feasible for deriving summations for PAHs when the data set contained both detect and non-detected results. **Appendix E2** describes in further detail the methodology used to derive the summation results.

For the HHSE datasets, the total BaP TEQ or "Total BaP TEQ" represents each sample's sum of the seven carcinogenic PAH concentrations multiplied by the TEF. Total BAP TEQ concentrations were screened against benzo(a)pyrene's human health carcinogenic screening level. Also, "Total PAHs" summations were calculated, and they represent each sample's sum of all PAHs without TEFs being applied. Total PAHs concentrations were screened against BaP's human health noncarcinogenic screening level (USEPA, 2021a). The individual PAH results were not carried forward into the HHSE.

6.1.2 Polychlorinated Biphenyl Summations

Total PCBs summations were calculated in a similar fashion as Total PAHs summations. The KM method (Helsel, 2009) was used where feasible for deriving the total PCB summations when the data set contained both detect and non-detected results. **Appendix E2** describes in further detail the methodology used to derive the summation results.

Revision Number: 0

Revision Date: August 2022

The purpose of the Total PCBs summations is to represent exposure to carcinogenic and noncarcinogenic arochlors. Arochlors are chlorinated constituents associated with dielectric and coolant fluids used in electrical equipment that tend to be pervasive in the environment, if released. In the risk-based screening and cumulative screen evaluations, low-risk PCBs human health screening levels were used to evaluate the Total PCBs summation results (USEPA, 2021a). The individual arochlor results were not carried forward into the HHSE. The methodology for calculating the PCB summation results is provided in **Appendix E2**.

6.1.3 Hexavalent Chromium

The hexavalent chromium results analyzed by the more sensitive method and calculated trivalent chromium values from February 2021 event were primarily used for evaluation due to the lower detection levels of the hexavalent chromium data. Trivalent chromium was calculated by taking the difference between total chromium and hexavalent chromium. If both the total chromium and hexavalent chromium results were ND, the difference between the LODs was used for the calculation. **Appendix F (Table F-2)** presents the speciated chromium concentration calculations.

6.2 Identification of COPCs

Table 6-1 documents the HHSE COPCs that were carried forward for each study area and well. The COPCs were identified when the MDC within the investigative area human health screening criteria (**Figure 6-1**). The most conservative of the state and USEPA human health screening criteria was selected as the human health screening criteria for the COPC selection process; the sources are:

- USEPA residential tap water RSLs (USEPA, 2021a)
- USEPA residential VISLs (USEPA, 2021b)
- USEPA MCL (USEPA, 2018)
- NYSDEC TOGS, 1.1.1. Groundwater Effluent Limitations (Table 5; Class GA) (NYSDEC, 1998, 1999, 2000, and 2004)
- NYSDOH MCLs (NYSDOH, 2022)

The USEPA RSLs and VISLs are protective of a target risk (TR) of 1E-06 and a target hazard quotient (THQ) of 01. **Table 6-1** identifies the drinking water COPCs that are carried forward in the HHSE. The

following detected COPCs were carried forward into the onsite and/or offsite screen evaluations: VOCs (MEK, benzene, and chloroform); SVOCs (1,4-dichlorobenzene and 1,4-dioxane); PAHs (Total BaP TEQ and Total PAHs); PCBs (Total PCBs); and dissolved metals (antimony, arsenic, chromium VI, cobalt, copper, mercury, and silver). As provided in **Tables 4-1 and 4-2**, four metals (barium, iron, manganese, and sodium) are not CERCLA hazardous constituents and are therefore eliminated as groundwater COPCs. Sodium was already eliminated in the HHSE because it is considered an essential nutrient. The elimination of these metals as COPCs is discussed further in the uncertainty assessment (**Section 6.6**).

Revision Number: 0

Revision Date: August 2022

The HHSE also evaluated vapor intrusion as a potential groundwater pathway of concern; all the volatile groundwater COPCs were screened against the USEPA VISLs (USEPA, 2021b). Chloroform had one detection of 2.1 µg/L that was greater than USEPA VISL of 0.814 µg/L. The USEPA's VISL calculator was used to estimate the potential residential cancer risk and non-cancer hazard from vapor intrusion to indoor air exposure; the VISL cancer risk estimate of 3E-06 and non-cancer hazard quotient of 0.003 are below the USEPA cumulative risk thresholds of 1E-04 and 1, respectively (USEPA, 2021b and 1991). **Appendix F (Table F-7)** presents the VISL calculator chloroform results. VI was eliminated as a groundwater pathway of concern in the HHSE.

As part of the COPC selection process, certain chemicals were selected for further evaluation in a data sensitivity analysis (DSA). The maximum LOD was compared to the selected human health screening criteria to determine whether analytical DLs were adequate for risk assessment purposes. If a chemical was all ND and had a maximum LOD lower than the screening level, then it was eliminated from further evaluation in the HHSE. If the maximum LOD were greater than the selected screening criteria, then it was identified as a LOD COPC; separate HHSE risk calculations were conducted, and the results are briefly discussed in the Uncertainty Assessment; the DSA results are presented in **Appendix F.**

6.3 Exposure Assessment

This section identifies human receptors that may be exposed to site-related human health COPCs in affected media and addresses the potential extent of their exposure under site-specific exposure scenarios. This section also describes how EPCs are derived and how cumulative exposure is evaluated using the cumulative screen process.

6.3.1 Current and Future Land Use Scenarios

The HHSE evaluated an onsite future hypothetical residential scenario for information purposes to assess potential UU/UE, since no onsite UGA monitoring wells are used for drinking water purposes. However, current and future offsite residents use private wells to access the UGA groundwater as well as public facilities, such as the Montauk Point State Park and the Montauk Lighthouse and Museum.

Residential child, adult, and lifetime receptors were evaluated; the lifetime scenario for the resident represents the combined child and adult potential cancer risk estimates that is normalized over a lifetime

(USEPA, 2014).

of exposure (i.e., 70 years). Groundwater-related exposure pathways include ingestion of drinking water, dermal contact while bathing or showering, and inhalation of shower vapors (if volatile groundwater COPCs were identified). The USEPA (2021a) tap water RSLs used in the risk-based screening and cumulative screen evaluation use USEPA's standard default exposure parameters for the resident scenario

Revision Number: 0

Revision Date: August 2022

6.3.2 Exposure Point Concentrations

Attachment F provides the EPCs that were derived for each study area and monitoring well in USEPA RAGS Part D Table 3 format (USEPA, 2001a). The concentrations of COPCs that a receptor may come into contact with are referred to as EPCs. USEPA recommends that 95% upper confidence limit (UCL) of the mean based upon only a few detected values (e.g., less than 4 data points) cannot be considered reliable enough to estimate EPCs which can have a potential impact on human health and the environment (USEPA, 2015). The sample maximum can significantly underestimate the population mean. For lead, the mean concentration is used as the EPC (USEPA, 2021c).

The EPCs were derived using approved statistical methodologies for calculating the 95% UCL of the mean. USEPA's ProUCL Version 5.1 software was used and was developed for USEPA to test the distribution of the datasets (USEPA, 2016). After testing, the program computes a conservative 95% UCL based on the appropriate distribution of the data. For those datasets that do not fit the normal, lognormal, or gamma distributions, several parametric and distribution-free non-parametric methods are available to calculate an appropriate 95% UCL (e.g., bootstrap methods). The ProUCL Version 5.1 program uses several statistical methods to handle datasets with ND results (USEPA, 2016 and Helsel, D.R. 2009). **Attachment F** provides the ProUCL input and output information.

6.3.3 Cumulative Screen Evaluation

A screening level cumulative risk assessment was conducted to conservatively assess the potential cancer risk and non-cancer hazard associated with exposure to COPCs identified in the UGA groundwater. As shown in **Figure 6-1**, a cumulative screen was conducted for the onsite and offsite DUs as well as the onsite and offsite well-by-well evaluations. USEPA tap water RSLs were used in the cumulative evaluation to estimate carcinogenic risk and non-carcinogenic hazards from ingestion of drinking water, dermal contact while bathing or showering, and inhalation of shower vapors. MDCs for volatile groundwater COPCs that were identified in the initial risk-based screening were compared with USEPA (2021b) VISLs. No VI COPCs were identified; therefore, the VI exposure pathway was eliminated from further evaluation in the HHSE.

The purpose of the cumulative screen evaluation was to determine if residential exposure to the UGA groundwater exceeds the USEPA cumulative thresholds, which are as presented in **Section 6.5**, Risk Characterization.

Potential cancer risk and non-cancer hazard estimates were generated using the EPCs derived for the UGA groundwater COPCs and dividing concentrations by the USEPA tap water RSL (USEPA, 2021a) and then multiplying the ratio by the TR or THQ used to derive the RSL. The chemical-specific cancer risk and non-cancer hazard estimates were summed separately to provide potential excess lifetime cancer risk (ELCR) and hazard index (HI) results. The methodology for conducting the cumulative screen evaluation is described in further detail in the *Final Phase IV Remedial Investigation Quality Assurance Project Plan Addendum* (AECOM-Tidewater JV, 2021).

Revision Number: 0

Revision Date: August 2022

6.4 Toxicity Assessment

The toxicity assessment is the relationship between the magnitude of exposure (dose or exposure concentration) and the incidence of adverse health effects associated with the human health COPCs. The HHRA selected toxicity values in accordance with the hierarchy of resources provided in the USEPA (2003) toxicity values hierarchy guidance and the USEPA (2021a) RSL User's Guide.

Some chemicals are identified as mutagens. A mutagen adversely affects the deoxyribonucleic acid (DNA) of a receptor; the mutated DNA causes malfunctioning or loss of function for a particular gene(s), and the accumulation of mutations may lead to cancer. USEPA has developed equations to address mutagenic health effects, especially for age-sensitive or developmental stages (e.g., child resident) where mutagenic health effects are likely to occur (USEPA, 2005). Mutagenic COPCs evaluated in the HHSE include hexavalent chromium and total BaP TEQ.

6.5 Risk Characterization

The HHSE integrates the information developed in the exposure assessment and toxicity assessment into an evaluation of the potential human health risks associated with exposure to COPCs within the onsite and offsite groundwater DUs. Both potential cancer risks and non-cancer health effects were evaluated. The risk characterization also addresses the nature and extent of potential human health risks in comparison to state and federal cumulative threshold levels for making risk management decisions.

USEPA (1991) states that where the cumulative incremental current or future potential ELCR to an individual is less than 1E-04 (one in 10,000), action generally is not warranted unless there are adverse environmental impacts. The acceptable cancer risk range that USEPA uses to manage site risks as part of a Superfund Cleanup is 1E-06 (one in one million) to 1E-04 (one in 10,000). In effect, estimated risks that are less than 1E-06 are generally considered negligible, while risks greater than 1E-04 are usually considered sufficient justification for undertaking remedial action. Risks in the intermediate range between these two values can be considered acceptable on a case-by-case basis.

If USEPA cumulative thresholds were exceeded, constituents contributing to the cumulative results were identified as constituents of concern (COCs). A carcinogenic COC is a constituent with a chemical-specific ELCR above 1E-06 and is contributing to a cumulative ELCR greater than 1E-04. A noncarcinogenic COC

whose HI is above 1.

is a constituent with a chemical-specific HI above 0.1 and is associated with a target organ systems

Revision Number: 0

Revision Date: August 2022

6.5.1 Onsite and Offsite Study Areas Cumulative Screen Evaluation

Table 6-2 summarizes the cumulative screen evaluation results. The cumulative ELCR results for the onsite and offsite DUs did not exceed the USEPA cumulative threshold of 1E-04; therefore, carcinogenic COCs were not identified. The cumulative HI results and target organ endpoint HI results did not exceed 1 for the onsite and offsite DUs; therefore, non-carcinogenic COCs were not identified.

6.5.2 Onsite Well-by-Well Cumulative Screen Evaluation

Table 6-3 summarizes the onsite well-by-well cumulative screen evaluation results. The cumulative ELCR results for all the onsite wells did not exceed the USEPA cumulative threshold of 1E-04; therefore, carcinogenic COCs were not identified. The cumulative HI and target organ endpoint HI results did not exceed 1; therefore, non-carcinogenic COCs were not identified.

6.5.3 Offsite Well-by-Well Cumulative Screen Evaluation

Table 6-4 summarizes the offsite well-by-well cumulative screen evaluation results. The cumulative ELCR results for all the onsite wells did not exceed the USEPA cumulative threshold of 1E-04; therefore, carcinogenic COCs were not identified. The cumulative HI results and target organ endpoint HI results did not exceed 1; therefore, non-carcinogenic COCs were not identified.

6.6 Uncertainty Assessment

This section qualitatively assesses the uncertainties associated with each step of the HHSE. This section also provides information about the key assumptions, their inherent uncertainty and variability, and the impact of this uncertainty and variability on the estimates of potential risk.

Data Evaluation Source of Uncertainty: Four data points collected in February 2021 were removed from the onsite study area dataset for CH-MW045D due to the results being "R"-flagged (rejected data). The data points were not associated with the COCs identified. The data usability assessment (**Section 2.15**) determined that the groundwater dataset for CH-MW045D is considered acceptable; therefore, the level of uncertainty associated with the onsite study area and CH-MW045D HHSE results is reduced.

Data Evaluation Source of Uncertainty: Flagged results such as "J" flags (i.e., estimated values) were carried forward into the HHSE. USEPA (1989) guidance recommends treating "J"-flagged results as detected concentrations. A comprehensive QA/QC program was implemented with each phase of investigation (see the field reports in **Appendix C**) to ensure that data quality objectives were met during sample collection, preparation, analysis, and data reporting.

The statistical calculations of EPCs takes into account detect and ND results to derive representative concentrations. A "J"-flagged result indicates that the analyte was positively identified, and the associated

numerical value is an estimated quantity with an unknown bias. Therefore, if the J-flagged chemical was identified as a COPC, it is unknown if the estimated risk were under- or overestimated because its true concentration is unknown. While the concentration is still unknown with "J"-flagged chemical results, the estimated risk can be identified as an under or overestimate.

Revision Number: 0

Revision Date: August 2022

Identification of COPCs Source of Uncertainty: As noted in **Section 6.1.3**, additional steps were taken to detect chromium VI during the second round of sampling to better estimate potential concentrations of chromium VI (most toxic form of chromium) in the groundwater. The February 2021 groundwater samples were analyzed using a more sensitive method to specifically detect chromium VI concentrations and better determine whether it is an onsite and/or offsite groundwater COPC. The better characterization of chromium concentrations (chromium VI and III congeners vs total chromium) reduced the level of uncertainty associated with cancer risk and non-cancer hazard results attributed to chromium in the UGA groundwater.

Volatile groundwater constituents were screened against USEPA residential VISLs assuming that the ambient groundwater temperature is 25 degrees Celsius (i.e., VISL on-line calculator default) (USEPA, 2021b). This assumption is conservative when Camp Hero is located in a region that has an average ambient groundwater temperature of 16 degrees Celsius (USEPA 2001b). The cooler groundwater temperature makes it less likely for groundwater constituents to volatilize. The level of uncertainty with the VI evaluation is minimal since no VI COPCs were identified using the more conservative VISLs for the risk-based screening.

Also, maximum LODs were compared with project screening levels to determine whether LODs are low enough (i.e., below screening criteria) to capture detected concentrations in the affected media. A DSA was conducted to estimate potential impacts from LOD COPCs (**Appendix F**) using the maximum LOD as the EPC in the risk calculations. Potential ELCR estimates were 4E-04 (onsite well study area) and 3E-04 (offsite well study area). The cumulative HI estimates were 18 (onsite well study area) and 17 (offsite well study area) The cancer risk and non-cancer hazards may be underestimated for both groundwater study areas. Use of the maximum LOD as the EPC for the DSA calculations is conservative as the confining layers above the UGA are likely inhibiting infiltration of potential organic concentrations from shallow groundwater to the UGA; thus, the potential magnitude upon the level of uncertainty with the results is unknown.

Barium, iron, manganese, and sodium are classified as not hazardous constituents under CERCLA and therefore were not identified as groundwater COPCs. Sodium was eliminated early in the HHSE because it is considered an essential nutrient. Detections of iron and manganese in onsite groundwater exceeded NYSDOH MCLs. The RI nature and extent and fate and transport evaluations determined that these metals are considered naturally occurring and are not a result of releases from Camp Hero FUDS activities. The level of uncertainty associated with these metals is reduced.

Exposure Assessment Source of Uncertainty: USEPA tap water RSLs were used to estimate intake for the onsite and offsite residents (USEPA, 2021a). The exposure parameters used in the RSL calculations are USEPA (2014) residential standard default values that are representative of reasonable maximum exposure. The cancer risk and non-cancer hazards may be overestimated, but this conservative approach is likely appropriate and protective due to the presence of offsite residents and public access to the Camp Hero State Park, Montauk Point State Park, and the Montauk Lighthouse and Museum.

Revision Number: 0

Revision Date: August 2022

USEPA (1989) recommends using 95% UCLs, where possible, as EPCs to estimate cancer risk and non-cancer hazard exposures. The onsite and offsite study area cumulative screen evaluations used 95% UCLs where possible, but the well-by-well evaluations used MDCs as the EPCs. The sample maximum can significantly underestimate the population mean. Evaluating the onsite and offsite UGA groundwater data both ways served to reduce the uncertainty associated with using MDCs for the individual well evaluations. The onsite study area and well-by-well evaluation results were similar, thus reducing the level of uncertainty associated with the results.

Risk Characterization Source of Uncertainty: Risk characterization uncertainties include possible synergistic or antagonistic effects of exposure to multiple chemicals and applicability of cancer risk estimation methodology to less than lifetime exposure durations. However, these uncertainties are generic to the risk assessment process and not specific to Camp Hero or the evaluation of offsite areas.

Currently the drinking water exposure pathway is incomplete. A portion of Camp Hero (former AT&T Building and current park officer building) is now supplied drinking water by SCWA, and a UGA well for non-potable purposes also exists at the Camp Hero Motor Pool Building. The RI has identified constituents (e.g., metals) that are considered naturally occurring in this region based on numerous historical studies and review of Suffolk County potable water data or are likely attributed to releases from residential septic drainage fields, and anthropogenic deposition (**Section 5.5**). The level of uncertainty associated with the risk assessment of the residential drinking water exposure pathway is reduced based on the incomplete exposure pathway, alternate water supply, and the natural occurring historical data.

6.7 Risk Assessment Summary

The HHSE achieved its objective as a screening level evaluation (i.e., conservative USEPA risk-based screening levels, standard default exposure parameters, and toxicity factors) to determine if UGA groundwater COPCs are likely to cause potential adverse health effects for a resident (i.e., assuming the UGA groundwater is used as a tap water source). The HHSE results determined the following:

- Risk-based screening eliminated VI as a groundwater pathway of concern.
- Onsite UGA groundwater is not currently used for drinking water at Camp Hero State Park, but the onsite hypothetical resident was evaluated in the HHSE.

• Cancer risk and non-cancer hazard results from exposure to onsite and offsite UGA groundwater did not exceed the USEPA thresholds of 1E-04 and 1, respectively.

Revision Number: 0

Revision Date: August 2022

 Potential adverse health effects from DoD related releases are not likely for onsite hypothetical residents, offsite residents living southwest of Camp Hero, and the public that drink water at the Montauk Point State Park and the Montauk Lighthouse and Museum located northeast and adjacent to Camp Hero.

7 CONCLUSIONS AND RECOMMENDATIONS

The purpose of the Phase IV RI was to determine if chemical constituents attributable to historical DoD activities at the Camp Hero FUDS were present in the groundwater of the UGA at unacceptable risk levels for a small set of residential receptors to the southwest of Camp Hero.

Revision Number: 0

Revision Date: August 2022

The geological mapping and geotechnical analysis confirmed a competent clay confining layer in the southwest corner of Camp Hero where the four new UGA wells were installed. However, the UGA is recharged with fresh water somewhere within Montauk Point and Camp Hero could include pathways to the UGA that have not yet been identified.

Groundwater data obtained from the onsite and offsite wells contained a variety of low-level detections of VOCs, SVOCs, PAHs, PCBs, and metals. A total of 44 constituents were detected at least once with only two VOCs, one SVOC, and twelve metals exceeding the most conservative applicable screening level (SL).

In conclusion, the four goals of the Phase IV RI were completed. Most constituents analyzed were at non-detected or very low concentrations. The source of detected constituents could be attributed to Camp Hero FUDS activities, widespread use of septic tanks in Montauk Point, and/or widespread anthropogenic use. Regardless of the source, a HHSE concluded that there were no actionable risks from drinking the UGA groundwater directly beneath or in the vicinity of Camp Hero.

Revision Number: 0 Revision Date: August 2022

This page intentionally left blank.

8 RECOMMENDATIONS

Based on this limited deep groundwater aquifer investigation, the no action determination that was recommended at the conclusion of the RI remains appropriate for Camp Hero under CERCLA.

Revision Number: 0

Revision Date: August 2022

It is recommended that the Decision Document with a no action determination proceed, including a Responsiveness Summary to address the public comments received in writing and verbally during the public meeting. The shallow monitoring wells used in the previous phases of the RI should be properly abandoned including the wells associated with DU01 since this non-CERCLA petroleum site is officially closed by NYSDEC.

Revision Number: 0 Revision Date: August 2022

This page intentionally left blank.

9 REFERENCES

42 United States Code. 1980. *The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended.* Chapter 103. §§9601-9675.

Revision Number: 0

- AECOM-Tidewater JV. 2019a. *Final Remedial Investigation Report.* Former Camp Hero, Montauk, New York. January.
- AECOM-Tidewater JV. 2019b. *Final Proposed Plan.* Remedial Investigation, Feasibility Study, Proposed Plan and Decision Document, Former Camp Hero, Montauk, New York. September.
- AECOM-Tidewater JV. 2021. *Final Phase IV Remedial Investigation Quality Assurance Project Plan Addendum.* Remedial Investigation, Feasibility Study, Proposed Plan and Decision Document, Former Camp Hero, Montauk, New York. January.
- ATSDR. 1996. Toxicological Profile for Carbon Disulfide. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 1997. Toxicological Profile for Chloroform. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 1999. Toxicological Profile for Mercury. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2000. Toxicological Profile for Polychlorinated Biphenyls. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2004. Toxicological Profile for Cobalt. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2007. Toxicological Profile for Arsenic. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2011. Toxicological Profile for Cresols. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2013. Toxicological Profile for Barium. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
- ATSDR. 2019. Toxicological Profile for Antimony. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.

ATSDR. 2021. Toxicological Profile for Acetone. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.

Revision Number: 0

- Cartwright, R.A. 2004. *Occurrence of Arsenic in Ground Water of Suffolk County, New York*. USGS Water Resources Investigations Report 03-4315, 11 p.
- Environmental Assessment & Remediation. 2018. Letter Report to John Swartout, NYSDEC. Camp Hero State Park, Spill No. 1805382, Montauk Highway, Montauk-September 2018 Groundwater Sampling. October 29, 2018.
- Helsel, D.R. 2009. Summing Nondetects: Incorporating Low-Level Contaminants in Risk Assessment. Integrated Environmental Assessment and Management. Volume 6, Number 3: 361-366.
- LICAP. 2019. Long Island Commission for Aquifer Protection GIS-based Water Quality Mapping and Database. Accessed December 2019 at https://scwany.maps.arcgis.com/apps/webappviewer.
- New York Natural Heritage Program (NYNHP), 2010. New York Rare Plant Status Lists. June.
- NYSDEC. 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Division of Water Technical and Operational Guidance Series (1.1.1), (TOGS 1.1.1), June. January 1999 Errata Sheet, April 2000 Addendum, and June 2004 Addendum.
- NYSDEC. 2010. Final DEC Program Policy. DER-10 Technical Guidance for Site Investigation and Remediation. May 3.
- NYSDOH. 2022. Title: Section 5-1.52 Tables (effective Date: 19 January 2022). https://www.health.ny.gov/regulations/nycrr/title_10/part_5/docs/subpart_5-1_tables.pdf
- Perlmutter, N.M., and DeLuca, F.A. 1963. *Availability of fresh ground water Montauk Point area Suffolk County Long Island, New York*. USGS Water Supply Paper 1613-B, 39 p.
- SCWA. 2016a. *Suffolk County Water Authority 2016 Water Quality Report for Calendar Year 2015.*Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2016b. *Suffolk County Water Authority 2016 Supplemental Report for Calendar Year 2015.*Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2017a. *Suffolk County Water Authority 2017 Water Quality Report for Calendar Year 2016.* Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2017b. *Suffolk County Water Authority 2017 Supplemental Report for Calendar Year 2016.* Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.

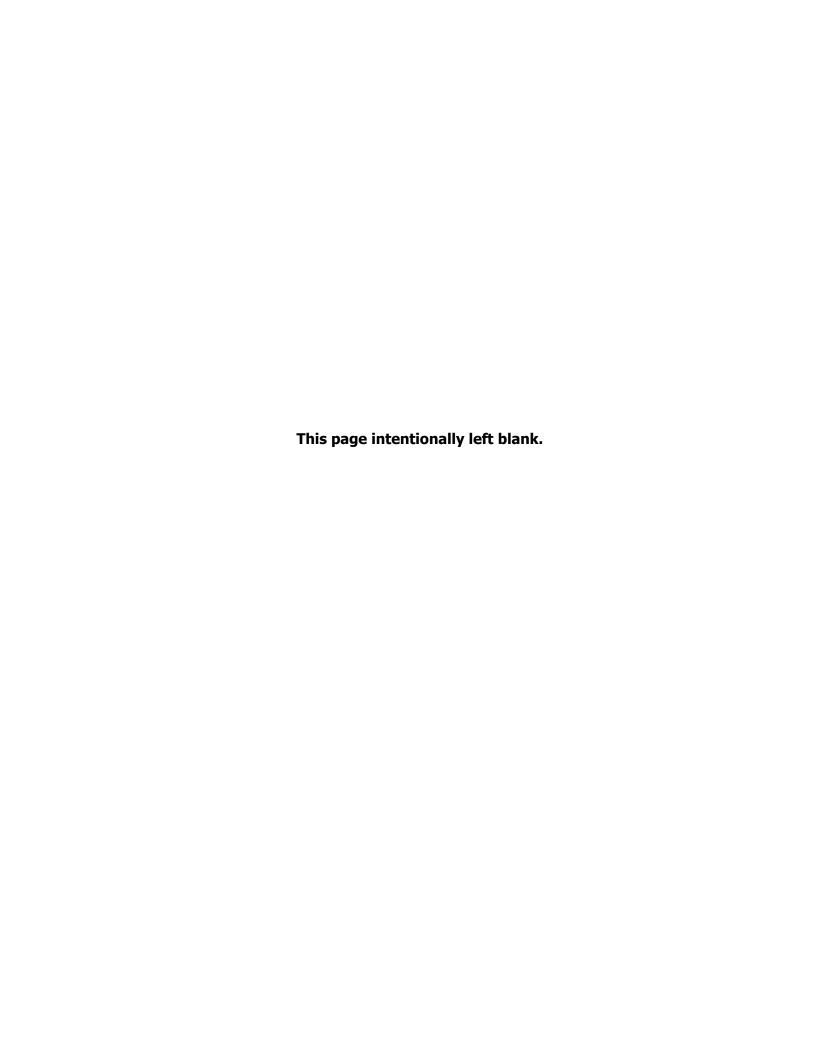
SCWA. 2018a. *Suffolk County Water Authority 2018 Water Quality Report for Calendar Year 2017.*Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.

Revision Number: 0

- SCWA. 2018b. *Suffolk County Water Authority 2018 Supplemental Report for Calendar Year 2017.*Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2019a. *Suffolk County Water Authority 2019 Water Quality Report for Calendar Year 2018.*Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2019b. *Suffolk County Water Authority 2019 Supplemental Report for Calendar Year 2018.* Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2020a. *Suffolk County Water Authority 2020 Water Quality Report for Calendar Year 2019.* Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- SCWA. 2020b. *Suffolk County Water Authority 2020 Supplemental Report for Calendar Year 2019.* Accessed July 2020 at https://www.scwa.com/water-quality/water-quality-reports.
- USACE. 2013. General Investigation Derived Waste/Remediation Waste Handling and Disposal, Scope of Services for Contracted Environmental Studies. February.
- USACE, 2016a. *Chemical Warfare Materiel Probability Assessment for Intrusive Investigation at Former Camp Hero, Montauk, New York.* April.
- USACE, 2016b. *Memorandum for Record. Probability Assessment for Former Camp Hero, Montauk NY.*Baltimore District. April.
- USEPA. 1989. *Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual, Part A.* Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/5401-89/002. December.
- USEPA. 1990. Updated Health Effects Assessment for Methyl Ethyl Ketone. EPA/600/8-89/093. Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, Cincinnati, OH. 1990.
- USEPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-30. 22 April.
- USEPA. 1992. Guidance for Performing Site Inspections under CERCLA; Interim Final. September.
- USEPA. 1993. *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons*. EPA/600/R-93/089. July.

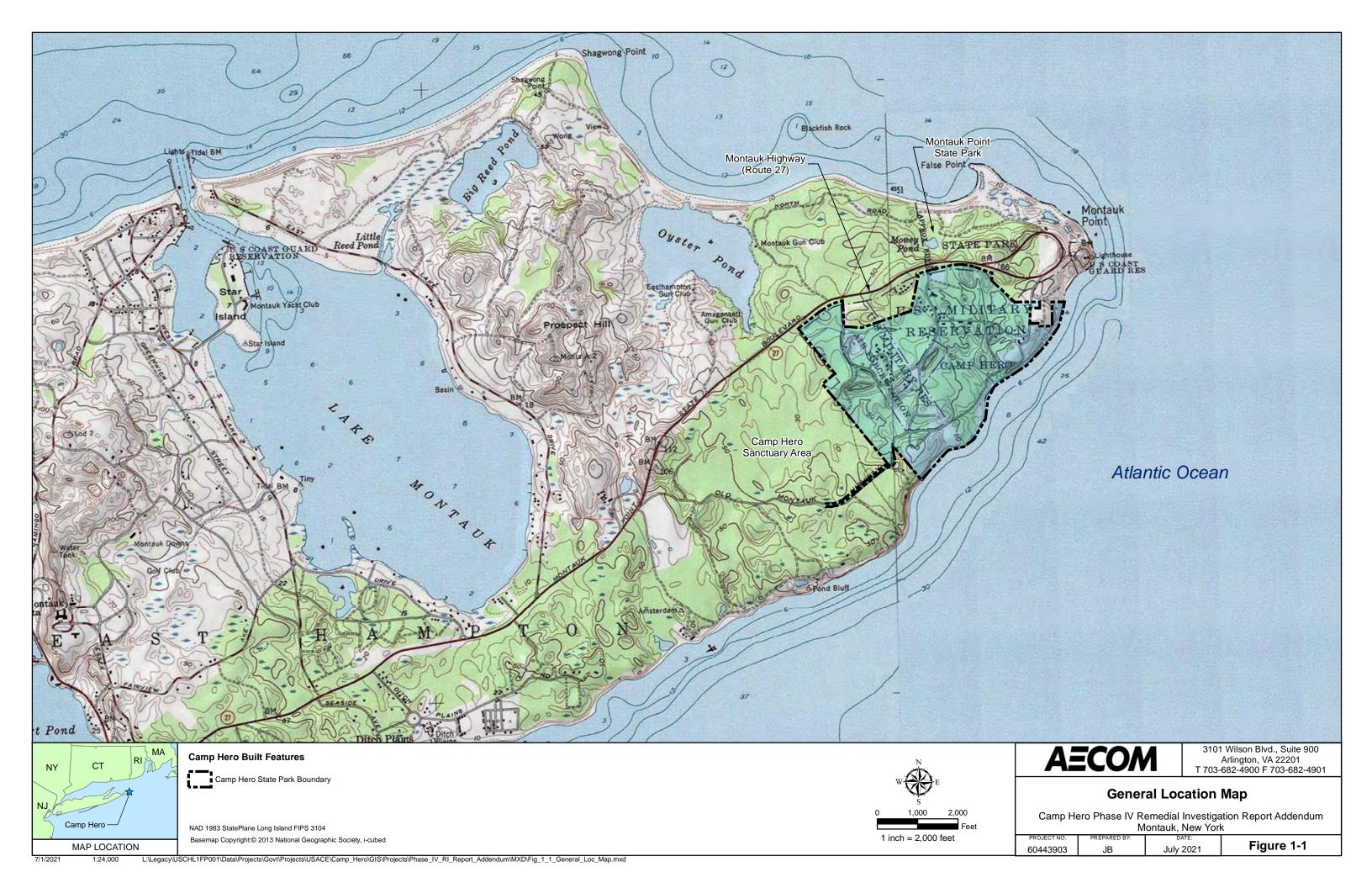
USEPA. 2001a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments). December.

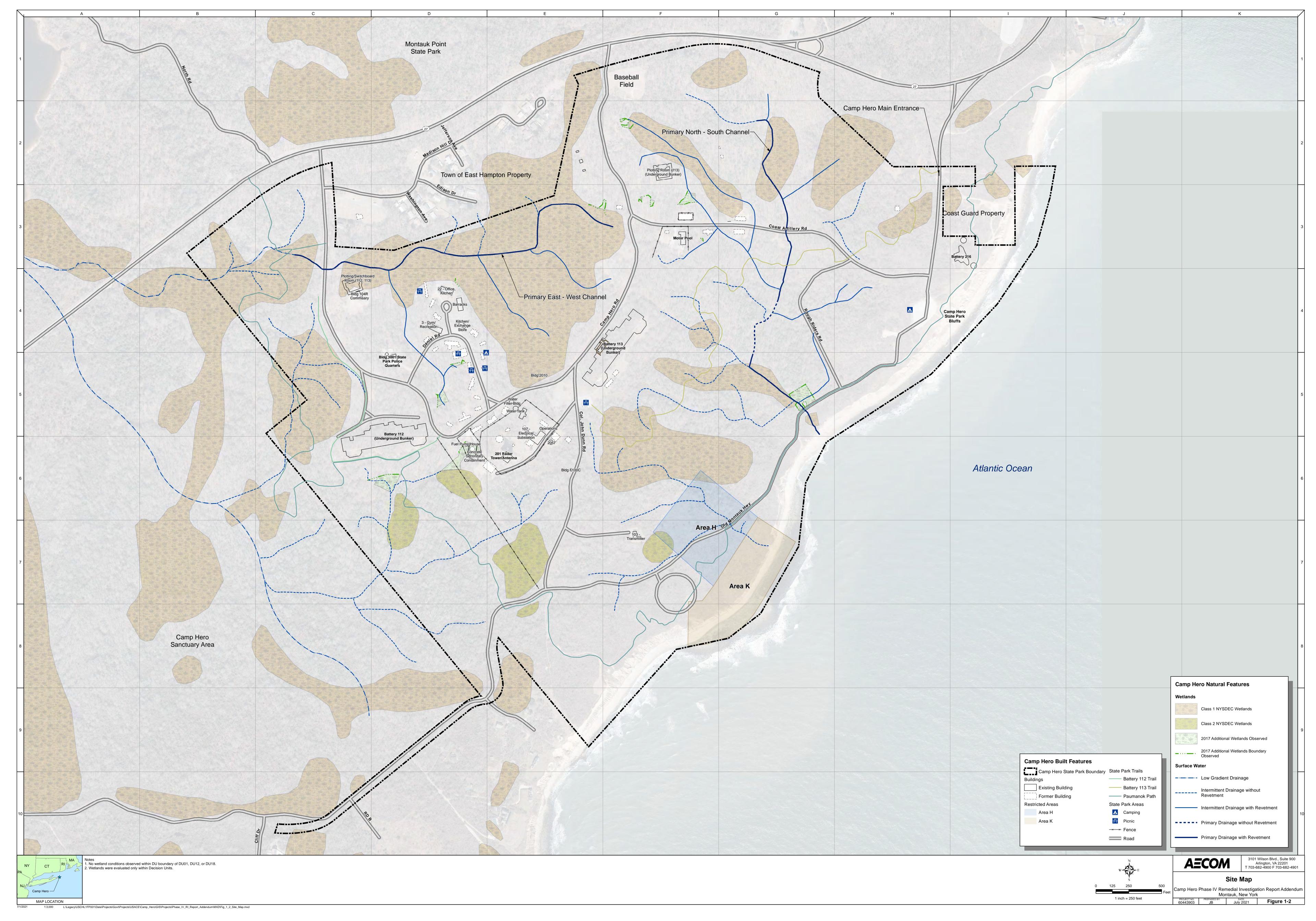
Revision Number: 0

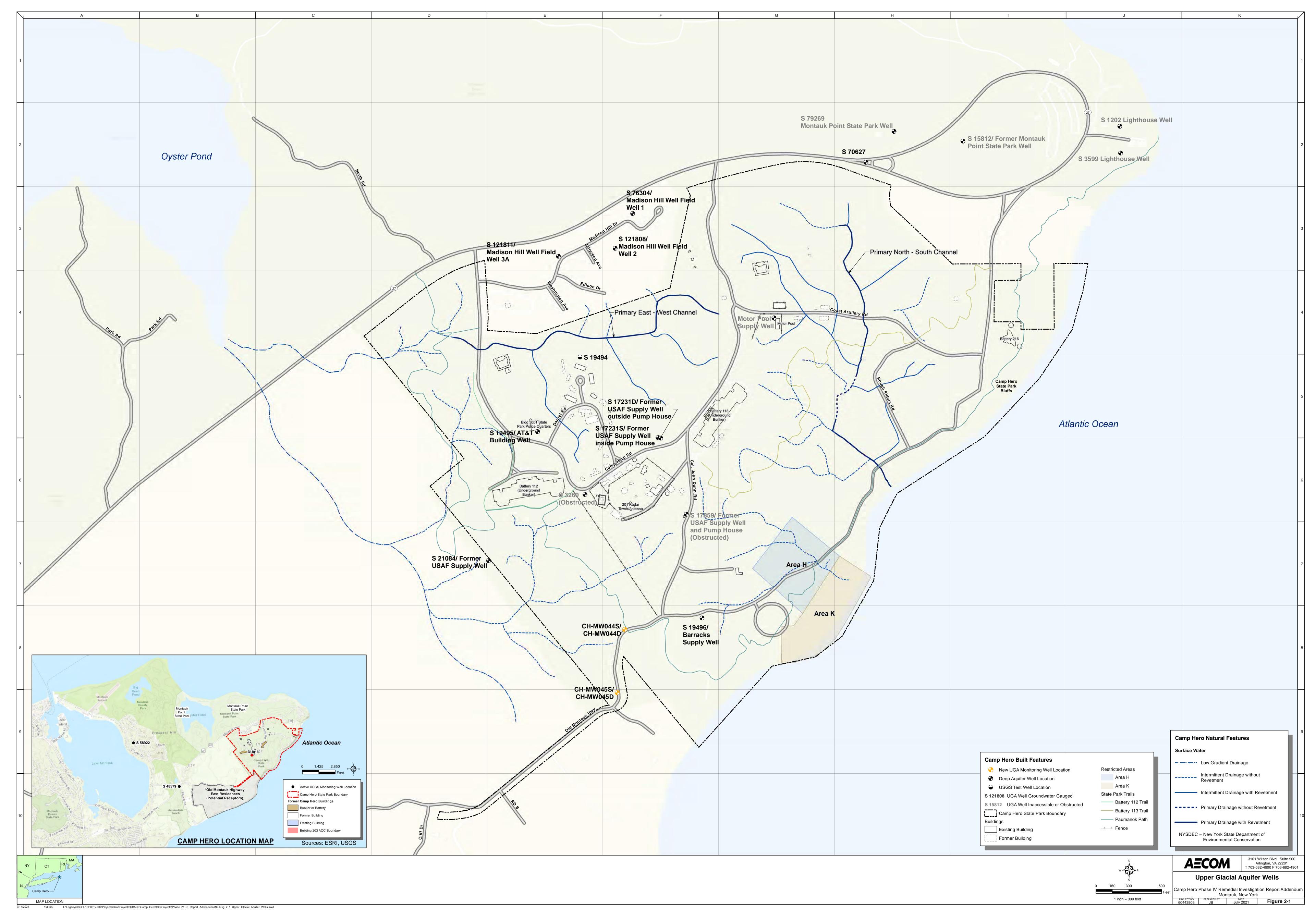

- USEPA. 2001b. Fact Sheet, Correcting the Henry's Law Constant for Soil Temperature, Figure 1 Average Shallow Groundwater Temperatures in the United States.
- USEPA, 2003. Human Health Toxicity Values in Superfund Risk Assessment. Office of Superfund Remediation and Technology Innovation. OSWER Directive 9285.7-53. December. http://www.epa.gov/oswer/riskassessment/pdf/hhmemo.pdf
- USEPA. 2004. *Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual* (*Part E, Supplemental Guidance for Dermal Risk Assessment*), *Final.* Office of Superfund Remediation and Technology Innovation, Washington, DC. July.
- USEPA. 2005. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R-03/003F, March.
- USEPA. 2009. *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual* (*Part F, Supplemental Guidance for Inhalation Risk Assessment*). *Final.* Office of Superfund Remediation and Technology Innovation, Washington, DC. EPA-540-R-070-002. January.
- USEPA. 2014. *Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120.* February. Amended 14 September 2015.
- USEPA. 2015. ProUCL Version 5.1.002 User Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. October.
- USEPA. 2016. ProUCL Version 5.1.00 Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. Accessed at https://www.epa.gov/land-research/proucl-software. May.
- USEPA. 2018. *National Primary Drinking Water Regulations*. EPA 816-F-09-004. Accessed July 2020 at https://www.epa.gov/dwstandardsregulations/2018-drinking-water-standards-and-advisory-tables. March.
- USEPA. 2019. Storage and Retrieval (STORET) Water Quality Exchange (WQX) Water Quality Portal (WQP). Accessed December 2019 at https://www.epa.gov/waterdata/water-quality-data-wqx.
- USEPA. 2021a. Regional Screening Level (RSL) Table and User's Guide Dated November 2021.
- USEPA. 2021b. Vapor Intrusion Screening Levels (VISLs) Dated November 2021.

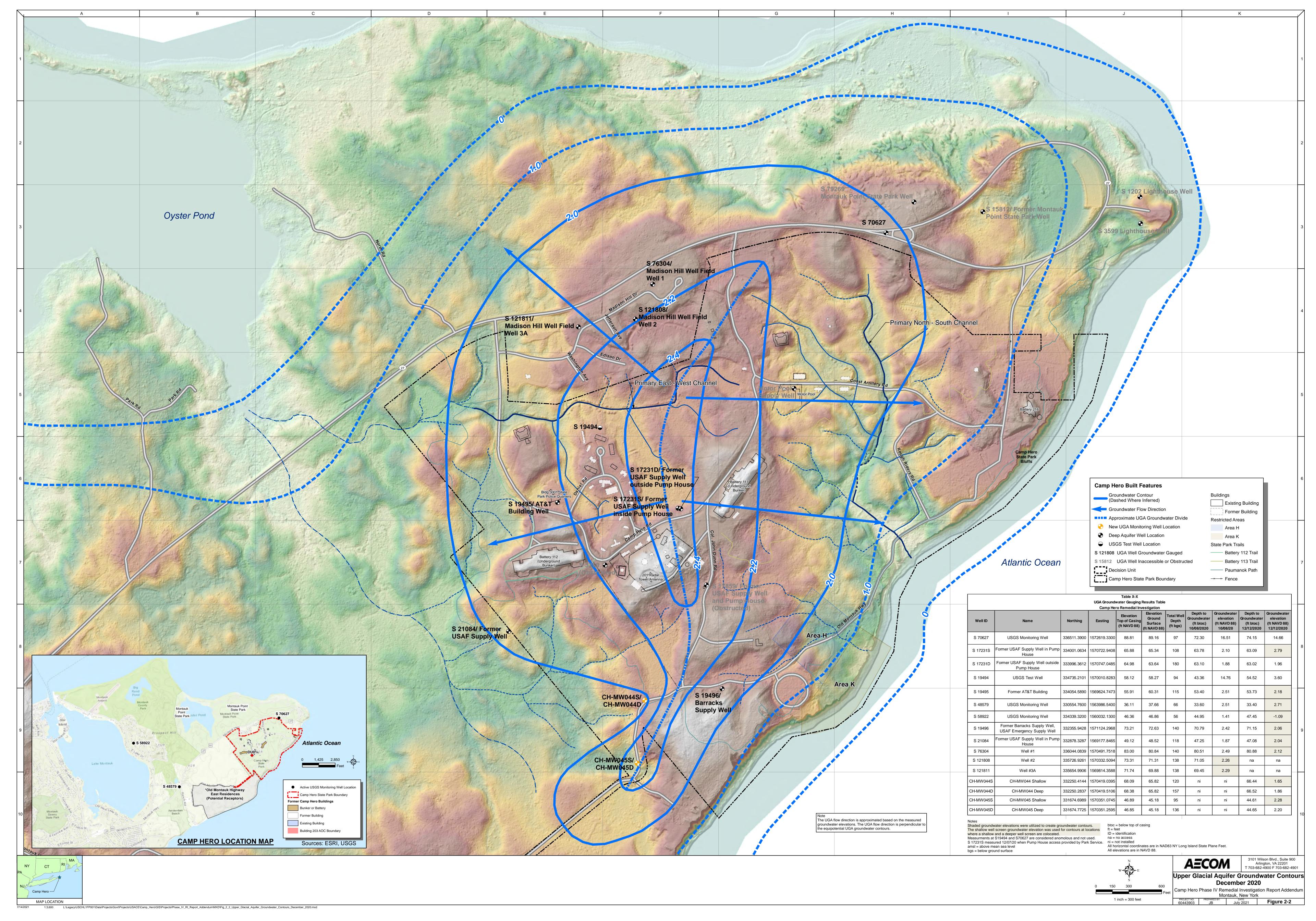
- Revision Number: 0
 Revision Date: August 2022
- USEPA. 2021c. Lead at Superfund Sites: Frequent Questions from Risk Assessors on the Integrated Exposure Uptake Biokinetic (IEUBK) Model. 29 April 2021.
- USGS. 1963. Availability of Fresh Groundwater, Montauk Point Area, Suffolk County, Long Island, New York. USGS Water Supply Paper 1613-B.
- USGS. 1986. *Groundwater Resource Assessment of the Montauk Area, Suffolk County, Long Island, New York*. Water Resources Investigations Report 85-4013.
- USGS. 2004. Occurrence of Arsenic in Ground Water of Suffolk County, New York, 1997-2002. Water Resources Investigations Report 03-4315.

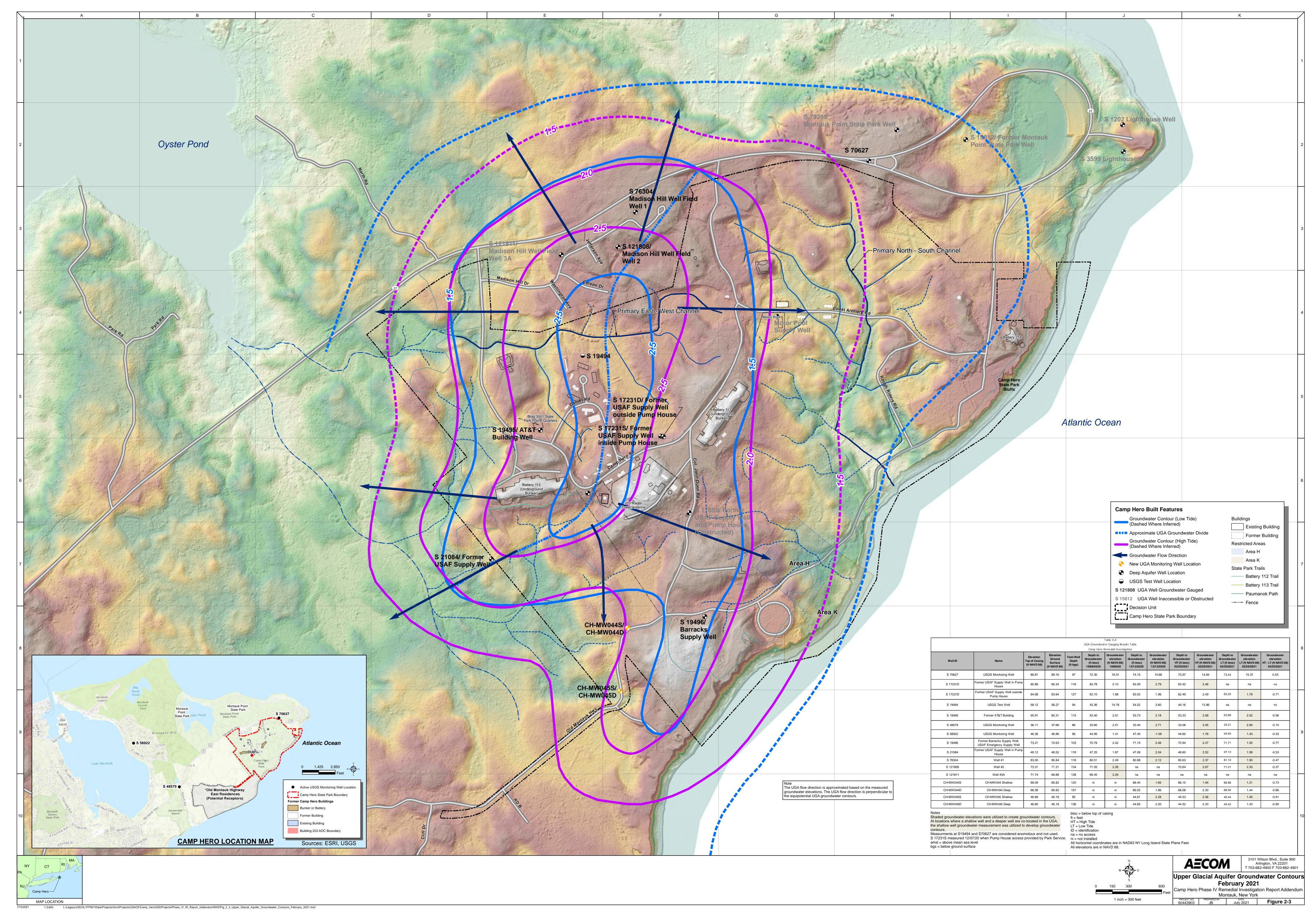
Revision Number: 0 Revision Date: August 2022


This page intentionally left blank.


Appendix A Figures



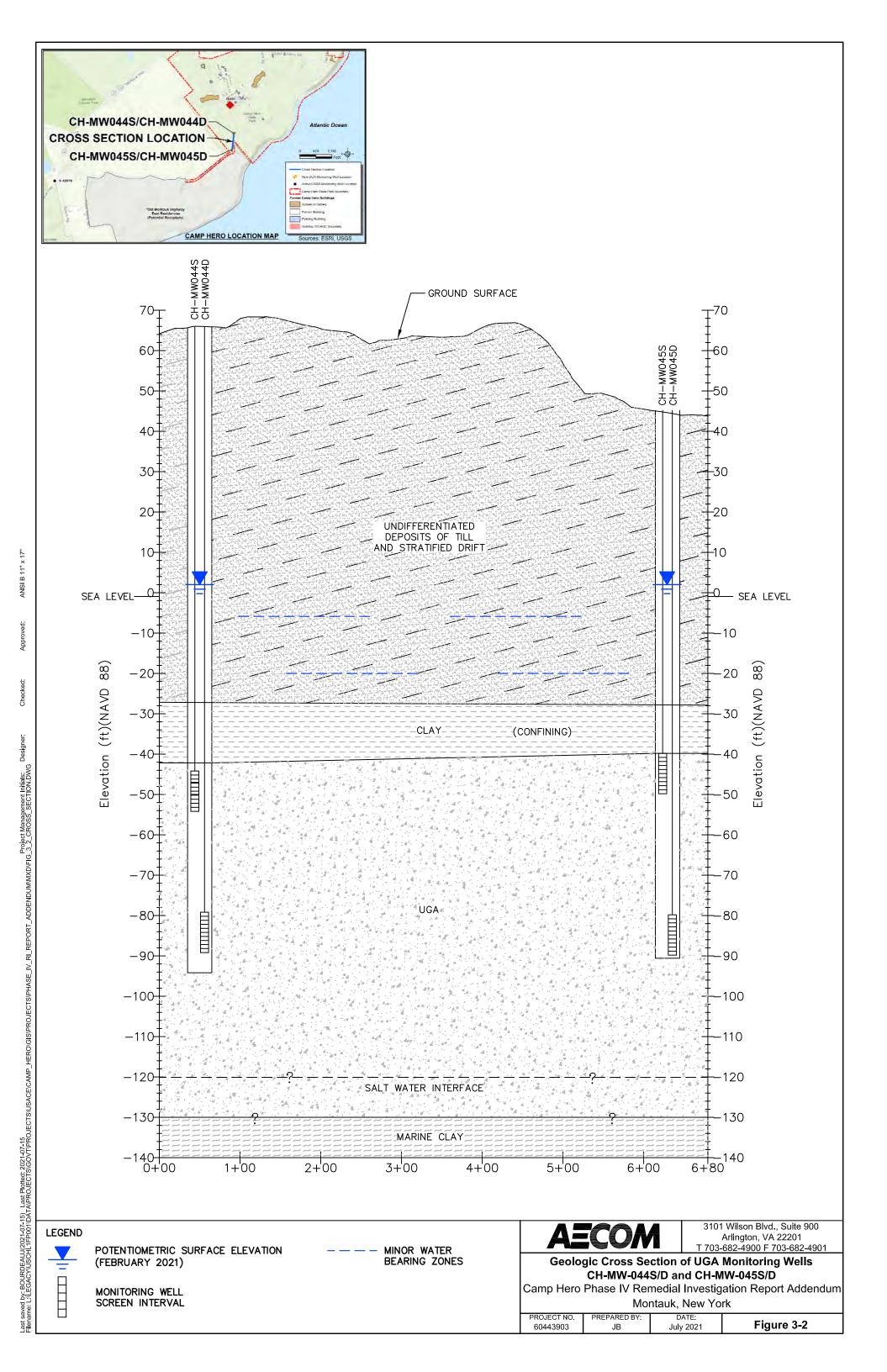

Figure 1-1	General Location Map
igure 1-2	Site Map
Figure 2-1	Upper Glacial Aquifer Wells
igure 2-2	Upper Glacial Aquifer Groundwater Contours, December 2020
Figure 2-3	Upper Glacial Aquifer Groundwater Contours, February 2021
Figure 3-1	Summary of Geologic Strata and Hydrogeologic Units in the Montauk Area
Figure 3-2	General Hydrology Cross Section
Figure 6-1	Risk Assessment Process Flow Chart



ANSIB 11" × 1 NTAUK_AREA.DWC	
Approved: NITS_IN_THE_MO	
Checked: <u>DR</u> OGEOLOGIC_UNIT	
ials: Designer: _STRATA_AND_HY	
Project Management Init	
.MXD\FIG_3_1_SU	
ORT_ADDENDUM	
ASE_IV_RI_REP	
IS/PROJECTS/PH	
SCAMP_HERONG	
J/2021-07-15) Last Plotted: 2021-07-15 DATAIPROJECTSIGOVTIPROJECTSIUSACE\CAMP_HERON	
AUJ(2021-07-15) Last Plotte 101\DATA\PROJECTS\GOVT	
by: BOURDEAUJ(2021-0] \\USCHL1FP001\DATA\PF	
by: BC	

System	Series	Geolo		Hydrogeologic unit		
	Holocene	Recent shore, deposits,				
		Moraine and outwash deposit (Ronkonkoma Dri				
		Glaciofluv deposits				
QUATERNARY	Pleistocene	Montauk Member		ial aquifer	Confining unit (till unit)	
		Glaciofluv deposits		Glacial	Principal aquifer/UGA	
		Mc (Gardiners (equ		Marine clay confining unit		
			unconformity? uceous(?) deposits uceous equivalent[?])			
		Matawa Formatio		Magothy aquifer		
CRETACEOUS	Upper Cretaceous	Raritan		Raritan confining unit		
		Formation	Lloyd aquifer			
PALEOZOIC and PRECAMBRIAN		Crystalline bedroc		Bedrock		

Note The Principal aquifer referenced in the figure and UGA used in the RI Addendum are synonymous terms. Reference; USGS. 1986. Groundwater Resource Assessment of the Montauk Area, Suffolk County, Long Island, New York. Water Resources Investigations Report 85—4013.



3101 Wilson Blvd., Suite 900 Arlington, VA 22201 T 703-682-4900 F 703-682-4901

Summary of Geologic Strata and Hydrogeologic Units in the Montauk Area

Camp Hero Phase IV Remedial Investigation Report Addendum Montauk, New York

PROJECT NO.	PREPARED BY:	DATE:	l <u> </u>
60443903	JB	July 2021	Figure 3-1

Data Evaluation	 Define Decision Unit (DU) data sets Summation Calculations (PAHs and PCBs) Data Sensitivity Analysis (DSA)
Identify COPCs	 Risk-Based Screening of Onsite and Offsite Well DUs Risk-Based Screening of Onsite and Offsite Wells
Exposure Assessment	 Onsite and Offsite Residents - Tap Water Exposure Pathways (Ingestion, Dermal Contact, and Inhalation of Vapors while Showering) Exposure Point Concentrations (e.g., Upper Confidence Limits)
Toxicity Assessment	 Cancer Evaluation: Cancer Slope Factor and Inhalation Unit Risk Non-Cancer Evaluation: Reference Dose and Reference Concentrations Target Organ Endpoints
Risk Characterization	 Onsite Well DU Cumulative Evaluation Offsite Well DU Cumulative Evaluation Well-By-Well Cumulative Evaluation
Uncertainty Analysis	 Maximum Contaminant Level Screen Line of Evidence Review DSA Risk Review
Risk Conclusions	 Define Preliminary Chemicals of Concern (pCOCs), if applicable Acceptable Cancer Risk is Below 1E-04 (one in 10,000) Acceptable Non-Cancer Hazard is Below 1 for Target Organ Endpoint Hazard Index

FIGURE 6-1: RISK ASSESSMENT FLOW CHART

Appendix B

Tables

Appendix B1

Report Tables

Table 2-1
UGA Monitoring Well Construction Information
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Well ID	Name	Northing	Easting	Elevation Top of Casing (feet amsl) ¹	Elevation Ground Surface (feet amsl) ¹	Total Well Depth (feet bgs)	Screen Interval (feet bgs)
CH-MW044S	CH-MW044 Shallow	332250.4144	1570419.0395	68.09	65.82	120	110-120
CH-MW044D	CH-MW044 Deep	332250.2837	1570419.5106	68.38	65.82	157	147-157
CH-MW045S	CH-MW045 Shallow	331674.6989	1570351.0745	46.89	45.18	95	85-95
CH-MW045D	CH-MW045 Deep	331674.7725	1570351.2595	46.85	45.18	136	126-136

amsl = above mean sea level

bgs = below ground surface

btoc = below top of casing

NAD83 = North American Datum 1983

NAVD88 = North American Vertical Datum 1988

¹ Horizontal coordinates are in NAD83 New York Long Island State Plane Feet. Elevations are in NAVD88.

Table 2-2
Soil Geotechnical Results
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Boring ID	Sample ID	Depth (feet bgs)*	Grain Size Analysis (Sieve and Hydrometer)	Sample Description	Moisture Content (%)	sand	fines	gravel
CH-MW044	CHMW044D-SB-14-15	14-15	59.3% sand, 36.1% fines, and 4.6% gravel	Moist, brown clayey sand	13.2	59.3%	36.1%	4.6%
<u> </u>		1 . 10	64.2% sand, 35.8% fines, and 0%		20.2	00.070	00.270	
CH-MW044	CHMW044D-SB-27-29	27-29	gravel	Moist, grayish brown clayey sand	10.8	64.2%	35.8%	0.0%
			60.5% sand, 35.4% fines, 4.1%					
CH-MW044	CHMW044D-SB-37-39	37-39	grave.	Moist, gray clayey sand	10.3	60.5%	35.4%	4.1%
CH-MW044	CHMW044D-SB-46-47	46-47	62.3% sand, 36.6% fines, and 1.1% gravel	Moist, gray clayey sand	10.9	62.3%	36.6%	1.1%
			67.7% sand, 25.3% fines, and					
CH-MW044	CHMW044D-SB-58-59	58-59	7.0% gravel	Moist, gray clayey sand	10	67.7%	25.3%	7.0%
CH-MW044	CHMW044D-SB-63-64	63-64	66.7% sand, 20.1% fines, and 13.2% gravel	Moist, gray clayey sand	11.9	66.7%	20.1%	13.2%
			83.1% sand, 14.5% fines, and					
CH-MW044	CHMW044D-SB-70-72	70-72	2.4% gravel	Moist, grayish brown silty sand	10.6	83.1%	14.5%	2.4%
CH-MW044	CHMW044D-SB-85-86	85-86	71.1% fines, 28.9% sand, and 0% gravel	Moist, gray clay with sand	23.7	28.9%	71.1%	0.0%
CH-MW044	CHMW044D-SB-96-97	96-97	95.0% fines, 5.0% sand, and 0% gravel	Moist, dark gray clay	24.9	5.0%	95.0%	0.0%
CH-MW044	CHMW044D-SB-108-109	108-109	69.5% fines, 21.6% sand, and 8.9% gravel	Moist, gray clay with sand	21.3	21.6%	69.5%	8.9%
C	C. II 1110 1 15 55 100 105	100 103	88.1% sand, 9.8% fines, and 2.1%		21.5	211070	03.370	01570
CH-MW044	CHMW044D-SB-115-116	115-116	gravel	Moist, gray sand with silt	17.1	88.1%	9.8%	2.1%
			88.8% sand, 8.3% gravel, and					
CH-MW044	CHMW044D-SB-123-125	123-125	2.9% fines	Moist, gray sand	15.4	88.8%	2.9%	8.3%
CH-MW044	CHMW044D-SB-136-138	136-138	77.8% sand, 15.8% gravel, and 6.4% fine.	Moist, grayish brown sand with silt and gravel	6.9	77.8%	6.4%	15.8%
CH-MW044	CHMW044D-SB-157-159	157-159	88.0% sand, 10.4% fines, and 1.6% gravel	Moist, gray sand with silt	13.2	88.0%	10.4%	1.6%

bgs = Below Ground Surface; % fines = %silt and clay; * Discreet Sample Moisture – 24 ASTM D2216; Grain Size Analysis – 24 ASTM D6913/D7928

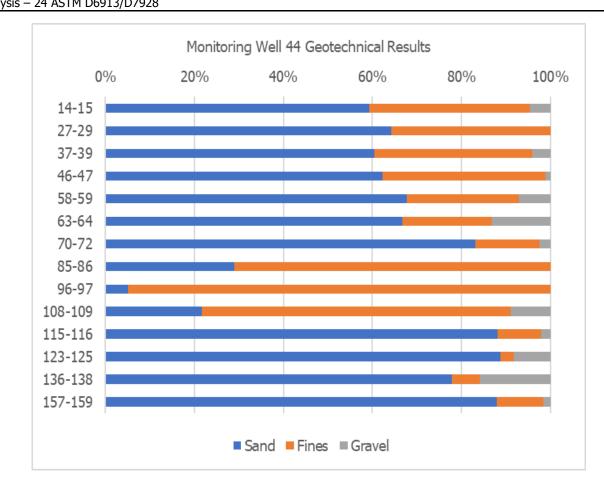


Table 2-2
Soil Geotechnical Results
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Boring ID	Sample ID	Depth (feet bgs)*	Grain Size Analysis (Sieve and Hydrometer)	Sample Description	Moisture Content (%)	sand	fines	gravel
			46.6% sand, 28.6% fines, and	Moist, dark yellowish brown				
CH-MW045D	CHMW045D-SB-00-10	0-10	24.8% gravel	clayey sand with gravel	12.2	46.6%	28.6%	24.8%
			63.8% sand, 32.5% fines, and					
CH-MW045D	CHMW045D-SB-10-30	10-30	14.9% gravel	Moist, dark gray clayey sand	10.8	63.8%	32.5%	14.9%
			59.3% sand, 25.8% fines, 14.9%					
CH-MW045D	CHMW045D-SB-30-50	30-50	grave.	Moist, gray clayey sand	10	59.3%	25.8%	14.9%
			72.9% sand, 26.2% fines, and 0.9%					
CH-MW045D	CHMW045D-SB-40-50	40-50	gravel	Moist, grayish brown silty sand	10.7	72.9%	26.2%	0.9%
			38.7% sand, 58.2% fines, and 3.1%					
CH-MW045D	CHMW045D-SB-50-60	50-60	gravel	Moist, grayish brown sandy clay	20.7	38.7%	58.2%	3.1%
			39.5% sand, 60.5% fines, and 0%					
CH-MW045D	CHMW045D-SB-60-70	60-70	gravel	Moist, grayish brown sandy silt	27.4	39.5%	60.5%	0.0%
			11.4% sand, 88.6% fines, and 0.3%					
CH-MW045D	CHMW045D-SB-72-80	72-80	gravel	Moist, dark grayish brown clay	23.9	11.4%	88.6%	0.3%
			35.1% sand, 64.9% fines, and 0.3%					
CH-MW045D	CHMW045D-SB-80-85	80-85	gravel	Moist, grayish brown sandy clay	22.5	35.1%	64.9%	0.3%
			93.7% sand, 6.0% fines, and 0%					
CH-MW045D	CHMW045D-SB-90-100	90-100	gravel	Moist, gray sand with silt	16.4	93.7%	6.0%	0.0%
			89.6% sand, 10.4 fines%, and 0%	Moist, grayish brown sand with				
CH-MW045D	CHMW045D-SB-132-134	132-134	gravel	silt	18.1	89.6%	10.4%	0.0%

BGS = Below Ground Surface; % fines = %silt and clay; * Composite Sample Moisture – 24 ASTM D2216; Grain Size Analysis – 24 ASTM D6913/D7928

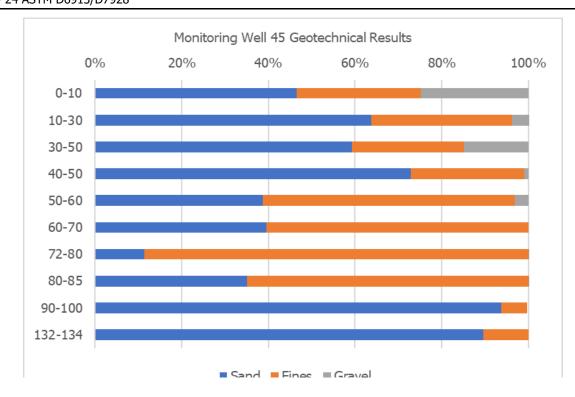


Table 2-3
Phase IV Groundwater Analytical Sample Summary
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

					et Field meters			Targ	et Laborat	ory Parar	neters	
Well ID	Well Nickname	Sampling Method	Target Depth	Well Head PID	pH, ORP, SC, DO, Turb	Sample Dates	Field Sample IDs	VOCs ¹	SVOCs ²	PCBs	Metals ³ Total and Dissolved	Comments/Deviations from QAPP Addendum
Onsite Wells												
CH-MW044D	CH-MW044 Deep	Low-Flow, Bladder Pump	Mid-screen	Х	Х	11-Dec-20 22-Feb-21	CH-MW044D-1220 CH-MW044D-0221	Х	Х	Х	Х	
CH-MW044S	CH-MW044 Shallow	Low-Flow, Bladder Pump	Mid-screen	Х	Х	11-Dec-20 22-Feb-21	CH-MW044S-1220 CH-MW044S-0221	Х	Х	Х	Х	
CH-MW045D	CH-MW045 Deep	Low-Flow, Bladder Pump	Mid-screen	Х	X	12-Dec-20 22-Feb-21	CH-MW045D-1220 CH-MW045D-0221	Х	Х	Х	Х	
CH-MW045S	CH-MW045 Shallow	Low-Flow, Bladder Pump	Mid-screen	Х	Х	9-Dec-20 22-Feb-21	CH-MW045S-1220 CH-MW045S-0221	Х	Х	Х	Х	
S 17231S	Former USAF Supply Well in Pump House	Low-Flow, Bladder Pump	Mid-screen	Х	Х	10-Dec-20 25-Feb-21	S17231S-1220 S17231S-0221, S17231S-0221D	Х	Х	Х	Х	
S 19494	USGS Test Well (Behind Barracks Building)	Low-Flow, Bladder Pump	Mid-screen	Х	X	7-Dec-20 23-Feb-21	S19494-1220 S19494-0221	Х	Х	Х	Х	The test well exhibited poor water quality parameters.
S 19495	Former AT&T Building Well	Low-Flow, Bladder Pump	Mid-screen	Х	X	8-Dec-20 23-Feb-21	S19495-1220 S19495-0221	Х	Х	Х	Х	Removed old submersible pump and properly disposed.
Offsite Wells												
S 1202	Lighthouse Well (Gift Shop Potable Well)	Тар	Mid-screen	Х	Х	9-Dec-20 24-Feb-21	S1202-1220 S1202-0221	Х	Х	Х	Х	
S 3599	Lighthouse Well (Museum Shower)	Тар	Mid-screen	Х	Х	9-Dec-20 24-Feb-21	S3599-1220 S3599-0221	Х	Х	Х	Х	
S 48579	USGS Monitoring Well (Route 27 at Horse Ranch)	Low-Flow, Bladder Pump	Mid-screen	Х	X	10-Dec-20 23-Feb-21	S48579-1220 S48579-0221	Х	Х	Х	Х	
S 58922	USGS Monitoring Well (Pocohontas Road)	Low-Flow, Bladder Pump	Mid-screen	Х	X	9-Dec-20 23-Feb-21	S58922-1220 S58922-0221	Х	Х	Х	Х	
S 70627	USGS Monitoring Well (Route 27 near Lighthouse)	Low-Flow, Bladder Pump	Mid-screen	Х	X	12-Dec-20 24-Feb-21	S70627-1220 S70627-0221	Х	Х	Х	Х	
S 76304	Madison Hill Well Field #1	Low-Flow, Waterra Pump	Mid-screen	Х	Х	13-Dec-20 27-Feb-21	S76304-1220, S76304-1220D S76304-0221	Х	X	Х	Х	Well construction restriction resulted in the development volume and turbidity target not achieved in December 2021 but were acheived in the February 2021.
S 79269	Montauk Point State Park Well (Potable)	Тар	Mid-screen	Х	X	8-Dec-20 25-Feb-21	S79269-1220, S79269-1220D S79269-0221, S79269-0221D	Х	Х	Х	Х	

DO = dissolved oxygen

ID = identifier

NYSDEC = New York State Department of Environmental Conservation

ORP = oxidation-reduction potential

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyls

PID = photoionization detector

SC = specific conductivity

SVOC = semivolatile organic compound

TAL = total analyte list

Turb = turbidity

USAF = United States Air Force

USGS = United States Geological Survey

VOC = volatile organic compound

¹ VOCs analysis included specific parameters based on preliminary screening evaluation results, plus NYSDEC STARs list

² SVOCs analysis included selected SVOCs based on preliminary screening evaluation, plus NYSDEC STARs list (includes full TCL PAHs plus NYSDEC STARs list)

³ Metals analysis included full TAL metals, including hexavalent chromium and mercury. Total (unfiltered) and dissolved (field-filtered) samples were collected.

Table 2-4 **Phase IV UGA Groundwater Elevations** Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

Well ID	Name	Northing ³	Easting ³	Elevation Top of Casing (feet amsl) ³	Elevation Ground Surface (feet amsl) ³	Total Well Depth (feet bgs)	Depth to Groundwater (feet btoc) 10/08/2020	Groundwater elevation (feet amsl) 10/08/20	Depth to Groundwater (feet btoc) 12/12/2020	Groundwater elevation (feet amsl) 12/12/2020	Depth to Groundwater HT (feet btoc) 02/25/2021	Groundwater elevation HT (feet amsl) 02/25/2021	Depth to Groundwater LT (feet btoc) 02/25/2021	Groundwater elevation LT (feet amsl) 02/25/2021	Groundwater elevation HT-LT (feet amsl) 02/25/2021
Onsite Wells		11010111119		(rece amor)	(rece annoly	(1000 230)		20,00,20	,,,		0=/ =0/ =0==	0=1=01=0==	0_1_01_0	0=7=07=0==	02/20/2022
CH-MW044D	CH-MW044 Deep	332250.2837	1570419.5106	68.38	65.82	157	ni	ni	66.52	1.86	66.08	2.30	66.94	1.44	-0.86
CH-MW044S	CH-MW044 Shallow	332250.4144	1570419.0395	68.09	65.82	120	ni	ni	66.44	1.65	66.15	1.94	66.88	1.21	-0.73
CH-MW045D	CH-MW045 Deep	331674.7725	1570351.2595	46.85	45.18	136	ni	ni	44.65	2.20	44.52	2.33	45.42	1.43	-0.90
CH-MW045S	CH-MW045 Shallow	331674.6989	1570351.0745	46.89	45.18	95	ni	ni	44.61	2.28	44.53	2.36	45.44	1.45	-0.91
S 17231S ¹	Former USAF Supply Well in Pump House	334001.0634	1570722.9408	65.88	65.34	116	63.78	2.10	63.09	2.79	63.42	2.46	na	na	na
S 19494 ²	USGS Test Well (Behind Barracks Building)	334735.2101	1570010.8283	58.12	58.27	94	43.36	14.76	54.52	3.60	44.16	13.96	na	na	na
	Former AT&T Building Well	334054.5890	1569624.7473	55.91	60.31	115	53.40	2.51	53.73	2.18	53.33	2.58	53.89	2.02	-0.56
Offsite Wells															
	Former USAF Supply Well outside Pump House	333996.3612	1570747.0485	64.98	63.64	127	63.10	1.88	63.02	1.96	62.49	2.49	63.20	1.78	-0.71
S 76304	Madison Hill Well Field #1	336044.0839	1570491.7518	83.00	80.84	116	80.51	2.49	80.88	2.12	80.63	2.37	81.10	1.90	-0.47
S 121808	Madison Hill Well Field #2	335726.9261	1570332.5094	73.31	71.31	134	71.05	2.26	na	na	70.64	2.67	71.01	2.30	-0.37
S 121811	Madison Hill Well Field #3A	335654.9906	1569814.3588	71.74	69.88	138	69.45	2.29	na	na	na	na	na	na	na
S 19496	Barracks Supply Well	332355.9428	1571124.2968	73.21	72.63	103	70.79	2.42	71.15	2.06	70.94	2.27	71.71	1.50	-0.77
S 21084	Former USAF Supply Well	332878.3287	1569177.8465	49.12	48.52	118	47.25	1.87	47.08	2.04	46.60	2.52	47.13	1.99	-0.53
S 48579	USGS Monitoring Well (Route 27 at Horse Ranch)	330554.7600	1563986.5400	36.11	37.66	66	33.60	2.51	33.40	2.71	33.06	3.05	33.21	2.90	-0.15
S 58922	USGS Monitoring Well (Pocohontas Road)	334339.3200	1560032.1300	46.36	46.86	56	44.95	1.41	47.45	-1.09	44.60	1.76	44.93	1.43	-0.33
S 70627 ²	USGS Monitoring Well (Route 27 near Lighthouse)	336511.3900	1572619.3300	88.81	89.16	97	72.30	16.51	74.15	14.66	73.97	14.84	73.44	15.37	0.53

Shaded groundwater elevations are within the normal range found for the UGA and were utilized to evaluate UGA flow direction at locations where a shallow and a deeper well screen are colocated.

³ Horizontal location data are in NAD83 New York Long Island State Plane Feet. Vertical location data are in NAVD88.

amsl = above mean sea level

bgs = below ground surface

btoc = below top of casing HT = high tide

LT = low tide

na = no access

NAD 83 = North American Datum 1983

NAVD 88 = North Amerivan Vertical Datum 1988

ni = not installed

nm = no measurement

UGA = Upper Glacial Aquifer

USAF = United States Air Forice

USGS = United States Geological Survey

¹ S 17231S measured 12/07/20 and 02/25/21 when Pump House access provided by Park Service.

² Measurments at S19494 and S70627 are considered erratic for the UGA and are not used.

Table 2-5 Phase IV Soil and Liquid IDW Results Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

	Toxicity		CH-WW-1220-0	1 CH-ST-1220	0-01
	Characteristic Regulatory Level ¹	Units	Liquid IDW ²	Soil IDW	J ²
TCLP: RCRA VOCs		_			
Benzene	500	ug/L	10 U H	10	
Carbon tetrachloride	500	ug/L	10 U H	10	
Chlorobenzene	100000	ug/L	10 U H	10	
Chloroform	6000	ug/L	10 U H	10	
1,2-Dichloroethane	500	ug/L	10 U H	10	
1,1-Dichloroethene	700	ug/L	10 U H	10	
2-Butanone	200000	ug/L	20 U H	20	
Tetrachloroethene	700	ug/L	10 U H	10	
Trichloroethene	500	ug/L	10 U H	10	
Vinyl chloride	200	ug/L	10 U H	10	U
TCLP: RCRA SVOCs					
1,4-Dichlorobenzene	7.5	mg/L	0.0050 U H	0.0050	
2,4,5-Trichlorophenol	400	mg/L	0.0050 U H	0.0050	
2,4,6-Trichlorophenol	2	mg/L	0.0050 U H	0.0050	
2,4-Dinitrotoluene	0.13	mg/L	0.010 U H	0.010	
2-Methylphenol	200	mg/L	0.0050 U H	0.0050	U
4-Methylphenol	200	mg/L	0.0050 U H	0.0050	U
Hexachlorobenzene	0.13	mg/L	0.0010 U H	0.0010	
Hexachlorobutadiene	0.5	mg/L	0.0050 U H	0.0050	U
Hexachloroethane	3	mg/L	0.010 U H	0.010	U
Nitrobenzene	2	mg/L	0.0050 U H	0.0050	U
Pentachlorophenol	100	mg/L	0.020 U H	0.020	
Pyridine	25	mg/L	0.020 U H	0.020	U
TCLP: RCRA Metals					
Arsenic	5000	ug/L	24 U	24	U
Mercury	200	ug/L	0.20 U	0.20	U
Barium	100000	ug/L	90	340	
Cadmium	1000	ug/L	2.5 U	2.5	U
Chromium	5000	ug/L	3.8 U	49	
Lead	5000	ug/L	11 U	11	U
Selenium	1000	ug/L	25 U	25	U
Silver	5000	ug/L	7.5 U	7.5	U
Reactivity, Corrosivity,			<u>. </u>		
Ignitability, pH					
Flashpoint - Degrees F	NA		>185	not analyzed	
Ignitable to Air, Flame, Friction, Water	NA		not analyzed	sample did not spontaneously ignite	
pH - S.U.	2 ≤ pH ≤ 12.5	1	7.1	12.4	
Temperature - Degrees C	NA	1	21.3	19.2	
Percent Moisture - %	NA	1	not analyzed	23.6	

Notes

H = sample prepped beyond specified holding time

IDW = investigation-derived waste

mg/L = miligrams per liter

NA = Not Applicable

RCRA = Resource Conservation and Recovery Act

S.U. = standard unit

TCLP = Toxicity Characteristic Leaching Procedure

U = non detect

ug/L = micrograms per liter

¹ Maximum Concentration of Contaminants for the Toxicity Characteristic as stated in USEPA's hazardous waste characteristics regulations under the authority of the Resource Conservation and Recovery Act (RCRA) Subtitle C as established in the Title 40 of the Code of Federal Regulations (CFR) Part 261.24

² Preliminary data has not been validated

Table 3-1 Upper Glacial Aquifer Well Summary Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

USGS Well ID	USGS Site ID	Well Nickname	Well Status	Owner	Source of Information	Well Completion Report (Y/N)	Well Depth	Analytical Data (Y/N)	Latitude	Longitude	Location	Sample Period (if available)	Analytical Data Type (if available)	Compounds Exceeded MCLs	Other Notes
S 1202	410415071513101	Lighthouse Well (Gift Shop Potable Well)	Active	U.S. Coast Guard	USGS	N	30	N	41°04'15.42"	71°51'29.32"	Montauk Point State Park	Jun. 2015	Water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, herbicides		Data from Lighthouse Reception Center sink
S 3259	415243071522201	Former USAF Supply Well	Inactive	U.S. Air Force	USGS	Υ	116	Y	41°03'43"	71°52'20"	Camp Hero	Oct. 1953	Water quality parameters, inorganics, metals	Iron	
S 3260		Former USAF Supply Well	Inactive	U.S. Air Force	USGS 1	N		N	41°03'45"	71°52'32"	Camp Hero				
S 3599	410412071513001	Lighthouse Well (Museum Shower)	Active	U.S. Coast Guard	USGS	N	69	N	41°04'13"	71°51'28"	Montauk Point State Park				
S 79269		Montauk Point State Park Well (Potable)	Active	Long Island State Park	SCDHS, Camp Hero	N		Y	41°04'16"	71°51'54"	Montauk Point State Park	Mar. 2019	Water quality parameters, Metals, inorganics, VOCs, SVOCs, pesticides, herbicides	None	
S 15812	410416071514601	Former Montauk Point State Park Well	Inactive	Long Island State Park	USGS, SCDHS, Camp Hero	Y	95	Y	41°04'16"	71°51'46"	Montauk Point State Park	Sept. 2016, Apr. 1974	Water quality parameters, Metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Iron	
S 70627	410414071515901	USGS Monitoring Well (Route 27 near Lighthouse)	Active	USGS	USGS	N	95	N	41°04'14.3"	71°51'57.6"	Camp Hero				
S 17231S		Former USAF Supply Well in Pump House	Inactive	U.S. Air Force	USGS 1	Υ	119	N	41°03'50"	71°52'23"	Camp Hero				
S 17231D		Former USAF Supply Well outside Pump House	Inactive	U.S. Air Force	USGS ¹	N	156	N	41°03'50"	71°52'23"	Camp Hero				
S 17859		Former USAF Supply Well in Pump House	Inactive	U.S. Air Force	USGS 1	N		N	41°03'43"	71°52'20"	Camp Hero				
S 19494		USGS Test Well (Behind Barracks Building)	Inactive	U.S. Air Force	USGS 1	N	87	N	41°03'56.83"	71°52'32.49"	Camp Hero				
S 19495		Former AT&T Building Well	Inactive	American Telephone & Telegraph Co.	USGS 1	N		N	41°03'50.77"	71°52'37.47"	Camp Hero				
S 48579	410316071535501	USGS Monitoring Well (Route 27 at Horse Ranch)	Active		USGS	N		N	41°03'17.5"	71°53'52.1"	West of Camp Hero				
S 58922	410356071544201	USGS Monitoring Well (Pocohontas Road)	Active	USGS	USGS	Υ	56	N	41°03'55.8	71°54'42.7	West of Camp Hero				
S 19496		Former Barracks Supply Well	Inactive	U.S. Air Force	USGS ¹	N	140	N	41°03'33.63"	71°52'18.75"	Camp Hero				
S 21084		Former USAF Supply Well in Pump House	Inactive	U.S. Air Force	USGS 1	N	118	N	41°03'40.47"	71°52'44.11"	Camp Hero				
		Old Montauk Hwy Residential Well	Active	Private	SCDHS	N		Y ²	NA ⁴		Old Montauk Hwy East	2010, 2015	Water quality parameters, inorganics, metals, VOCs, pesticides, herbicides ³	Coliforms	Private residential well location; replacement well recently installed in 2019
		Old Montauk Hwy Residential Well	Active	Private	SCDHS	N		Y2			Old Montauk Hwy East	2010-2019	Inorganics, metals, VOCs, SVOCs, pesticides, herbicides	Iron, Manganese, Coliforms	Samples taken from taps from outside, kitchen, and bathroom. Kitchen and bathroom samples have softener and GAC-ion exchange.
S 76304	410406071523001	Madison Hill Well Field Well #1	Inactive	SCWA/Town of East Hampton	USGS, SCDHS	Y	141	Y	41°04'07"	71°52'35"	Madison Hills	Oct. 1984 - Jul. 2002	Water quality parameters, inorganics, metals, VOCs, pesticides, herbicides	Arsenic, Iron, Manganese	
S 76305	410406071523101	'Madison Hill Well Field Well #3	Inactive	SCWA/Town of East Hampton	USGS, SCDHS	Y	125	Y	41°04'07"	71°52'35"	Madison Hills	Oct. 1984 - Jul. 2002	Water quality parameters, inorganics, metals, VOCs, pesticides, herbicides	Arsenic, Lead, Iron, Manganese	

Table 3-1 Upper Glacial Aquifer Well Summary Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

USGS Well ID	USGS Site ID	Well Nickname	Well Status	Owner	Source of Information	Well Completion Report (Y/N)	Well Depth	Analytical Data (Y/N)	Latitude	Longitude	Location	Sample Period (if available)	Analytical Data Type (if available)	Compounds Exceeded MCLs	Other Notes
S 121808		'Madison Hill Well Field Well #2	Inactive	SCWA/Town of East Hampton	SCDHS	Y	132	Y	41°04'06.5"	71°52'35"	Madison Hills	Sep. 2009,	ISVUES DESTICIÕES	Arsenic, Iron, Manganese	
S 121811		'Madison Hill Well Field Well #3A	Inactive	SCWA/Town of East Hampton	SCDHS	Y	132	Υ	41°04'06.5"	71°52'35"	Madison Hills	Sep. 2009, Feb. 2010	Metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Iron, Manganese	
		Motor Pool Supply Well	Active	Camp Hero	SCDHS	N		Y	41°04'00.5"	71°52'09"	Camp Hero		Metals, inorganics, VOCs, SVOCs	None	3 compartment sink

Notes:

Notes Continued:

ID - identifier

N - no

SCWA - Suffolk County Water Authority

SCDHS - Suffolk County Department of Health Services

SVOC - semi-volatile organic compound
TBD - to be determined
U.S. - United States

UGA - Upper Glacial Aquifer USGS - United States Geological Survey VOC - volatile organic compound

Y - yes

^{1.} Perlmutter, N.M., and DeLuca, F.A., 1963, Availability of fresh ground water Montauk Point area Suffolk County Long Island, New York: U.S. Geological Survey Water-Supply Paper 1613-B, 39 p.

^{2,3.} Analytical results exceeding MCLs provided by SCDHS; full analytical results not provided by SCDHS due to privacy concerns. Standard drinking water analyses assumed.

^{4.} Location not available due to privacy concerns.

Table 3-2 Upper Glacial Aquifer Groundwater Analyses Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

Location	USGS Well ID	Sample Dates	Analytical Data Type	Exceedances	Source of Data
0	Former USAF Supply Well 3259	October 1953	Water quality parameters, inorganics, metals	Iron (16 mg/L)	USGS
Camp Hero	Well for	August 2015	Water quality parameters, metals, inorganics, VOCs, pesticides, herbicides Water quality parameters, metals,	None	SCDHS
	Motor Pool	September 2016	inorganics, VOCs, SVOCs, pesticides, herbicides	None	SCDHS
		October 1984 (3 dates)	Water quality parameters, inorganics, metals, VOCs	Iron (0.34 to 0.47 mg/L) Manganese (0.53 to 0.58 mg/L)	SCDHS
		October 1989	Water quality parameters, inorganics, metals	Iron (0.98 mg/L) Manganese (0.8 mg/L)	SCDHS
		April 1990	Water quality parameters, inorganics, metals, VOCs	Iron (0.97 mg/L) Manganese (0.88 mg/L)	SCDHS
		October 1990	Water quality parameters, inorganics, metals, VOCs	Iron (1.2 mg/L) Manganese (0.84 mg/L)	SCDHS
		January 1991	Water quality parameter, inorganics, metals, VOCs	Iron (1.94 mg/L) Manganese (0.95 mg/L)	SCDHS
		October 1991	Water quality parameters, inorganics, metals, VOCs	Iron (3.2 mg/L) Manganese (0.84 mg/L)	SCDHS
		November 1992	Water quality parameters, inorganics, metals, VOCs, pesticides	Iron (2.7 mg/L) Manganese (0.75 mg/L)	SCDHS
	Madison Hill Well Field	July 1994	Water quality parameters, inorganics, metals, VOCs, pesticides	Iron (4.6 mg/L) Manganese (0.89 mg/L)	SCDHS
	Well #1 S 76304	October 1994 (1 date)	Water quality parameters, inorganics, metals	Arsenic (10 μg/L) Iron (2.5 and 4.7 mg/L) Manganese (0.83 and 0.57 mg/L)	SCDHS
모		November 1995	Pesticides	None	SCDHS
Well Fie		April 1996	Water quality parameters, inorganics, metals, VOCs, pesticides	Iron (1.34 mg/L) Manganese (0.98 mg/L)	SCDHS
Madison Hills Drive Well Field		June 1998	Water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, herbicides	Iron (6 mg/L) Manganese (0.616 mg/L)	SCDHS
≝		June 1999	Arsenic	None	USGS ¹
	l	August 2000	Arsenic	None	USGS 1
<u>so</u>	l	December 2000	Arsenic	None	USGS ¹
ad	l	April 2002	Arsenic	Arsenic (10.2 µg/L)	USGS ¹
2		July 2002	Water quality parameters, inorganics, metals	Arsenic (11 µg/L) Iron (2.24 mg/L) Manganese (1.4 mg/L)	USGS
		October 1984 (3 dates)	Water quality parameters, inorganics, metals, VOCs	Iron (1.91 to 2.03 mg/L) Manganese (0.52 to 0.58 mg/L)	SCDHS
		February 1985	Water quality parameters, inorganics, metals, VOCs	Iron (2.18 mg/L) Manganese (0.59 mg/L)	SCDHS
		March 1985	Water quality parameters, inorganics, metals, VOCs	Iron (2.51 mg/L) Manganese (0.55 mg/L)	SCDHS
	Madison Hill	July 1985	Water quality parameters, inorganics, metals, VOCs	Iron (3.9 mg/L) Manganese (0.72 mg/L)	SCDHS
	Well Field Well #3	October 1989	Water quality parameters, inorganics, metals	Iron (5.3 mg/L) Manganese (0.58 mg/L)	SCDHS
	S 76305	April 1990	Water quality parameters, inorganics, metals, VOCs	Iron (6.2 mg/L) Manganese (0.79 mg/L)	SCDHS
		October 1990	Water quality parameters, inorganics, metals, VOCs	Iron (5.7 mg/L) Manganese (0.68 mg/L)	SCDHS
		January 1991	Water quality parameters, inorganics, metals, VOCs	Iron (4.29 mg/L) Manganese (0.66 mg/L)	SCDHS
		October 1991	Water quality parameters, inorganics, metals, VOCs	Iron (5.1 mg/L) Manganese (0.73 mg/L)	SCDHS

Table 3-2 Upper Glacial Aquifer Groundwater Analyses Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York

Camp nero, montauk, new York											
Location	USGS Well ID	Sample Dates	Analytical Data Type	Exceedances	Source of Data						
		November 1992	Water quality parameters, inorganics, metals, VOCs, pesticides	Iron (4.34 mg/L) Manganese (0.59 mg/L)	SCDHS						
	Madison Hill	July 1994	Pesticides	None	SCDHS						
	Well Field Well #3 S 76305 (continued)	April 1996	Water quality parameters, inorganics, metals, VOCs, pesticides	Lead (15.9 μg/L) Iron (3.9 mg/L) Manganese (0.72 mg/L)	SCDHS						
ell Field		June 1998	Water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, herbicides	Arsenic (10.1 µg/L) Iron (1.29 mg/L)	SCDHS						
%		June 1999	Arsenic	USGS 1							
Hills Drive W (continued)		December 2000	Arsenic	None	USGS ¹						
s Di		February 2002	Arsenic	None	USGS ¹						
<i>20</i>		July 2002	Water quality parameters,	Iron (4.7 mg/L) Manganese (0.585 mg/L)	USGS						
Madison Hills Drive Well Field (<i>continued</i>)	Madison Hill	February 2005	inorganics, metals Water quality parameters, metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Arsenic (12 µg/L) Manganese (0.640 mg/L)	SCDHS						
2	Well Field Well #2 S 121808	September 2009	Water quality parameters, metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Iron (0.8 mg/L) Manganese (0.922 mg/L)	SCDHS						
	3 121808	February 2010	Water quality parameters, metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Iron (0.7 mg/L) Manganese (0.987 mg/L)	SCDHS						
	Madison Hill Well Field	September 2009	Water quality parameters, metals, inorganics, VOCs, SVOCs, pesticides, herbicides	Manganese (0.566 mg/L)	SCDHS						
	Well #3A S 121811	February 2010	Water quality parameters, metals, inorganics, VOCs, pesticides, herbicides	Iron (4.6 mg/L) Manganese (0.641 mg/L)	SCDHS						
Montauk Lighthouse	Lighthouse Well (Gift Shop Potable Well) S 1202	June 2015	Water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, herbicides	None	SCDHS						
Montauk Point State Park	Montauk Point State Park Well (Potable) S 79269		Water quality parameters, inorganics, metals, VOCs, SVOCs, pesticides, herbicides	None	SCDHS						
Montauk l Pa	Former Montauk Point State Park Well S 15812	April 1974	Water quality parameters, inorganics, metals	Iron (0.32 mg/L)	USGS						

Table 3-2 **Upper Glacial Aquifer Groundwater Analyses Phase IV Remedial Investigation Report Addendum Camp Hero, Montauk, New York**

Location	USGS Well ID	•	Analytical Data Type	Exceedances	Source of Data
		April 2010	Inorganics, metals, VOCs, SVOCs, pesticides, herbicides,	None	SCDHS
Old Montauk Highway East		March 2015	Inorganics, metals, VOCs, SVOCs, pesticides, herbicides,	Iron (0.34 mg/L)	SCDHS
lontauk			ľ '	Manganese (391.0 mg/L)	SCDHS
M PIO			Inorganics, metals, VOCs, SVOCs, pesticides, herbicides,		SCDHS
		July 2019	Inorganics, metals, VOCs, SVOCs, pesticides, herbicides,	None	SCDHS

Notes:^{1.} Cartwright, R.A., 2004, *Occurrence of Arsenic in Ground Water of Suffolk County, New York, 1997-2002*: USGS Water-Resources Investigations Report 03-4315, 11 p.

μg/L - micrograms per liter

ID - identifier

mg/L - milligrams per liter

SCDHS - Suffolk County Department of Health Services

SVOC - semi-volatile organic compound USGS - United States Geological Survey

VOC - volatile organic compound

Maximum Contaminant Levels Arsenic - 10 µg/L

Lead - 15 μg/L (Action Level)

Drinking Water Secondary Standards

Manganese - .05 mg/L

Iron - 0.3 mg/L

Table 4-1. Frequency of Exceedances to Screening Values
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

			Frequency	of Detection		
Constituent		On-S	Site		Off-	Site
Constituent	Deceml	ber 2020	Februa	ry 2021	December	February
	All Wells	New Wells	All Wells	New Wells	2020	2021
2-Butanone	1/7	0/4	0/7	0/4	0/7	0/7
Chloroform	4/7	4/4	0/7	0/4	0/7	1/7
1,4-Dichlorobenzene	0/7	0/4	0/7	0/4	1/7	0/7
1,4-Dioxane	1/7	1/4	0/7	0/4	0/7	0/7
Total BaP TEQ Calculated	0/7	0/4	1/7	0/4	1/7	0/7
Total PAHs Calculated	3/7	3/4	3/7	2/4	1/7	3/7
Total PCBs Calculated	0/7	0/4	0/7	0/4	1/7	1/7
Antimony (D)	0/7	0/4	0/7	0/4	1/7	0/7
Arsenic (D)	0/7	0/4	5/7	4/4	2/7	2/7
Barium (D)	0/7	0/4	1/7	1/4	0/7	0/7
Chromium (VI) (D)	0/7	0/4	2/7	0/4	0/7	5/7
Cobalt (D)	2/7	2/4	0/7	0/4	1/7	1/7
Copper (D)	0/7	0/4	0/7	0/4	1/7	1/7
Iron (D)	5/7	2/4	6/7	4/4	2/7	1/7
Magnesium (D)	1/7	1/4	0/7	0/4	0/7	0/7
Manganese (D)	7/7	4/4	7/7	4/4	3/7	4/7
Mercury (D)	1/7	1/4	0/7	0/4	2/7	0/7
Silver (D)	1/7	1/4	0/7	0/4	0/7	0/7
Sodium (D)	6/7	4/4	6/7	4/4	6/7	6/7

D = dissolved phase; BaP TEQ = benzo(a)pyrene equivalent toxicity equivalence; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyl

Shaded cells indicate that there were no exceedences for all onsite or offsite wells

[&]quot;New wells" indicates wells installed in December 2020: CH-MW044S, CH-MW044D, CH-MW045S, and CH-MW045D

Table 4-2. Comparison of DU01 Shallow Perched Water and Phase IV On-Site UGA Groundwater Data
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Detected				Sa	ample Informat	ion	Federal	Criteria Exce	edances	NYS Criteria Exceedances		
Chemicals in							Min RSL	VISL	Federal	TOGS	NYSDOH	
Common with		Shallow/	Frequency of	MDC	Range of		(THQ 0.1)	(THQ 0.1)	MCL	1.1.1	MCL	
Exceedances	CASRN	UGA	Detection	(ug/L)	Detects	MDC Sample ID	No. Results	No. Results	No. Results	No. Results	No. Results	
		Shallow	6/14	15.6	0.96 - 15.6	CH-MW016 (6/27/17)	6	No SL	1	0	1	
Arsenic (D)	7440-38-2	UGA	4/8	1.9	0.83 - 1.9	CH-MW045S (2/22/21)	4	No SL	0	0	0	
		Shallow	7/14	20.4	1.3 - 20.4	CH-MW019 (12/15/16)	7	No SL	2	0	2	
Arsenic (T)	7440-38-2	UGA	6/8	2.7	0.77 - 2.7	CH-MW045S (2/22/21)	6	No SL	0	0	0	
		Shallow	14/14	818	8.5 - 818	CH-MW019 (12/15/16)	1	No SL	0	0	0	
Barium (T)	7440-39-3	UGA	8/8	470	48 - 470	CH-MW045D (2/22/21)	1	No SL	0	0	0	
		Shallow	2/14	39	1 - 39	CH-MW016 (6/27/17)	2	1	1	1	No SL	
Benzene	71-43-2	UGA	2/8	0.37	0.24 - 0.37	CH-MW044S (12/11/20)	0	0	0	0	No SL	
		Shallow	13/14	18.6	0.26 - 18.6	CH-MW019 (12/15/16)	10	No SL	No SL	1	No SL	
Cobalt (D)	7440-48-4	UGA	7/8	2.2	0.16 - 2.2	CH-MW045D (12/12/20)	2	No SL	No SL	0	No SL	
		Shallow	13/14	53.6	0.4 - 53.6	CH-MW019 (12/15/16)	11	No SL	No SL	4	No SL	
Cobalt (T)	7440-48-4	UGA	8/8	2	0.24 - 2	CH-MW045D (12/12/20)	4	No SL	No SL	0	No SL	
		Shallow	11/14	43100	39.1 - 43100	CH-MW024 (6/26/17)	5	No SL	No SL	8	8	
Iron (D)	7439-89-6	UGA	8/8	40000	50 - 40000	CH-MW045D (2/22/21)	5	No SL	No SL	6	6	
		Shallow	14/14	110000	45.1 - 110000	CH-MW019 (12/15/16)	10	No SL	No SL	10	10	
Iron (T)	7439-89-6	UGA	8/8	45000	2000 - 45000	CH-MW045D (2/22/21)	8	No SL	No SL	8	8	
		Shallow	14/14	4490	115 - 4490	CH-MW016 (6/27/17)	14	No SL	No SL	10	10	
Manganese (D)	7439-96-5	UGA	8/8	1300	380 - 1300	CH-MW045D (2/22/21)	8	No SL	No SL	8	8	
		Shallow	14/14	6870	163 - 6870	CH-MW016 (6/27/17)	14	No SL	No SL	11	11	
Manganese (T)	7439-96-5	UGA	8/8	1400	470 - 1400	CH-MW045D (2/22/21)	8	No SL	No SL	8	8	
		Shallow	1/14	0.11	0.11	CH-MW019 (12/15/16)	1	1	0	0	0	
Mercury (T)	7439-97-6	UGA	2/8	0.11	0.083 - 0.11	CH-MW044S (12/11/20)	2	1	0	0	0	
Total PAHs		Shallow	16/23	270	0.24 - 270	CH-MW016 (6/27/17)	9	No SL	16	No SL	16	
Calculated	50-32-8	UGA	5/8	0.621	0.23 - 0.62	CH-MW044D (2/22/21)	1	No SL	5	No SL	5	

"Shallow" wells are wells within DU01 perched groundwater lenses; "UGA" wells are CH-MW044S, CH-MW044D, CH-MW045S, and CH-MW045D

CASRN = Chemical Abstract Services Registry Number; D = dissolved phase; MDC = Maximum Detected Concentration; Min = minimum; ug/L = micrograms per liter;

No. = number; PAH = polycyclic aromatic hydrocarbon; SL = screening level; SVOC = semi-volatile organic compound; T = total phase

Screening Levels:

United States Environmental Protection Agency (USEPA) Residential Tap Water Regional Screening Levels (RSLs) (protective of cancer risk of 1E-04 and THQ of 0.1) (May 2021) Federal Maximum Contaminant Levels (MCLs) (USEPA 2018e)

New York State Department of Health MCLs (NYSDOH 2018) https://www.health.ny.gov/regulations/nycrr/title_10/part_5/docs/subpart_5-1_tables.pdf

NYS Technical and Operational Guidance Series (TOGS), 1.1.1. Groundwater Effluent Limitations, Table 5 (Class GA), dated June 1998, January 1999 Errata, April 2000 Addendum, and June 2004 Addendum (NYSDEC 1998, 1999, 2000, and 2004)

USEPA Default Resident Vapor Intrusion Screening Levels (VISLs) (protective of cancer risk of 1E-04 and THQ of 0.1)

Table 6-1
Summary of Chemicals of Potential Concern
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

	1		1			
			Onsite DU	Offsite		
Chemical	CASRN	Class	COPC?	DU COPC?	Volatile?	Mutagenic?
Volatile Organic Compounds	(VOCs)					
2-Butanone (MEK)	78-93-3	VOC	Х		V	
Chloroform	67-66-3	VOC	X	Х	V	
Semi-Volatile Organic Comp	ounds (SVOC	Cs)				
1,4-Dichlorobenzene	106-46-7	SVOC		Х	V	
1,4-Dioxane	123-91-1	SVOC	Х		V	
Polycyclic Aromatic Hydroca	rbons (PAHs)	-	-		-
Total BaP TEQ Calculated	50-32-8	PAH	Х	Х		М
Total PAHs Calculated	50-32-8	PAH	X	Х		
Polychlorinated Biphenyls (I	PCBs)					
Total PCBs Calculated	11097-69-1	PCB		Х	V	
Dissolved Metals (DMET)						
Antimony	7440-36-0	DMET		Х		
Arsenic	7440-38-2	DMET	X	Х		
Barium	7440-39-3	DMET	Х			
Chromium (VI)	18540-29-9	DMET	X	X		М
Cobalt	7440-48-4	DMET	X	Х		
Copper	7440-50-8	DMET		Х		
Iron	7439-89-6	DMET	X	Х		
Manganese	7439-96-5	DMET	Х	Х		
Mercury	7439-97-6	DMET	Х	Х	V	
Silver	7440-22-4	DMET	X			

CASRN = chemical abstract service registry number; COPC = chemical of potential concern; DU = decision unit

X = indicates that chemical is a COPC and is quantified in the risk assessment

V = volatile

M = mutagenic

Table 6-2
Onsite and Offsite Groundwater Decision Units Cumulative Screen Evaluation Results
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

			ancer Risk Screen Iluation		e Non-Cancer Hazard	Screen Evaluation	
UGA Groundwate r Decision Unit	Decision Unit Description	Cumulative ELCR	than Cumulative ELCR Threshold (1E- 04)? (Yes/No)	Cumulative	HI Greater than Cumulative HI Threshold? (Yes/No)	Target Organ HIs Greater Than 1	Lines of Evidence Review
Onsite	7 onsite wells	4E-05	No	4	Yes	Nervous System = 2	Yes
Offsite	7 offsite wells	1E-04	No	2	Yes	Target Organ HIs below 1	No pCOCs

Shaded cells indicate a cumulative ELCR that is greater than 1E-04 and/or a cumulative hazard index (HI), including target organ analysis, that is greater than 1.

ELCR = excess lifetime cancer risk; HI = hazard index; pCOC = preliminary consistituent of concern; UGA = Upper Glacial Aquifer

Table 6-3
Lines of Evidence Review for the Onsite DU Cumulative Screen Evaluation
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Target Organ HI Greater than 1	Preliminary Chemical of Concern (pCOC)	_	Frequency of Detection	Concen	re Point itration _I /L)	Federal MCL (µg/L)	NYS MCL (µg/L)	EPC exceeds MCL?	Chemicals of Concern (COC) Review
Onsite UGA Groundwat	er Decision Unit								
Gastrointestinal (GI) = 1	Iron	1	14/14	19868	UCL	No MCL	300	Yes	Iron and manganese EPCs are greater than
	Arsenic	0.2	5/14	1.289	UCL	10	10	No, eliminated	NYS MCLs; however, only NV (manganese) has a target organ HI are greater than 1.
Nervous (NV) = 2	Manganese	2	14/14	683	UCL	No MCL	300	Vaa	Arsenic and mercury are eliminated as
	Mercury	0.1	1/14	0.09	MDC	2	2		pCOCs (EPCs are below MCLs).

DU = decision unit; EPC = exposure point concentration; HI = hazard index; HQ = hazard quotient; MCL = maximum contaminant level; MDC = maximum detected concentration; ug/L = microgram per liter; NYS = New York State; pCOC = preliminary chemical of concern; UCL = upper confidence limit; UGA = Upper Glacial Aquifer

J = Data qualifier indicating that the analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. <u>Federal MCLs:</u> United States Environmental Protection Agency (USEPA) Drinking Water Standards and Health Advisories (2018)

NYSDOH MCLs: New York State Department of Health MCLs (NYSDOH 2018) https://www.health.ny.gov/regulations/nycrr/title_10/part_5/docs/subpart_5-1_tables.pdf

Table 6-4
Onsite Well-By-Well Cumulative Screen Evaluation Results
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

		Cumulative Can	cer Risk Screen Evaluation	Cumulat	ive Non-Cancer Haz	ard Screen Evaluation	
Onsite UGA Monitoring Well	Well Description	Cumulative ELCR	Cancer Risk Greater than Cumulative ELCR Threshold (1E-04)? (Yes/No)	Cumulative Hazard Index	HI Greater than Cumulative HI Threshold? (Yes/No)	Target Organ HIs Greater Than 1	Lines of Evidence Review
CH-MW044D	CH-MW044 Deep	4E-05	No	2	Yes	Nervous System = 2	Yes
CH-MW044S	CH-MW044 Shallow	2E-05	No	2	Yes	Nervous System = 2	Yes
CH-MW045D	CH-MW045 Deep	2E-05	No	7	Yes	Gastrointestinal System = 3 Nervous System = 3	Yes
CH-MW045S	CH-MW045 Shallow	4E-05	No	3	Yes	Nervous System = 2	Yes
S 17231S	Former USAF Supply Well in Pump House	4E-06	No	0.6	No		No pCOCs
S 19494	USGS Test Well (Behind Former Barracks Building)	(a)	No	2	Yes	Target Organ HIs do not exceed 1	No pCOCs
S 19495	Former AT&T Building Well	2E-05	No	1	No	Target Organ HIs do not exceed 1	No pCOCs

Shaded cells indicate a cumulative ELCR that is greater than 1E-04 and/or a cumulative hazard index (HI), including target organ analysis, that is greater than 1.

(a) COPCs don't exhibit carcinogenic health effects (i.e., no cancer RSL) therefore cancer risk results were not calculated.

ELCR = excess lifetime cancer risk; HI = hazard index; pCOC = preliminary consistituent of concern; USAF = United States Air Force; UGA = Upper Glacial Aquifer; USGS = United States Geological Survey

Table 6-5
Lines of Evidence Review for the Onsite Well-By-Well Cumulative Screen Evaluation
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

Onsite UGA Monitoring Well	Well Description	Cumulative Non-Cancer HI Greater than 1	Target Organ HI Greater than 1	Preliminary Chemical of Concern (pCOC)	Frequency of Detection	Chemical- Specific HQ	Maxim Detect Concentr (MDC	ed ation	Federal MCL (ug/L)	NYS MCL (ug/L)	MDC exceeds Federal or NYS MCL?	Chemicals of Concern Review
				Arsenic	1/2	0.3	1.8	J	10	10	No, eliminate as pCOC	MDC for manganese exceeds NYS MCL; target organ HI is greater than target threshold of 1. Arsenic and
CH-MW044D	CH-MW044 Deep	2	Nervous (NV) = 2	Manganese	2/2	1	600		No MCL	300	Yes	mercury are eliminated as pCOCs (MDCs are below
				Mercury	1/2	0.1	0.09	J	2	2	No, eliminate as pCOC	MCLs).
CH-MW044S	CH-MW044 Shallow	2	Nonveys (NV) - 2	Arsenic	1/2	0.2	0.97	J	10	10	No, eliminate as pCOC	MDC for manganese is greater than NYS MCL; chemical-specific HQ and target organ HI are greater
CH-MW0443	CH-MW044 Shallow	2	Nervous (NV) = 2	Manganese	2/2	2	660		No MCL	300	Yes	than target threshold of 1. Arsenic is eliminated as pCOC (MDC is below MCL).
			Gastrointestinal (GI) = 3	Iron	2/2	3	40000		No MCL	300	Yes	Iron and manganese MDCs are greater than NYS
CH-MW045D	CH-MW045 Deep	7		Arsenic	1/2	0.1	0.83	J	10	10	No, eliminate as pCOC	MCLs and their chemical-specific HQs and target organ HIs are greater than target threshold of 1.
			Nervous (NV) = 3	Barium	2/2	0.1	430		2000	2000	No, eliminate as pCOC	Arsenic and barium are eliminated as pCOCs (MDCs
				Manganese	2/2	3	1300		No MCL	300	Yes	are below MCLs).
CH-MW045S	CH-MW045 Shallow	3	Nervous (NV) = 2	Arsenic	1/2	0.3	1.9	J	10	10	No, eliminate as pCOC	MDC for manganese exceeds NYS MCL; chemical- specific HQ and target organ HI are greater than
CH-MW0435	CH-171VIOTO SHAIIOW	3	ivervous (ivv) – 2	Manganese	2/2	2	860		No MCL	300	Yes	target threshold of 1. Arsenic is eliminated as pCOC (MDC is below MCL).

HI = hazard index; HQ = hazard quotient; MCL = maximum contaminant level; MDC = maximum detected concentration; ug/L = microgram per liter; NYS = New York State; pCOC = preliminary chemical of concern; UGA = Upper Glacial Aquifer J = Data qualifier indicating that the analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

Federal MCLs: United States Environmental Protection Agency (USEPA) Drinking Water Standards and Health Advisories (2018)

NYSDOH MCLs: New York State Department of Health MCLs (NYSDOH 2018) https://www.health.ny.gov/regulations/nycrr/title_10/part_5/docs/subpart_5-1_tables.pdf

Table 6-6
Offsite Well-By-Well Cumulative Screen Evaluation Results
Phase IV Remedial Investigation Report Addendum
Camp Hero, Montauk, New York

			e Cancer Risk Screen Evaluation	Cumulat	ive Non-Cancer Ha	nzard Screen Evaluation	
Offsite UGA Monitoring Well	Well Description	Cumulative ELCR	Cancer Risk Greater than Cumulative ELCR Threshold (1E-04)? (Yes/No)	Cumulative Hazard Index	HI Greater than Cumulative HI Threshold? (Yes/No)	Target Organ HIs Greater Than 1	Lines of Evidence Review
S 1202	Lighthouse Well (Gift Shop Potable Well)	1E-04	No	0.5	No		No pCOCs
S 3599	Lighthouse Well (Museum Shower)	1E-06	No	0.4	No		No pCOCs
S 48579	USGS Monitoring Well (Route 27 at Horse Ranch)	(a)	No	2	Yes	Target Organ HIs do not exceed 1	No pCOCs
S 58922	USGS Monitoring Well (Pocohontas Road)	1E-05	No	0.1	No		No pCOCs
S 70627	USGS Monitoring Well (Route 27 near Lighthouse)	2E-05	No	1	No	Target Organ HIs do not exceed 1	No pCOCs
S 76304	Madison Hill Well Field #1	1E-04	No	1	No	Target Organ HIs do not exceed 1	No pCOCs
S 79269	Montauk Point State Park Well (Potable)	3E-06	No	0.2	No		No pCOCs

Shaded cells indicate a cumulative ELCR that is greater than 1E-04 and/or a cumulative hazard index (HI), including target organ analysis, that is greater than 1. (a) COPCs don't exhibit carcinogenic health effects (i.e., no cancer RSL) therefore cancer risk results were not calculated.

ELCR = excess lifetime cancer risk; HI = hazard index; pCOC = preliminary consistituent of concern; UGA = Upper Glacial Aquifer; USGS = United States Geological Survey

Appendix B2 Tables of All Analytical Results

		Sample Location:	CH	I-MW044D)	CI	H-MW044E)	С	H-MW0445	3	CH	1-MW044S		Ch	H-MW045D		CH	H-MW045D	
		Sample Name:	CH-M	IW044D-12	220	CH-N	ЛW044D-0	221	CH-	MW044S-1	220	CH-M	IW044S-02	221	CH-N	/W045D-122	20	CH-N	/W045D-02	21
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite			Onsite	
		Sample Date:	1:	2/11/2020			2/22/2021			12/11/2020		2	/22/2021		1	2/12/2020		2	2/22/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds (VOCs)	•																			
1,1,1,2-Tetrachloroethane	630-20-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	μg/L	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	μg/L	0.61	J	1	1	U	1	0.57	J	1	1	U	1	0.5	J	1	1	U	1
4-Isopropyltoluene	99-87-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	μg/L	4.2	J	2	0.82	J	2	5.4	J	2	2	U	2	2.1	J	2	2	U	2
Benzene	71-43-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.37	J	0.5	0.5	U	0.5	0.24	J	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	μg/L	0.5	U	0.5	23		0.5	0.5	U	0.5	0.37	J	0.5	0.5	U	0.5	3.8	J	0.5
Carbon Tetrachloride	56-23-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	μg/L	2.1		0.5	0.5	U	0.5	0.59	J	0.5	0.5	U	0.5	0.52	J	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	μg/L	8.0	U	8.0	0.8	U	8.0	0.8	U	0.8	0.8	U	8.0	8.0	U	8.0	8.0	U	8.0
Isopropylbenzene	98-82-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	μg/L	0.62	J	0.8	0.8	U	0.8	0.66	J	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	8.0
sec-Butylbenzene	135-98-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vilones (total)	75-01-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	μg/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVO		11	1	111	1	1	11	1	1 1	111	1 1	1	11	1	1 1	111	1 1	1	111	1
1,4-Dichlorobenzene	106-46-7	μg/L	1	UJ	1		U	1	1.1	UJ	1.1	0.10	U	1	1.1	UJ	1.1	1	UJ	I
1,4-Dioxane	123-91-1	μg/L	0.2	UJ	0.2	0.2	U 	0.2	1.1	J	0.22	0.18	J	0.2	0.19	J	0.22	0.2	U	0.2
2-Chloronaphthalene	91-58-7	μg/L	0.81	UJ	0.81	0.81	U	0.81	0.88	UJ	0.88	0.81	U	0.81	0.89	UJ	0.89	0.81	UJ	0.81

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location: Sample Name:	Name: CH-MW044D-1220 CH-N				H-MW044E 1W044D-0			H-MW044S //W044S-1			H-MW044S 1W044S-0			H-MW045[//W045D-1			H-MW045D //W045D-02	
		Onsite/Offsite:	CI I-IV	Onsite	220	Cit-i	Onsite	ZZ I	CIT-II	Onsite	220	CI I-IV	Onsite	ZZ I	CI I-I	Onsite	220	CIT-II	Onsite	221
		Sample Date:	1	2/11/2020			2/22/2021		1	2/11/2020		7	2/22/2021		1	2/12/2020			2/22/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
2-Methylphenol	95-48-7	µg/L	1	UJ	1	1	IJ	1	1.7	J	1.1	1	U	1	1.1	UJ	1.1	1	X	1
4-Chloro-3-methylphenol	59-50-7	µg/L	3.2	UJ	3.2	2	U	2	3.5	UJ	3.5	2	U	2	3.6	UJ	3.6	2	X	2
4-Chloroaniline	106-47-8	µg/L	9.1	UJ	9.1	9.1	U	9.1	9 9	UJ	9.9	9.1	U	9.1	10	UJ	10	9.1	UJ	9.1
4-Methylphenol	106-44-5	μg/L	1	UJ	1	1	U	1	11	UJ	11	1	IJ	1	1.1	UJ	1.1	1	X	1
Benzaldehyde	100-52-7	μg/L	9.1	UJ	9.1	2	U	2	9.9	UJ	9.9	2	U	2	10	UJ	10	2	UJ	2
Benzoic acid	65-85-0	µg/L	24	UJ	24	24	U	24	26	UJ	26	24	U	24	27	UJ	27	24	X	24
Biphenyl, 1,1'-	92-52-4	μg/L	9.1	UJ	9.1	1	U	1	9.9	UJ	9.9	1	U	1	10	UJ	10	1	UJ	1
bis(2-Ethylhexyl) phthalate	117-81-7	µg/L	10	UJ	10	4	U	4	11	UJ	11	4.1	U	4.1	11	UJ	11	4.1	UJ	4.1
Butyl Benzyl Phthalate	85-68-7	μg/L	4	UJ	4	4	UJ	4	4.4	UJ	4.4	4.1	UJ	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Caprolactam	105-60-2	µg/L	10	UJ	10	6.1	U	6.1	11	UJ	11	6.1	U	6.1	11	UJ	11	6.1	UJ	6.1
Carbazole	86-73-7	μg/L	0.03	UJ	0.03	1	U	1	1.1	UJ	1.1	1	U	1	0.033	UJ	0.033	1	UJ	1
Dibenzofuran	132-64-9	μg/L	1	UJ	1	1	U	1	1.1	UJ	1.1	1	U	1	1.1	UJ	1.1	1	UJ	1
Diethyl Phthalate	84-66-2	µg/L	4	UJ	4	4	U	4	4.4	UJ	4.4	4.1	U	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Dimethyl Phthalate	131-11-3	µg/L	4	UJ	4	4	UJ	4	4.4	UJ	4.4	4.1	UJ	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Di-n-butyl phthalate	84-74-2	μg/L	4	UJ	4	4	U	4	4.4	UJ	4.4	4.1	U	4.1	4.5	UJ	4.5	4.1	UJ	4.1
di-n-Octyl Phthalate	117-84-0	µg/L	10	UJ	10	10	U	10	11	UJ	11	10	U	10	11	UJ	11	10	UJ	10
Polycyclic Aromatic Hydrocarbons (PAHs		r J	-			-						-	_	_						_
1-Methylnaphthalene	90-12-0	μg/L	0.03	UJ	0.03	0.04	U	0.04	0.033	UJ	0.033	0.04	U	0.04	0.033	UJ	0.033	0.041	U	0.041
2-Methylnaphthalene	91-57-6	μg/L	0.06	UJ	0.06	0.04	U	0.04	0.066	UJ	0.066	0.04	U	0.04	0.067	UJ	0.067	0.041	U	0.041
Acenaphthene	83-32-9	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Anthracene	120-12-7	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Benzo(a)anthracene	56-55-3	µg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Benzo(a)pyrene	50-32-8	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Benzo(b)fluoranthene	205-99-2	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.016	J	0.033	0.03	U	0.03
Benzo(ghi)perylene	191-24-2	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.019	J	0.033	0.03	U	0.03
Benzo(k)fluoranthene	207-08-9	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Chrysene	218-01-9	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03
Dibenz(a,h)anthracene	53-70-3	μg/L	0.06	UJ	0.06	0.04	U	0.04	0.066	UJ	0.066	0.04	U	0.04	0.067	UJ	0.067	0.041	U	0.041
Fluoranthene	206-44-0	μg/L	0.03	UJ	0.03	0.011	J	0.03	0.011	J	0.033	0.03	U	0.03	0.018	J	0.033	0.015	J	0.03
Fluorene	86-73-7	μg/L				0.03	U	0.03				0.03	U	0.03				0.03	U	0.03
Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.03	UJ	0.03	0.04	U	0.04	0.033	UJ	0.033	0.04	U	0.04	0.019	J	0.033	0.041	U	0.041
Naphthalene	91-20-3	μg/L	0.06	UJ	0.06	0.06	U	0.06	0.066	UJ	0.066	0.06	U	0.06	0.033	J	0.067	0.061	U	0.061
Phenanthrene	85-01-8	μg/L	0.06	UJ	0.06	0.06	U	0.06	0.038	J	0.066	0.06	U	0.06	0.074	J	0.067	0.054	J	0.061
Pyrene	129-00-0	μg/L	0.03	UJ	0.03	0.03	U	0.03	0.033	UJ	0.033	0.03	U	0.03	0.021	J	0.033	0.016	J	0.03
Polychlorinated Biphenyls (PCBs)		_			_															
Aroclor 1016	12674-11-2	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1221	11104-28-2	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1232	11141-16-5	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1242	53469-21-9	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1248	12672-29-6	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1254	11097-69-1	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1260	11096-82-5	μg/L	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3	0.34	U	0.34	0.31	U	0.31
Aroclor 1262	11096-82-5	μg/L				0.3	U	0.3				0.3	U	0.3				0.31	U	0.31
Aroclor 1268	11096-82-5	μg/L				0.3	U	0.3				0.3	U	0.3				0.31	U	0.31
Total Metals (TMET)																				

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:	CH	CH-MW044D CH-MW044D-1220			H-MW044E)	С	H-MW0445	S	CH	1-MW044S		CH	H-MW045[)	CH	H-MW045D	
		Sample Name:	CH-M	W044D-1	220	CH-N	/IW044D-0	221	CH-N	MW044S-1	220	CH-M	IW044S-02	221	CH-M	1W045D-1	220	CH-M	/IW045D-02	221
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite			Onsite	
		Sample Date:	12	2/11/2020		4	2/22/2021		1	12/11/2020		2	/22/2021		1.	2/12/2020		2	2/22/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Aluminum	7429-90-5	μg/L	61		30	30	U	30	780		30	30	U	30	30	U	30	30	U	30
Antimony	7440-36-0	μg/L	0.8	U	0.8	0.8	U	8.0	0.8	U	8.0	8.0	U	8.0	0.8	U	0.8	8.0	U	0.8
Arsenic	7440-38-2	μg/L	1.6	U	1.6	1.9	J	1.6	0.77	J	1.6	1.4	J	1.6	1.6	U	1.6	1.2	J	1.6
Barium	7440-39-3	μg/L	110		1.6	72		1.6	59		1.6	59		1.6	180		1.6	470		1.6
Beryllium	7440-41-7	μg/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	μg/L	29000		120	16000		120	25000		120	16000		120	42000		120	38000		120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9
Chromium (III)	16065-83-1	μg/L	7.3	J	9	9	U	9	8.3	J	9	9	U	9	9	UJ	9	9	U	9
Chromium (Total)	7440-47-3	μg/L	7.3		0.8	1.4	J	8.0	8.3		0.8	0.8	U	8.0	0.8	U	0.8	0.71	J	0.8
Cobalt	7440-48-4	μg/L	0.93		0.4	0.24	J	0.4	0.69		0.4	0.33	J	0.4	2		0.4	0.42	J	0.4
Copper	7440-50-8	μg/L	0.52	J	0.8	0.8	U	0.8	3.2	<u> </u>	8.0	0.8	U	8.0	2.9		0.8	8.0	U	0.8
Iron	7439-89-6	μg/L	2000		400	3800		40	2900		40	4800		40	2300		400	45000		40
Lead	7439-92-1	μg/L	0.14	J	0.25	0.25	U	0.25	0.5	<u> </u>	0.25	0.25	U	0.25	0.25	U	0.25	0.087	J	0.25
Magnesium	7439-95-4	μg/L	20000		25	6600		25	6500		25	6300		25	44000		25	35000		25
Manganese	7439-96-5	μg/L	620		1.6	610		1.6	470		1.6	670		1.6	940		1.6	1400		1.6
Mercury	7439-97-6	μg/L	0.2	U	0.2	0.16	U	0.16	0.11	J	0.2	0.16	U	0.16	0.083	J	0.2	0.16	U	0.16
Nickel	7440-02-0	μg/L	5.1		1	1	U	1	4.2		1	1.4	J	1	9.4		1	0.67	J	1
Potassium	7440-07-9	μg/L	6300		160	4600		160	4500		160	3400		160	11000		160	11000		160
Selenium	7782-49-2	μg/L	0.8	U	0.8	0.8	U	8.0	0.8	U	8.0	0.8	U	8.0	0.8	U	0.8	8.0	U	0.8
Silver	7440-22-4	μg/L	0.4	U	0.4	0.4	U	0.4	4.8		0.4	0.4	U	0.4	0.22	J	0.4	0.21	J	0.4
Sodium	7440-23-5	μg/L	160000		1600	57000		160	27000		160	27000		160	420000		1600	500000		3200
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	2.9	J	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	10	U	10	10	U	10	25		10	10	U	10	37		10	10	U	10
Dissolved Metals (DMET)	7,00,00,5		00		20	0.4	ı	1 04	20	T		0.4	1	0.4	7,	T		0.4		0.4
Aluminum	7429-90-5	μg/L	30	U	30	31	U	31	30	U	30	31	U	31	76		30	31	U	31
Antimony	7440-36-0	μg/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82
Arsenic	7440-38-2	μg/L	1.6	U	1.6	1.8	J	1.6	1.6	U	1.6	0.97	J	1.6	1.6	U	1.6	0.83		1.6
Barium	7440-39-3	μg/L	100		1.6	69		1.6	41		1.6	59		1.6	180		1.6	430		1.6
Beryllium	7440-41-7	μg/L	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26
Cadmium	7440-43-9	μg/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Calcium	7440-70-2	µg/L	29000		120	16000		120	22000		120	15000		120	42000		120	36000	<u> </u>	120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9
Chromium (III)	16065-83-1	µg/L	9	UJ	9	7	U	9	7	UJ	9	9	U	9	8.7	J	9	9	U	9
Chromium (Total)	7440-47-3	μg/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	8.7		0.8	0.82	U	0.82
Cobalt	7440-48-4	μg/L	0.86		0.4	0.41	U	0.41	0.18	J	0.4	0.28	J	0.41	2.2		0.4	0.17	J .	0.41
Copper	7440-50-8	µg/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	20		0.8	0.5	J	0.82
Iron	7439-89-6	μg/L	1100	11	40	2400	11	41	50	11	40	4500	11	41	9700		40	40000		41
Lead	7439-92-1	µg/L	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26	0.78		0.25	0.26	U	0.26
Magnesium	7439-95-4	μg/L	19000		25	6400		26	6000	1	25	6100		26	42000		25	33000		26
Manganese	7439-96-5	µg/L	600		1.6	580		1.6	380	 	1.6	660	11	1.6	910		1.6	1300		1.6
Mercury	7439-97-6	μg/L	0.09	J	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	µg/L	5.2		1/0	4000	U	1 1/0	1000	J	1/0	1.2	J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16		1/0	11000	U	1/0
Potassium	7440-07-9	μg/L	6000		160	4300		160	4300		160	3200		160	10000		160	11000		160

		Sample Location: Sample Name:		H-MW044[//W044D-1			H-MW044D //W044D-0			H-MW044S 1W044S-1			H-MW0449 NW044S-0			H-MW045D 1W045D-12			H-MW045D 1W045D-02	
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite			Onsite	
		Sample Date:	1	12/11/2020 VQ LOD			2/22/2021		1	2/11/2020		2	2/22/2021		1	2/12/2020		4	2/22/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Selenium	7782-49-2	μg/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82
Silver	7440-22-4	μg/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41	31		0.4	0.41	U	0.41
Sodium	7440-23-5	μg/L	160000		1600	49000		330	26000		160	25000		160	410000		1600	460000		1600
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	10	U	10	10	U	10	10	U	10	10	U	10	41		10	10	U	10

Notes

CASRN = Chemical Abstract Services Registry Number

LOD = Limit of DetectionSL = Screening Level $\mu g/L = micrograms per liter$ VQ = Validation Qualifier

Data Validation Qualifier Codes

J = The analyte was positively identified and the associated value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted LOD. However, the reported adjusted LOD is approximate and may be inaccurate or imprecise.

X = The result is rejected and not usable due to quality control reasons.

		Sample Location:	Cl	1-MW045S	<u>)</u>	CI	H-MW045S	<u> </u>		S 17231S		9	S 17231S		(S 17231S		1	S 19494	
		Sample Name:	CH-N	1W045S-12	220	CH-N	/W045S-02	221	S1	7231S-122	20	S17	7231S-022	1.1	S1723	31S-0221D ((FD)	S1	19494-1220	J
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite		ı	Onsite	
		Sample Date:	1	2/9/2020		,	2/22/2021		1	12/10/2020		2	2/25/2021		2	2/25/2021		,	12/7/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds (VOCs)	•	•								•	•									
1,1,1,2-Tetrachloroethane	630-20-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	μg/L	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	μg/L	1.1	J	1	1	U	1	0.96	J	1	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	μg/L	2	U	2	0.71	J	2	1.8	J	2	2	U	2	2	U	2	2	U	2
Benzene	71-43-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	μg/L	0.5	U	0.5	0.6	J	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	μg/L	0.5	J	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	μg/L	8.0	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	8.0	0.8	U	8.0	0.8	U	0.8
Isopropylbenzene	98-82-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	1.2		0.5
Methylene Chloride	75-09-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	μg/L	8.0	U	0.8	0.8	U	8.0	0.64	J	8.0	0.65	J	0.8	0.63	J	8.0	0.8	U	0.8
sec-Butylbenzene	135-98-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.24	J	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	μg/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVO	, '																			
1,4-Dichlorobenzene	106-46-7	μg/L	1.1	U	1.1	1	U	1	1.1	U	1.1	1	U	1	1.1	U	1.1	1	U	1
1,4-Dioxane	123-91-1	μg/L	0.21	UJ	0.21	0.2	U	0.2	0.21	U	0.21	0.2	U	0.2	0.22	UJ	0.22	0.2	U	0.2
2-Chloronaphthalene	91-58-7	μg/L	0.85	U	0.85	0.81	U	0.81	0.86	U	0.86	0.82	U	0.82	0.88	U	0.88	0.8	U	0.8

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:	CH	H-MW045	S	CI	H-MW045S	<u> </u>		S 17231S			S 17231S		(S 17231S			S 19494	
		Sample Name:		1W045S-1			/IW045S-0			7231S-122	20		7231S-022	1		1S-0221D	(FD)	S	9494-1220)
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite	` '		Onsite	
		Sample Date:	1	2/9/2020			2/22/2021		1	2/10/2020		2	2/25/2021		2	2/25/2021			12/7/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
2-Methylphenol	95-48-7	μg/L	1.1	U	1.1	1	UJ	1	1.1	U	1.1	1	U	1	1.1	U	1.1	1	UJ	1
4-Chloro-3-methylphenol	59-50-7	μg/L	3.4	U	3.4	2	UJ	2	3.4	U	3.4	2	U	2	2.2	U	2.2	3.2	UJ	3.2
4-Chloroaniline	106-47-8	μg/L	9.5	U	9.5	9.2	U	9.2	9.6	U	9.6	9.2	U	9.2	9.9	U	9.9	9	U	9
4-Methylphenol	106-44-5	μg/L	1.1	U	1.1	1	UJ	1	0.89	J	1.1	5.6		1	4.8		1.1	1	UJ	1
Benzaldehyde	100-52-7	μg/L	9.5	U	9.5	2	U	2	9.6	U	9.6	2	U	2	2.2	U	2.2	9	U	9
Benzoic acid	65-85-0	μg/L	25	U	25	24	U	24	26	U	26	25	U	25	26	U	26	24	UJ	24
Biphenyl, 1,1'-	92-52-4	μg/L	9.5	U	9.5	1	U	1	9.6	U	9.6	1	U	1	1.1	U	1.1	9	U	9
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	11	U	11	4.1	U	4.1	11	U	11	4.1	U	4.1	4.4	U	4.4	10	U	10
Butyl Benzyl Phthalate	85-68-7	μg/L	4.2	U	4.2	4.1	UJ	4.1	4.3	U	4.3	4.1	UJ	4.1	4.4	UJ	4.4	4	U	4
Caprolactam	105-60-2	μg/L	11	U	11	6.1	U	6.1	11	U	11	6.1	U	6.1	6.6	U	6.6	10	U	10
Carbazole	86-73-7	μg/L	0.032	UJ	0.032	1	U	1	1.1	U	1.1	1	U	1	1.1	U	1.1	1	U	1
Dibenzofuran	132-64-9	μg/L	1.1	U	1.1	1	U	1	1.1	U	1.1	1	U	1	1.1	U	1.1	1	U	1
Diethyl Phthalate	84-66-2	μg/L	4.2	U	4.2	4.1	U	4.1	4.3	U	4.3	4.1	UJ	4.1	4.4	UJ	4.4	4	U	4
Dimethyl Phthalate	131-11-3	μg/L	4.2	U	4.2	4.1	UJ	4.1	4.3	U	4.3	4.1	UJ	4.1	4.4	UJ	4.4	4	UJ	4
Di-n-butyl phthalate	84-74-2	μg/L	4.2	U	4.2	4.1	U	4.1	4.3	U	4.3	4.1	U	4.1	4.4	U	4.4	4	U	4
di-n-Octyl Phthalate	117-84-0	μg/L	11	U	11	10	U	10	11	U	11	10	U	10	11	U	11	10	U	10
Polycyclic Aromatic Hydrocarbons (PAH	'				_															
1-Methylnaphthalene	90-12-0	μg/L	0.032	UJ	0.032	0.041	U	0.041	0.032	U	0.032	0.041	U	0.041	0.044	UJ	0.044	0.03	UJ	0.03
2-Methylnaphthalene	91-57-6	μg/L	0.063	UJ	0.063	0.041	U	0.041	0.064	U	0.064	0.041	U	0.041	0.044	UJ	0.044	0.06	UJ	0.06
Acenaphthene	83-32-9	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.029	J	0.033	0.03	U	0.03
Anthracene	120-12-7	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.033	UJ	0.033	0.03	U	0.03
Benzo(a)anthracene	56-55-3	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.029	J	0.033	0.03	U	0.03
Benzo(a)pyrene	50-32-8	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.025	J	0.033	0.03	U	0.03
Benzo(b)fluoranthene	205-99-2	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.047	J	0.033	0.03	U	0.03
Benzo(ghi)perylene	191-24-2	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.033	UJ	0.033	0.03	U	0.03
Benzo(k)fluoranthene	207-08-9	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.017	J	0.033	0.03	U	0.03
Chrysene	218-01-9	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	U	0.031	0.022	J	0.033	0.03	U	0.03
Dibenz(a,h)anthracene	53-70-3	μg/L	0.063	UJ	0.063	0.041	U	0.041	0.064	U	0.064	0.041	U	0.041	0.044	UJ	0.044	0.06	U	0.06
Fluoranthene	206-44-0	μg/L	0.012	J	0.032	0.031	U	0.031	0.032	U	0.032	0.031	UJ	0.031	0.14	J	0.033	0.03	U	0.03
Fluorene	86-73-7	μg/L				0.031	U	0.031				0.031	U	0.031	0.028	J	0.033			
Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.032	UJ	0.032	0.041	U	0.041	0.032	U	0.032	0.041	U	0.041	0.044	UJ	0.044	0.03	U	0.03
Naphthalene	91-20-3	μg/L	0.063	UJ	0.063	0.061	U	0.061	0.064	U	0.064	0.061	U	0.061	0.066	UJ	0.066	0.06	UJ	0.06
Phenanthrene	85-01-8	μg/L	0.036	J	0.063	0.061	U	0.061	0.064	U	0.064	0.061	UJ	0.061	0.11	J	0.066	0.06	U	0.06
Pyrene	129-00-0	μg/L	0.032	UJ	0.032	0.031	U	0.031	0.032	U	0.032	0.031	UJ	0.031	0.068	<u> </u>	0.033	0.03	U	0.03
Polychlorinated Biphenyls (PCBs)	12/7/11 2	/!	0.21	- 11	0.21	0.21	1 11	0.21	0.2	I 11	0.2	0.2	I 11	0.2	0.21	I 11	0.21	0.22	I 11 I	0.22
Aroclor 1016	12674-11-2	µg/L	0.31	U	0.31	0.31	U	0.31	0.3	U	0.3	0.3	II	0.3	0.31	U	0.31	0.33	U	0.33
Aroclor 1221	11104-28-2	µg/L	0.31	U	0.31	0.31	U	0.31	0.3	U	0.3	0.3	U	0.3	0.31	U	0.31	0.33	U	0.33
Aroclor 1232 Aroclor 1242	11141-16-5	μg/L	0.31	U	0.31	0.31	U	0.31	0.3	U	0.3	0.3	U	0.3	0.31	U II	0.31	0.33	U	0.33
	53469-21-9	µg/L	0.31 0.31	U	0.31	0.31 0.31	U	0.31	0.3	U	0.3	0.3	IJ	0.3	0.31	U	0.31	0.33	U	0.33
Aroclor 1248 Aroclor 1254	12672-29-6 11097-69-1	μg/L	0.31	U	0.31	0.31	U	0.31	0.3	U	0.3		U	0.3	0.31 0.31	U	0.31 0.31	0.33	U	0.33
Aroclor 1260	11097-69-1	µg/L	0.31		1	0.31			0.3			0.3	11		0.31	U		0.33		
Aroclor 1260 Aroclor 1262	11096-82-5	μg/L μg/L		U	0.31	0.31	U	0.31		U	0.3	0.3	IJ	0.3	0.31	U	0.31 0.31		U	0.33
Aroclor 1268	11096-82-5					0.31	U	0.31				0.3	II	0.3	0.31	U	0.31			
Total Metals (TMET)	11090-82-3	μg/L				0.31	U	0.31				0.3	U	0.3	0.31	U	0.31			
TOTAL METALS (TIMET)																				

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location: Sample Name:		1-MW045S 1W045S-1			H-MW045S			S 17231S 7231S-122	20		S 17231S 7231S-022	1		S 17231S 1S-0221D	(FD)		S 19494 9494-1220)
		Onsite/Offsite:		Onsite			Onsite			Onsite			Onsite			Onsite	` ,		Onsite	
		Sample Date:	1	2/9/2020		2	2/22/2021		1	2/10/2020		2	2/25/2021		2	2/25/2021		1	2/7/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Aluminum	7429-90-5	μg/L	1800		30	210		30	55	J	30	27	J	30	22	J	30	30	U	30
Antimony	7440-36-0	μg/L	8.0	U	0.8	0.8	U	8.0	0.8	U	8.0	0.8	U	8.0	0.8	U	0.8	8.0	U	0.8
Arsenic	7440-38-2	μg/L	1.1	J	1.6	2.7		1.6	1.6	U	1.6	0.87	J	1.6	0.92	J	1.6	1.6	U	1.6
Barium	7440-39-3	μg/L	84		1.6	48		1.6	30		1.6	71		1.6	70		1.6	99		1.6
Beryllium	7440-41-7	μg/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	μg/L	19000		120	19000		120	9200		120	16000		120	16000		120	14000		120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	U	9	9	UJ	9
Chromium (III)	16065-83-1	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	U	9	9	UJ	9
Chromium (Total)	7440-47-3	μg/L	4.7		0.8	1.6	J	8.0	0.8	U	0.8	0.8	U	8.0	0.8	U	0.8	0.6	J	8.0
Cobalt	7440-48-4	μg/L	1.2		0.4	0.32	J	0.4	0.86		0.4	0.24	J	0.4	0.2	J	0.4	0.29	J	0.4
Copper	7440-50-8	μg/L	2.9		0.8	0.82	J	8.0	1.3		8.0	0.81	J	8.0	0.83	J	0.8	8.0	U	0.8
Iron	7439-89-6	μg/L	2200		40	5200		40	9800		40	4700		40	4300		40	20000		40
Lead	7439-92-1	μg/L	0.92		0.25	0.18	J	0.25	26		0.25	14		0.25	14		0.25	0.25	U	0.25
Magnesium	7439-95-4	μg/L	6200		25	6500		25	990		25	8300		25	8300		25	8700		25
Manganese	7439-96-5	μg/L	510		1.6	1000		1.6	240		1.6	170		1.6	170		1.6	350		1.6
Mercury	7439-97-6	μg/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.16	U	0.16	0.085	J	0.2
Nickel	7440-02-0	μg/L	4.2	J	1	1	U	1	1.3	J	1	1	U	1	1	U	1	1.2	J	1
Potassium	7440-07-9	μg/L	4200		160	2800		160	4600		160	3000		160	3000		160	2300		160
Selenium	7782-49-2	μg/L	8.0	U	0.8	0.8	U	8.0	0.8	U	0.8	8.0	U	0.8	0.8	U	0.8	8.0	U	0.8
Silver	7440-22-4	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	μg/L	52000		160	41000		160	38000	J	160	33000		160	32000		160	26000		160
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	μg/L	3.4	J	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	15		10	10	U	10	31		10	8.7	J	10	8	J	10	10	U	10
Dissolved Metals (DMET)		_																		
Aluminum	7429-90-5	μg/L	31	U	31	31	U	31	31	U	31	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.44	J	0.82	0.71	J	0.82
Arsenic	7440-38-2	μg/L	1.6	U	1.6	1.9	J	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	μg/L	68		1.6	42		1.6	25		1.6	71		1.6	68		1.6	99		1.6
Beryllium	7440-41-7	μg/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	μg/L	18000		120	19000		120	8700		120	17000		120	16000		120	14000		120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	U	9	9	UJ	9
Chromium (III)	16065-83-1	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	U	9	9	UJ	9
Chromium (Total)	7440-47-3	μg/L	0.82	U	0.82	2.3		0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Cobalt	7440-48-4	μg/L	0.48	J	0.41	0.16	J	0.41	0.23	J	0.41	0.41	U	0.41	0.41	U	0.41	0.32	J	0.41
Copper	7440-50-8	μg/L	1.4		0.82	0.86	J	0.82	0.44	J	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Iron	7439-89-6	μg/L	100		41	3100		41	1200		41	780		41	840		41	20000		41
Lead	7439-92-1	μg/L	0.11	J	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Magnesium	7439-95-4	μg/L	5500		26	6000		26	950		26	8500		26	7700		26	9000		26
Manganese	7439-96-5	μg/L	470		1.6	860		1.6	180		1.6	150		1.6	150		1.6	340		1.6
Mercury	7439-97-6	μg/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	μg/L	1	U	1	0.76	J	1	1	U	1	1	U	1	1	U	1	1.8	J	1
Potassium	7440-07-9	μg/L	3400		160	2600		160	4400		160	3100		160	2900		160	2300		160

		Sample Location: Sample Name:		H-MW0453 JW045S-1			H-MW045S JW045S-0			S 17231S 7231S-122	20		S 17231S 7231S-022	21		S 17231S 1S-0221D	(FD)		S 19494 19494-1220)
		Onsite/Offsite: Sample Date:		Onsite 12/9/2020			Onsite 2/22/2021		1	Onsite 2/10/2020		2	Onsite 2/25/2021		2	Onsite 2/25/2021			Onsite 12/7/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Selenium	7782-49-2	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	μg/L	48000		160	35000		160	37000	J	160	32000		160	32000		160	27000		160
Thallium	7440-28-0	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	8	J	10	10	U	10	10	U	10	10	U	10	10	U	10	10	U	10

Notes

CASRN = Chemical Abstract Services Registry Number

LOD = Limit of DetectionSL = Screening Level $\mu g/L = micrograms per liter$ VQ = Validation Qualifier

Data Validation Qualifier Codes

J = The analyte was positively identified and the associated value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted LOD. However, the reported adjusted LOD is approximate and may be inaccurate or imprecise.

X = The result is rejected and not usable due to quality control reasons.

		Sample Location:		S 19494	ı		S 19495	<u> </u>	C	S 19495	1		S 3599		C	S 3599			S 48579	
		Sample Name:	51	9494-0221		51	9495-1220)	5	19495-022	l	5.	3599-1220		5	3599-0221		54	18579-1220	
		Onsite/Offsite:	•	Onsite			Onsite			Onsite			Offsite			Offsite		1	Offsite	
Chamical	CACDN	Sample Date:		2/23/2021	LOD		2/8/2020	LOD		2/23/2021	LOD		2/9/2020	LOD		2/24/2021	LOD		2/10/2020	LOD
Chemical Volatile Organic Compounds (VOCs)	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,1,1,2-Tetrachloroethane	630-20-6	110/1	0.5	U	0.5	0.5	- 11	0.5	Λ.Ε	T II	0.5	0.5	П	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	μg/L	0.5	U			- 11		0.5	II	0.5		IJ	0.5	0.5	U	0.5		U	0.5
1,1,2,2-Tetrachloroethane	71-55-6	μg/L	0.5 0.5	U	0.5 0.5	0.5 0.5	II	0.5 0.5	0.5	U	0.5	0.5 0.5	U	0.5	0.5	U	0.5	0.5 0.5	U	0.5
1,1,2-Trichloroethane	79-34-5 79-00-5	μg/L	0.5	U	0.5	0.5	U II	0.5	0.5 0.5	II	0.5	0.5	U	0.5	0.5	U	0.5 0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L	0.5	U	0.5	0.5	11	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L μg/L	0.5	U	0.5	0.5	11	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	1 7	0.0	U	0.0	0.0	11	0.0	0.0	II	0.5	0.0	II	0.0	1	U	0.0	0.0	U	1
1,2,4-Trimethylbenzene	95-63-6	μg/L μg/L	2	U	2	<u>၂</u>	11	2	2	II	2	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	μg/L μg/L	1	U	1	1	11	1	1	II	1	1	II	1	<u>Z</u>	U	1	1	U	
1,4-Dioxane	123-91-1	μg/L μg/L	100	U	100	100	II	100	100	II	100	100	IJ	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	μg/L μg/L	100	U	100	98	U	100	100	IJ	100	100	U	100	100	U	100	100	U	100
4-Isopropyltoluene	78-93-3 99-87-6	μg/L μg/L	0.5	U	0.5	0.5	11	0.5	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	μg/L	1	U	1	1	II	1	1	II	1	1	IJ	1	1	U	1	1	U	1
Acetone	67-64-1	μg/L μg/L	2	U	2	28	U	2	1	ı	2	2	U	2	2	U	2	2	U	2
Benzene	71-43-2	μg/L	0.5	U	0.5	0.5	- 11	0.5	0.5	II.	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	μg/L	0.5	U	0.5	0.21	ı	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	μg/L	0.5	U	0.5	0.5	 	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	μg/L	2	U	2	2	II	2	2	II	2	2	II	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	μg/L	0.8	U	0.8	0.8	II	0.8	0.8	IJ	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	µg/L	0.5	U	0.5	0.5	II	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	μg/L	0.5	U	0.5	0.5	IJ	0.5	0.5	i ii	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	µg/L	1	U	1	1	IJ	1	1	IJ	1	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	µg/L	1.2		0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	Ü	0.5	0.5	Ü	0.5
Methylene Chloride	75-09-2	µg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	µg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	µg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	Ü	0.5
n-Propylbenzene	103-65-1	µg/L	0.5	U	0.5	0.5	U	0.5	0.5	Ü	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	μg/L	0.8	U	0.8	0.62	J	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	µg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	µg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	µg/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVO		, 5																		
1,4-Dichlorobenzene	106-46-7	μg/L	1.1	U	1.1	1.1	UJ	1.1	1.1	U	1.1	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	μg/L	0.22	U	0.22	0.22	U	0.22	0.21	U	0.21	0.21	UJ	0.21	0.15	J	0.2	0.21	U	0.21
2-Chloronaphthalene	91-58-7	μg/L	0.87	U	0.87	0.87	U	0.87	0.85	U	0.85	0.84	U	0.84	0.8	U	0.8	0.82	U	0.82

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:		S 19494			S 19495			S 19495			S 3599			S 3599			S 48579	
		Sample Name:	S1	9494-0221		S1	19495-1220)	S	19495-022	1	S	3599-1220		S	3599-0221		S4	8579-1220	
		Onsite/Offsite:		Onsite			Onsite			Onsite			Offsite			Offsite			Offsite	
		Sample Date:	2	/23/2021		,	12/8/2020			2/23/2021		1	2/9/2020		2	2/24/2021		1:	2/10/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
2-Methylphenol	95-48-7	μg/L	1.1	U	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1	1	U	1	1	U	1
4-Chloro-3-methylphenol	59-50-7	μg/L	2.2	U	2.2	3.5	U	3.5	2.1	U	2.1	3.4	U	3.4	2	U	2	3.3	U	3.3
4-Chloroaniline	106-47-8	μg/L	9.7	UJ	9.7	9.8	U	9.8	9.5	U	9.5	9.4	U	9.4	9.1	U	9.1	9.2	U	9.2
4-Methylphenol	106-44-5	μg/L	1.1	U	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1	1	U	1	1	U	1
Benzaldehyde	100-52-7	μg/L	2.2	U	2.2	9.8	U	9.8	2.1	U	2.1	9.4	U	9.4	2	U	2	9.2	U	9.2
Benzoic acid	65-85-0	μg/L	26	U	26	26	U	26	25	U	25	25	U	25	24	U	24	25	U	25
Biphenyl, 1,1'-	92-52-4	μg/L	1.1	U	1.1	9.8	U	9.8	1.1	U	1.1	9.4	U	9.4	1	U	1	9.2	U	9.2
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	4.3	U	4.3	11	U	11	4.2	U	4.2	10	U	10	4	U	4	10	U	10
Butyl Benzyl Phthalate	85-68-7	μg/L	4.3	UJ	4.3	4.4	U	4.4	4.2	UJ	4.2	4.2	U	4.2	4	UJ	4	4.1	U	4.1
Caprolactam	105-60-2	μg/L	6.5	U	6.5	11	U	11	6.4	U	6.4	10	U	10	6	U	6	10	U	10
Carbazole	86-73-7	μg/L	1.1	U	1.1	0.033	U	0.033	1.1	U	1.1	1	U	1	1	U	1	0.031	U	0.031
Dibenzofuran	132-64-9	μg/L	1.1	U	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1	1	U	1	1	U	1
Diethyl Phthalate	84-66-2	μg/L	4.3	U	4.3	4.4	U	4.4	4.2	U	4.2	4.2	U	4.2	4	U	4	4.1	U	4.1
Dimethyl Phthalate	131-11-3	μg/L	4.3	UJ	4.3	4.4	U	4.4	4.2	UJ	4.2	4.2	U	4.2	4	UJ	4	4.1	U	4.1
Di-n-butyl phthalate	84-74-2	μg/L	4.3	U	4.3	4.4	U	4.4	4.2	U	4.2	4.2	U	4.2	4	U	4	4.1	U	4.1
di-n-Octyl Phthalate	117-84-0	μg/L	11	U	11	11	U	11	11	U	11	10	U	10	10	U	10	10	U	10
Polycyclic Aromatic Hydrocarbons (PAHs										_										
1-Methylnaphthalene	90-12-0	μg/L	0.043	UJ	0.043	0.033	U	0.033	0.042	U	0.042	0.031	UJ	0.031	0.04	U	0.04	0.031	U	0.031
2-Methylnaphthalene	91-57-6	μg/L	0.043	UJ	0.043	0.065	U	0.065	0.042	U	0.042	0.063	UJ	0.063	0.04	U	0.04	0.062	U	0.062
Acenaphthene	83-32-9	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Anthracene	120-12-7	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Benzo(a)anthracene	56-55-3	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Benzo(a)pyrene	50-32-8	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Benzo(b)fluoranthene	205-99-2	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Benzo(ghi)perylene	191-24-2	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Benzo(k)fluoranthene	207-08-9	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Chrysene	218-01-9	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Dibenz(a,h)anthracene	53-70-3	μg/L	0.043	U	0.043	0.065	U	0.065	0.042	U	0.042	0.063	UJ	0.063	0.04	U	0.04	0.062	U	0.062
Fluoranthene	206-44-0	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Fluorene	86-73-7	μg/L	0.032	U	0.032				0.032	U	0.032				0.03	U	0.03			
Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.043	U	0.043	0.033	U	0.033	0.042	U	0.042	0.031	UJ	0.031	0.04	U	0.04	0.031	U	0.031
Naphthalene	91-20-3	μg/L	0.065	UJ	0.065	0.065	U	0.065	0.064	U	0.064	0.063	UJ	0.063	0.072		0.06	0.062	U	0.062
Phenanthrene	85-01-8	μg/L	0.065	U	0.065	0.065	U	0.065	0.064	U	0.064	0.063	UJ	0.063	0.06	U	0.06	0.062	U	0.062
Pyrene	129-00-0	μg/L	0.032	U	0.032	0.033	U	0.033	0.032	U	0.032	0.031	UJ	0.031	0.03	U	0.03	0.031	U	0.031
Polychlorinated Biphenyls (PCBs)	40/74 44 0		0.00		0.00	0.04		0.04	0.00		0.00	0.0		0.0	0.01		0.04	0.0		0.0
Aroclor 1016	12674-11-2	μg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1221	11104-28-2	μg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1232	11141-16-5	µg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1242	53469-21-9	μg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1248	12672-29-6	µg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1254	11097-69-1	μg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Arcelor 12/0	11096-82-5	µg/L	0.32	U	0.32	0.31	U	0.31	0.32	U	0.32	0.3	U	0.3	0.31	U	0.31	0.3	U	0.3
Aroclor 1262	11096-82-5	μg/L	0.32	U	0.32				0.32	U	0.32				0.31	U	0.31			
Aroclor 1268	11096-82-5	μg/L	0.32	U	0.32				0.32	U	0.32				0.31	U	0.31			
Total Metals (TMET)																				

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:		S 19494			S 19495			S 19495			S 3599			S 3599			S 48579	
		Sample Name:	51	9494-022	I	51	9495-1220)	5	19495-022	l	5.	3599-1220		5.	3599-0221		54	8579-1220)
		Onsite/Offsite:	_	Onsite			Onsite			Onsite			Offsite		,	Offsite		1	Offsite	
Chemical	CASRN	Sample Date: Units	Result	2/23/2021	LOD		12/8/2020 VQ	LOD		2/23/2021 VQ	LOD		12/9/2020	LOD		2/24/2021 VQ	LOD		2/10/2020 VQ	LOD
Aluminum	7429-90-5	μg/L	30	VQ U	30	Result 66	VQ	30	Result 62	VQ I	30	Result 30	VQ U	30	Result 30	VQ U	30	Result 78	VQ I	30
Antimony	7429-90-3	μg/L	0.8	U	0.8	0.8		0.8	0.8	IJ	0.8	0.8	U	0.8	0.8	U	0.8	0.8	II II	0.8
Arsenic	7440-38-2	μg/L	0.71	I	1.6	4.1	U	1.6	2.7	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	II	1.6
Barium	7440-39-3	μg/L	99	J	1.6	7.9		1.6	4.8		1.6	48	U	1.6	59	U	1.6	28	U	1.6
Beryllium	7440-39-3	μg/L	0.25	U	0.25	0.25		0.25	0.25	II	0.25	0.25	U	0.25	0.25	U	0.25	0.25	- 11	0.25
Cadmium	7440-43-9	μg/L	0.23	U	0.23	0.23	II	0.23	0.23	II	0.23	0.23	IJ	0.23	0.23	U	0.23	0.23	II	0.4
Calcium	7440-70-2	µg/L µg/L	13000	U	120	12000	U	120	12000	U	120	16000	U	120	19000	U	120	8200	U	120
Chromium (VI) - lab	18540-29-9	μg/L	9	U	Q Q	0	UJ	9	0	- 11	9	0	UJ	0	0 0	U	0	0200	UJ	0
Chromium (III)	16065-83-1	μg/L	9	U	9	9	UJ	9	9	II	9	9	UJ	9	9	U	0	0	UJ	9
Chromium (Total)	7440-47-3	μg/L	0.5	ı	0.8	1.5	1	0.8	0.8	II	0.8	3.5	0.0	0.8	0.8	U	0.8	0.8	II	0.8
Cobalt	7440-47-3	µg/L µg/L	0.29	J	0.4	0.37	J	0.6	0.0	ı	0.6	0.4	IJ	0.8	0.4	IJ	0.4	0.4	II	0.4
	7440-40-4	μg/L	0.23	IJ	0.4	20	J	0.4	15	J	0.4	220	U	0.4	100	U	0.4	0.8	II	0.4
Copper Iron	7439-89-6	μg/L	22000	U	40	10000		40	2900		40	5700		40	1500		40	8100	U	40
Lead	7439-92-1	µg/L µg/L	0.25	U	0.25	34		0.25	12		0.25	5		0.25	4.2		0.25	3.7		0.25
Magnesium	7439-95-4	μg/L	8900	U	25	2700		25	2600		25	14000		25	15000		25	5500		25
Manganese	7439-96-5	µg/L	360		1.6	530		1.6	130		1.6	51		1.6	53		1.6	220		1.6
Mercury	7439-97-6	μg/L	0.16	U	0.16	0.15	ı	0.2	0.16	П	0.16	0.2	U	0.2	0.16	U	0.16	0.2	П	0.2
Nickel	7440-02-0	µg/L	1	U	1	2.5	, , , , , , , , , , , , , , , , , , ,	1	0.81	i	1	1	U	1	1.5	0	1	0.65	I	1
Potassium	7440-02-0	μg/L	2200		160	720		160	570	,	160	2200	U	160	2200		160	3500	<u> </u>	160
Selenium	7782-49-2	µg/L	0.8	U	0.8	0.8	11	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Silver	7440-22-4	μg/L	0.4	U	0.4	0.4	II	0.4	0.4	II	0.4	0.4	U	0.4	0.4	U	0.4	0.4	II	0.4
Sodium	7440-23-5	μg/L	27000		160	6400		160	3600	ī	160	48000	0	160	44000	0	160	43000	ı	160
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.4	IJ	0.4	0.4	II	0.4	0.4	U	0.4	0.4	U	0.4	0.4	II	0.4
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	II	1.6	1.6	II	1.6	1.6	U	1.6	1.6	IJ	1.6	1.6	II	1.6
Zinc	7440-66-6	μg/L	10	U	10	120		10	53	Ť	10	88	Ŭ	10	140		10	10	U	10
Dissolved Metals (DMET)	7.1.0 00 0	p.g. =	.,			.20	l			<u> </u>			<u> </u>					.,		
Aluminum	7429-90-5	μg/L	22	J	31	31	U	31	31	U	31	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	Ü	0.82	0.82	U	0.82	0.82	U	0.82	1.1	J	0.82
Arsenic	7440-38-2	µg/L	1.6	U	1.6	1.6	Ü	1.6	1.1	J	1.6	1.6	U	1.6	1.6	U	1.6	1.6	Ü	1.6
Barium	7440-39-3	μg/L	99		1.6	5.5		1.6	3.7		1.6	46		1.6	56		1.6	26	J	1.6
Beryllium	7440-41-7	μg/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	μg/L	13000		120	11000		120	12000		120	16000		120	19000		120	8100		120
Chromium (VI) - lab	18540-29-9	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9
Chromium (III)	16065-83-1	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9
Chromium (Total)	7440-47-3	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Cobalt	7440-48-4	μg/L	0.22	J	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Copper	7440-50-8	μg/L	0.82	U	0.82	0.82	U	0.82	1.9		0.82	54		0.82	89		0.82	0.82	UJ	0.82
Iron	7439-89-6	μg/L	20000		41	690		41	170		41	400		41	61		41	7100		41
Lead	7439-92-1	μg/L	0.26	U	0.26	1.2		0.26	3.5		0.26	0.41	J	0.26	3.7		0.26	0.078	J	0.26
Magnesium	7439-95-4	μg/L	8800		26	2600		26	2500		26	13000		26	15000		26	5500		26
Manganese	7439-96-5	μg/L	350		1.6	490		1.6	110		1.6	42		1.6	52		1.6	220		1.6
Mercury	7439-97-6	μg/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
Niekol																				
Nickel	7440-02-0	μg/L	1	U	1	0.86	J	1	1	U	1	2.5	J	1	0.9	J	1	2.1	J	1

		Sample Location:		S 19494			S 19495			S 19495			S 3599			S 3599			S 48579	
		Sample Name:	S.	19494-022	1	S ⁻	19495-1220)	S1	9495-022	1	S	3599-1220)	S	3599-0221		S4	18579-1220)
		Onsite/Offsite:		Onsite 2/23/2021			Onsite			Onsite			Offsite			Offsite			Offsite	
		Sample Date:		2/23/2021			12/8/2020		4	2/23/2021		1	2/9/2020			2/24/2021		1	2/10/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Selenium	7782-49-2	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.36	J	0.82
Silver	7440-22-4	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	μg/L	26000		160	5300		160	3300		160	44000		160	42000		160	30000	J	160
Thallium	7440-28-0	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	10	U	10	6.9	J	10	25		10	150		10	150		10	10	U	10

Notes

CASRN = Chemical Abstract Services Registry Number

LOD = Limit of DetectionSL = Screening Level $\mu g/L = micrograms per liter$ VQ = Validation Qualifier

Data Validation Qualifier Codes

J = The analyte was positively identified and the associated value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted LOD. However, the reported adjusted LOD is approximate and may be inaccurate or imprecise.

X = The result is rejected and not usable due to quality control reasons.

		Sample Location:		S 48579			S 58922			S 58922			S 70627			S 70627			S 76304	
		Sample Name:		8579-022	1		58922-1220)		58922-0221			0627-1220			70627-0221			76304-1220	,
		Onsite/Offsite:		Offsite			Offsite			Offsite			Offsite			Offsite			Offsite	
		Sample Date:	2	/23/2021			12/9/2020			2/23/2021		1	2/12/2020		2	2/24/2021		1	2/13/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds (VOCs)																				
1,1,1,2-Tetrachloroethane	630-20-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	µg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	μg/L	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	0.9	J	2
Benzene	71-43-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	1.3	J	0.5
Carbon Tetrachloride	56-23-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	μg/L	8.0	U	0.8	0.8	U	8.0	0.8	U	0.8	8.0	U	8.0	0.8	U	8.0	0.8	U	0.8
Isopropylbenzene	98-82-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	μg/L	8.0	U	0.8	8.0	U	8.0	0.8	U	0.8	0.8	U	8.0	0.8	U	8.0	8.0	U	0.8
sec-Butylbenzene	135-98-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	μg/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVOC					1		_						-			1				
1,4-Dichlorobenzene	106-46-7	μg/L	1.1	U	1.1	1	U	1	1	U	1	1	UJ	1	1.1	U	1.1	1.1	UJ	1.1
1,4-Dioxane	123-91-1	μg/L	0.22	U	0.22	0.21	UJ	0.21	0.21	U	0.21	0.21	UJ	0.21	0.21	U	0.21	0.21	UJ	0.21
2-Chloronaphthalene	91-58-7	μg/L	0.86	U	0.86	0.82	U	0.82	0.82	U	0.82	0.83	UJ	0.83	0.88	U	0.88	0.86	UJ	0.86

		Sample Location:		S 48579			S 58922			S 58922			S 70627			S 70627			S 76304	
		Sample Name:	S4	8579-022	1	S5	8922-1220)	S5	8922-022	1	S7	0627-1220)	S7	70627-022	1	S	6304-1220)
		Onsite/Offsite:		Offsite			Offsite			Offsite			Offsite			Offsite			Offsite	
		Sample Date:		2/23/2021			12/9/2020			2/23/2021			2/12/2020			2/24/2021			2/13/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
2-Methylphenol	95-48-7	μg/L	1.1	U	1.1	1	U	1	1	U	1	1	UJ	1	1.1	U	1.1	1.1	UJ	1.1
4-Chloro-3-methylphenol	59-50-7	μg/L	2.2	U	2.2	3.3	U	3.3	2.1	U	2.1	3.3	UJ	3.3	2.2	U	2.2	3.4	UJ	3.4
4-Chloroaniline	106-47-8	μg/L	9.7	U	9.7	9.2	U	9.2	9.2	U	9.2	9.3	UJ	9.3	9.9	U	9.9	9.7	UJ	9.7
4-Methylphenol	106-44-5	μg/L	1.1	U	1.1	1	U	1	1	U	1	1	UJ	1	1.1	U	1.1	1.1	UJ	1.1
Benzaldehyde	100-52-7	μg/L	2.2	U	2.2	9.2	U	9.2	2.1	U	2.1	9.3	UJ	9.3	2.2	U	2.2	9.7	UJ	9.7
Benzoic acid	65-85-0	μg/L	26	U	26	25	U	25	25	U	25	25	UJ	25	27	U	27	26	UJ	26
Biphenyl, 1,1'-	92-52-4	μg/L	1.1	U	1.1	9.2	U	9.2	1	U	1	9.3	UJ	9.3	1.1	U	1.1	9.7	UJ	9.7
bis(2-Ethylhexyl) phthalate	117-81-7	μg/L	4.3	U	4.3	10	U	10	4.1	U	4.1	10	UJ	10	4.4	U	4.4	11	UJ	11
Butyl Benzyl Phthalate	85-68-7	μg/L	4.3	UJ	4.3	4.1	U	4.1	4.1	UJ	4.1	4.1	UJ	4.1	4.4	UJ	4.4	4.3	UJ	4.3
Caprolactam	105-60-2	μg/L	6.5	U	6.5	10	U	10	6.2	U	6.2	10	UJ	10	6.6	U II	6.6	11	UJ	11
Carbazole	86-73-7	μg/L	1.1	U	1.1	1	U	1	1	U	1	0.031	UJ	0.031	1.1	U	1.1	1.1	UJ	1.1
Dibenzofuran	132-64-9	μg/L	1.1	U	1.1	1 1	U	1 1	4.1	U	4 1	4.1	UJ	4.1	1.1	U	1.1	1.1	UJ	1.1
Diethyl Phthalate	84-66-2	μg/L	4.3	U	4.3	4.1	U	4.1	4.1	U	4.1	4.1	UJ	4.1	4.4	UJ	4.4	4.3	UJ	4.3
Dimethyl Phthalate	131-11-3	μg/L	4.3	UJ	4.3	4.1	U	4.1	4.1	UJ	4.1	4.1	UJ	4.1	4.4	UJ U	4.4	4.3	UJ	4.3
Di-n-butyl phthalate	84-74-2 117-84-0	μg/L	4.3 11	U	4.3	4.1	U	4.1 10	4.1	U	4.1	4.1	UJ	4.1 10	4.4 11	II	4.4 11	4.5 11	UJ	4.3 11
di-n-Octyl Phthalate Polycyclic Aromatic Hydrocarbons (PAHs)	117-84-0	μg/L	- 11	U		10	U	10	10	<u> </u>	10	10	UJ	10	11	l 0		11	UJ	11
1-Methylnaphthalene	90-12-0	μg/L	0.043	U	0.043	0.031	UJ	0.031	0.041	Lu	0.041	0.031	UJ	0.031	0.041	П	0.041	0.032	UJ	0.032
2-Methylnaphthalene	91-57-6	μg/L μg/L	0.043	U	0.043	0.062		0.062	0.041	U	0.041	0.062		0.061	0.041	II	0.041	0.032	UJ	0.032
Acenaphthene	83-32-9	μg/L μg/L	0.043	U	0.043	0.002	UJ	0.082	0.041	U	0.041	0.062	UJ	0.082	0.041	U	0.041	0.032	UJ	0.032
Anthracene	120-12-7	μg/L μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032
Benzo(a)anthracene	56-55-3	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.031	l I	0.031	0.031	II	0.031	0.032	UJ	0.032
Benzo(a)pyrene	50-33-8	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.038	J	0.031	0.031	U	0.031	0.032	UJ	0.032
Benzo(b)fluoranthene	205-99-2	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.044	J	0.031	0.031	U	0.031	0.032	UJ	0.032
Benzo(ghi)perylene	191-24-2	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.044	J	0.031	0.031	II	0.031	0.032	UJ	0.032
Benzo(k)fluoranthene	207-08-9	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.046	ı	0.031	0.031	U	0.031	0.032	UJ	0.032
Chrysene	218-01-9	μg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.044	J	0.031	0.031	IJ	0.031	0.032	UJ	0.032
Dibenz(a,h)anthracene	53-70-3	μg/L	0.043	U	0.043	0.062	UJ	0.062	0.041	U	0.041	0.041	j	0.062	0.041	IJ	0.041	0.064	UJ	0.064
Fluoranthene	206-44-0	µg/L	0.032	U	0.032	0.031	UJ	0.031	0.011	J	0.031	0.037	j	0.031	0.031	IJ	0.031	0.032	UJ	0.032
Fluorene	86-73-7	μg/L	0.032	U	0.032				0.031	U	0.031				0.031	U	0.031			
Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.043	U	0.043	0.031	UJ	0.031	0.041	U	0.041	0.045	J	0.031	0.041	U	0.041	0.032	UJ	0.032
Naphthalene	91-20-3	µg/L	0.065	U	0.065	0.062	UJ	0.062	0.062	U	0.062	0.062	UJ	0.062	0.062	U	0.062	0.064	UJ	0.064
Phenanthrene	85-01-8	μg/L	0.065	U	0.065	0.062	UJ	0.062	0.062	U	0.062	0.062	UJ	0.062	0.062	U	0.062	0.064	UJ	0.064
Pyrene	129-00-0	µg/L	0.032	U	0.032	0.031	UJ	0.031	0.031	U	0.031	0.029	J	0.031	0.031	U	0.031	0.032	UJ	0.032
Polychlorinated Biphenyls (PCBs)		1															1		<u>l</u>	
Aroclor 1016	12674-11-2	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1221	11104-28-2	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1232	11141-16-5	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1242	53469-21-9	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1248	12672-29-6	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1254	11097-69-1	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1260	11096-82-5	μg/L	0.32	U	0.32	0.31	U	0.31	0.3	U	0.3	0.36	U	0.36	0.34	U	0.34	0.36	U	0.36
Aroclor 1262	11096-82-5	μg/L	0.32	U	0.32				0.3	U	0.3			-	0.34	U	0.34			
Aroclor 1268	11096-82-5	μg/L	0.32	U	0.32				0.3	U	0.3				0.34	U	0.34			
Total Metals (TMET)										-			-			-				

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:		S 48579			S 58922			S 58922			S 70627			S 70627			S 76304	
		Sample Name:	S4	8579-0221		St	58922-1220)	S	58922-022 ⁻	1	S7	0627-1220)	S7	⁷ 0627-022	1	S7	76304-1220)
		Onsite/Offsite:		Offsite			Offsite			Offsite			Offsite			Offsite			Offsite	
		Sample Date:	2	/23/2021		•	12/9/2020			2/23/2021		12	2/12/2020		2	2/24/2021		1.	2/13/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Aluminum	7429-90-5	μg/L	49		30	30	U	30	30	U	30	320		30	2400		30	1200	J	30
Antimony	7440-36-0	μg/L	8.0	U	0.8	0.8	U	8.0	0.8	U	8.0	0.8	U	0.8	0.8	U	0.8	9.2		8.0
Arsenic	7440-38-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1	J	1.6	1.8	J	1.6	520	J	1.6
Barium	7440-39-3	μg/L	20		1.6	83		1.6	55		1.6	170		1.6	140		1.6	1400	J	1.6
Beryllium	7440-41-7	μg/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.13	J	0.25	0.2	J	0.25
Cadmium	7440-43-9	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.2	J	0.4	0.4	U	0.4	21		0.4
Calcium	7440-70-2	μg/L	6200		120	13000		120	11000		120	32000		120	30000		120	31000		600
Chromium (VI) - lab	18540-29-9	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9
Chromium (III)	16065-83-1	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	10		9	120	J	9
Chromium (Total)	7440-47-3	μg/L	0.33	J	0.8	0.8	U	8.0	0.41	J	8.0	1.4	J	0.8	10		0.8	120	J	8.0
Cobalt	7440-48-4	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	1		0.4	1.8		0.4	41	J	0.4
Copper	7440-50-8	μg/L	0.85	J	0.8	0.9	J	8.0	0.8	U	8.0	2.3		8.0	2.7		8.0	120		8.0
Iron	7439-89-6	μg/L	21000		40	48	J	40	40	U	40	430		40	2900		40	1300000	J	800
Lead	7439-92-1	μg/L	48		0.25	0.51		0.25	0.25	U	0.25	2.1		0.25	3.5		0.25	830		0.25
Magnesium	7439-95-4	μg/L	4200		25	7200		25	7900		25	19000		25	19000		25	6400	J	130
Manganese	7439-96-5	μg/L	350		1.6	2.1		1.6	1.6	U	1.6	460		1.6	260		1.6	33000	J	16
Mercury	7439-97-6	μg/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.42	igwdow	0.2
Nickel	7440-02-0	μg/L	1	U	1	1	U	1	1	U	1	11		1	10		1	130	J	1
Potassium	7440-07-9	μg/L	3100		160	1700		160	1700		160	3900		160	4300		160	3500		160
Selenium	7782-49-2	μg/L	8.0	U	0.8	0.78	J	8.0	0.75	J	8.0	0.8	U	0.8	0.32	J	0.8	0.8	U	8.0
Silver	7440-22-4	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.59	igwdow	0.4
Sodium	7440-23-5	μg/L	43000		160	23000		160	22000		160	67000		160	75000		160	49000		800
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.45	J	0.4
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1	J	1.6	5.1		1.6	7.2		1.6
Zinc	7440-66-6	μg/L	11	J	10	10	U	10	10	U	10	65		10	14	J	10	95000	J	200
Dissolved Metals (DMET)		T	-				ı			T	T	1	1			ı				
Aluminum	7429-90-5	μg/L	31	U	31	31	U	31	31	U	31	30	U	30	31	U	31	30	U	30
Antimony	7440-36-0	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8
Arsenic	7440-38-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	0.75	J	1.6	0.79	J	1.6	1.5	J	1.6
Barium	7440-39-3	μg/L	20		1.6	75		1.6	52		1.6	150		1.6	110		1.6	48	— —	1.6
Beryllium	7440-41-7	μg/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25
Cadmium	7440-43-9	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.19	J	0.4	0.41	U	0.41	0.4	U	0.4
Calcium	7440-70-2	μg/L	5800		120	12000		120	11000		120	31000		120	30000		120	12000	——	120
Chromium (VI) - lab	18540-29-9	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9
Chromium (III)	16065-83-1	μg/L	9	U	9	9	UJ	9	9	U	9	9	UJ	9	9	U	9	9	UJ	9
Chromium (Total)	7440-47-3	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8
Cobalt	7440-48-4	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.9		0.4	0.64		0.41	0.4	U	0.4
Copper	7440-50-8	μg/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	1.2		0.8	0.82	U	0.82	0.97	J .	0.8
Iron	7439-89-6	μg/L	18000		41	41	U	41	41	U	41	23	J ·	40	120		41	60	J	40
Lead	7439-92-1	µg/L	0.37	J	0.26	0.083	J	0.26	0.26	U	0.26	0.074	J	0.25	0.074	J	0.26	0.25	U	0.25
Magnesium	7439-95-4	μg/L	3900		26	6700		26	7600	 	26	18000		25	18000		26	1300	$\vdash \vdash \vdash$	25
Manganese	7439-96-5	µg/L	330		1.6	1.2	J 	1.6	1.6	U	1.6	390		1.6	210		1.6	50	 	1.6
Mercury	7439-97-6	μg/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16	0.08	J	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	μg/L	1	U	1	1	U	1	1	U	1	9.3		1	3.7		1	1.1		1/2
Potassium	7440-07-9	μg/L	2900		160	1600		160	1600		160	3400		160	3400		160	3000	1	160

		Sample Location:		S 48579			S 58922			S 58922			S 70627			S 70627			S 76304	
		Sample Name:	S ²	18579-022	1	S!	58922-1220)	S5	8922-0221		S7	0627-1220	0	S	70627-0221		S7	76304-1220)
		Onsite/Offsite:		Offsite 2/23/2021			Offsite			Offsite			Offsite			Offsite			Offsite	
		Sample Date:	,	2/23/2021			12/9/2020		2	2/23/2021		1	2/12/2020			2/24/2021		1	2/13/2020	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Selenium	7782-49-2	μg/L	0.82	U	0.82	0.94	J	0.82	0.69	J	0.82	0.8	U	0.8	0.82	U	0.82	0.8	U	8.0
Silver	7440-22-4	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4
Sodium	7440-23-5	μg/L	40000		160	20000		160	20000		160	67000		160	67000		820	51000		160
Thallium	7440-28-0	μg/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	10	U	10	10	U	10	10	U	10	8.6	J	10	6.4	J	10	10	J	10

Notes

CASRN = Chemical Abstract Services Registry Number

LOD = Limit of DetectionSL = Screening Level $\mu g/L = micrograms per liter$ VQ = Validation Qualifier

Data Validation Qualifier Codes

J = The analyte was positively identified and the associated value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted LOD. However, the reported adjusted LOD is approximate and may be inaccurate or imprecise.

X = The result is rejected and not usable due to quality control reasons.

		Sample Location:		S 76304			S 76304			S 79269			S 79269			S 79269			S 79269	
		Sample Name:		04-1220D	(FD)		76304-022	1		79269-1220)		59-1220D (FD)		79269-0221			69-0221D ((FD)
		Onsite/Offsite:		Offsite	` ,		Offsite			Offsite			Offsite	,		Offsite			Offsite	,
		Sample Date:	1	2/13/2020			2/27/2021			12/8/2020		1	2/8/2020		2	2/25/2021		2	2/25/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds (VOCs)	•				•		•	•		•						· · · · ·				
1,1,1,2-Tetrachloroethane	630-20-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	μg/L	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	μg/L	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	μg/L	11	U	1	1	U	1	1	U	1	1	U	1	1	U	1	11	U	1
Acetone	67-64-1	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
Benzene	71-43-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	μg/L	1	J	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	μg/L	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	μg/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8	8.0	U	0.8
Isopropylbenzene	98-82-8	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	μg/L	1	U	7	1	U	1	7	U	1	1	U	7	7	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	μg/L	0.5	U		Z	U	Z		U	Z	۷	U	0.5		U	0.5	0.5	U	Z
n-Butylbenzene	104-51-8 103-65-1	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	U	0.5 0.5	0.5	U	0.5	0.5	U	0.5		U	0.5 0.5
n-Propylbenzene o-Xylene	95-47-6	μg/L μg/L	0.8	U	0.5 0.8	0.5 0.8	II.	0.5 0.8	0.5 0.8	U II	0.8	0.5 0.8	U U	0.5	0.5 0.8	U	0.5	0.5	IJ	0.5
sec-Butylbenzene	135-98-8	μg/L μg/L	0.5	U	0.6	0.6	11	0.6	0.6	IJ	0.6	0.6	U	0.6	0.6	U	0.6	0.6	U II	0.6
tert-Butylbenzene	98-06-6	μg/L μg/L	1	U	1	1	IJ	1	1	U	1	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	IJ	0.5
Toluene	108-88-3	µg/L	0.5	U	0.5	0.5	II	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	μg/L	0.5	U	0.5	0.5	II	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	μg/L	0.5	U	0.5	0.5	U	0.5	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5	0.5	IJ	0.5
Trichlorotrifluoroethane	76-13-1	μg/L	0.5	U	0.5	0.5	IJ	0.5	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	µg/L	0.5	U	0.5	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	μg/L	2.8	U	2.8	2.8	Ü	2.8	2.8	U	2.8	2.8	U	2.8	2.8	Ü	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVC		F-3' =	_,0						0					=.0	0			_,0		=:0
1,4-Dichlorobenzene	106-46-7	μg/L	1	UJ	1	1	U	1	1.1	UJ	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1
1,4-Dioxane	123-91-1	μg/L	0.21	UJ	0.21	0.21	U	0.21	0.21	UJ	0.21	0.22	U	0.22	0.21	Ü	0.21	0.2	U	0.2
2-Chloronaphthalene	91-58-7	μg/L	0.83	UJ	0.83	0.82	U	0.82	0.86	U	0.86	0.86	U	0.86	0.86	Ü	0.86	0.81	U	0.81
		. r <i>.t</i>																		

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location: Sample Name:		S 76304 4-1220D	(ED)		S 76304 76304-022	1		S 79269 9269-1220	0		S 79269 59-1220D ((ED)		S 79269 '9269-0221	1		S 79269 69-0221D (ED)
		Onsite/Offsite:		Offsite	(FD)	31	Offsite	I	31	Offsite	U	3/920	Offsite	(רט)	31	Offsite	ı	3/92	Offsite	רט)
		Sample Date:		2/13/2020			2/27/2021		,	12/8/2020		1	2/8/2020		,	2/25/2021			2/25/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
2-Methylphenol	95-48-7	µg/L	1	UJ	1	1	U	1	1.1	UJ	1.1	1.1	IJ	1.1	1.1	IJ	1.1	1	U	1
4-Chloro-3-methylphenol	59-50-7	µg/L	3.3	UJ	3.3	2.1	U	2.1	3.4	UJ	3.4	3.5	U	3.5	2.1	U	2.1	2	IJ	2
4-Chloroaniline	106-47-8	µg/L	9.4	UJ	9.4	9.2	U	9.2	9.6	U	9.6	9.7	U	9.7	9.6	U	9.6	9.1	U	9.1
4-Methylphenol	106-44-5	µg/L	1	UJ	1	1	Ü	1	1.1	UJ	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1
Benzaldehyde	100-52-7	µg/L	9.4	UJ	9.4	2.1	U	2.1	9.6	U	9.6	9.7	U	9.7	2.1	U	2.1	2	U	2
Benzoic acid	65-85-0	µg/L	25	UJ	25	25	U	25	26	U	26	26	U	26	26	U	26	24	U	24
Biphenyl, 1,1'-	92-52-4	µg/L	9.4	UJ	9.4	1	U	1	9.6	U	9.6	9.7	U	9.7	1.1	U	1.1	1	U	1
bis(2-Ethylhexyl) phthalate	117-81-7	µg/L	10	UJ	10	4.1	U	4.1	11	U	11	11	U	11	4.3	U	4.3	4	U	4
Butyl Benzyl Phthalate	85-68-7	μg/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3	U	4.3	4.3	UJ	4.3	4.3	UJ	4.3	4	UJ	4
Caprolactam	105-60-2	μg/L	10	UJ	10	6.2	U	6.2	11	U	11	11	U	11	6.4	U	6.4	6	U	6
Carbazole	86-73-7	μg/L	0.031	UJ	0.031	1	U	1	1.1	U	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1
Dibenzofuran	132-64-9	μg/L	1	UJ	1	1	U	1	1.1	U	1.1	1.1	U	1.1	1.1	U	1.1	1	U	1
Diethyl Phthalate	84-66-2	μg/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3	U	4.3	4.3	U	4.3	4.3	UJ	4.3	4	UJ	4
Dimethyl Phthalate	131-11-3	μg/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3	U	4.3	4.3	UJ	4.3	4.3	UJ	4.3	4	UJ	4
Di-n-butyl phthalate	84-74-2	μg/L	4.2	UJ	4.2	4.1	U	4.1	4.3	U	4.3	4.3	U	4.3	4.3	U	4.3	4	U	4
di-n-Octyl Phthalate	117-84-0	μg/L	10	UJ	10	10	U	10	11	U	11	11	U	11	11	U	11	10	U	10
Polycyclic Aromatic Hydrocarbons (PAF	Hs)																			
1-Methylnaphthalene	90-12-0	μg/L	0.031	UJ	0.031	0.041	U	0.041	0.032	UJ	0.032	0.032	U	0.032	0.043	U	0.043	0.04	U	0.04
2-Methylnaphthalene	91-57-6	μg/L	0.063	UJ	0.063	0.041	U	0.041	0.064	UJ	0.064	0.065	U	0.065	0.024	J	0.043	0.04	U	0.04
Acenaphthene	83-32-9	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Anthracene	120-12-7	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Benzo(a)anthracene	56-55-3	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Benzo(a)pyrene	50-32-8	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Benzo(b)fluoranthene	205-99-2	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Benzo(ghi)perylene	191-24-2	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Benzo(k)fluoranthene	207-08-9	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Chrysene	218-01-9	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Dibenz(a,h)anthracene	53-70-3	μg/L	0.063	UJ	0.063	0.041	U	0.041	0.064	UJ	0.064	0.065	U	0.065	0.043	U	0.043	0.04	U	0.04
Fluoranthene	206-44-0	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Fluorene	86-73-7	μg/L				0.031	U	0.031							0.032	U	0.032	0.03	U	0.03
Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	0.031	UJ	0.031	0.041	U	0.041	0.032	UJ	0.032	0.032	U	0.032	0.043	U	0.043	0.04	U	0.04
Naphthalene	91-20-3	μg/L	0.063	UJ	0.063	0.062	U	0.062	0.064	UJ	0.064	0.065	U	0.065	0.11	J	0.064	0.06	UJ	0.06
Phenanthrene	85-01-8	μg/L	0.063	UJ	0.063	0.062	U	0.062	0.064	UJ	0.064	0.065	U	0.065	0.064	U	0.064	0.06	U	0.06
Pyrene Polyableringtod Riphopydo (PCRo)	129-00-0	μg/L	0.031	UJ	0.031	0.031	U	0.031	0.032	UJ	0.032	0.032	U	0.032	0.032	U	0.032	0.03	U	0.03
Polychlorinated Biphenyls (PCBs) Aroclor 1016	12674-11-2	uall	0.21	U	0.31	0.31	111	0.31	0.31	U	0.31	0.31	- 11	0.31	0.31	U	0.31	0.32	U	0.32
Aroclor 1221	11104-28-2	μg/L	0.31 0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.32	U	0.32
		μg/L				0.31							U II			U				
Aroclor 1232 Aroclor 1242	11141-16-5 53469-21-9	μg/L μg/L	0.31 0.31	U U	0.31 0.31	0.31	U	0.31	0.31 0.31	U	0.31	0.31 0.31	U	0.31	0.31 0.31	IJ	0.31 0.31	0.32	U	0.32
Aroclor 1248	12672-29-6	μg/L μg/L	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.31	U II	0.31	0.31	U	0.31	0.32	U	0.32
Aroclor 1254	11097-69-1	μg/L μg/L	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.31	U	0.31	0.32	U	0.32
Aroclor 1260	11096-82-5	μg/L	0.31	U	0.31	0.67	U	0.31	0.31	U	0.31	0.31	IJ	0.31	0.31	U	0.31	0.32	U	0.32
Aroclor 1260 Aroclor 1262	11096-82-5	μg/L μg/L			U.31 	0.07	U	0.31			0.31	U.J I		U.3 I	0.31	U	0.31	0.32	U	0.32
Aroclor 1268	11096-82-5	μg/L				0.31	U	0.31							0.31	II	0.31	0.32	IJ	0.32
Total Metals (TMET)	11070-02-3	µу/∟				0.31		0.31		<u></u>					0.31	U	0.31	U.JZ	U	0.32
Total Motal3 (TMLT)																				

Appendix B2
Phase IV Groundwater Analytical Results
Camp Hero, Montauk, New York

		Sample Location:		S 76304			S 76304			S 79269										
		Sample Name:	S7630	4-1220D ((FD)	S7	76304-0221		S	79269-122	0	S7926	9-1220D (FD)	S7	9269-0221		S7926	69-0221D (F	FD)
		Onsite/Offsite:		Offsite	, ,		Offsite			Offsite			Offsite	,		Offsite			Offsite	·
		Sample Date:	1:	2/13/2020		,	2/27/2021			12/8/2020		1	2/8/2020		2	2/25/2021		2	2/25/2021	i
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Aluminum	7429-90-5	μg/L	800	J	30	30	U	30	30	U	30	30	U	30	30	U	30	30	U	30
Antimony	7440-36-0	μg/L	8.6		0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	8.0	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	μg/L	320	J	1.6	2.9		1.6	1.6	U	1.6									
Barium	7440-39-3	μg/L	980	J	1.6	54		1.6	41		1.6	41		1.6	42		1.6	42		1.6
Beryllium	7440-41-7	μg/L	0.14	J	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	μg/L	17		0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	μg/L	26000		600	27000		120	15000		120	14000		120	15000		120	15000		120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	UJ	9	9	U	9	9	U	9
Chromium (III)	16065-83-1	μg/L	68	J	9	9	U	9	9	UJ	9	9	UJ	9	9	U	9	9	U	9
Chromium (Total)	7440-47-3	μg/L	68	J	0.8	0.8	U	8.0	0.8	U	0.8	0.66	J	8.0	8.0	U	8.0	8.0	U	8.0
Cobalt	7440-48-4	μg/L	25	J	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Copper	7440-50-8	μg/L	89		0.8	0.8	U	8.0	1.9		0.8	2.1		8.0	1.8		8.0	1.5		8.0
Iron	7439-89-6	μg/L	760000	J	400	170		40	200		40	190		40	180		40	190		40
Lead	7439-92-1	μg/L	640		0.25	0.27	J	0.25	0.19	J	0.25	0.23	J	0.25	0.26	J	0.25	0.26	J	0.25
Magnesium	7439-95-4	μg/L	4700	J	130	3100		25	11000		25	10000		25	11000		25	10000		25
Manganese	7439-96-5	μg/L	21000	J	16	270		1.6	34		1.6	33		1.6	29		1.6	28		1.6
Mercury	7439-97-6	μg/L	0.3		0.2	0.16	U	0.16	0.12	J	0.2	0.12	J	0.2	0.16	U	0.16	0.16	U	0.16
Nickel	7440-02-0	μg/L	82	J	1	1	U	1	2.5		1	2.6		1	1.5		1	1	J	1
Potassium	7440-07-9	μg/L	3600		160	3200		160	2000		160	1900		160	2000		160	2000		160
Selenium	7782-49-2	μg/L	8.0	U	0.8	0.8	U	0.8	0.8	U	0.8	0.8	U	8.0	0.8	U	8.0	8.0	U	8.0
Silver	7440-22-4	μg/L	0.39	J	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	μg/L	54000		800	26000		160	30000		160	31000		160	30000		160	29000		160
Thallium	7440-28-0	μg/L	0.29	J	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	μg/L	4.4		1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	64000	J	100	10	U	10	10	U	10	10	U	10	10	U	10	10	U	10
Dissolved Metals (DMET)																				
Aluminum	7429-90-5	μg/L	30	U	30	31	U	31	31	U	31	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	μg/L	8.0	U	0.8	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	μg/L	1.6	J	1.6	2.8		1.6	1.6	U	1.6									
Barium	7440-39-3	μg/L	46		1.6	54		1.6	39		1.6	40		1.6	42		1.6	42		1.6
Beryllium	7440-41-7	μg/L	0.25	U	0.25	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	μg/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	μg/L	11000		120	26000		120	14000		120	15000		120	14000		120	14000		120
Chromium (VI) - lab	18540-29-9	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	UJ	9	9	U	9	9	U	9
Chromium (III)	16065-83-1	μg/L	9	UJ	9	9	U	9	9	UJ	9	9	UJ	9	9	U	9	9	U	9
Chromium (Total)	7440-47-3	μg/L	8.0	U	0.8	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Cobalt	7440-48-4	μg/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Copper	7440-50-8	μg/L	8.0	U	0.8	0.82	U	0.82	1.5		0.82	1.1		0.82	2.4		0.82	1.9		0.82
Iron	7439-89-6	μg/L	40	UJ	40	150		41	160		41	150		41	150		41	140		41
Lead	7439-92-1	μg/L	0.25	U	0.25	0.26	U	0.26	0.15	J	0.26	0.15	J	0.26	0.3	J	0.26	0.27	J	0.26
Magnesium	7439-95-4	μg/L	1200		25	3400		26	10000		26	10000		26	11000		26	9800		26
Manganese	7439-96-5	μg/L	47		1.6	290		1.6	33		1.6	33		1.6	29		1.6	29		1.6
Mercury	7439-97-6	μg/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2	0.1	J	0.2	0.16	U	0.16	0.16	U	0.16
Nickel	7440-02-0	μg/L	0.74	J	1	1	U	1	2		1	1.4	J	1	2.2		1	1.4	J	1
Potassium	7440-07-9	μg/L	3000		160	3300		160	1900		160	1900		160	2000		160	1900	1	160

Appendix B2 Phase IV Groundwater Analytical Results Camp Hero, Montauk, New York

		Sample Location:		S 76304			S 76304			S 79269			S 79269			S 79269			S 79269	
		Sample Name:	S763	04-1220D	(FD)	S	76304-0221		S7	9269-1220	0	S7926	59-1220D	(FD)	S	79269-0221		S7920	69-0221D ((FD)
		Onsite/Offsite:		Offsite			Offsite			Offsite			Offsite			Offsite			Offsite	
		Sample Date:	1	2/13/2020		2	2/27/2021		1	2/8/2020		1	12/8/2020		2	2/25/2021		4	2/25/2021	
Chemical	CASRN	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Selenium	7782-49-2	μg/L	0.8	U	0.8	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	μg/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	μg/L	50000		160	27000		160	29000		160	30000		160	30000		160	30000		160
Thallium	7440-28-0	μg/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	μg/L	1.6	U	1.6	1.6	U	1.6	1.6	Ū	1.6	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	μg/L	10	U	10	10	U	10	10	U	10	10	U	10	9.7	J	10	7.8	J	10

Notes

CASRN = Chemical Abstract Services Registry Number

LOD = Limit of DetectionSL = Screening Level $\mu g/L = micrograms per liter$ VQ = Validation Qualifier

Data Validation Qualifier Codes

J = The analyte was positively identified and the associated value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

UJ = The analyte was not detected at a level greater than or equal to the adjusted LOD. However, the reported adjusted LOD is approximate and may be inaccurate or imprecise.

X = The result is rejected and not usable due to quality control reasons.

Appendix C Field Documentation

Appendix C1 Daily Field Reports

Contractor Daily Reports

DATE: 10/5/2020 Monday

DR NO. 01	01 1			Brendan McGuinne	PROJECT NUMBER: 60443903				
Weather: H 45°F	Cloudy		Days without a l		1				
NAME:	HRS	TRADE:		COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:			
Mike Glinski	8	SSHO, Ge	ologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE			
Brendan McGuinness	8	Senior Geo		AECOM	=======================================	,			
		20.1101 000			 				
DAILY TOTAL	16	 							
		 				 			
TOTAL TO DATE	16	(on-site ho	ours only)						
SUBCONTRACTORS:			SITE DELIVERIE	S					
None			None						
1.10.10									
WORKED PERFORMED BY	AECOM								
The AECOM team arrived or	n site at 080	00, complet	ed the Morning Ta	ailgate Health and	Safety Meeting, and reviewed the I	nealth and safety procedures and activity			
hazard analyses associated	with sched	uled field wo	ork for the day.		, ,	, .			
The straight decorated with consistent and with the weak.									
Site Reconnaissance of We	alle								
		tor wells /:	a coroonad with the	the Unest Claster	Aguifor [LICA]) was sampled	follows			
one recommaissance of deep	groundwa	ter wells (I.e	e., screened withir	i ine opper Giaciai	Aquifer [UGA]) was completed, as	S IUIIUWS:			
			al Survey (USGS) inactive well S722	283 on Old Montauk Highway. Tea	m located well head area and excavated in			
area of well head, but no wel	I was ident	fied.							
0930 - The team assessed F	Former Sup	ply Well Pu	mp House S1785	9. The team search	hed around well house for potentia	Il well head outside of pump house;			
					pump house was scheduled with p				
					1				
1000 - The team assessed	former Sun	nly Wall Du	mn House S1722	1 The team locate	d supply well outside of well bouse	e. An attempt to measure inside inner			
						5. An autimpt to measure molue mile			
well casing was made, but a	DIOCKAGE V	as encount	ereu at o reet del	ow ground surface	(nga).				
1000 -		,							
1030 - The team located the	e stick-up c	asing of for	mer supply well S	3260. An attempt v	vas made to gauge the well but a b	blockage was encountered at 9 feet bgs.			
1130 - The team located for	mer USGS	test well, W	/ell S19494, as a	flush mount well in	parking lot behind former barracks	s building. The well head was in poor			
					as scheduled for the synoptic gaug				
,						,			
1200 - The team located the	former sur	oply well pu	mp house S21084	on the western be	erimeter of Camp Hero. A heavy ca	ast iron cover exists over the well, which			
					ment was planned for a later date				
and a stocker but									
1//5 - The team located the	former eu	ndy wall C1	Q4Q5/ATT Buildin	n. The team remov	ed lid to vault and attempted to an	uge the well. A poly-vinyl chloride (PVC) pipe			
						surface. However, the team suspected that			
					ead was planned with drilling equip	ment to drill a hole through the well cap			
to allow access in annular sp	ace surrou	nding PVC-	submersible pum	р.					
The AECOM team left the sit	te for the da	ay at 1600.		·					
WORK COMPLETED BY A	COM SUE	CONTRAC	TORS						
None			-						
10.70									
AGREEMENTS MADE/CON	VERSATIO	NS (Refer	to telecons, pho	ne records, and/o	r logbooks for details)				
None			* *		•				
-									
									
REQUEST FOR INFORMAT	ION (RFI)								
None									
-									
TD ANOMITTAL O CONTROL									
TRANSMITTALS / SUBMIT	IALS								
None									

Contractor Daily Reports

DATE: 10/5/2020 Monday

Photo 1. S19494

DATE: 10	/5/2020 Monday	
DR No. 01	WRITTEN BY: Brendan McGuinn	ness PROJECT NUMBER: 60443903
AIR MONITORIN	G COMMENTS:	
None		
	-	
SAFETY OBSEF	VATIONS/VIOLATIONS/COMMENTS	
None		
 		
ļ		
SITE OBSERVA	TIONS	
None	iono	
<u> </u>		
ATTACHMENTS		
None		
None		
311 B ==================================		
Site Representa	tive (Signature): Brendan McGuinness	
ĺ	Stendan incogninuess	
Daily Photos		
Ma		
HERMAN		
UPPE		
10-62		
	S. S	
/ water		
127		
Willest March 18		

Photo 2. Former Supply Well S21084 pumphouse

Contractor Daily Reports

DATE: 10/6/2020 Tuesday

DR No. 02	WRITTEN BY: Brendan McGuinness PROJECT NUMBER: 604439			PROJECT NUMBER: 60443903						
Weather: H 55°F		Cloudy		Days without a I		2				
NAME:			TRADE:		COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:			
Mike Glinski			SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE			
Brendan McGuinne	SS	8	Senior Ge		AECOM	(2)				
DAILY TOTAL		16								
TOTAL TO DATE		32	(on-site ho	ours only)						
SUBCONTRACTOR	RS:			SITE DELIVERIE	S					
None				None						
WORKED BEDEOF	MED DV	AFCOM								
WORKED PERFOR)0 aamalat	ad the Marning T	silanta Haalth and G	Potety Meeting, and reviewed the	hoolth and anfaty propedures and activity			
					aligate nealth and s	safety weeting, and reviewed the i	health and safety procedures and activity			
hazard analyses associated with scheduled field work for the day.										
Site Reconnaissan	nce of We	ells								
			er wells (i.e	e screened within	the Upper Glacial	Aquifer [UGA]) was completed, as	follows:			
		J	/	,	11 2	,				
0900 - The team pro	oceeded t	o inactive,	co-located	United States Ge	ological Survey (US	SGS) well locations S70262 and S	70262 on Route 27. No evidence of the			
						Suffolk County Water Authority (S				
	-									
0930 - The team pro	oceeded t	to USGS w	ell location	19487 on former	North Road (now a	trail) off Route 27 toward Oyster F	Pond. No evidence of a well was found.			
0945 - The team proceeded to meet with SCWA personnel at the former Madison Hill Well Field. The depth to water and total depth of the former supply wells										
	numbered 1, 2, and 3A were measured and recorded. It was noted that the former supply well locations on project maps needed to be corrected to actual									
locations verified in field.										
1100 - The team pro	occoded t	o HSGS w	oll \$10404	located behind ba	rracke building. The	e depth to water and total depth of	f S10404 was measured and recorded			
1100 - The team pro	1100 - The team proceeded to USGS well S19494 located behind barracks building. The depth to water and total depth of S19494 was measured and recorded.									
1145 – The team proceeded to Camp Hero Well S19495 (at the former AT&T Building). The depth to water and total depth of S19495 was measured and recorded.										
							nmodate sampling tubing was installed,			
should the well be s						ge energy to accom-	,			
1200 - The team pr	roceeded	to the well	pump hous	se for well S21084	, located on wester	n perimeter of Camp Hero. The we	ell house was observed to be vandalized			
							asing and a locking cap with a 2-inch			
							ndicated that it was likely the water was			
							as measured at 89 feet bgs. The team			
planned to return to	this well	to see if the	e well casır	ng cap could be re	moved to measure	the outside PVC casing.				
1420 The team of	allad Mr	lacon Malt	or at the M	antauk Liahthaua	and arranged for r	mosting to view the lighthouse wel	Is at 1445. The team subsequently met			
							ift Shop. The other well was identified to			
							s on non-filtered water from the wells			
							only bacteria (BAC-T) sampling monthly.			
overy your and wou	na proviac	data for ti	io projecti	THO tourn indicate	a tiloy would roquo	ot the data. The decend well had t	only bactoria (Brto 1) camping monthly.			
1500 – The team pr	roceeded	to active U	SGS gaugi	ing well S70627 lo	cated in median of	Route 27 near the lighthouse. The	e team was able to locate and uncover the			
well head. The dept				•		Ğ				
The AECOM team I										
WORK COMPLETE	ED BY AE	COM SUB	CONTRAC	TORS						
None										
ACDEEMENTS ** A	DEICON	VEDCATIO	NC /D-f	to tologona mt-	no rocardo anali-	r leabacke for details)				
	NDE/CON	VEKSAIIO	ino (Keter	to telecons, pho	ne records, and/or	r logbooks for details)				
None										
-										
REQUEST FOR IN	REQUEST FOR INFORMATION (RFI)									
None		, (· ·· ·)								

Contractor Daily Reports

DATE: 10/6/2020 Tuesday

Photo 1. Old Lighthouse well Nonpotable supply

DR No. 02		WRITTEN BY:	Brendan McGuinne	ess	PROJECT NUMBER: 60443903
TRANSMITTALS	/ SUBMITTALS				
None					
ALC MONITORING	0.00445NT0				
AIR MONITORING	G COMMENIS				
None					
				_	
SAFETY OBSERV	VATIONS/VIOLATIONS/COMME	NTS			
None	VAIIONO, VIOLENTO, GE				
110110					
		-	-		
SITE OBSERVAT	TONS	•	•		
None					
ATTACHMENTS					
None					
C': D	• • •				
Site Representat					
	Brendan McGuinness				
	•		_		
Daily Photos		•	•		
医尼斯二 基系		7 1 2 2 2	到约5000000000000000000000000000000000000		
	企业 企业的				
7		Con Marie	THE REAL PROPERTY.		
					计划的 "安全是有一个人是一个人
	。然后被影響。		The same of the same	A YE	
通信》还是是国际	a Marie	A SAL	0		MILES OF THE STATE
	C. C		A CONTRACTOR		
Section 1			-01-		
THE SHAPE		The Car			
		The state of the s		是多少数数位为位置的ACCACACACACACACACACACACACACACACACACACA	CONTROL OF THE PARTY OF THE PAR
		The bar			A STATE OF THE STA
				2000年1月1日 日本 1000年1月1日 日本 1000年1日	
	全国工作的	STATE OF THE PARTY			
			5-30		the second of the second of the
通量 其理量		STATE OF THE PARTY	A STATE OF THE REST	MEN WHITE THE WARREN	
					PARTY TO THE PARTY OF THE PARTY
			LAN CHAR	Secretary that the second of t	
				CONTRACTOR OF THE PARTY OF THE	

Photo 2. New Lighthouse well potable supply

Contractor Daily Reports

DATE: 10/6/2020 Tuesday

DR No. 02 WRITTEN BY: Brendan McGuinness

Photo 3. Madison Hills Supply Well 3A

Photo 4. Madison Hills Supply Well 2

Photo 5. Madison Hills Supply Well 1

Photo 6. S19495 ATT Building Well Vault

Contractor Daily Reports

DATE: 10/7/2020 Wednesday

DR No. 03			WDITTEN DV:	WRITTEN BY: Brendan McGuinness PROJECT NUMBER: 60443903							
Weather: H 55°F	Cloudy		Days without a		PROJECT NUMBER: 60443903						
NAME:	HRS	TRADE:	-ajo minoura	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:					
Mike Glinski	8	SSHO, G	eologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE					
Brendan McGuinness	8	Senior Ge		AECOM	(0)	,					
DAILY TOTAL	16										
TOTAL TO DATE	48	(on-site h	ours only)								
SUBCONTRACTORS:			SITE DELIVERIE	S							
None			None								
WORKED PERFORMED BY	ν ΔΕCOM										
		00 comple	ted the Morning T	ailgate Health and	Safety Meeting, and reviewed the	health and safety procedures and activity					
hazard analyses associated				angate ricatir and	carety weeting, and reviewed the	ricular and salety procedures and delivity					
	501100										
Site Reconnaissance of W	ells										
		ter wells (i.e	e., screened withir	the Upper Glacia	Aquifer [UGA]) was completed, as	s follows:					
					· · · · · · · · · · · · · · · · · · ·						
0815 - The team visited and	gauged to	United Stat	tes Geological Sur	vey (USGS) active	e gauging well S48759 on Route 2	7.					
				_							
0930 - The team visited and	gauged US	SGS active	gauging well S487	759 on Route 27.							
		sistant to ga	ain entry into pump	house at former s	supply well 17859. A supply well wa	as found inside the pump house but was					
dry and obstructed at 55 fee	t bgs.										
11.45 - The team proceeded	to the Mon	tauk State	Park supply well n	ear the State Park	Superintendent's house with the r	eark assistant. The well and supply					
						t. Pictures were taken of the sampling port.					
by oten in the observed to be	iii a vaait. 7	roumpining	opigot was availar	no for camping an	went in the vadic prior to treatment	in the terror terror to the camping port.					
1230 - The team proceeded	to search f	or former M	Montauk State Parl	k supply well S158	12 behind parking and bath house	area of Montauk Point State Park. A trail					
to the well area was found b											
						ocation of former barracks well and					
	I was found	after searc	ching wooded area	a. The location of the	he well was measured using the ex	sisting roadway for reference. S19496					
was gauged.											
The AEOOM 45 1- (4 4b)	4 - f 4	1 1000									
The AECOM team left the si WORK COMPLETED BY A											
	ECOW 30E	CONTRAC	JIUKS								
None											
AGREEMENTS MADE/CON	IVERSATION	ONS (Refer	to telecons, pho	ne records, and/o	or logbooks for details)						
None		,	-,	,	-,						
			- 								
REQUEST FOR INFORMAT	ION (RFI)										
None											
TRANSMITTALS / SUBMIT	TALS										
None	IALU										
110110											
I											

Contractor Daily Reports

DATE: 10/7/2020 Wednesday

DR No. 03		Brendan McGuinness	PROJECT NUMBER: 60443903
AIR MONITORING	COMMENTS		
None			
	ATIONS/VIOLATIONS/COMMENTS		
None			
SITE OBSERVAT	IONS		
None			
TVOTIC			
ATTACHMENTS			
None			
Site Representati			
	Brendan McGuinness		
•	,	-	
Daily Photos			

Photo 1. Montauk State Park Supply Well Sample Port S79269

Photo 2. S19496 Former Barracks well and emergency supply well

Contractor Daily Reports

DATE: 10/7/2020 Wednesday

DR No. 03 WRITTEN BY: Brendan McGuinness

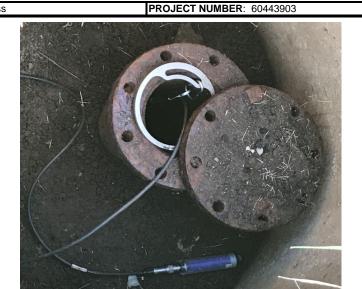


Photo 3. Montauk State Park well vault entrance

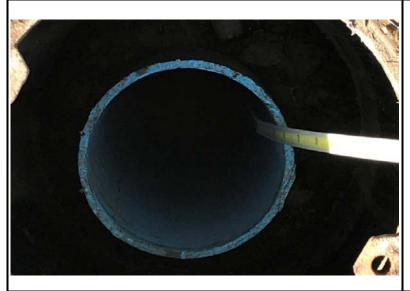


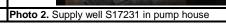
Photo 4. USGS active monitoring well along Route 27

Photo 5. USGS active gauging well Pocahontas Drive

Contractor Daily Reports

DATE: 10/8/2020 Thursday

DR No. 04				WRITTEN BY:	Brendan McGuir	nness	PROJECT NUMBER: 60443903	
Weather: H 55°F	(Cloudy		Days without a	lost time injury:	4	-	
NAME:			TRADE:	•	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:	
Mike Glinski		8	SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE	
Brendan McGuinness		8	Senior Ge		AECOM			
DAILY TOTAL		16						
TOTAL TO DATE		64	(on-site ho	ours only)				
SUBCONTRACTORS	S:			SITE DELIVERIE	S			
None				None				
WORKED BEREGRE	IED DV 47	-0014		<u> </u>				
WORKED PERFORM			20	to al 4h o NA : T	ollmata II III-	d Cofety Masting	hoolth and opfoty propolities and author	
hazard analyses asso					aligate Health and	d Safety Meeting, and reviewed the	health and safety procedures and activity	
nazaro analyses asso	ciated with	i scheat	ulea liela w	ork for the day.				
Site Reconnaissance	of Walls							
			er wells (i e	screened within	the Upper Glaci	al Aquifer [UGA]) was completed, a	s follows:	
One reconnaissance o	n doop gro	Janawat	ici wono (i.e	o., sorceried within	Title Opper Older	arriquiter [OG/1]) was completed; a	o rollows.	
0815 - The team visite	ed United S	States G	Geological S	Survev (USGS) in	active gauging we	ell S72283 on Old Montauk Highwa	y in another attempt to locate the potentially	
						soundings but no evidence of a we		
							assess former supply well. A well was found	
							ned with concrete but the concrete cap was	
							well inside the pump house had a depth to	
							had a DTW of 63.10 and total depth of 180	
concrete cap seal over					nouse may nave t	been slightly different as the well ma	ay have been equilibrating due to the	
concrete cap sear ove	i the well	biokeii	open for me	easurement.				
1100 - The team retur	ned to For	rmer Pui	mp Well Ho	ouse well S21084	on west perimete	er of Camp Hero with the park assis	tant to attempt to gain access to the well	
							level meter probe to measure DTW	
and total depth, which			vitir broaker	bar. The election	to that able to be	waged dolar by to allow for water	level meter prope to medecare 5111	
1145 - The team proc	eed to the	Motor F	Pool to reas	sess if there was	a pretreatment s	ample port available at the motor po	ool well. A sampling port was identified	
prior to treatment; the	refore, this	s locatio	n would be	viable to sample	should sampling	at this location be warranted.	· <u>-</u> ·	
							of the Phase IV Remedial Investigation (RI)	
Quality Assurance Pro	oject Plan	(QAPP)	Addendum	n, but no evidence	of these wells w	ere found.		
1000 Ti / (' ' '			(1) 11	0.4 11 1.0	11 14	B: 1 : 0		
							np Hero, the team surveyed and took pictures	
						area as a conflict, as well as locked s, and fencing taken for team consid	perimeter fencing and ground slope.	
Fotential optimal well	iocations v	were not	ieu anu sev	rerai pictures or s	lope, electric lines	s, and rending taken for team consider	deration.	
The AECOM team de	mohilized	from the	site at 160	20				
WORK COMPLETED								
None		552	JUNINA					
AGREEMENTS MAD	E/CONVE	RSATIC	NS (Refer	to telecons, pho	ne records, and	/or logbooks for details)		
None			•	, •	•	,		


Contractor Daily Reports

DATE: 10/8/2020 Thursday

DR No. 04		WRITTEN BY:	Brendan McGuinness		PROJECT NUMBER: 60443903	
REQUEST FOR	INFORMATION (RFI)					
None						
	S/SUBMITTALS					
None						
AIR MONITORIN	NG COMMENTS					
None						
	RVATIONS/VIOLATIONS/COMME	NTS				
None						
SITE OBSERVA	IIONS					
None						
ATTACHMENTS						
)					
None						
Site Representa	stive (s:)					
Site Representa						
	Brendan McGuinness					
	•		_			
Daily Photos						
			1 2			
1	CALITION. STUDENT DRIVER			La called to	B. Maria	
E 1 111						

Photo 1. Motor Pool sample spigot

Contractor Daily Reports

DATE: 10/8/2020 Thursday

DR No. 04 WRITTEN BY: Brendan McGuinness PROJECT NUMBER: 60443903

Photo 3. Supply well S21084 in pump house western perimeter of Camp Hero

Contractor Daily Reports

DATE: 11/30/2020 Monday

DR No. 05				WRITTEN BY: Mike Glinski			PROJECT NUMBER: 60443903
Weather: H 58°F	Heavy	/ Rain, High	n Wind	Days without a lost time injury: 5			
NAME:			TRADE:		COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Mike Glinski		1	SSHO, Ge	ologist	AECOM	None	None
Jim Christopher		0	Site Super		AECOM		
Brendan McGuinne			Senior Ge		AECOM		
Jack Hollingsworth		0	Geologist		AECOM		
Matt Kerr		0	Scientist		AECOM		
Steve Glenn		0	Botanist		AECOM		
Shannon Linnane		0	UXO Tech	II	AECOM		
DAILY TOTAL		1					
TOTAL TO DATE		65	(on-site ho	ours only)			
				• • • • • • • • • • • • • • • • • • • •			
SUBCONTRACTO	RS:			SITE DELIVERIE	S		
None				None	-		
110110				110110			
WORKED PERFO	RMED BY	AECOM		1			
			1000 and r	eviewed the safet	v protocols and the	the task hazards associated with	the scheduled work for the day
THE CHILDREN PRED	, aiiivo	_ 0ono at	. Jou and I	and and	, Francisco and the		and the same with the same say.
Utility Clearance	Site Walk						
Mike completed a	site walk to	o check for	the utility of	learance mark-ou	t by New York Dins	Safe and completed the AECOM II	itility clearance checklist. The checklist
was sent to the AF	COM Proi	ect Manage	er. Mark Ma	acEwan, for appro	val prior to the star	t of instrusive activities.	
			,	, серго	, 2		
Mike left the site for	r the day	at 1100.					
WORK COMPLET			CONTRAC	TORS			
None							
AGREEMENTS M	ADE/CON	VERSATIO	NS (Refer	to telecons, pho	ne records, and/o	r logbooks for details)	
None				· •	·	•	
REQUEST FOR IN	IFORMAT	ION (RFI)					
None		. ,					
TRANSMITTALS /	SUBMIT	ΓALS					
None							
-							
AIR MONITORING	COMME	NTS:					
None (air monitorir			because r	o drilling activities	occurred)		
3112 (2113 1110111101111	J 3.0						
SAFETY OBSERV	ATIONS/	VIOLATION	IS/COMME	NTS			
None				· •			

Contractor Daily Reports

			,
DATE:	11/30/2020 Monday		
DR No.	05	WRITTEN BY: Mike Glinski	PROJECT NUMBER: 60443903
SITE OBSE	ERVATIONS		
None			
ATT 4 CU 184	ENTO		
ATTACHM	ENIS		
None			
Site Repre	sentative (Signature):		
	Mike Glinski		
Daily Phot			
No photos	were collected for today's daily r	eport.	

Contractor Daily Reports

DATE: 12/1/2020 Tuesday

DR No. 06			WRITTEN BY:	Jack Hollingswo	ck Hollingsworth PROJECT NUMBER: 60443903					
Weather: H 55°F	Sunny, Wir	ndy		lost time injury:	TROCEOT NOMBER: 00440000					
NAME:	HRS	TRADE:	,	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:				
	1	110,000		00 7	Eggii iliziti:	TIOTTOTO, ALT ILLIATION.				
Mike Glinski	7.25	SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE				
Jim Christopher	6			AECOM	DustTrak2 Dust Meter (1)	1 0 Miloti, Gertol				
Brendan McGuinness	7.25	Senior Ge		AECOM	Geotech Bladder Pumps (2)					
Jack Hollingsworth	7.25	Geologist		AECOM	Controller/Compressor QED (2)					
Matt Kerr	7.25	Scientist		AECOM	Magnetometer-Schonstedt (1)	 				
Steve Glenn	6.5	Botanist			Waterra HydroLift Pumps (2)	 				
Shannon Linnane	5	UXO Tech	s II	AECOM	MiniRae 3000 PID (4)	 				
Shannon Linnane	3	OVO LECI	1 11	AECOM	Honda Generator EU2000i (1)	_				
		+			Peristaltic Pump (1)					
		+			,					
					Rechargeable Battery (1)					
					Chainsaw (1, TWS)	_				
					Weed whacker (1, TWS)	_				
DAILY TOTAL	46.5									
TOTAL TO DATE	110.5	(on-site he	ours only)							
SUBCONTRACTORS:		· ·	SITE DELIVERI	ES	•	•				
Jeff Baker, TWS Environm	ental IIC		-		ronmental Services					
Jen Baker, TWO Environm	icital, LLO				Services (delivered to Montauk Man	orl				
				ahead New York	betvices (delivered to Montauk Mani	J1)				
			i oria-joriii, Calli	ancau New TOIK						
WARKER REPEARMEN	N/ 450014									
WORKED PERFORMED										
						ess Information Sheets, and reviewed the				
health and safety procedur	es and task	hazards as	sociated with sche	eduled field work	for the day.					
Site Preparations										
New team members receive	ed a tour of	the investig	gation areas withir	Camp Hero Sta	te Park. Rare plant species were fla	gged by the AECOM Botanist (Steve Glenn)				
						es with oversight by the AECOM botanist.				
The 5,000-gallon frac tank	(AWT Envir	onmental S	ervices) was deliv	ered to the site a	ind staged on the east side of the M	otor Pool building, as approved by Tom Dess,				
						eliveries were accepted, as noted above.				
					Downs, as arranged by Tom Dess.	•				
.,					, <u>G</u> ,					
Site Reconnaissance										
The team completed site re	econnaissar	ce at S 158	312/ Former Monta	auk Point State P	ark Well, which could not be access	sed during the October 2020 site				
reconnaissance (refer to S					ant 110m, 11mon ocula not 20 acces	to dating the obtator 2020 one				
recominatesance (refer to e	ne Observat	IONS DOIOW	ioi additional acta							
The AECOM team left the	site for the c	lay at 1515								
WORK COMPLETED BY		,								
				now wall loostion	20					
Jeff Baker, TWS Environm	ientai, comp	ieted vegeta	ation clearance at	new well location	IS.					
AGREEMENTS MADE/CO			• •	•	,					
						attorney and lifetime resident of the area,				
inquired about the team's a	activities. Bre	endan McGı	uinness (AECOM)	and PJ Mion (US	SACE) shared the purpose of the in-	vestigation and Brendan provided her with a				
Fact Sheet.										
REQUEST FOR INFORMA	ATION (RFI)									
None	,									
TRANSMITTALS / SUBMI	ITALS									
None										
		<u> </u>								
	-	-								

Contractor Daily Reports

DATE: 12/1/2020 Tuesday

DATE: 12/1/2020 Tuobudy		
DR No. 06	WRITTEN BY: Jack Hollingsworth	PROJECT NUMBER: 60443903
AIR MONITORING COMMENTS:		
None (air monitoring was not conducted bec	ause no drilling activities occurred)	
	-	
SAFETY OBSERVATIONS/VIOLATIONS/C	OMMENTS	
None		
SITE OBSERVATIONS		
	attached to a metal apparatus that cannot be removed ((Photo 1). PJ Mion (USACE) will discuss potential options for
accessibility with Julie Rupp, the USACE Pro	pject Manager, and Tom Dess, State Park Superintenden	it.
7 117	, , , , , , , , , , , , , , , , , , , ,	
ATTACIMENTO		
ATTACHMENTS		
None		
Site Representative (Signature):		
Jack Hollingsworth		
, , , , , , , , , , , , , , , , , , , 		
Daily Photos		

Contractor Daily Reports

DATE: 12/2/2020 Wednesday

DR No. 07 WRITTEN BY: Jack Hollingsworth PROJECT NUMI	BER: 60443903	
NAME: HRS TRADE: COMPANY: EQUIPMENT: VISITORS/AFFIL Mike Glinski 8.25 SSHO, Geologist AECOM Solonist Water Level Meter (3) PJ Mion, USACE	PROJECT NUMBER: 60443903	
Mike Glinski 8.25 SSHO, Geologist AECOM Solonist Water Level Meter (3) PJ Mion, USACE	LATION	
	LIATION.	
Jilli Cillistophei 3 Jole Supervisor, Geologist IAECOW Dust Harz Dust Weter (1)	<u>-</u>	
Brendan McGuinness 6.5 Senior Geologist AECOM Geotech Bladder Pumps (2)		
Jack Hollingsworth 9 Geologist AECOM Controller/Compressor QED (2)		
Matt Kerr 9 Scientist AECOM Magnetometer-Schonstedt (1)		
Shannon Linnane 8 UXO Tech II AECOM Waterra HydroLift Pumps (2)		
MiniRae 3000 PID (4)		
Honda Generator EU2000i (1)		
Peristaltic Pump (1)		
Rechargeable Battery (1)		
Fraste XL Max Drill Rig		
DAILY TOTAL 49.75		
TOTAL TO DATE 160.25 (on-site hours only)		
SUBCONTRACTORS: SITE DELIVERIES		
Jeff Baker, TWS Environmental, LLC Cooler, Eurofins (delivered to Montauk Manor)		
Tony Palomogue, Aquifer Drilling & Testing (ADT)		
Todd Laderwager, ADT		
Patrick Magill , ADT		
-		
WORKED PERFORMED BY AECOM		
The AECOM team arrived on site at 0800, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety	procedures and activity	
hazard analyses associated with scheduled field work for the day.	,	
·		
Well Development		
The team began redevelopment of S 70627, which ran dry during development. Team will revisit the well tomorrow to determine the amoun		
make a determination about whether the well should be sampled, in discussion with the AECOM and USACE PMs. The team removed well		
development at that location tomorrow.		
•		
Well Installation		
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa	mples were collected from 0	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40	0 feet bgs were collected in	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa	0 feet bgs were collected in	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than	0 feet bgs were collected in n a 10-foot rod.	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS costs 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS costs 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unlower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units lower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unlower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units lower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 at	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unlower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unlower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper glacial Aquifer (UGA) was intercepted at 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 at	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units lower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 at	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitsed provided in the site of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs.	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitsed provided in the site of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitsed provided in the site of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 ad day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitsed provided in the site of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 4t 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 4t 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 4t 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 4t 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 4t 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co S 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 a day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI)	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather that General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 5 70526 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unitower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The unit provided the provided that the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 at day at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were provided in the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were provided in the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units are lower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glaci	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were profit on the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The quartz sand with fines. The UGA was encountered from 85 feet bgs to the total depth of the borehole. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT arrived onsite, staged equipment and supplies, and participated in a Tailgate Health & Safety meeting. Drilling began at CH-MW045 ad ay at 1600. The borehole was advanced to 100 feet bgs. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	
Well Installation The team began drilling at CH-MW045 and reached a depth of 100 feet below ground surface (bgs) by the end of the day. Geotechnical sa to 100 feet. Composite samples were collected within each 10-foot interval and biased to clay layers, where present. Samples from 10 to 40 20-foot intervals (composites) rather than 10-foot intervals, because the field geologist believed the drillers were using 5-foot rod rather than General observations of subsurface lithology at CH-MW045 was consistent with the site CSM and the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were provided in the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units were provided in the lithology of nearby inactive USGS co 70626 located on Old Montauk Highway. The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay units are lower portion of the upper till from approximately 73 feet to 85 feet bgs. The Upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glacial Aquifer (UGA) was intercepted at 85 feet bgs. The upper Glaci	0 feet bgs were collected in n a 10-foot rod. 0-located wells S 72283 and nit was intercepted in the ne UGA consisted of course	

Contractor Daily Reports

Photo 1. Core from 100 to 130 feet bgs at CH-MW035

DATE: 12/2/2020	Wednesday	
DR No. 07	WRITTEN BY: Jack Hollingswor	th PROJECT NUMBER: 60443903
AIR MONITORING COMME		
Continuous air monitoring w	as completed downwind of the drill rig, in accordance with	the modified generic NYSDOH CAMP. No exceedances were observed.
SAFETY OBSERVATIONS	VIOLATIONS/COMMENTS	
None		
SITE OBSERVATIONS	all and of 040405. He are delilion that had a the tanner of a second	
A note was drilled into the w	ell cap of 519495. Upon drilling the noie, the team observ	ed electrical wires leading to a submersible pump inside the well and immediately ing further. The electrical wires were tied off so the wires and pump would not fall
into the well.	was used to confirm the caples were dead before proceed	ing further. The electrical wifes were fied on so the wifes and pump would not fair
into the won.		
ATTACHMENTS		
None		
Site Representative (Signat	ura):	
yack #6	ellingsworth	
Daile Dhata		
Daily Photos		
		为一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
	Valle Page	
		THE REPORT OF THE PARTY OF THE
1 1112		

Photo 2. Sandy recovered material from the UGA at CH-MW035

Contractor Daily Reports

12/3/2020 Thursday

DR No. 08		WRITTEN BY:	Jack Hollingswor	th	PROJECT NUMBER: 60443903
Weather: H 55°F	Sunny	Days without a	lost time injury:	8	
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Mike Glinski	11.5	SSHO, Geologist	AECOM	Solonist Water Level Meter (3)	PJ Mion, USACE
Jim Christopher	8.5	Site Supervisor, Geologist	AECOM	DustTrak2 Dust Meter (1)	
Brendan McGuinness	8.5	Senior Geologist	AECOM	Geotech Bladder Pumps (2)	
Jack Hollingsworth	8.5	Geologist	AECOM	Controller/Compressor QED (2)	
Matt Kerr	8.5	Scientist	AECOM	Magnetometer-Schonstedt (1)	
Shannon Linnane	2.5	UXO Tech II	AECOM	Waterra HydroLift Pumps (2)	
				MiniRae 3000 PID (4)	
				Honda Generator EU2000i (1)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
DAILY TOTAL	48			Fraste XL Max Drill Rig	
TOTAL TO DATE	208.25	(on-site hours only)			
SUBCONTRACTORS:		SITE DELIVERIE			<u> </u>

SUBCONTRACTORS

Jeff Baker, TWS Environmental, LLC Tony Palomogue, Aquifer Drilling & Testing (ADT)

Todd Laderwager, ADT Patrick Magill , ADT

WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day

Cooler, Eurofins (delivered to Montauk Manor)

Well Development

Redevelopment of S 19494 was completed. Stabilization of water quality parameters was achieved and a minimum of three times the standing water volume of the well was removed

Well Installation

The team resumed at CH-MW045 and reached a final depth of 135 feet bgs by the end of the day. One geotechnical sample was collected from 132 to 134 feet. Both wells at this location, CH-MW045S and CH-MW045D, was constructed other than the well pad, which will be completed tomorrow. CH-MW045D was screened from 125 to 135 feet bgs and CH-MW045S was screened from 85 to 95 feet bgs.

Investigation-Derived Waste

Three drums of soil IDW were generated from CH-MW045 and are currently staged on the east side of the Motor Pool. Liquid IDW was transported to the Motor Pool in drums and transferred to the 5,000-gallon frac tank.

New York State COVID-19 Travel Advisory

S. Linnane left the site around 0930 to obtain a COVID-19 diagnostic test in accordance with the New York State COVID-19 Travel Advisory. The other team members requiring testing for compliance with the advisory completed at-home COVID-19 testing during a Zoom call with Vault Health after leaving the site for the day.

The AECOM team left the site for the day at 1600.

WORK COMPLETED BY AECOM SUBCONTRACTORS

ADT completed drilling at CH-MW045 to 135 feet bgs and constructed the wells (CH-MW045S and CH-MW045D), as described above. J. Baker (TWS) left the site for approximately 3 hours to obtain a COVID-19 diagnostic test in accordance with the New York State COVID-19 Travel Advisory.

AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details)

J. Hollingsworth spoke with Stephen Gordon (Eurofins Lancaster Laboratories Environmental, LLC) to schedule the courier, who is scheduled to pick up samples next week on Monday around 0800 and Friday around 0800. 'Additionally, AECOM and USACE agreed to collect discrete samples for grain size analysis at CH-MW044, rather than composite samples, which were collected CH-MW045.

The following topics were discussed on a check-in call between USACE and AECOM. The call is summarized in separate meeting minutes, but key field decision are included below

- USACE and AECOM agreed that the Former Montauk Point State Park Well (S 15812) could not be sampled or gauged due to the presence of metal equipment installed at the well preventing access.
- USACE and AECOM discussed well S 70627, which ran dry during redevelopment after one well volume was removed. The field team will return to this well to assess recharge at a later date.
- USACE is in the process of coordinating access to the Madison Hill Wells.
- USACE will reach out to USGS to inquire whether two USGS wells west of Camp Hero, S 58922 and S 48579, can be re-developed and sampled.
- Vehicle traffic along access roads to Old Montauk Highway has caused deep ruts in the roadway. The team discussed the best approach to restore the roadways

Contractor Daily Reports

DATE: 12/3/2020 Thursday

DR No. 08	WRITTEN BY: Jack Hollingsworth	PROJECT NUMBER: 60443903
REQUEST FOR I	NFORMATION (RFI)	
None		
TRANSMITTALS	/ SUBMITTALS	
None		
AIR MONITORIN		
Continuous air mo	nitoring was completed downwind of the drill rig, in accordance with the mod	ified generic NYSDOH CAMP. No exceedances were observed.
OAFETY OBOED	/ATIONOMIOL ATIONO/OOMMENTO	
	/ATIONS/VIOLATIONS/COMMENTS	
None		
SITE OBSERVAT	IONS	
		we the nine and nume, the apparatus get stuck AECOM will attempt to
nuch the annarati	der tube attached to the pump in the well. When AECOM attempted to remo s back down and develop with the Waterra tomorrow.	ve the pipe and pump, the apparatus got stuck. ALCOM will attempt to
pasit the apparate	o buok down and develop with the videona temonow.	
ATTACHMENTS		
ATTACHMENTS None		
Site Representat	ive (Signature):	
	Jack Hollingsworth	
	yma 71 ouningewouni	
D !! D! (
Daily Photos		

Photo 1. Ruts in the access path to Old Montauk Highway caused by vehicle traffic. USACE and AECOM will discuss restoration of the roadway with the State Park Superintendent.

Photo 2. Ruts in the access path to Old Montauk Highway caused by vehicle traffic. USACE and AECOM will discuss restoration of the roadway with the State Park Superintendent.

Contractor Daily Reports

Received a 2" Grundfos Redi-Flo 2 submersible pump from PINE (delivered to Montauk Manor)

Returned 1 Waterra HydroLift Pump, 1 Honda Generator EU2000i, 1 Solonist Water Level Meter, 1 MiniRae 3000 PID

DATE: 12/4/2020 Friday

Weather: H 55°F Cloud	ly, rain in af	ternoon Dave without a			
JAME:		terricon Days without a	lost time injury:	9	-
	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Aller Oliverti	40	00110 01	AFOOM	Calariat Water Lavel Mater (0)	DIAM's HOAGE
Mike Glinski	10	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	PJ Mion, USACE
Jim Christopher	9	Site Supervisor, Geologist	AECOM	DustTrak2 Dust Meter (1)	
Brendan McGuinness	9.75	Senior Geologist	AECOM	Geotech Bladder Pumps (2)	
Jack Hollingsworth	10	Geologist	AECOM	Controller/Compressor QED (2)	
Matt Kerr	9	Scientist	AECOM	Magnetometer-Schonstedt (1)	
Shannon Linnane	9.75	UXO Tech II	AECOM	Waterra HydroLift Pumps (1)	
				MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
DAILY TOTAL	57.5				
TOTAL TO DATE	265.75	(on-site hours only)			
SUBCONTRACTORS:		SITE DELIVERIE			<u> </u>

WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Tony Palomogue, ADT Todd Laderwager, ADT

Patrick Magill , ADT

Progress was made on the redevelopment of three existing wells, as follows:

S 17231 S/D (Former USAF supply wells, inside/outside respectively).

Reconnaissance of area identified steep terrain and dense foliage around wells to be gauged and redeveloped. Purged water will be "leapfrogged" up the slope with a sump pump, to minimize identified health and safety risks (carrying buckets upslope, etc.).

S 19495 (AT&T Building well):

Unused pumping components were removed from the riser to gain full access to the well for redevelopment and sampling. The well head assembly, riser tube (approximately 80 feet, 1" schedule 40 PVC), and 3" submersible pump were removed from the well and disposed of per direction from T. Dess (State Park Superintendent). Total depth of S 19495 is 116.68 feet below ground surface (bgs); the total redevelopment (3x well volume) purge is 123 gallons. A Waterra Hydrolift pump was used to clear accumulated sediment and remove partial volume (23 gallons) from the well. Water quality parameters were collected continuously throughout redevelopment; pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductivity, temperature, turbidity, and drawdown. Field data were recorded on the field sampling forms.

A Grundfos Redi-Flo 2 submersible pump will be used to purge the remaining redevelopment volume (100 gallons).

S 70627 (USGS well, Route 27 median):

During previous redevelopment efforts on 12/2/2020, the recharge rate was observed to be slow (on a scale of feet/hour). The well was gauged to assess recharge status; it was fully recharged. A Grundfos Redi-Flo 2 submersible pump will be used to purge additional volume and surge within the screen interval; ideally improving/re-establishing hydraulic connectivity to formation water.

Well Installation

The team began drilling at CH-MW044 and reached a depth of 110 feet bgs by the end of the day. Geotechnical samples were collected at a rate of 1 per 10 feet. General observations of subsurface lithology at CH-MW044 were consistent with the site Conceptual Site Model (CSM). The upper portion of the till consisted of undifferentiated silt, sand, and clay units. A lean clay unit was intercepted in the lower portion of the upper till from approximately 89 feet to 109 feet bgs (20 feet). The Upper Glacial Aquifer (UGA) was intercepted at 109 feet. The borehole drilling and well installation is anticipated to be completed on Sunday (12/06/20).

Groundwater Sampling

No groundwater samples have been collected to date.

Sample Management

Soil samples collected were Quality Control checked, recorded on chain of custody (CoC) records, and packed for shipment. B. McGuinness will drop the cooler at FedEx tomorrow (12/05/20) for shipment to Geotesting Express.

AECOM left the site at 1700.

WORK COMPLETED BY AECOM SUBCONTRACTORS

ADT began drilling at CH-MW044 and reached a depth of 110 feet bgs by the end of the day.

Contractor Daily Reports

PROJECT NUMBER: 60443903

WRITTEN BY: Jack Hollingsworth

DATE: 12/4/2020 Friday

Photo 1: Pump and feeder tube removed from S 19495.

DR No. 09

AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/o	
USACE indicated AECOM should to return to the wells previously re-developed (by rem	noving a minimum of three well volumes and reaching stabilization of water quality
parameters) to use surge blocks to surge the wells. A 4" surge block will be obtained fo	r the 4" wells. Additionally, USACE and AECOM agreed that a surging with a 2"
submersible pump was an acceptable approach to surging 2" well (in lieu of a surge blo	ock).
DECLIFOR FOR INFORMATION (DEI)	
REQUEST FOR INFORMATION (RFI)	
None	
TDANGMITTAL C / CUDMITTAL C	
TRANSMITTALS / SUBMITTALS	
None	
AIR MONITORING COMMENTS:	
	he modified generic NVCDOH CAMD. No exceedeness were cheeryed. Values
Continuous air monitoring was completed downwind of the drill rig, in accordance with the	ne modilied generic NYSDOH CAMP. No exceedances were observed, values
temporarily reached 0.111 mg/m³ when replacing the intake of the DustTrak.	
CALETY ODGEDVATIONS///OLATIONS/COMMENTS	
SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS None	
None	
SITE OBSERVATIONS	
The vehicle traffic along the access roadway continued to make the ruts in the road wor	rea: two yards of grayal was ordered from Pictraina Materials for delivery to the
site on Monday to fill the ruts.	se, two yards of graver was ordered from distraine materials for delivery to the
site of Monday to fill the ruis.	
ATTACHMENTS	
None	
Site Representative (Signature):	
Jack Hollingsworth	
Daily Photos	
The state of the s	

Contractor Daily Reports

DATE: 12/5/2020 Saturday

DR No. 10				WRITTEN BY:			PROJECT NUMBER: 60443903
Weather: H 50°F	High \	Wind, Heav	y Rain	Days without a l	ost time injury:	10	-
NAME:		HRS	TRADE:	•	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Mike Glinski		0.5	SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (2)	None
Jim Christopher		0			AECOM	DustTrak2 Dust Meter (1)	
Brendan McGuinne	ess	0	Senior Ge	ologist	AECOM	Geotech Bladder Pumps (2)	
Jack Hollingsworth		0	Geologist		AECOM	Controller/Compressor QED (2)	
Matt Kerr		0	Scientist		AECOM	Magnetometer-Schonstedt (1)	
Shannon Linnane		0	UXO Tech	ıll	AECOM	Waterra HydroLift Pumps (1)	
						MiniRae 3000 PID (3)	
						Peristaltic Pump (1)	
						Rechargeable Battery (1)	
						Grundfos Redi-Flo 2 Pump (1)	
DAILY TOTAL		0.5					
TOTAL TO DATE		266.25	(on-site ho	ours only)			
			,	• • • • • • • • • • • • • • • • • • • •			
SUBCONTRACTO	RS:			SITE DELIVERIE	S	!	
Tony Palomogue,	ADT			None			
rony r diomogae, i				110110			
WORKED PERFO	RMED BY	AECOM					
			ther condi	tions associated w	ith a nor easter sto	orm (high wind and heavy rain) wo	rk at the site was cancelled for the day. One
							winds. Additionally, B. McGuinness
demobilized from t		orieny orisit	e iii tile iiio	ittiing to oversee A	LD I lowering the in	ast on the drilling due to the high t	willus. Additionally, B. McGuilliless
demobilized nom t	iic sitc.						
WORK COMPLET	ED BY A	COM SUB	CONTRAC	TORS			
ADT was briefly on							
ABT Mad Briding on	10110 10 1011	ioi ano inao	t or the drin	ng.			
AGREEMENTS M	ADE/CON	VERSATIO	NS (Refer	to telecone nho	ne records and/o	r logbooks for details)	
None	ADE/OUN	VEROATIO	ito (itelei	to telecons, pilo	ne records, and/o	rogbooks for details)	
None							
DECLIECT FOR IN	IFORMAT	ION (DEI)					
REQUEST FOR IN	IFURIMAT	ION (RFI)					
None							
TRANSMITTALS /	SUBMIT	TALS					
None							
AIR MONITORING	COMME	NTS:					
None (air monitorir	ng was not	t conducted	because r	o drilling activities	occurred)		
,				<u> </u>	,		
SAFETY OBSERV	ATIONS/	VIOLATION	IS/COMMF	NTS			
None			. J. J G				
140110							

12/5/2020

Saturday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 10 WRITTEN BY: Amanda Martin PROJECT NUMBER: 60443903

SITE OBSERVATIONS

None

ATTACHMENTS

None

Deputy Project Manager (Signature):

Amanda Martin

Daily Photos

No photos were collected for today's daily report.

Contractor Daily Reports

DATE: 12/6/2020 Sunday

DR No. 11		WRITTEN BY:	Jack Hollingswor	rth	PROJECT NUMBER: 60443903
Weather: H 40°F	Sunny	Days without a	lost time injury:	11	
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Mike Glinski	7	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	PJ Mion, USACE
Jim Christopher	10.25	Site Supervisor, Geologist	AECOM	DustTrak2 Dust Meter (1)	F3 MIOH, OSACE
Jack Hollingsworth		Geologist	AECOM	Geotech Bladder Pumps (2)	
Matt Kerr	10	Scientist	AECOM	Controller/Compressor QED (2)	
Shannon Linnane	6.5	UXO Tech II	AECOM	Magnetometer-Schonstedt (1)	
				Waterra HydroLift Pumps (1)	
				MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
DAILY TOTAL	44			Fraste XL Max Drill Rig	
TOTAL TO DATE	310.25	(on-site hours only)			
SUBCONTRACTORS:		SITE DELIVERII	ES		
Jeff Baker, TWS Environr	mental IIC	None			

Patrick Magill , ADT WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Гопу Palomogue, ADT Гodd Laderwager, ADT

Progress was made on the redevelopment of three existing wells, as follows:

S 19495 (AT&T Building well).

Total depth of S 19495 is 116.68 feet bgs; the total minimum redevelopment (3x well volume) purge is 123 gallons. A Waterra Hydrolift pump was used to clear accumulated sediment and remove the volume (23 gallons) from the well. Water quality parameters were collected continuously throughout redevelopment; pH DO, ORP, specific conductivity, temperature, turbidity, and drawdown. Field data were recorded on the field sampling forms (12/4/2020). Stability in all parameters had been achieved, final turbidity was 3.86 NTU. A Grundfos Redi-Flo 2 submersible pump was used to remove additional volume of water (110 gallons).

S 70627 (USGS well, Route 27 median):

Total depth of S 70627 is 95.77 feet bgs; the total minimum redevelopment (3x well volume) purge is 3.72 gallons. During previous redevelopment efforts on 12/2/2020, the recharge rate was observed to be slow (~2 feet/hr). A Grundfos Redi-Flo 2 submersible pump was used to purge additional volume and surge within the screen interval. An additional 4 gallons of water were purged from the well, while surging within the screen interval. The turbidity of the redeveloped well was 135 NTU, and the new recharge rate was ~3 feet/hr.

S 19494 (USGS Test Well):

Total depth of S 19494 is 93.27 feet bgs; the total minimum redevelopment (3x well volume) purge is 16.2 gallons. A Waterra Hydrolift pump was used to clear accumulated sediment and remove the volume (22.1 gallons) from the well. Field data were recorded on the field sampling forms (12/3/2020). Stability in all parameters had been achieved, final turbidity was 54.5 NTU. A Grundfos Redi-Flo 2 submersible pump was used to create a surging within the screen interval, and remove additional volume of water (55 gallons).

Well Installation

The team finished drilling at CH-MW044 155 feet bgs and constructed the nested well pair (minus well pad). Geotechnical samples were collected from 110 to 160 feet at a rate of 1 per 10 feet. General observations of subsurface lithology at CH-MW044 were consistent with the site Conceptual Site Model (CSM). CH-M044D was screened from 145 to 155 feet bgs and CH-MW044S was screened from 110 to 120 feet bgs.

Groundwater Sampling

Groundwater samples were collected from the following monitoring wells:

S 1202 (Lighthouse Well/ Giftshop):

A sample was collected from the sampling port in the basement of the lighthouse giftshop. The sampling port was confirmed to be in line prior to any filters, softeners, or other water treatment components.

Samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the liquid hexavalent chromium was checked and adjusted in the field according to the procedure outlined in the QAPP. Water quality parameters were collected, including pH, DO, ORP, specific conductivity, temperature, and turbidity. Field data were recorded on the field sampling forms. Samples are being held by AECOM (continuously on ice) until 12/8/2020, the date of the next scheduled courier pickup.

Sample Management

One cooler of soil samples (the samples from CH-MW045) was shipped via FedEx to the geotechnical laboratory, Geotesting Express. The cooler is scheduled for delivery on 12/8/20. The CoC record was emailed to the project chemist (D. Chicoine).

12/6/2020

Sunday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 11 WRITTEN BY: Jack Hollingsworth PROJECT NUMBER: 60443903 **Investigation-Derived Waste Management** Four drums of soil IDW was generated at CH-MW044. Seven drums of soil generated to date. To date, approximately 200 gallons of liquid IDW has been generated. The AECOM team left the site for the day at 1700. WORK COMPLETED BY AECOM SUBCONTRACTORS ADT completed drilling at CH-MW044 to 155 feet bgs. Wells CH-MW044S and CH-MW044D were constructed, with the exception of the well pad. Jeff Baker demobilized from the site in the afternoon. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: Continuous air monitoring was completed downwind of the drill rig, in accordance with the modified generic NYSDOH CAMP. No exceedances were observed. SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS None SITE OBSERVATIONS Pathway leading to the new wells got worse after the storm and driving to the site. Gravel will be delivered tomorrow (Monday 12/7/20) to fix the paths. **ATTACHMENTS** Site Representative (Signature): Jack Hollingsworth **Daily Photos** No photos were collected for today's daily report.

Contractor Daily Reports

DATE: 12/7/2020 Monday

DR No. 12	_	WRITTEN BY	: Jack Hollingswo	rth	PROJECT NUMBER: 60443903
Weather: H 40°F	Sunny	Days without	a lost time injury:	12	-
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Jim Christopher	11	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	PJ Mion, USACE
Jack Hollingsworth	11	Geologist	AECOM	DustTrak2 Dust Meter (1)	
Matt Kerr	10.25	Scientist	AECOM	Geotech Bladder Pumps (2)	
				Controller/Compressor QED (2)	
				Waterra HydroLift Pumps (1)	
				MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
				Fraste XL Max Drill Rig	
DAILY TOTAL	32.25				
TOTAL TO DATE	342.5	(on-site hours only)			
SUBCONTRACTORS:		SITE DELIVE	RIES		1
Tony Palomogue, ADT		2 yards of gra	vel for repairing acc	ess road	

WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Todd Laderwager, ADT

Progress was made on redevelopment/development, as follows:

S 17231S (Former USAF Supply Well; inside pump house):

Total depth of S 17231S is 107.48 fbg; the total redevlopment (3x well volume) purge is 190.8 gallons.

A Grundfos Redi-Flo 2 submersible pump was used to clear accumulated sediment and remove the volume from the well (205 gallons).

Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, turbidity, and drawdown. Field data were recorded on the field sampling forms (12/7/2020).

Stability in some parameters was not achieved, final turbidity was out of range. Of note, turbid and clear surges of water occurred in ~40 gallon intervals.

The drawdown of the well did stabilize under the strain of a ~4gpm purge rate.

CH-MW045S

Total depth of the well is 98.4 fbg; 3x well volume is ~36 gallons to be purged plus 200 gallons added during drilling to the borehole, which will be split between the two wells in the nested pair. Well was developed using a gravity lift. Approximately 100 gallons were purged before the compressor broke. ADT will repair tonight so that development can continue tomorrow. Field data will be collected to display stability.

Well Installation

Well pads will be constructed tomorrow (Tuesday 12/8/20).

Groundwater Sampling

Groundwater samples were collected from the following monitoring wells:

S 19494 (USGS Test Well; behind barracks)

A sample was collected by means of low flow sampling with a QED Bladder Pump. Stability in all parameters was achieved, final turbidity was 1.72 NTU. The sample, along with MS/MSD samples, were collected at 0925.

Samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the liquid hexavalent chromium was checked and adjusted in the field according to the procedure outlined in the QAPP. Water quality parameters were collected, including pH, DO, ORP, specific conductivity, temperature, and turbidity. Field data were recorded on the field sampling forms. Samples are being held by AECOM (continuously on ice) until 12/8/2020, the date of the next scheduled courier pickup.

Sample Management

Courier is scheduled to pickup the coolers tomorrow (12/8/20) at 0800.

Investigation-Derived Waste Management

Seven drums of soil generated to date. To date, approximately 490 gallons of liquid IDW has been generated during well development.

The AECOM team left the site for the day at 1800.

12/7/2020

Monday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

PROJECT NUMBER: 60443903 DR No. 12 WRITTEN BY: Jack Hollingsworth WORK COMPLETED BY AECOM SUBCONTRACTORS ADT began developing CH-MW045S and purged approximately 100 gallons before their compressor broke down. ADT will fix/replace before work on Tuesday. ADT packed up the drill rig and drove it offsite at the end of the day. ADT left the site at 1645. AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS AIR MONITORING COMMENTS: None. Drilling activities complete. SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS None SITE OBSERVATIONS Gravel was dumped in the pathway leading to the new wells; ADT will use their bobcat to spread out the gravel tomorrow (12/08/20). **ATTACHMENTS** None Site Representative (Signature): Jack Hollingsworth

Contractor Daily Reports

DATE: 12/7/2020 Monday

DR No. 12 WRITTEN BY: Jack Hollingsworth PROJECT NUMBER: 60443903

Daily Photos

Photo 1. Well redevelopment at S 17231S (Former USAF Supply Well; inside pump house).

Contractor Daily Reports

DATE: 12/8/2020 Tuesday

DR No. 13		WRITTEN BY	: Jack Hollingswo	rth	PROJECT NUMBER: 60443903
Weather: H 37°F	Sunny		a lost time injury:		
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
line Chuistamhau	44	CCLIC Coologist	AFCOM	Coloriet Weter Level Meter (2)	DIMina HCACE
Jim Christopher	11	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	PJ Mion, USACE
Jack Hollingsworth	10.25	Geologist	AECOM	DustTrak2 Dust Meter (1)	
Matt Kerr	10.25	Scientist	AECOM	Geotech Bladder Pumps (2)	
				Controller/Compressor QED (2)	
				Waterra HydroLift Pumps (1)	
				MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
DAILY TOTAL	31.5				
TOTAL TO DATE	374	(on-site hours only)			
SUBCONTRACTORS:		 SITE DELIVE	RIFS		
Tony Palomogue, ADT		None			
Todd Laderwager, ADT		140110			
Toda Laderwager, ADT					

WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Progress was made on redevelopment/development, as follows:

S 58922 (USGS well on Pocahontas Lane)

Total depth is 58.41 fbg; the total minimum redevelopment volume (3x well volume) is 26 gallons.

A Grundfos Redi-Flo 2 submersible pump was used to clear accumulated sediment and remove the volume from the well (30 gallons).

Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, turbidity, and drawdown. Field data were recorded on the field sampling forms (12/8/2020). Stability achieved in all parameters with a final turbidity of 0.95 NTU.

CH-MW045S

Total depth of the well is 98.4 fbg; 3x well volume is ~36 gallons. An additional 200 gallons were added during drilling, and was split between the two wells in the nested pair. Approximately 100 gallons were purged using a gravity lift, in addition to the 100 gallons purged yesterday (12/7/2020). Groundwater parameters were collected at the beginning of purging and four times towards the end of development. Final turbidity was 21.4 NTU.

CH-MW045D

Total depth of the well is 139.0 fbg; 3x well volume is 44.7 gallons. An additional 200 gallons were added during drilling, and was split between the two wells in the nested pair. Approximately 175 gallons were purged using a gravity lift. Groundwater parameters were collected at the beginning of purging and four times towards the end of development. Final turbidity was 12.7 NTU; however, stabilization of parameters was not achieved, likely due to the powerful surging of the gravity lift. Therefore, AECOM will return to the well tomorrow to continue development with a the Grundfos submersible pump to achieve stabilization per the Well Development SOP and finalize the well development.

CH-MW044S

Total depth of the well is 123.9 fbg; 3x well volume is 27.6 gallons. An additional 500 gallons were added during drilling, and was split between the two wells in the nested pair. Approximately 175 gallons were purged using a gravity lift. Groundwater parameters were collected at the beginning of purging and four times towards the end of development. Stabilization of parameters has not yet been achieved and turbidity at the end of the day was above the maximum detection of the turbidity meter; therefore, AECOM will return to the well tomorrow to continue development with a the Grundfos submersible pump to achieve stabilization per the Well Development SOP and finalize the well development.

CH-MW044D

Total depth of the well is 160.1 fbg; 3x well volume is 44.9 gallons. An additional 500 gallons were added during drilling, and was split between the two wells in the nested pair. Approximately 450 gallons were purged using a gravity lift. Groundwater parameters were collected at the beginning of purging and four times towards the end of development. Stabilization of parameters has not yet been achieved and turbidity was 76.1 NTU; therefore, AECOM will return to the well tomorrow to continue development with a the Grundfos submersible pump to achieve stabilization per the Well Development SOP and finalize the well development.

An additional Waterra pump was ordered for delivery to the site tomorrow, in the instance that the field team may be able to redevelop two wells at Madison Hills simultaneously; additionally, three D-32 foot valves and 1" OD HDPE tubing were ordered from Waterra for overnight delivery in order to use the high-flow Waterra system for development of the wells at Madison Hills.

Well Installation

Two 2x2 well pads were constructed at CH-MW044 and CH-MW045.

Contractor Daily Reports

DATE: 12/8/2020 Tuesda	ıy	- •
DR No. 13	WRITTEN BY: Jack Hollingsworth	PROJECT NUMBER: 60443903
Groundwater Sampling Groundwater samples were collected	d from the following monitoring wells:	
Crodinawater samples were collected	a nom the following monitoring wells.	
S 19495		
A sample was collected b	by means of low flow sampling with a QED Bladder Pump.	
S 79264		
A sample was collected b	y means of low flow sampling with a QED Bladder Pump.	A duplicate was also collected at this location.
Samples were collected for analysis	of VOCs SVOCs/PAHs PCBs and total and dissolved m	netals (incl. hexavalent chromium and mercury). The pH of the liquid
hexavalent chromium was checked a	and adjusted in the field according to the procedure outline	ed in the QAPP. Water quality parameters were collected, including pH,
DO, ORP, specific conductivity, temp	perature, and turbidity. Field data were recorded on the fie	ld sampling forms.
Sample Management		
Soil samples collected were Quality		ords, and packed on ice for storage. Samples were from previous days were
		r pick-up will be held on fresh ice until the next courier pick-up, scheduled
for 12/11/20. CoC records were e-ma	ailed to the Project Chemist (Devon Chicoine) prior to deli-	very to the lab.
Investigation-Derived Waste Mana	gement	
Seven drums of soil generated to da	ite. To date, approximately 1,390 gallons of liquid IDW has	been generated during well development.
The AECOM team left the site for the	e day at 1800.	
WORK COMPLETED BY AECOM S	SUBCONTRACTORS	
ADT developed well pairs CH-MW04	14S/D and CH-MW045S/D and constructed well pads. AD	Γ demobilized from the site at 1600.
-		
	TIONS (Refer to telecons, phone records, and/or logbo	
	delivered them to the site. The keys will be returned by an	n Hills wells. P. Mion (USACE) picked up keys to the wells from SCWA at a AECOM team member after the field event.
and Bay energy ten rent enner and	delivered them to the exercise keys will be returned by an	7.200 M tourn monipor and the note over
REQUEST FOR INFORMATION (RE	<u></u>	
None	<u>, ''</u>	
TRANSMITTALS / SUBMITTALS		
None		
AIR MONITORING COMMENTS:		
None. Drilling activities complete.		
SAFETY OBSERVATIONS/VIOLAT	IONS/COMMENTS	
		thern side of the well pair) and hanging over a portion of the work area.
	determined that the team should wear hard hats in the vic	
SITE OBSERVATIONS		
None		
ATTACHMENTS		
None		

Contractor Daily Reports

DATE: 12/8/2	2020 Tuesday		•	
DR No. 13		WRITTEN BY:	Jack Hollingsworth	PROJECT NUMBER: 60443903
Site Representative	e (Signature):			
Jack Hollingsworth				
	,			
Daily Photos				
No photos were colle	ected for today's daily	eport.		

Contractor Daily Reports

DATE: 12/9/2020 Wednesday

DR No. 14		WRITTEN BY	: Jack Hollingswo	rth	PROJECT NUMBER: 60443903
Weather: H 38°F	Cloudy, some	snow Days without	a lost time injury:	14	
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Jim Christopher	10.75	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	PJ Mion, USACE
Jack Hollingsworth	10.75	Geologist	AECOM	DustTrak2 Dust Meter (1)	
Matt Kerr	10.75	Scientist	AECOM	Geotech Bladder Pumps (2)	
				Controller/Compressor QED (2)	
			Magnetometer-Schonstedt (1)		
				Waterra HydroLift Pumps (2)	
			MiniRae 3000 PID (3)	MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
DAILY TOTAL	32.25			Honda Generator EU2000i (1)	
TOTAL TO DATE	406.25	(on-site hours only)			
SUBCONTRACTORS:		ISITE DELIVE	DIEC		
None			200' roll of 1" HDPE		
		Pine Environn	nental - Waterra Hy	drolift Pump (1), Honda Generator E	EU2000i (1), foot valves, and Grundfos Pump
		tubing			

WORKED PERFORMED BY AECOM

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Progress was made on redevelopment/development, as follows:

S 48579 (USGS Testing Well, Rte 27)

Total depth of S 48579 is 63.25 fbg; the total minimum redevlopment volume (3x well volume) to purge is 130 gallons.

A Grundfos Redi-Flo 2 submersible pump was used to clear accumulated sediment and remove the volume from the well (135 gallons).

Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, and drawdown; stability was achieved for all parameters; final turbidity 8.01 NTU. Field data were recorded on the field sampling forms (12/9/2020).

CH-MW044D (Newly installed)

Total depth of CH MW-044D is 160.71 fbg; the total minimum redevlopment volume (3x well volume) to purge is 46 gallons.

A Grundfos Redi-Flo 2 submersible pump was used to surge the screen interval, clear accumulated sediment, and remove the volume from the well (120 gallons). Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, and drawdown; stability was achieved for all parameters, final turbidity 0.17NTU. Field data were recorded on the field sampling forms (12/9/2020).

The team received partial delivery of the supplies for the high-flow Waterra system to be used at the Madison Hill wells (1 x 200' roll of 1" HDPE tubing). FedEx tracking indicates the remaining supplies (2 x 200' rolls of 1" HDPE tubing and the check valves) will be delivered tomorrow (12/10/2020).

Groundwater Sampling

Groundwater samples were collected from the following monitoring wells:

CH-MW045S

A sample (CH-MW045S-1220) was collected at 1129 by means of low flow sampling with a QED Bladder Pump.

An equipment blank was collected off the bladder pump at 1540.

S 58922 (USGS well on Pocahontas Lane)

A sample (S58922-1220) was collected at 1343 by means of low flow sampling with a QED Bladder Pump.

S 1202 (Lighthouse Pump; Giftshop)

A sample (S1202-1220) was collected at 1150 from a sample port prior to water treatment components. The sample port was debrided and purged for 6 minutes prior to sample collection (~3 gallons). A single set of water quality parameters were recorded post sample collection.

S 3599 (Lighthouse Pump; Lighthouse basement)

A sample (S3599-1220) was collected at 1230 from sample port prior to water treatment components. The sample port was debrided and purged for 6 minutes prior to sample collection (~3 gallons). A single set of parameters were recorded post sample collection.

Samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the liquid hexavalent chromium was checked and adjusted in the field according to the procedure outlined in the QAPP. Water quality parameters were collected, including pH, DO, ORP, specific conductivity, temperature, and turbidity. Field data were recorded on the field sampling forms.

Sample Management

Samples are being held by AECOM (continuously on ice) until the next courier scheduled pickup, scheduled for 0800 on Friday (12/11/20).

12/9/2020

Wednesday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 14 WRITTEN BY: Jack Hollingsworth PROJECT NUMBER: 60443903 Investigation-Derived Waste Management Eight drums of soil generated to date. To date, approximately 1,570 gallons of liquid IDW has been generated during well development . The AECOM team left the site for the day at 1745. WORK COMPLETED BY AECOM SUBCONTRACTORS None AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS AIR MONITORING COMMENTS: None. Drilling activities complete. SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS

ATTACHMENTS	
None	

Site Representative (Signature):

SITE OBSERVATIONS

Jack Hollingsworth

Daily Photos

None

No photos were collected for today's daily report.

Contractor Daily Reports

DATE: 12/10/2020 Thursday

DR No. 15		WRITTEN B	Y: James Christop	her	PROJECT NUMBER: 60443903
Weather: H48°F/L38°F, mo	stly sunny	Days withoυ	ut a lost time injury:	15	
NAME:	HRS	TRADE:	COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Jim Christopher	10.25	SSHO, Geologist	AECOM	Solonist Water Level Meter (2)	None
Jack Hollingsworth	10.25	Geologist	AECOM	Geotech Bladder Pumps (2)	
Matt Kerr	10.25	Scientist	AECOM	Controller/Compressor QED (2)	
				Waterra HydroLift Pumps (2)	
				MiniRae 3000 PID (3)	
				Peristaltic Pump (1)	
				Rechargeable Battery (1)	
				Grundfos Redi-Flo 2 Pump (1)	
				Honda Generator EU2000i (1)	
DAILY TOTAL	30.75				
TOTAL TO DATE	437	(on-site hours only)			
SUBCONTRACTORS:		SITE DELIV	ERIES		
Young & Young - Surveying		Waterra - 2	x 200' rolls of 1" HDF	PE tubing and the check valves	
Callahead - Porta-John servi	cing			-	

WORKED PERFORMED BY AECOM

United Rentals - TWS/ADT equipment demob

The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day.

Well Development

Progress was made on development, as follows:

CH-MW044S (Newly installed)

Development was continued from previous date. Total depth of CH-MW044S is 124.55 ft below top of riser; the total minimum development purge (3x well volume) is 28 gallons. A Grundfos Redi-Flo 2 submersible pump was used to surge the screen interval, clear accumulated sediment, and remove the volume from the well (66 gallons). Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, and drawdown; stability was achieved for all parameters, final turbidity 9.53 NTU. Field data were recorded on the field sampling forms (12/10/2020).

CH-MW045D (Newly installed)

Development was continued from previous date. Total depth of CH-MW045D is 138.85 fbg; the total development purge (3x well volume) is 46 gallons. A Grundfos Redi-Flo 2 submersible pump was used to surge the screen interval, clear accumulated sediment, and remove the volume from the well (83 gallons). Water quality parameters were collected continuously throughout redevelopment; pH, DO, ORP, specific conductivity, temperature, and drawdown; stability was achieved for all parameters, final turbidity 3.23NTU. Field data were recorded on the field sampling forms (12/10/2020).

The remaining portion of the shipment of the high-flow Waterra supplies arrived at the site.

Well Installation

Well installation complete.

Groundwater Sampling

Groundwater samples were collected from the following monitoring wells:

S 17231S (Former USAF Supply Well)

A sample (S17231S-1220) was collected at 1130 by means of low flow sampling with a QED Bladder Pump.

CH-EB-1220-02 (Bladder pump equipment blank #2)

An equipment blank (CH-EB-1220-02) was collected from a bladder pump at 1340.

S 45879 (USGS Testing well, Rte 27 West of site)

A sample (\$45879-1220) was collected at 1525 by means of low flow sampling with a QED Bladder Pump.

Samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the liquid hexavalent chromium was checked and adjusted in the field according to the procedure outlined in the QAPP. Water quality parameters were collected, including pH, DO, ORP, specific conductivity, temperature, and turbidity. Field data were recorded on the field sampling forms.

Sample Management

Samples are being held by AECOM (continuously on ice) until the next courier scheduled pickup, scheduled for 0800 on Friday (12/11/20).

Investigation-Derived Waste Management

Eight drums of soil generated to date. To date, approximately 1,735 gallons of liquid IDW has been generated during well development and sampling.

The AECOM team left the site for the day at 1715.

James Christopher

No photos were collected for today's daily report.

Daily Photos

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DATE: 12/10/2020 Thursday DR No. 15 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903 WORK COMPLETED BY AECOM SUBCONTRACTORS Young and Young surveyed 13 wells at various locations across the site (0830 - 1230) Callahead serviced the on-site Porta-John (1400) United Rentals (under TWS/ADT) demobilized the skid steer utilized during drilling operations (1130) AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS When working separately, personnel frequently provided each other with safety checks (proof of life checks). SITE OBSERVATIONS ATTACHMENTS Site Representative (Signature):

Contractor Daily Reports

DATE: 12/11/2020 Friday

The AECOM team left the site for the day at 1730.

	,					
DR No. 16 Weather: H 48°F/L 38°F, mostly sunny		WRITTEN BY:	James Christoph	er	PROJECT NUMBER: 60443903	
			lost time injury:	16		
NAME:	HRS	TRADE:		COMPANY:	EQUIPMENT:	VISITORS/AFFILIATION:
Jim Christopher	10.5	SSHO, G	eologist	AECOM	Solonist Water Level Meter (2)	None
Jack Hollingsworth	10.5	Geologist		AECOM	Geotech Bladder Pumps (2)	
Matt Kerr	10.5	Scientist		AECOM	Controller/Compressor QED (2)	
					Waterra HydroLift Pumps (2)	
					MiniRae 3000 PID (3)	
					Peristaltic Pump (1)	
					Rechargeable Battery (1)	
					Grundfos Redi-Flo 2 Pump (2)	
					Honda Generator EU2000i (2)	
DAILY TOTAL	31.5					
TOTAL TO DATE	468.5	(on-site h	ours only)			
SUBCONTRACTORS:			SITE DELIVER	IES		
Courier - Ship Accurate			None			
WORKED PERFORMED						
					Safety Meeting, and reviewed the heal	th and safety procedures and activity
hazard analyses associate	ed with the sc	heduled fie	ld work for the da	ay.		
Well Development						
Progress was made on de	evelopment, a	s follows:				
C 70204 (Mad	:	4)				
S 76304 (Made			76204 is 140 ft b	alou ton of rigor; th	ne total minimum development purge (3	y well volume) is 270 gellens
					ns from the well, from 80 - 87 ft (an obst	
					pment; pH, DO, ORP, specific conductive	
					e field sampling forms (12/11/2020). 90	
turbidity was 2	+ IVIO di ilio	cria or the c	ady. I lold data we	ore recorded on the	included mining forms (12/11/2020). 30 (ganono remain to be parged.
S 121808 (Ma	dison Hill Wel	12)				
			121808 is 132 ft	below top of riser:	an obstruction was encountered at ~16	ft that would not allow tubing to pass; therefore,
			rmed on this well.			
· ·		'				
S 121811 (Ma	dison Hill Wel	II 3A)				
Total depth (m	easured previ	iously) of S	121811 is 140 ft	below top of riser;	an obstruction is encountered at ~6 ft th	nat would not allow tubing to pass; therefore,
			rmed on this well.			<u> </u>
Well Installation						
Well installation complete						
Groundwater Sampling						
Groundwater samples we	re collected fr	om the follo	owing monitoring	wells:		
0// 1/// 0//0						
CH MW-044S	NAVO 4 4 O 4 O	20\		- f 1 f 1		
A sample (CH	WW 0445-122	20) was con	lected by means	of low flow samplin	g with a QED Bladder Pump.	
CH MW-044D						
	M/M/044D 12	20) was col	lected by means	of low flow camplin	ng with a QED Bladder Pump.	_
A sample (UII	1V1 V V U++D-12	_∪, was col	icolou by illealis	or low now samplif	ig with a SED Diauder Fullip.	
Samples were collected for	or analysis of	VOCs SVC	OCs/PAHs PCRs	s, and total and disc	solved metals (incl. hexavalent chromiu	m and mercury). The pH of the liquid
						parameters were collected, including pH,
					were stabilized prior to sample collection	
sampling forms.	y,po.	,	, प	, ,,	1 22	
Sample Management						
	Quality Contro	l checked, i	recorded on chair	n of custody (CoC)	records, and packed on ice for storage.	. Samples were from previous days were
picked up by the courier for	or transport to	the labora	tory at 0830. Sam	nples collected after	r courier pick-up will be held on fresh ic	e until the next courier pick-up, scheduled
for 12/14/20. CoC records	were e-maile	ed to the Pr	oject Chemist (D.	. Chicoine) prior to	delivery to the lab.	
Investigation-Derived W				·		
Eight drums of soil genera	ated to date. I	To date, app	proximately 1,920	gallons of liquid II	DW has been generated during well dev	elopment and sampling.

12/11/2020

Friday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 16 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903 WORK COMPLETED BY AECOM SUBCONTRACTORS AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) T. Dess indicated displeasure regarding the amount and type of debris left in his dumpster (notably bags of set-up concrete from extreme wind/rain event and damaged large fresh water tote). TWS/ADT will return to site tomorrow 12/12/2020 to retrieve materials from dumpster. REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS Large or bulky items in the bed of the truck were removed using a buddy system to prevent strain on personnel. SITE OBSERVATIONS The roadway to the newly installed wells is in poor, but usable, condition. Preexisting boggy areas were especially impacted by vehicular traffic. **ATTACHMENTS** None Site Representative (Signature): James Christopher

Contractor Daily Reports

DATE: 12/11/2020 Friday

DR No. 16 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 1. Well redevelopment at S 76304 (Madison Hill Well 1).

Photo 2. Turbid water from S 76304 (Madison Hill Well 1) at the beginning of well redevelopment.

Photo 3. Sediment from turbid water from S 76304 (Madison Hill Well 1) at the beginning of well redevelopment.

Photo 4. S 121811 (Madison Hill Well 3A)

Contractor Daily Reports

DATE: 12/11/2020 Friday

Contractor Daily Reports

DATE: 12/11/2020 Friday

DR No. 16

WRITTEN BY: James Christopher

Photo 9. Materials disposed in Camp Hero Motor Pool dumpster by TWS/ADT; ADT will return to the site tomorrow (12/12/20) to remove the items from the dumpster to take back to their shop. (Photo by T. Dess.)

Photo 10. Materials disposed in Camp Hero Motor Pool dumpster by TWS/ADT; ADT will return to the site tomorrow (12/12/20) to remove the items from the dumpster to take back to their shop. (Photo by T. Dess.)

Photo 11. Materials disposed in Camp Hero Motor Pool dumpster by TWS/ADT; ADT will return to the site tomorrow (12/12/20) to remove the items from the dumpster to take back to their shop. (Photo by T. Dess.)

Contractor Daily Reports

DATE: 12/12/2020 Saturday

DR No. 17			James Christoph	PROJECT NUMBER: 60443903		
Weather: H 54°F/L 40°F, rai	n		Days without a	lost time injury:	17	
NAME:	HRS	TRADE:		COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:
Jim Christopher	8.5	SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (1/1)	None
Janine Hlavaty	8.5	Geologist		AECOM	Geotech Bladder Pumps (2)	
					Controller/Compressor QED (2)	
					Waterra HydroLift Pumps (1/1)	
					MiniRae 3000 PID (1/2)	
					Peristaltic Pump (1)	
					Rechargeable Battery (1) Grundfos Redi-Flo 2 Pump (0/2)	
					Honda Generator EU2000i (1/1)	_
					Tiorida Generator E020001 (1/1)	<u> </u>
DAILY TOTAL	17					
TOTAL TO DATE	485.5	(on-site ho	ours only)			
TOTAL TO BATE	400.0	(on one ne	ours orny)			
SUBCONTRACTORS:			SITE DELIVER	IES		.4
Cascade - Pat MacGill			None			
Cascade - Fat MacGill			NOTIC			
WORKED PERFORMED BY	AECOM					
The AECOM team arrived on	site at 073	30, complet	ed the Morning	Tailgate Health and	Safety Meeting, and reviewed the h	nealth and safety procedures and activity
hazard analyses associated v					, ,,	
,				,		
Well Development						
Due to the inability of equipm	ent to be s	safely opera	ited in wet weath	er, redevelopment	of S 76304 (Madison Hill Well 1) wil	Il be continued tomorrow (12/13/20).
Synoptic Gauging						
						17231S on this date due to Parks Department
re-securing the well house; he	owever, da	ata are avai	lable from the da	ate of sampling, 12/	9/2020.	
Well Installation						
Well installation complete.						
Groundwater Sampling						
Groundwater samples were c	allected fro	om the follo	wing monitoring	wells.		
Groundwater samples were c	Ollected III	on the follo	wing monitoring	Wells.		
CH MW-045D						
	/045D-122	0) was colle	ected by means	of low flow samplin	g with a QED Bladder Pump.	
7100		o mae com			g a Q_D D.aaac. : ap.	
S 70627						
A sample (S70627	'-1220) wa	s collected	by means of low	flow sampling with	a QED Bladder Pump.	
Samples were collected for a	nalysis of '	VOCs, SVC	Cs/PAHs, PCBs	s, and total and diss	solved metals (incl. hexavalent chro	mium and mercury). The pH of the liquid
						ity parameters were collected, including pH,
	ty, temper	ature, and t	urbidity. Water q	juality parameters v	were stabilized prior to sample collec	ction. Field data were recorded on the
field sampling forms.						
Sample Management	TOOM /		! \ 4!! 4!			40/44/00)
Samples are being held by Al	ECOM (CO	ntinuousiy (on ice) unui the r	iext courier scriedu	led pickup, scheduled for Monday (12/14/20).
Investigation-Derived Wast	Manago	mont				
			roximately 1 930) nallons of liquid IF	DW has been generated during well	development and sampling
Light drams of son generated	to date. I	o date, app	JOXIIIIatoly 1,550	ganoris or liquid it	ov has been generated during wen	development and sampling.
The AECOM team left the site	e for the da	av at 1530.				
WORK COMPLETED BY AE		,	TORS			
				PVC piping from air	lifting, crushed tote, etc.) from the	dumpster across the street from the Motor
Pool, as requested by T. Des			(, 1	- 1 1 J s dil	J,,,,,,	,
	•					
AGREEMENTS MADE/CONV	/ERSATIC	NS (Refer	to telecons inh	one records and/	or logbooks for details)	
None		(110101	to.ooo.io, pii	10001a0, alla/	c	
INOTIC						
1						
Ĭ.						

12/12/2020

Saturday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

WRITTEN BY: James Christopher DR No. 17 PROJECT NUMBER: 60443903 REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS Excessive rain prevented use of electric powered equipment. Also, a raccoon was found trapped in the dumpster that personnel intended to use for generated trash. The AECOM team avoided contact with the racoon per the APP/SSHP and lowered a section of chain-link fence into the dumpster to allow the racoon to safely climb out once the AECOM team had retreated from the dumpster. SITE OBSERVATIONS None ATTACHMENTS None Site Representative (Signature): James Christopher **Daily Photos** No photos were collected for today's daily report.

Contractor Daily Reports

DATE: 12/13/2020 Sunday

The AECOM team demobilized from the site at 1530.

	DR No. 18		<u> </u>			PROJECT NUMBER: 60443903	
Weather: H 59°F	L 46°F, m	ostly sunny	1	Days without a l		18	
NAME:		HRS	TRADE:		COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:
Jim Christopher		8	SSHO, Ge	eologist	AECOM	Solonist Water Level Meter (1/1)	None
Janine Hlavaty		8	Geologist		AECOM	Geotech Bladder Pumps (0/2)	
						Controller/Compressor QED (2)	
						Waterra HydroLift Pumps (1/1)	
						MiniRae 3000 PID (1/2)	
						Peristaltic Pump (1)	
						Rechargeable Battery (1)	
						Grundfos Redi-Flo 2 Pump (0/2)	
						Honda Generator EU2000i (1/1)	
						.	
DAILY TOTAL		16				<u> </u>	
TOTAL TO DATE		501.5	(on-site h	ours only)			
SUBCONTRACT	ORS:			SITE DELIVERIE	S		
None				None			
WORKED PERFO	ORMED BY	AECOM					
						Safety Meeting, and reviewed the h	ealth and safety procedures and activity
hazard analyses a	associated	with the scl	heduled fiel	ld work for the day	'.		
Well Developme	-						
Progress made or	n developm	nent, as foll	ows:				
		n Hill Well	,				
Total d	lepth (meas	sured previ	ously) of S	76304 is 140 ft be	low top of riser; the	e total minimum development purge	e (3x well volume) is 270 gallons.
A Wate	erra pump v	with a high	volume sys	stem was used to i	emove additional v	volume from the well (60 gallons, 24	40 gallons total), from 80 - 87 ft.
							development (see photo from 12/11/20
							specific conductivity, temperature,
and dr	awdown; th	e team was	s only able	to reduce the linar	turbidity to 248 N I	U. Fleid data were recorded on the	e field sampling forms (12/11/2020, 12/13/2020).
Well Installation							
		he new wel	le were sec	ured with the lock	s that match those	used in previous phases of the RI	and can be opened with the same keys.
						tion (office at Montauk Downs) have	
previous phases.	IIIC INCW IC	ik otate of	nice of Fair	ts, recreation and	THIStoric Trescrivat	tion (office at Montaux Downs) have	e a set of matering keys from the
previous priuses.							
Sampling							
	ples were	collected from	om the follo	wing monitoring w	ells:		
				<u> </u>			
S 7630	04 (Madisoi	n Hill Well	1)				
				by (non-submersi	ble) means of a Wa	aterra pump, per SCWA requireme	nts.
A dupl	icate samp	le (S76304	-1220D) wa	as also collected a	t this location.		
			-				
IDW samples wer	e collected	:					
Liquid							
A liquid	d IDW sam	ple was col	lected from	the on site frac ta	nk by means of a	peristaltic pump.	
Soil ID							
A soil l	שטעו sampl	e was colle	cted from d	Irums of drilling sp	OIIS.		
Outside t	-1			-£\/00- 0\/00 "	DALL- DOD 11	-A-I d dis-s-live d	
							ravalent chromium and mercury). The pH
							P. Water quality parameters were collected,
including pH, DO,	UKP, spec	ciric conduc	cuvity, temp	berature, and turble	uity. Field data wer	e recorded on the field sampling fo	IIIIS.
Cample Manages	mont						
Sample Manager		ECOM (ac	ntinuousla	on ice) until the ==	vt courier echadul	ed pickup. Arrangements were mad	le for the analytical laboratory to
					ice center on Tues		ie ioi ilie alialytical laboratory to
pick up tile sampi	cs IIUIII J.	Crinstoprie	ı via ili e L0	ing island City Serv	vice center on rues	buay, 12/10/20.	
Investigation-De	rived Was	te Manage	ment				

Eight drums of soil generated to date. To date, approximately 2,000 gallons of liquid IDW has been generated during well development and sampling.

12/13/2020

Sunday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 18 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903 WORK COMPLETED BY AECOM SUBCONTRACTORS AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS When traveling with generators inside a vehicle, personnel maintained windows in a down position to provide sufficient ventilation SITE OBSERVATIONS No park personnel were present at the Motor Pool upon departure of AECOM field team; site supervisor maintained possession of the keys to ship back to pertinent parties ATTACHMENTS None Site Representative (Signature): James Christopher Daily Photos No photos were collected for today's daily report.

Contractor Daily Reports

DATE: 2/22/2021 Monday

DR No. 19			WRITTEN BY:	James Christoph	er	PROJECT NUMBER: 60443903
Veather: H 44°F/L 35°F,	cloudy PM s	howers	Days without a		19	
NAME:	HRS	TRADE:	-ayo miniout a	COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:
			m de e a		` ,	
ames Christopher	9.5	Site Supe	IVISUI	AECOM	Solonist WLM (2/1)	None
like Glinski	9.5	SSHO		AECOM	YSI 6920 V2 (2/1)	
latthew Kerr	9.5	Scientist		AECOM	Hach Turbidity Meter (0/1)	
chanel Hardy	9.5	Scientist		AECOM	MiniRae 3000 PID (2/1)	
					QED Bladder Pumps (4/0)	
					QED MP-50 Control Box (3/0)	
					Waterra HydroLift Pumps (0/1)	
					Rechargeable Battery (0/3)	
					Honda Generator EU2000i (0/1)	
OAILY TOTAL	38					
		/				
OTAL TO DATE	539.5	(on-site h	ours only)			
UBCONTRACTORS:			SITE DELIVERIE	S		
one			Callahead New Y	ork - One (1) Por	ta Pot	
				, ,		
ORKED PERFORMED E						
ne AECOM team arrived	on site at 07	00, complet	ted the Morning Ta	ailgate Health and	Safety Meeting, and reviewed the h	nealth and safety procedures and activity
azard analyses associate						<u></u>
•			,			
ell Development						
ell development has not	started for th	o one well	to he redeveloped			
en development has not	Started for th	ie one wen	io be redeveloped	•		
C 76204 (Modic	son Hill Well					
	asured previ	ously) of S	76304 is 140 feet l	pelow top of riser;	the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me	easured previ	ously) of S	76304 is 140 feet l	pelow top of riser;	the total minimum development pur	rge (3x well volume) is estimated to be
	easured previ	ously) of S	76304 is 140 feet I	pelow top of riser;	the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me 270 gallons.	easured previ	ously) of S	76304 is 140 feet I	pelow top of riser;	the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me 270 gallons. ampling					the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me 270 gallons. ampling					the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me 270 gallons. ampling froundwater samples were					the total minimum development pur	rge (3x well volume) is estimated to be
Total depth (me 270 gallons. ampling froundwater samples were CH-MW044D	e collected fr	om the follo	owing monitoring w	rells:		
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW	e collected fro	om the follo	owing monitoring w	rells:		rge (3x well volume) is estimated to be
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D	e collected fro	om the follo	owing monitoring w	rells:		
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW	e collected fro	om the follo	owing monitoring w	rells:		
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of	e collected fro	om the follo	owing monitoring w	rells:		
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S	e collected from the collected f	om the folic	owing monitoring w ed via low-flow sar	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW	e collected from 1000 1000 1000 1000 1000 1000 1000 10	om the folic	owing monitoring w ed via low-flow sar	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU;	
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S	e collected from 1000 1000 1000 1000 1000 1000 1000 10	om the folic	owing monitoring w ed via low-flow sar	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of	e collected from 1000 1000 1000 1000 1000 1000 1000 10	om the folic	owing monitoring w ed via low-flow sar	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D	e collected from 1970 1970 1970 1970 1970 1970 1970 1970	om the followas collectowas collectowas collectowas collectowas collector	ed via low-flow sar	rells: mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D	e collected from 1970 1970 1970 1970 1970 1970 1970 1970	om the followas collectowas collectowas collectowas collectowas collector	ed via low-flow sar	rells: mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW045D Sample CH-MW	e collected from 1970 1970 1970 1970 1970 1970 1970 1970	om the followas collectowas collectowas collectowas collectowas collector	ed via low-flow sar	rells: mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D	e collected from 1970 1970 1970 1970 1970 1970 1970 1970	om the followas collectowas collectowas collectowas collectowas collector	ed via low-flow sar	rells: mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of	e collected from 1970 1970 1970 1970 1970 1970 1970 1970	om the followas collectowas collectowas collectowas collectowas collector	ed via low-flow sar	rells: mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S	e collected from 1000 (000 collected from 1000	om the folice was collecte was collecte was collecte	ed via low-flow sar ed via low-flow sar ed via low-flow sar ed via low-flow sar	rells: mpling using a bla mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S Sample CH-MW045S Sample CH-MW045S Sample CH-MW	e collected from the collected f	om the folice was collecte was collecte was collecte	ed via low-flow sar ed via low-flow sar ed via low-flow sar ed via low-flow sar	rells: mpling using a bla mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S	e collected from the collected f	om the folice was collecte was collecte was collecte	ed via low-flow sar ed via low-flow sar ed via low-flow sar ed via low-flow sar	rells: mpling using a bla mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of	e collected from the collected f	om the folice was collecte was collecte was collecte was collecte was collecte	ed via low-flow sar	mpling using a bla mpling using a bla mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of	e collected from the collected f	om the folice was collecte was collecte was collecte was collecte was collecte	ed via low-flow sar	mpling using a bla mpling using a bla mpling using a bla mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU;	final pH of hexavalent chromium sample final pH of hexavalent chromium sample final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of coundwater samples were	v044D-0221 buffer: ~9.5 v044S-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla mpling using a bla mpling using a bla mpling using a bla PAHs, PCBs, and	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU;	final pH of hexavalent chromium sample
Total depth (me 270 gallons. ampling Foundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	v044D-0221 buffer: ~9.5 v044S-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla mpling using a bla mpling using a bla mpling using a bla PAHs, PCBs, and the field according	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA	final pH of hexavalent chromium sample avalent chromium and mercury). The pH
Total depth (me 270 gallons. Impling CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S	v044D-0221 buffer: ~9.5 v044S-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla mpling using a bla mpling using a bla mpling using a bla PAHs, PCBs, and the field according	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU;	final pH of hexavalent chromium sample avalent chromium and mercury). The pH
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	v044D-0221 buffer: ~9.5 v044S-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla mpling using a bla mpling using a bla mpling using a bla PAHs, PCBs, and the field according	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA	final pH of hexavalent chromium sample avalent chromium and mercury). The pH
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW0	e collected from V044D-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples wood, ORP, special collected from samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexes to the procedure outlined in the QA inity. Field data were recorded on the	final pH of hexavalent chromium sample avalent chromium and mercury). The pH APP. Water quality parameters were le field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW0	e collected from V044D-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples wood, ORP, special collected from samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA	final pH of hexavalent chromium sample avalent chromium and mercury). The pH APP. Water quality parameters were le field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	e collected from V044D-0221 buffer: ~9.5 v045D-0221 buffer: ~9.5 v045S-0221 buffer: ~9.5 e collected for samples wood, ORP, special collected from samples w	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexes to the procedure outlined in the QA inity. Field data were recorded on the	final pH of hexavalent chromium sample avalent chromium and mercury). The pH APP. Water quality parameters were le field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of CH-MW045S Sample CH-MW after addition of coundwater samples were the hexavalent chromium ollected, including pH, DC ample Management amples are being held by	e collected from the collected f	was collected wa	ed via low-flow sared via low-fl	rells: mpling using a bla	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexes to the procedure outlined in the QA inity. Field data were recorded on the	final pH of hexavalent chromium sample avalent chromium and mercury). The pH APP. Water quality parameters were le field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	e collected from the collected f	was collected wa	ed via low-flow sared via low-fl	mpling using a bla mpling using	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA inity. Field data were recorded on the scheduled for Wednesday (2/24/20)	final pH of hexavalent chromium sample cavalent chromium and mercury). The pH APP. Water quality parameters were te field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	e collected from the collected f	was collected wa	ed via low-flow sared via low-fl	mpling using a bla mpling using	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA inity. Field data were recorded on the scheduled for Wednesday (2/24/20)	final pH of hexavalent chromium sample avalent chromium and mercury). The pH APP. Water quality parameters were le field sampling forms.
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-	e collected from the collected from samples work of	was collected wa	ed via low-flow sared via low-fl	mpling using a bla mpling using	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA inity. Field data were recorded on the scheduled for Wednesday (2/24/20 iilling activities within containment. ~	final pH of hexavalent chromium sample cavalent chromium and mercury). The pH APP. Water quality parameters were the field sampling forms. 21).
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-MW045S	e collected from the collected f	was collected wa	ed via low-flow sared via low-fl	mpling using a bla mpling using	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA inity. Field data were recorded on the scheduled for Wednesday (2/24/20)	final pH of hexavalent chromium sample cavalent chromium and mercury). The pH APP. Water quality parameters were the field sampling forms. 21).
Total depth (me 270 gallons. ampling roundwater samples were CH-MW044D Sample CH-MW after addition of CH-MW044S Sample CH-MW after addition of CH-MW045D Sample CH-MW after addition of CH-MW045S Sample CH-	e collected from the collected f	was collected wa	ed via low-flow sared via low-fl	mpling using a bla mpling using	dder pump; final turbidity: 7.7 NTU; dder pump; final turbidity: 3.4 NTU; dder pump; final turbidity: -3.6 NTU; dder pump; final turbidity: 7.8 NTU; total and dissolved metals (incl. hexe) to the procedure outlined in the QA inity. Field data were recorded on the scheduled for Wednesday (2/24/20 iilling activities within containment. ~	final pH of hexavalent chromium sample cavalent chromium and mercury). The pH APP. Water quality parameters were the field sampling forms. 21).

2/22/2021

Monday

James Christopher

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

PROJECT NUMBER: 60443903 DR No. 19 WRITTEN BY: James Christopher WORK COMPLETED BY AECOM SUBCONTRACTORS AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS Vehicles driving in the park were observed to be traveling with excessive speed. The field team was reminded to: #1) maintain constant vigilance with regard to moving vehicles when working near roadways and #2) not be tempted or led to break ANY park traffic rules. SITE OBSERVATIONS Newly installed wells CH-MW044S/D and CH-MW045S/D were resecured using AECOM site locks upon completion of sampling ATTACHMENTS None Site Representative (Signature):

Contractor Daily Reports

DATE: 2/22/2021 Monday

DR No. 19 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 1. Sampling setup at CH-MW044 series wells.

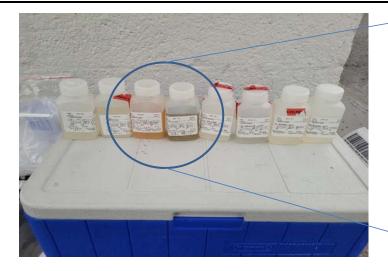


Photo 2. Hexavalent chromium samples after addition of pH buffer.

Photo 3. Discolored hexavalent chromium samples after addition of pH buffer.

Contractor Daily Reports

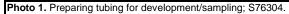
DATE: 2/23/2021 Tuesday

DR No. 20				James Christoph		PROJECT NUMBER: 60443903
Weather: H 42°F/L 37°F			Days without a	lost time injury:	20	
NAME:	HRS	TRADE:		COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:
James Christopher	9.5	Site Super	rvisor	AECOM	Solonist WLM (2/1)	PJ Mion (USACE)
Mike Glinski	9.5	SSHO		AECOM	YSI 6920 V2 (2/1)	
Matthew Kerr	9.5	Scientist		AECOM	Hach Turbidity Meter (0/1)	
Chanel Hardy	9.5	Scientist		AECOM	MiniRae 3000 PID (2/1)	
					QED Bladder Pumps (4/0)	
					QED MP-50 Control Box (3/0) Waterra HydroLift Pumps (0/1)	
					Rechargeable Battery (2/1)	
					Honda Generator EU2000i (0/1)	
DAILY TOTAL	20				Tiorida Gerierator Edzodor (0/1)	
DAILY TOTAL	38	/				
TOTAL TO DATE	577.5	(on-site ho	ours only)			
OUD CONTRACTORS			LOITE DEL IVEDI	150		
SUBCONTRACTORS:			SITE DELIVERI	ES		
None			None			
			!			
WARKER BETTATION	DV 45001-		<u> </u>			
WORKED PERFORMED					10.64 M ()	
					Safety Meeting, and reviewed the	health and safety procedures and activity
hazard analyses associate	ed with the sc	neauled fiel	а worк for the da	у.		
W II D						
Well Development				al.		
Well development has no	t started for tr	ie one well t	to be redeveloped	u:		
S 76304 (Mad	ioon Hill Mall	1)				
•			76204 is 140 foot	holow top of ricor:	the total minimum development nu	irge (3x well volume) is estimated to be
270 gallons.	easureu prev	iousiy) oi 37	70304 IS 140 IEEL	below top of fiser,	the total minimum development pu	inge (5x weil volume) is estimated to be
270 gailons.						
Sampling						
Groundwater samples we	re collected fr	om the follo	wing monitoring	wells:		
			gg			
S19494 (Barra	cks)					
		ollected via	low-flow samplin	g using a bladder	pump: final turbidity: 12.8 NTU: fina	Il pH of hexavalent chromium sample
				collected at this lo		
			,			
S19495 (AT&T	T)					
Sample S1949	5-0221 was c	collected via	low-flow samplin	g using a bladder	pump; final turbidity: 33.3 NTU; fina	I pH of hexavalent chromium sample
after addition of			'	0 0	,	· ·
S48579 (USG	S Ranch)					
Sample S4857	9-0221 was c	collected via	low-flow samplin	g using a bladder	pump; final turbidity: 10.3 NTU; fina	I pH of hexavalent chromium sample
after addition of	of buffer: ~9.4					
S58922 (USG)						
Sample S5892	2-0221 was c	collected via	low-flow samplin	g using a bladder	pump; final turbidity: 0.1 NTU; final	pH of hexavalent chromium sample
after addition of	of buffer: ~9.5					
						xavalent chromium and mercury). The pH
						APP. Water quality parameters were
collected, including pH, D	O, ORP, spec	cific conduct	tivity, temperature	e, turbidity, and sa	linity. Field data were recorded on t	he tield sampling forms.
Sample Management						
Samples are being held b	y AECOM (co	ontinuously o	on ice) until the n	ext courier pickup,	scheduled for Wednesday (2/24/20	J21).
Investigation-Derived W					100	
				enerated during dr	illing activities within containment.	~2,000 gallons of water generated during
development and samplin						
			as been generate	d and will be adde	d to the frac tank. 4 bags of garbag	e/IDW have been disposed of, with
permission, in the motorp	ool dumpsters	3.				
The AECOM team left the	site for the d	ay at 1630.				

Contractor Daily Reports

DATE: 2/23/2021 Tuesday

DR No. 20		WRITTEN BY: James Christopher		PROJECT NUMBER: 60443903
WORK COMPLE	TED BY AECOM SUBCONTRA	CTORS		
None				
AGREEMENTS	MADE/CONVERSATIONS (Refe	r to telecons, phone records, and/or lo	ghooks for details)	
None	MADE/ GOTTE LIGHT (to telebone, priorie recorde, direct. 15	gbooks for details,	
INOTIC				
TECHEOT FOR	CONTACTION (DEI)			
	INFORMATION (RFI)			
None				
TRANSMITTALS	S / SUBMITTALS			
None				
AIR MONITORIN	NG COMMENTS:			
	IG CCIMINEIVIO.			
None				_
CAFETY OBSE	SYSTICAL ON A TICAL COMM	ENTA		
	RVATIONS/VIOLATIONS/COMM			
When working ai	ong roadways, AECOM personne	el utilized cones as a traffic safety measur	re.	
SITE OBSERVA	TIONS			
None				
	-		-	
ATTACHMENTS				
None	,			
INOTIC				
				_
211				
Site Representa				
	James Christopher			


Contractor Daily Reports

DATE: 2/23/2021 Tuesday

DR No. 20 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 2. Recurrence of discoloration of hexavalent chromium samples once the buffer solution was added was observed at S48579.

Contractor Daily Reports

DATE: 2/24/2021 Wednesday

DR No. 21			WRITTEN BY	James Christoph	ner	PROJECT NUMBER: 60443903	
Weather: H 45°F/L 38°F, mostly sunny		Days without a lost time injury: 21			I NOSEOT NOMBER: 004403003		
NAME:	HRS	TRADE:	-	COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:	
James Christopher	9.5	Site Supe	rvisor	AECOM	Solonist WLM (2/1)	PJ Mion (USACE)	
Mike Glinski	9.5	SSHO		AECOM	YSI 6920 V2 (2/1)		
Matthew Kerr	9.5	Scientist		AECOM	Hach Turbidity Meter (1/0)		
Chanel Hardy	Chanel Hardy 9.5 Scien			AECOM	MiniRae 3000 PID (2/1)		
					QED Bladder Pumps (2/2)		
		1			QED MP-50 Control Box (1/2)		
					Waterra HydroLift Pumps (1/0)		
					Rechargeable Battery (1/2)		
5.44.74.75.74		1			Honda Generator EU2000i (1/0)		
DAILY TOTAL	38						
TOTAL TO DATE	615.5	(on-site h	ours only)				
SUBCONTRACTORS:			SITE DELIVER	RIES			
None			None				
			<u> </u>				
	=						
WORKED PERFORMED BY		20 1		T 11 11 11	10 () 11 ()		
					d Safety Meeting, and reviewed the r	nealth and safety procedures and activity	
hazard analyses associated	with the sc	heduled fie	ld work for the d	ay.			
W-II DI							
Well Development		ا المستحمد م		. al.			
Well development was atten	nptea for th	e one well t	to be redevelope	eu:			
S 76304 (Madiso	n Hill Wall	1)					
\		/	y top of riser: the	total minimum dev	velopment purge (3x well volume) is	estimated to be 162 gallons	
					neck valves. 5 gallons total has been		
Attempts to deve	10p 370304	ralieu upoi	II tile ioss oi two	On site Wateria G	ieck valves. 5 gallons total has been	puigea.	
Sampling							
Groundwater samples were	collected fro	om the follo	wing monitoring	wells.			
Greandwater samples were	ooncoled in	on the folic	JWING MOUNTONING	WOIIO.			
S1202 (Giftshop	spigot)						
		llected via i	influent pre-treat	ment sampling por	t; final turbidity: 3.7 NTU; final pH of	hexavalent chromium sample	
after addition of b					., р		
S3599 (Lighthous	se)						
Sample S3599-0	221 was co	llected via i	influent pre-treat	ment sampling por	t; final turbidity: 11.4 NTU; final pH o	f hexavalent chromium sample	
after addition of b	ouffer: ~9.4		•			·	
S70627 (USGS 7							
Sample S70627-	0221 was c	ollected via	a low-flow sampli	ng using a bladder	pump; final turbidity: 17.7 NTU; final	pH of hexavalent chromium sample	
after addition of b	ouffer: ~9.4						
CH-EB-0221-01							
Sample CH-EB-0)221-01 was	s collected t	from bladder pu	mp #9516; ; final pl	H of hexavalent chromium sample af	ter addition of buffer: ~9.5	
						kavalent chromium and mercury). The pH	
					g to the procedure outlined in the QA		
collected, including pH, DO,	ORP, spec	sific conduc	tivity, temperatu	re, turbidity, and sa	alinity. Field data were recorded on th	ne field sampling forms.	
C							
Sample Management	the Constin			in a 44 nomentos (in	aludia a OC a amala a)		
Samples were handed off to	the Euroni	is courier; a	o coolers contair	ling 14 samples (in	cluding QC samples).		
Investigation Derived Was	to Managa	mont					
Investigation-Derived Was			ht druma of soil	annorated during d	rilling activities within containment	2,000 gallons of water generated during	
development and sampling i				generated during d	illing activities within containment. ~	2,000 gailons of water generated during	
				od and will be adde	ad to the free tank 4 hads of garbage	a/IDW have been disposed of with	
permission, in the motorpoo			as been general	cu anu will be adde	ed to the frac tank. 4 bags of garbage	GIDVV Have been disposed oi, with	
permission, in the motorpoo	i dumpsters).					
The AECOM team left the si	te for the d	av at 1630					
WORK COMPLETED BY A	ECOM SI IF	CONTRAC	CTORS				
None		JOHINA					
TAOLIC							

Contractor Daily Reports

DATE: 2/24/2021 Wednesday

DR NO. 21	WRITTEN BY: James Christophe	er PROJECT NUMBER: 60443903
AGREEMENTS	MADE/CONVERSATIONS (Refer to telecons, phone records, and/o	or logbooks for details)
None		
REQUEST FOR	INFORMATION (RFI)	
None		
	S/SUBMITTALS	
None		
	NG COMMENTS:	
None		
DAFETY ODGE	NATIONOWIOLATIONS/COMMENTS	
	RVATIONS/VIOLATIONS/COMMENTS	and the least the section of the sec
when relocating	heavy and/or awkward-shaped equipment, AECOM personnel would	request help, rather than perform unsale lifting.
SITE OBSERVA	TIONS	
None	110113	
None		
ATTACHMENTS		
None		
TVOTIC		
Site Representa	ative (Signature):	
Cito Hopi coomi	James Christopher	
Daily Photos		
,		T

Photo 1. Giftshop water supply system; influent sample port identified.

Photo 2. S76304 (Madison Hills Well 1) well redevelopment setup.

Contractor Daily Reports

DATE: 2/24/2021 Wednesday

DR No. 21 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Photo 3. Check valve security, decontaminated stainless steel components, for well redevelopment at S76304 (Madison Hills Well 1).

Photo 4. Failed check valve security during well redevelopment at S76304 (Madison Hills Well 1).

Contractor Daily Reports

DATE: 2/25/2021 Thursday

DR No. 22 WRITTEN B			WRITTEN BY:	ITTEN BY: James Christopher PROJECT NUMBER: 60443903		
Weather: H 45°F/L 38°F, mo	ostly sunny	1	Days without a lost tim		22	
NAME:	HRS	TRADE:	=	COMPANY:	EQUIPMENT (Active/Inactive):	VISITORS/AFFILIATION:
James Christopher	10	Site Super	rvisor	AECOM	Solonist WLM (2/1)	PJ Mion (USACE)
Mike Glinski	10	SSHO		AECOM	YSI 6920 V2 (1/2)	
Matthew Kerr	10	Scientist		AECOM	Hach Turbidity Meter (0/1)	
Chanel Hardy	10	Scientist		AECOM	MiniRae 3000 PID (2/1)	
					QED Bladder Pumps (1/3)	
					QED MP-50 Control Box (1/2)	
					Waterra HydroLift Pumps (1/0)	
					Rechargeable Battery (0/3)	
					Honda Generator EU2000i (1/0)	
DAILY TOTAL	40					
TOTAL TO DATE	655.5	(on-site ho	ours only)			
SUBCONTRACTORS:			SITE DELIVERIE	S		
None			DI Water			
			2 x D-32 Waterra	check valves		
WORKED PERFORMED BY						
					Safety Meeting, and reviewed the h	nealth and safety procedures and activity
hazard analyses associated	with the sch	neduled fiel	d work for the day			
Well Development						
Well development was attem	pted for the	e one well t	o be redeveloped:			
0.70004/44 //		41				
S 76304 (Madisor				tal mainima manalana		- stim stad to be 400 mellows
					opment purge (3x well volume) is e	
Attempts to devel	op 576304	railed upor	the loss of four v	vaterra check valve	es. 10 gallons total has been purge	a.
Sampling						
Groundwater samples were o	collected fro	om the follo	wing monitoring w	olle.		
Groundwater samples were to	Jollected III	JIII lile Iolio	wing monitoring w	elis.		
S17231S						
	-0221 was	collected vi	a low flow method	s using a OFD blad	dder numn: final turhidity: 17 2 NTI	J; final pH of hexavalent chromium sample
after addition of b		conected vi	a low now method	3 using a QLD blac	duel pump, imal turbidity. 17.2 1410	7, iliai pir oi nexavalent cinomium sample
arter addition of br	uner. ~3.5					
S17231S duplicat	e sample					
		s collected	via low flow metho	nds using a QFD bl	adder pump: final turbidity: 17.2 N	TU; final pH of hexavalent chromium sample
after addition of b		0 00001.00		, ac acg a Q z.	addo: pap,a. ta.z.a.y	o, mai pi i ci nosavaioni cinciniam campio
S79269 (Pumpho	use/Bunke	r)				
			influent pre-treatn	nent sampling port;	final turbidity: 7.3 NTU; final pH of	hexavalent chromium sample
after addition of be			•			
S79269 (Pumpho						
Sample S79269-0)221 was co	ollected via	influent pre-treatn	nent sampling port;	final turbidity: 7.3 NTU; final pH of	hexavalent chromium sample
after addition of b	uffer: ~9.5					
						avalent chromium and mercury). The pH
			•		•	APP. Water quality parameters were
collected, including pH, DO,	ORP, spec	ific conduct	ivity, temperature,	turbidity, and salin	ity. Field data were recorded on th	e field sampling forms.
Synoptic Gauging						
Synoptic groundwater elevati	ion measur	ements we	re collected from t	he local UGA wells		
Sample Management						
Samples are being held by A	ECOM (co	ntinuously o	on ice) until the ne	xt courier pickup, s	cheduled for Friday (2/26/2021).	
Investigation-Derived Wast	te Managei	ment				

Previously-generated waste remaining on site: Eight drums of soil generated during drilling activities within containment. ~2,000 gallons of water generated during

Currently-generated waste: ~40 gallons of water has been generated and will be added to the frac tank. 6 bags of garbage, 200ft of HDPE tubing have been disposed

development and sampling is contained within a plastic frac tank

of, with permission, in the motorpool dumpsters.

The AECOM team left the site for the day at 1700.

James Christopher

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DATE: 2/25/2021 Thursday WRITTEN BY: PROJECT NUMBER: 60443903 DR No. 22 James Christopher WORK COMPLETED BY AECOM SUBCONTRACTORS AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS A spotter was utilized whenever vehicles were operating in reverse in low-visibility settings. SITE OBSERVATIONS None ATTACHMENTS None Site Representative (Signature):

Contractor Daily Reports

DATE: 2/25/2021 Thursday

DR No. 22 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 1. S19496 access; difficult to locate.

Photo 2. Wells were secured upon completion of activities.

Contractor Daily Reports DATE: 2/26/2021 Friday WRITTEN BY: PROJECT NUMBER: 60443903 DR No. 23 James Christopher Days without a lost time injury: Weather: H 39°F/L 36°F, mostly sunny **COMPANY:** VISITORS/AFFILIATION: NAME: TRADE: EQUIPMENT (Active/Inactive): HRS AECOM James Christopher 8.5 Site Supervisor Solonist WLM (1/0) Mike Glinski 8.5 SSHO AECOM YSI 6920 V2 (1/0) Hach Turbidity Meter (1/0) Matthew Kerr 8.5 Scientist **AECOM** Chanel Hardy Scientist **AECOM** MiniRae 3000 PID (1/0) 8.5 DAILY TOTAL 34 TOTAL TO DATE 689.5 (on-site hours only) SUBCONTRACTORS: SITE DELIVERIES None Mega-Purge Whale Pump _DPE poly tubing WORKED PERFORMED BY AECOM The AECOM team arrived on site at 0900, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day. Well Development Well development was resumed for the one well to be redeveloped: S 76304 (Madison Hill Well 1) Total depth of S76304 is measured at 116 feet below top of riser, construction details indicate the total depth to be 141 feet bgs; the total minimum redevelopment purge (3x well volume) is estimated to be 270 gallons. Previous attempts to redevelop S76304 utilizing a Waterra pump failed upon the loss of four check valves. 10 gallons total had been purged. A Mega-Purge 3 stage submersible whale pump has been installed to maximum achievable depth, ~87 feet below top of riser. The well was purged at ~1 gpm (maximum flow for this model and depth), 60 gallons total were purged from S76304, and an interim turbidity of 20.7 NTU was recorded. Sampling Water quality samples were collected: Sample CH-EB-0221-02 was collected from QED bladder pump #35589; final pH of hexavalent chromium sample after addition of buffer: ~9.5 CH-EB-0221-03 Sample CH-EB-0221-03 was collected from QED bladder pump #33121; final pH of hexavalent chromium sample after addition of buffer: ~9.5 CH-EB-0221-04 Sample CH-EB-0221-04 was collected from QED bladder pump #R9723; final pH of hexavalent chromium sample after addition of buffer: ~9.5 Nater quality samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the hexavalent chromium samples were checked and adjusted in the field according to the procedure outlined in the QAPP. Sample Management Samples were relinquished to the Eurofins courier. **Investigation-Derived Waste Management** Previously-generated waste remaining on site: Eight drums of soil generated during drilling activities within containment. ~2,000 gallons of water generated during development and sampling is contained within a plastic frac tank Currently-generated waste: ~110 gallons of water has been generated and will be added to the frac tank. 6 bags of garbage, 200ft of HDPE tubing have been disposed of, with permission, in the motorpool dumpsters The AECOM team left the site for the day at 1730. NORK COMPLETED BY AECOM SUBCONTRACTORS None

2/26/2021

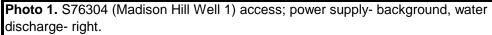
Friday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

WRITTEN BY: James Christopher PROJECT NUMBER: 60443903 DR No. 23 AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS Vehicles were used to transport heavy or bulky equipment whenever possible. SITE OBSERVATIONS None **ATTACHMENTS** None Site Representative (Signature): James Christopher


Contractor Daily Reports

DATE: 2/26/2021 Friday

DR No. 23 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 2. S76304 water quality; 84.2 NTU, steady 1 gpm discharge rate.

Contractor Daily Reports DATE: 2/27/2021 Saturday PROJECT NUMBER: 60443903 WRITTEN BY: James Christopher DR No. 24 Weather: H 49°F/L 37°F, rain Days without a lost time injury: 24 **EQUIPMENT (Active/Inactive): COMPANY:** VISITORS/AFFILIATION: NAME: HRS TRADE: James Christopher AECOM Site Supervisor Solonist WLM (1/0) 5 None Mike Glinski 5 SSHO AECOM YSI 6920 V2 (1/0) Matthew Kerr 5 Scientist **AECOM** Hach Turbidity Meter (1/0) Chanel Hardy **AECOM** MiniRae 3000 PID (1/0) 5 Scientist Mega-Purge Whale Pump (1/0) DAILY TOTAL 20 TOTAL TO DATE 709.5 (on-site hours only) SUBCONTRACTORS: SITE DELIVERIES None None WORKED PERFORMED BY AECOM The AECOM team arrived on site at 0700, completed the Morning Tailgate Health and Safety Meeting, and reviewed the health and safety procedures and activity hazard analyses associated with the scheduled field work for the day. Well Development Well redevelopment was completed for S76304 (Madison Hill Well 1): S 76304 (Madison Hill Well 1) Total depth of S76304 is measured at 116 feet below top of riser, construction details indicate the total depth to be 141 feet bgs; the total minimum redevelopment purge (3x well volume) was estimated to be 270 gallons. Previous attempts to develop S76304 utilizing a Waterra pump failed upon the loss of four check valves. 10 gallons total had been purged earlier in the week. A Mega-Purge 3 stage submersible whale pump installed to the maximum achievable depth, ~87 feet below top of riser. The well was purged at ~1 gpm (maximum flow for this model and depth), an additional 230 gallons total were purged from S76304; total purge volume 290 gallons and a final turbidity of 0.62 NTU was recorded. Sampling The following groundwater sample was collected: S76304-0221 Sample S76304-0221 was collected via low-flow sampling using a bladder pump; final turbidity: 0.62 NTU, final pH of the hexavalent chromium sample after addition of buffer: ~9.5 Water quality samples were collected for analysis of VOCs, SVOCs/PAHs, PCBs, and total and dissolved metals (incl. hexavalent chromium and mercury). The pH of the hexavalent chromium samples were checked and adjusted in the field according to the procedure outlined in the QAPP. Sample Management The final sample was transported by AECOM to the analytical laboratory, Eurofins Lancaster Laboratories Environmental, LLC., in Lancaster, PA. **Investigation-Derived Waste Management** Previously-generated waste remaining on site: Eight drums of soil generated during drilling activities within containment. ~2,000 gallons of water generated during development and sampling is contained within a plastic frac tank Currently-generated waste: ~340 gallons of water has been generated and will be added to the frac tank. 8 bags of garbage, 400 feet of tubing have been disposed of, with permission, in the motorpool dumpsters. The AECOM team demobilized from the site at 1200. WORK COMPLETED BY AECOM SUBCONTRACTORS None

2/27/2021

Saturday

DATE:

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

WRITTEN BY: James Christopher DR No. 24 PROJECT NUMBER: 60443903 AGREEMENTS MADE/CONVERSATIONS (Refer to telecons, phone records, and/or logbooks for details) None REQUEST FOR INFORMATION (RFI) None TRANSMITTALS / SUBMITTALS None AIR MONITORING COMMENTS: None SAFETY OBSERVATIONS/VIOLATIONS/COMMENTS Wire cutters were used to clip zip-ties from the tubing/wire setup (the proper tool for the job); personnel wore appropriate work gloves for the task, as well. SITE OBSERVATIONS None **ATTACHMENTS** None Site Representative (Signature): James Christopher

Contractor Daily Reports

DATE: 2/27/2021 Saturday

DR No. 24 WRITTEN BY: James Christopher PROJECT NUMBER: 60443903

Daily Photos

Photo 1. Purge water transfer to the frac tank at the motorpool.

Photo 2. Purge water from S76304 (Madison Hill Well 1) at the end of the purge period; 0.62 NTU, steady 1 gpm discharge rate.

Contractor Daily Reports

DR No. 25			WRITTEN BY: Chanel Hardy			PROJECT NUMBER: 60443903			
Weather: H 55°F	L 49°F, cl	•		Days without	a lost time injury:				
NAME:		HRS	TRADE:		COMPANY:	EQUIPMENT (Active/Ina	active): VISITORS/AFFILIATION:		
Chanel Hardy		3.5	Scientist		AECOM	None	Shewen Bian, USACE		
DAILY TOTAL 3.5									
TOTAL TO DATE 693 (on-site h			(on-site h	ours only)					
SUBCONTRACT	ORS:			SITE DELIVERIES					
AWT Environmental Services				None					
WORKED PERFO	DRMED BY	/ AECOM							
AECOM arrived o	n site at 10	00, compl	eted the Mo	orning Tailgate H	lealth and Safety M	leeting, and reviewed the he	ealth and safety procedures and activity		
hazard analyses a	associated	with the so	heduled fiel	ld work for the d	ay.				
IDW Disposal									
AECOM oversaw	disposal a	ctivities of	liquid and s	oil IDW.					
The AECOM team									
WORK COMPLE									
						afety Meeting, and reviewed	I the health and safety procedures and activity		
hazard analyses a	associated	with the so	heduled fiel	ld work for the d	ay.				
							nsported to a land disposal location.		
						n a plastic frac tank was pum	nped out for disposal.		
The frac tank was	pressure v	washed cle	an and rem	oved from the s	ite.				
The AWT team de									
	IADE/CON	VERSATI	ONS (Refer	to telecons, pl	none records, and	or logbooks for details)			
None									
REQUEST FOR I	NFORMAT	ION (RFI)							
None									
TRANSMITTALS	/ SUBMIT	TALS							
None									
AIR MONITORIN	G COMME	NTS:							
None									
SAFETY OBSER	VATIONS/	VIOLATIO	NS/COMME	ENTS					
None									

5/10/2021

United States Army Corps of Engineers Remedial Investigation, Phase IV Camp Hero, Montauk, New York

Contractor Daily Reports

DR No. 25 WRITTEN BY: Chanel Hardy PROJECT NUMBER: 60443903
SITE OBSERVATIONS
None

Site Representative (Signature):

Chanel Hardy

Monday

Daily Photos

ATTACHMENTS

None

DATE:

Photo 1. IDW staging area at the motorpool before removal.

Photo 3. Soil IDW drum storage area at the motorpool prior to removal.

Photo 2. Liquid IDW being pumped out of frac tank.

Photo 4. IDW staging area at the motorpool after removal.

Appendix C2 Community Air Monitoring Data

Community Air Monitoring Data

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

Instrument Name Model Number Serial Number Firmware Version Calibration Date Test Name Test Start Time Test Start Date Test Length [D:H:M] Test Interval [M:S] Mass Average [mg/m3] Mass Minimum [mg/m3] Mass Maximum [mg/m3] Mass TWA [mg/m3] Photometric User Cal Flow User Cal	DustTrak II 8530 8530172403 3.7 6/12/2017 MANUAL_001 12:48:05 PM 12/2/2020 0:03:13 1:00 0.002 0 0.071 0.001 0.76
Flow User Cal Errors Number of Samples	0 193
<u>.</u>	

Elapsed Time [s]	Mass	s [mg/m3] Alarms	Errors
	60	0.071	
	120	0.005	
	180	0.005	

240	0.006
300	0.005
360	0.005
420	0.004
480	0.005
540	0.004
600	0.004
660	0.004
720	0.004
780	0.004
840	0.003
900	0.004
960	0.004
1020	0.003
1080	0.003
1140	0.003
1200	0.004
1260	0.004
1320	0.003
1380	0.004
1440	0.003
1500	0.003
1560	0.003
1620	0.003
1680	0.003

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: DustTrak II	
1740	0.003
1800	0.003
1860	0.003
1920	0.003
1980	0.003
2040	0.003
2100	0.003
2160	0.003
2220	0.003
2280	0.003
2340	0.003
2400	0.003
2460	0.003
2520	0.003
2580	0.003
2640	0.003
2700	0.003
2760	0.003
2820	0.004
2880	0.004
2940	0.003
3000	0.003
3060	0.004
3120	0.003
3180	0.003
3240	0.003
3300	0.003
3360 3420	0.003 0.003
3480	0.003
3540	0.003
3600	0.003
3660	0.003
3720	0.003
3780	0.003
3840	0.003
3900	0.003
3960	0.003
4020	0.003
4080	0.003
4140	0.003
4200	0.003
4260	0.003
4320	0.003
4380	0.003
4440	0.002
4500	0.002

0.003

4560

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

4620	0.003
4680	0.002
4740	0.002
4800	0.002
4860	0.003
4920	0.003
4980	0.002
5040	0.002
5100	0.002
5160	0.002
5220	0.002
5280	0.002
5340	0.002
5400	0.002
5460	0.002
5520	0.002
5580	0.002
5640	0.001
5700	0.002
5760	0.002
5820	0.002
5880	0.002
5940	0.002
6000	0.002
6060	0.001
6120	0.001
6180	0.001
6240	0.002
6300	0.002
6360	0.002
6420	0.002
6480	0.002
6540	0.002
6600	0.002
6660	0.002
6720	0.002
6780	0.001
6840	0.002
6900	0.002
6960	0.002
7020	0.002
7080	0.002
7140	0.002
7200	0.002
7260	0.002
7320	0.001
7380	0.001
7440	0.001

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

	======
7500	0.001
7560	0.001
7620	0.001
7680	0.001
7740	0.001
7800	0.001
7860	0.001
7920	0.001
7980	0.001
8040	0.001
8100	0.001
8160	0.001
8220	0.001
8280	0.001
8340	0.001
8400	0.001
8460	0.001
8520	0.001
8580	0.001
8640	0.001
8700	0.001
8760	0.001
8820	0.001
8880	0.001
8940	0.001
9000	0.001
9060	0.001
9120	0.001
9180	0.001
9240	0.001
9300	0.001
9360	0.001
9420	0.001
9480	0.002
9540	0.001
9600	0.001
9660	0.001
9720	0.001
9780	0.001
9840	0.001
9900	0.001
9960	0.001
10020	0.001
10080	0.001
10140	0
10200	0.001
10260	0.001
10320	0.001

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

10380	0.001
10440	0.001
10500	0.001
10560	0.001
10620	0.001
10680	0.001
10740	0.001
10800	0.001
10860	0.001
10920	0.001
10980	0.001
11040	0.001
11100	0.001
11160	0.001
11220	0.001
11280	0.001
11340	0.001
11400	0.001
11460	0.001
11520	0.001
11580	0.001

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

Instrument Name	DustTrak II
Model Number	8530
Serial Number	8530172403
Firmware Version	3.7
Calibration Date	6/12/2017
Test Name	MANUAL_002
Test Start Time	8:39:56 AM
Test Start Date	12/3/2020
Test Length [D:H:M]	0:03:54
Test Interval [M:S]	1:00
Mass Average [mg/m3]	0.004
Mass Minimum [mg/m3]	0
Mass Maximum [mg/m3]	0.263
Mass TWA [mg/m3]	0.002
Photometric User Cal	0.76
Flow User Cal	0
Errors	
Number of Samples	221

Number of Samples 221

E. I.T. []			A.I.	-
Elapsed Time [s]		Mass [mg/m3]		Errors
	60	0.26		
	120	0.00		
	180	0.00		
	240	0.00		
	300	0.00		
	360	0.00		
	420	0.00		
	480	0.00		
	540	0.00		
	600	0.00		
	660	0.00		
	720	0.00		
	780	0.00		
	840	0.00		
	900	0.00		
	960	0.00		
	1020	0.00		
	1080	0.00		
	1140	0.00		
	1200	0.00	3	
	1260	0.00	3	
	1320	0.00	3	
	1380	0.00	3	
	1440	0.00	3	
	1500	0.00	3	
	1560	0.00		
	1620	0.00	3	
	1680	0.00	3	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

======	
1740	0.003
1800	0.003
1860	0.003
1920	
	0.003
1980	0.003
2040	0.004
2100	0.003
2160	0.003
2220	0.003
2280	0.003
2340	0.003
2400	0.003
2460	0.003
2520	0.003
2580	0.003
2640	0.003
2700	0.003
2760	0.021
2820	0.003
2880	0.003
2940	0.003
3000	0.003
3060	0.002
3120	0.003
3180	0.002
3240	0.002
3300	0.002
3360	0.002
3420	0.002
3480	0.002
3540	0.002
3600	0.002
3660	0.002
3720	0.002
3780	0.002
3840	0.002
3900	0.002
3960	0.002
4020	0.002
4080	0.002
4140	0.002
4200	0.002
4260	0.002
4320	0.002
4380	0.002
4440	0.002
4500	0.002
4560	0.002

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

	========	 ==========	====:
4620	0.002		
4680	0.002		

4620	0.002
4680	0.002
4740	0.002
4800	0.002
4860	0.002
4920	0.002
4980	0.003
5040	0.002
5100	0.002
5160	0.002
5220	0.002
5280	0.002
5340	0.002
5400	0.002
5460	0.002
5520	0.002
5580	
	0.002
5640	0.002
5700	0.002
5760	0.002
5820	0.002
5880	0.001
5940	0.002
6000	0.002
6060	0.002
6120	0.002
6180	0.003
6240	0.002
6300	0.001
6360	0.002
6420	0.001
6480	0.001
6540	0.002
6600	0.002
6660	0.002
6720	0.001
6780	0.001
6840	0.001
6900	0.001
6960	0.001
7020	0.002
7080	0.002
7140	0.002
7200	0.002
7260	0.001
7320	0.002
7380	0.002
7440	0.002

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

	=====
7500	0.002
7560	0.001
7620	0.001
7680	0.001
7740	0.001
8000	0.001
8040	0.001
8100	0.001
8160	0.001
8220	0.001
8280	0.001
8340	0.002
9021	0
9060	0.024
9120	0.004
9180	0.002
9240	0.002
9300	0.001
9360	0.002
9420	0.002
9480	0.002
9540	0.002
9600	0.002
9660	0.002
9720	0.002
9780	0.002
9840	0.002
9900	0.002
9960	0.002
10020	0.002
10080 10140	0.002
	0.002
10200	0.002
10260	0.002
10320	0.002
10380	0.002
10440	0.002
10500	0.002
10560	0.003
10620	0.003
10680	0.003
10740	0.003
10800	0.003
10860	0.003
10920	0.003
10980	0.003
11040	0.002
11100	0.003

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

11160	0.002
11220	0.002
11280	0.002
11340	0.002
11400	0.002
11460	0.002
11520	0.002
11580	0.002
11640	0.003
11700	0.003
11760	0.003
11820	0.003
11880	0.003
11940	0.003
12000	0.004
12060	0.003
12120	0.003
12180	0.003
12240	0.002
12300	0.002
12360	
	0.002
12420	0.002
12480	0.002
12540	0.003
12600	0.003
12660	0.003
12720	0.003
12780	0.003
12840	0.003
12900	0.003
12960	0.003
13020	0.003
13080	0.003
13140	0.003
13200	0.004
13260	0.003
13320	0.004
13380	0.004
13440	0.004
13500	0.004
13560	0.004
13620	0.006
13680	0.004
13740	0.004
13800	0.004
13860	0.004
13920	0.004
13980	0.004

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

14040 0.004

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

Instrument Name	DustTrak II
Model Number	8530
Serial Number	8530172403
Firmware Version	3.7
Calibration Date	6/12/2017
Test Name	MANUAL_003
Test Start Time	11:52:28 AM
Test Start Date	12/4/2020
Test Length [D:H:M]	0:04:08
Test Interval [M:S]	1:00
Mass Average [mg/m3]	0.01
Mass Minimum [mg/m3]	0.006
Mass Maximum [mg/m3]	0.031
Mass TWA [mg/m3]	0.005
Photometric User Cal	0.76
Flow User Cal	0
Errors	
Number of Samples	248

Elapsed Time [s]	Mass	[mg/m3]	Alarms	Errors
	60	0.031		

60	0.031	
120	0.01	
180	0.01	
240	0.013	
300	0.01	
360	0.01	
420	0.008	
480	0.009	
540	0.009	
600	0.008	
660	0.008	
720	0.007	
780	0.007	
840	0.008	
900	0.007	
960	0.008	
1020	0.008	
1080	0.011	
1140	0.011	
1200	0.008	
1260	0.009	
1320	0.007	
1380	0.008	
1440	0.008	
1500	0.008	
1560	0.008	
1620	0.011	
1680	0.008	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

	=======================================

======	======
1740	0.009
1800	0.007
1860	0.01
1920	0.008
1980	0.007
2040	0.011
2100	0.008
2160	0.008
2220	0.003
	0.007
2280	
2340	0.01
2400	0.008
2460	0.008
2520	0.015
2580	0.012
2640	0.01
2700	0.01
2760	0.007
2820	0.008
2880	0.011
2940	0.008
3000	0.008
3060	0.009
3120	0.011
3180	0.007
3240	0.006
3300	0.007
3360	0.007
3420	
	0.008
3480	0.016
3540	0.008
3600	0.007
3660	0.009
3720	0.008
3780	0.011
3840	0.01
3900	0.007
3960	0.007
4020	0.009
4080	0.008
4140	0.009
4200	0.008
4260	0.008
4320	0.007
4380	0.008
4440	0.009
4500	0.007
4560	0.008
.555	0.000

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

		 =======================================
4620	0.009	
4680	0.006	

4620	0.009
4680	0.007
	0.008
4740	
4800	0.008
4860	0.009
4920	0.01
4980	0.008
5040	0.008
5100	0.009
5160	0.009
5220	0.009
5280	0.008
5340	0.009
5400	0.007
5460	0.007
5520	0.007
5580	0.012
5640	0.012
5700	0.008
5760	0.009
5820	0.008
5880	0.009
5940	0.007
6000	0.011
6060	0.008
6120	0.009
6180	0.007
6240	0.008
6300	0.008
6360	0.008
	0.013
6420	
6480	0.008
6540	0.01
6600	0.009
6660	0.012
6720	0.009
6780	0.01
6840	0.007
6900	0.009
6960	0.009
7020	0.009
7080	0.008
7140	0.013
7200	0.008
7260	0.011
7320	0.009
7380	0.012
7440	0.01

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

======	
7500	0.009
7560	0.009
7620	0.011
7680	0.01
7740	0.014
7800	0.011
7860	0.016
7920	0.011
7980	0.017
8040	0.013
8100	0.018
8160	0.017
8220	0.01
8280	0.012
8340	0.012
8400	0.008
8460	0.011
8520	0.01
8580	0.011
8640	0.013
8700	0.009
8760	0.014
8820	0.012
8880	0.02
8940	0.017
9000	0.015
9060	0.012
9120	0.013
9180	0.012
9240	0.011
9300	0.008
9360	0.015
9420	0.007
9480	0.01
9540	0.011
9600	0.008
9660	0.009
9720	0.009
9780	0.01
9840	0.008
9900	0.008
9960	0.007
10020	0.007
10080	0.007
10140	0.008
10200	0.007
10260	0.007
10320	0.007
•	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

10380	0.008
10440	0.008
10500	
	0.008
10560	0.008
10620	0.012
10680	0.008
10740	0.01
10800	0.009
10860	0.009
10920	0.021
10980	0.015
11040	0.031
11100	0.018
11160	0.018
11220	0.01
11280	0.011
11340	0.01
11400	0.009
11460	0.007
11520	0.01
11580	0.008
11640	0.01
11700	0.009
	0.007
11760	
11820	0.011
11880	0.009
11940	0.009
12000	0.01
12060	0.009
12120	0.009
12180	0.01
12240	0.011
12300	0.009
12360	0.011
12420	0.009
12480	0.011
12540	0.011
12600	0.008
12660	0.01
12720	0.01
12780	0.01
12840	0.01
12900	0.008
12960	0.000
13020	0.009
13080	0.012
13140	0.01
13200	0.014
.0200	J.U1∃

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

		=======================================

13260 13320 13380	0.011 0.012 0.013
13440 13500	0.009 0.01
13560	0.008
13620	0.011
13680	0.008
13740	0.009
13800	0.01
13860	0.009
13920	0.011
13980	0.009
14040	0.009
14100	0.008
14160	0.011
14220	0.009
14280	0.01
14340	0.009
14400	0.009
14460	0.009
14520	0.01
14580	0.009
14640	0.011
14700	0.01
14760	0.009
14820	0.01
14880	0.009

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: DustTrak II

Instrument Name Model Number	DustTrak II 8530
Serial Number	8530172403
Firmware Version	3.7
Calibration Date	6/12/2017
Test Name	MANUAL_004
Test Start Time	9:52:21 AM
Test Start Date	12/6/2020
Test Length [D:H:M]	0:04:14
Test Interval [M:S]	1:00
Mass Average [mg/m3]	0.001
Mass Minimum [mg/m3]	0
Mass Maximum [mg/m3]	0.015
Mass TWA [mg/m3]	0.001
Photometric User Cal	0.76
Flow User Cal	0
Errors	Flow Error
Number of Samples	138

Elapsed Time [s] Mass [mg/m3] A	larms Errors
---------------------------------	--------------

	Mass [mg/mo]	/ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
60	0.005	
120	0.015	
180	0.001	
240	0.002	
300	0.001	
360	0.002	
420	0.009	
480	0.001	
540	0.001	
600	0.001	
660	0.001	
720	0.001	
780	0.001	
840	0.002	
900	0.001	
960	0.001	
1020	0.001	
1080	0.001	
1140	0.001	
1200	0.001	
1260	0.001	
1320	0	
1380	0.001	
1440	0	
1500	0	
1560	0	
1620	0.001	
1680	0.002	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Instrument: DustTrak II		
1740	0	
1800	0	
1860	0	
1920	0	
1980	0.001	
2040	0.004	
2100	0.003	
2160	0.001	
2220	0	
2280	0	
2340	0	
2400	0	
2460	0.001	
2520	0.001	
2580	0	
2908	0	
2940	0.001	
3000	0	
3060	0	
3120	0.001	
3180	0	
3240	0	
3741	0	
3780	0.003	
3840	0.001	
3900	0	
3960	0.002	
4020	0.001	
4080	0.002	
4140	0.001	
4200	0.002	
4260	0.001	
4320	0.013	Flow Error
4380	0.010	How Ellor
4440	0.001	
4500	0.002	
4560	0.001	
4620	0.002	
7634	0	
7680	0.003	
7740	0.002	
7800	0.004	
7860	0.004	
7920	0.001	
7980	0.002	
8040	0.003	
8100	0.003	
8160	0.001	
0100	0.002	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

8220	0.001
0200	0.001

8220	0.001	
8280	0.001	
8340	0.001	Flow Error
8400	0.007	
8460	0.001	
8520	0	
8580	0.001	
8640	0.001	
10701	0	
10740	0.003	
10800	0.001	
10860	0.003	
10920	0.003	
10980	0.002	
11040	0.003	
11100	0.001	
11160	0	
11220	0.004	
11280	0.001	
11340	0.002	
11400	0	
11460	0.001	Flow Error
11520	0	Flow Error
11580	0	Flow Error
11640	0	Flow Error
11700	0.007	Flow Error
12975	0	
13020	0.009	
13080	0.003	
13140	0.002	
13200	0.001	
13260	0.002	
13320	0.001	
13380	0.001	
13440	0	
13500	0.001	
13560	0.002	
13620	0	
13680	0.002	
13740	0	
13800	0	
13860	0.001	
13920	0	
13980	0	
14040	0	
14100	0.001	
14160	0	
14220	0	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

		=========	==========
14280	0		
1/13/10	0.002		

1 1200	O	
14340	0.002	
14400	0.001	
14460	0.001	
14520	0.001	
14580	0.001	
14640	0	
14700	0	Flow Error
14760	0.001	Flow Error
14820	0.001	Flow Error
14880	0	Flow Error
14940	0.001	Flow Error
15000	0.001	Flow Error
15248	0	

Geologist: M. Glinski, AECO Instrument: MiniRAE 3000(PGM-7320)	
20/12/01 11:32	*****	
Summary		
Unit Name Unit SN Unit Firmware Ver	MiniRAE 3000(PGM-7320) 592-900989 V2.16	
Running Mode Datalog Mode Diagnostic Mode Stop Reason	Hygiene Mode Auto No Pause in Menu Mode	
Site ID User ID	QES00018 PES00000	
Begin End Sample Period(s) Number of Records	12/1/2020 11:32 12/1/2020 11:33 900 0	
Sensor Sensor SN Measure Type Span Span 2 Low Alarm High Alarm Over Alarm STEL Alarm TWA Alarm Measurement Gas Calibration Time	PID(ppm) S023030194J8 Min; Avg; Max; Real 100 1000 50 100 15000 25 10 Isobutylene 11/18/2020 6:53	
	**********	*******
Datalog 0 record.		
20/12/02 08:33	*****	*****
Summary		
Unit Name Unit SN Unit Firmware Ver	MiniRAE 3000(PGM-7320) 592-900989 V2.16	
Running Mode Datalog Mode Diagnostic Mode Stop Reason	Hygiene Mode Manual No Pause in Menu Mode	

QES00018

Site ID

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320) ______

PES00000 User ID

Begin 12/2/2020 8:33 End 12/2/2020 8:34 Sample Period(s) 900 Number of Records 0

Sensor PID(ppm)
Sensor SN S023030194J8
Measure Type Min; Avg; Max; Real

Span 100 Span 2 1000 Low Alarm 50 High Alarm 100 Over Alarm 15000 STEL Alarm 25 TWA Alarm 10

Measurement Gas Isobutylene

Calibration Time 12/2/2020 8:32

Datalog

0 record.

20/12/02 08:36

Summary

Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-900989
Unit Firmware Ver V2.16

Running Mode Hygiene Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Stop by User

QES00018 PES00000 Site ID User ID

Begin 12/2/2020 8:36 12/2/2020 8:36 End Sample Period(s) 60 Number of Records 0

Sensor PID(ppm)
Sensor SN S02303019
Measure Type Min; Avg; S023030194J8 Min; Avg; Max; Real

Span 100 Span 2 1000 Low Alarm 50 High Alarm 100

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320) ______ Over Alarm 15000 STEL Alarm 25 TWA Alarm 10 Measurement Gas Isobutylene Calibration Time 12/2/2020 8:32 **************** Datalog 0 record. ______ 20/12/02 08:36 ******************* Summary -----Unit Name MiniRAE 3000(PGM-7320) Unit SN 592-900989 Unit Firmware Ver V2.16 _____ Running Mode Hygiene Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Power Down Stop Reason Power Down -----Site ID QES00018 User ID PES00000 -----Begin 12/2/2020 8:36 End 12/2/2020 8:36 Sample Period(s) 60 Number of Records 0 Sensor PID(ppm) Sensor SN S023030194J8 Measure Type Min; Avg; Max; Real Span 100 Span 2 1000 Low Alarm 50 High Alarm 100 Over Alarm 15000 STEL Alarm 25 TWA Alarm 10 Measurement Gas Isobutylene 12/2/2020 8:32 Calibration Time *************** Datalog 0 record. ______ 20/12/02 12:51

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

c.		_	~		"
N	ш	m	m	າລ	rv

Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-900989
Unit Firmware Ver V2.16

Running Mode Hygiene Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Stop by User

Site ID

QES00018 PES00000 User ID

Begin 12/2/2020 12:51 End 12/2/2020 16:04 Sample Period(s) 60 192

Number of Records _____

SensorPID(ppm)Sensor SNS023030194J8Measure TypeMin; Avg; Max; Min; Avg; Max; Real

Span 100 Span 2 1000 Low Alarm 50 High Alarm 100 Over Alarm 15000 STEL Alarm 25 TWA Alarm 10 Isobutylene Measurement Gas

12/2/2020 8:32 Calibration Time

Peak 0.5 Min 0.1 Average 0.1

Datalog

Datalog			PID(ppm)	PID(ppm)	PID(ppm)	PID(ppm)
Index	Date/T	ime	(Min)	(Avg)	(Max)	(Real)
	1	12/2/2020 12:52	0	0.1	0.1	0.1
	2	12/2/2020 12:53	0.1	0.1	0.1	0.1
	3	12/2/2020 12:54	0.1	0.1	0.1	0.1
	4	12/2/2020 12:55	0.1	0.1	0.1	0.1
	5	12/2/2020 12:56	0.1	0.1	0.1	0.1
	6	12/2/2020 12:57	0.1	0.1	0.1	0.1
	7	12/2/2020 12:58	0.1	0.1	0.1	0.1
	8	12/2/2020 12:59	0.1	0.1	0.1	0.1
	9	12/2/2020 13:00	0.1	0.1	0.1	0.1
	10	12/2/2020 13:01	0.1	0.1	0.1	0.1
	11	12/2/2020 13:02	0.1	0.1	0.1	0.1
	12	12/2/2020 13:03	0.1	0.1	0.1	0.1
	13	12/2/2020 13:04	0.1	0.1	0.1	0.1
	14	12/2/2020 13:05	0.1	0.1	0.1	0.1
	15	12/2/2020 13:06	0.1	0.1	0.1	0.1

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

rument: MiniRAE	•	(320)					
=======	====== 16	12/2/2020 13:07	0.1	====== 0.1	0.1	0.1	======
	17	12/2/2020 13:07	0.1	0.1	0.1	0.1	
	18	12/2/2020 13:09	0.1	0.1	0.1	0.1	
	19	12/2/2020 13:10	0.1	0.1	0.5	0.5	
	20	12/2/2020 13:11	0.1	0.2	1.2	0.1	
	21	12/2/2020 13:12	0.1	0.1	0.1	0.1	
	22	12/2/2020 13:13	0.1	0.1	0.1	0.1	
	23	12/2/2020 13:14	0.1	0.1	0.1	0.1	
	24	12/2/2020 13:15	0.1	0.1	0.1	0.1	
	25	12/2/2020 13:16	0.1	0.1	0.1	0.1	
	26	12/2/2020 13:17	0.1	0.1	0.1	0.1	
	27	12/2/2020 13:18	0.1	0.1	0.1	0.1	
	28	12/2/2020 13:19	0.1	0.1	0.1	0.1	
	29	12/2/2020 13:20	0.1	0.1	0.1	0.1	
	30	12/2/2020 13:21	0.1	0.1	0.1	0.1	
	31	12/2/2020 13:22	0.1	0.1	0.1	0.1	
	32	12/2/2020 13:23	0.1	0.1	0.1	0.1	
	33	12/2/2020 13:24	0.1	0.1	0.1	0.1	
	34	12/2/2020 13:25	0.1	0.1	0.1	0.1	
	35	12/2/2020 13:26	0.1	0.1	0.1	0.1	
	36	12/2/2020 13:27	0.1	0.1	0.1	0.1	
	37	12/2/2020 13:28	0.1	0.1	0.1	0.1	
	38	12/2/2020 13:29	0.1	0.1	0.1	0.1	
	39	12/2/2020 13:30	0.1	0.1	0.1	0.1	
	40	12/2/2020 13:31	0.1	0.1	0.1	0.1	
	41	12/2/2020 13:32	0.1	0.1	0.1	0.1	
	42	12/2/2020 13:33	0.1	0.1	0.1	0.1	
	43	12/2/2020 13:34	0.1	0.1	0.1	0.1	
	44	12/2/2020 13:35	0.1	0.1	0.1	0.1	
	45	12/2/2020 13:36	0.1	0.1	0.1	0.1	
	46	12/2/2020 13:37	0.1	0.1	0.2	0.1	
	47	12/2/2020 13:38	0.1	0.1	0.1	0.1	
	48	12/2/2020 13:39	0.1	0.1	0.1	0.1	
	49	12/2/2020 13:40	0.1	0.1	0.1	0.1	
	50	12/2/2020 13:41	0.1	0.1	0.1	0.1	
	51 52	12/2/2020 13:42	0.1	0.1	0.1	0.1	
	52 53	12/2/2020 13:43	0.1	0.1	0.1	0.1	
	53 54	12/2/2020 13:44	0.1	0.1	0.1	0.1	
	5 4 55	12/2/2020 13:45 12/2/2020 13:46	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	
	56	12/2/2020 13:47	0.1	0.1	0.1	0.1	
	57	12/2/2020 13:47	0.1	0.1	0.1	0.1	
	58	12/2/2020 13:49	0.1	0.1	0.1	0.1	
	59	12/2/2020 13:17	0.1	0.1	0.1	0.1	
	60	12/2/2020 13:51	0.1	0.1	0.1	0.1	
	61	12/2/2020 13:52	0.1	0.1	0.1	0.1	
	62	12/2/2020 13:53	0.1	0.1	0.1	0.1	
	63	12/2/2020 13:54	0.1	0.1	0.1	0.1	
	64	12/2/2020 13:55	0.1	0.1	0.1	0.1	
	65	12/2/2020 13:56	0.1	0.1	0.1	0.1	
	66	12/2/2020 13:57	0.1	0.1	0.1	0.1	
	67	12/2/2020 13:58	0.1	0.1	0.1	0.1	
	68	12/2/2020 13:59	0.1	0.1	0.1	0.1	
	69	12/2/2020 14:00	0.1	0.1	0.1	0.1	

Activity: Down-wind air monitoring during drilling operations

123

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	iniRAE 3000(PGM-73						
=====	======================================	======================================	-===== 0.1	====== 0.1	0.1	0.1	======
	71	12/2/2020 14:02	0.1	0.1	0.1	0.1	
	72	12/2/2020 14:03	0.1	0.1	0.1	0.1	
	73	12/2/2020 14:04	0.1	0.1	0.1	0.1	
	74	12/2/2020 14:05	0.1	0.1	0.1	0.1	
	 75	12/2/2020 14:06	0.1	0.1	0.1	0.1	
	76	12/2/2020 14:07	0.1	0.1	0.1	0.1	
	77	12/2/2020 14:08	0.1	0.1	0.1	0.1	
	78	12/2/2020 14:09	0.1	0.1	0.1	0.1	
	79	12/2/2020 14:10	0.1	0.1	0.1	0.1	
	80	12/2/2020 14:11	0.1	0.1	0.1	0.1	
	81	12/2/2020 14:12	0.1	0.1	0.1	0.1	
	82	12/2/2020 14:13	0.1	0.1	0.1	0.1	
	83	12/2/2020 14:14	0.1	0.1	0.1	0.1	
	84	12/2/2020 14:15	0.1	0.1	0.1	0.1	
	85	12/2/2020 14:16	0.1	0.1	0.1	0.1	
	86	12/2/2020 14:17	0.1	0.1	0.1	0.1	
	87	12/2/2020 14:18	0.1	0.1	0.1	0.1	
	88	12/2/2020 14:19	0.1	0.1	0.1	0.1	
	89	12/2/2020 14:17	0.1	0.1	0.1	0.1	
	90	12/2/2020 14:21	0.1	0.1	0.1	0.1	
	91	12/2/2020 14:21	0.1	0.1	0.1	0.1	
	92	12/2/2020 14:23	0.1	0.1	0.1	0.1	
	93	12/2/2020 14:24	0.1	0.1	0.1	0.1	
	94	12/2/2020 14:25	0.1	0.1	0.1	0.1	
	95	12/2/2020 14:26	0.1	0.1	0.1	0.1	
	96	12/2/2020 14:27	0.1	0.1	0.1	0.1	
	97	12/2/2020 14:28	0.1	0.1	0.1	0.1	
	98	12/2/2020 14:29	0.1	0.1	0.1	0.1	
	99	12/2/2020 14:30	0.1	0.1	0.1	0.1	
	100	12/2/2020 14:31	0.1	0.1	0.1	0.1	
	101	12/2/2020 14:32	0.1	0.1	0.1	0.1	
	102	12/2/2020 14:33	0.1	0.1	0.1	0.1	
	103	12/2/2020 14:34	0.1	0.1	0.1	0.1	
	104	12/2/2020 14:35	0.1	0.1	0.1	0.1	
	105	12/2/2020 14:36	0.1	0.1	0.1	0.1	
	106	12/2/2020 14:37	0.1	0.1	0.1	0.1	
	107	12/2/2020 14:38	0.1	0.1	0.1	0.1	
	108	12/2/2020 14:39	0.1	0.1	0.1	0.1	
	109	12/2/2020 14:40	0.1	0.1	0.1	0.1	
	110	12/2/2020 14:41	0.1	0.1	0.1	0.1	
	111	12/2/2020 14:42	0.1	0.1	0.1	0.1	
	112	12/2/2020 14:43	0.1	0.1	0.1	0.1	
	113	12/2/2020 14:44	0.1	0.1	0.1	0.1	
	114	12/2/2020 14:45	0.1	0.1	0.1	0.1	
	115	12/2/2020 14:46	0.1	0.1	0.1	0.1	
	116	12/2/2020 14:47	0.1	0.1	0.1	0.1	
	117	12/2/2020 14:48	0.1	0.1	0.1	0.1	
	118	12/2/2020 14:49	0.1	0.1	0.1	0.1	
	119	12/2/2020 14:50	0.1	0.1	0.1	0.1	
	120	12/2/2020 14:51	0.1	0.1	0.1	0.1	
	121	12/2/2020 14:52	0.1	0.1	0.1	0.1	
	122	12/2/2020 14:53	0.1	0.1	0.1	0.1	
	100	10/0/0000 14 54	0.1	0.1	0.4	0.4	

0.1 0.1 0.1

0.1

12/2/2020 14:54

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

rument: MiniRAE 3000(PGM-7320)					
124	======================================	0.1	0.1	======= 0.1	0.1
125	12/2/2020 14:56	0.1	0.1	0.1	0.1
126	12/2/2020 14:57	0.1	0.1	0.1	0.1
127	12/2/2020 14:58	0.1	0.1	0.1	0.1
128	12/2/2020 14:59	0.1	0.1	0.1	0.1
129	12/2/2020 15:00	0.1	0.1	0.1	0.1
130	12/2/2020 15:01	0.1	0.1	0.1	0.1
131	12/2/2020 15:02	0.1	0.1	0.1	0.1
132	12/2/2020 15:03	0.1	0.1	0.1	0.1
133	12/2/2020 15:04	0.1	0.1	0.1	0.1
134	12/2/2020 15:05	0.1	0.1	0.1	0.1
135	12/2/2020 15:06	0.1	0.1	0.1	0.1
136	12/2/2020 15:07	0.1	0.1	0.1	0.1
137	12/2/2020 15:08	0.1	0.1	0.1	0.1
138	12/2/2020 15:09	0.1	0.1	0.1	0.1
139	12/2/2020 15:10	0.1	0.1	0.1	0.1
140	12/2/2020 15:11	0.1	0.1	0.1	0.1
141	12/2/2020 15:12	0.1	0.1	0.1	0.1
142	12/2/2020 15:13	0.1	0.1	0.1	0.1
143	12/2/2020 15:14	0.1	0.1	0.1	0.1
144	12/2/2020 15:15	0.1	0.1	0.1	0.1
145	12/2/2020 15:16	0.1	0.1	0.1	0.1
146	12/2/2020 15:17	0.1	0.1	0.1	0.1
147 148	12/2/2020 15:18	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1
149	12/2/2020 15:19 12/2/2020 15:20	0.1	0.1	0.1	0.1
150	12/2/2020 15:21	0.1	0.1	0.1	0.1
151	12/2/2020 15:21	0.1	0.1	0.1	0.1
152	12/2/2020 15:23	0.1	0.1	0.1	0.1
153	12/2/2020 15:24	0.1	0.1	0.1	0.1
154	12/2/2020 15:25	0.1	0.1	0.1	0.1
155	12/2/2020 15:26	0.1	0.1	0.1	0.1
156	12/2/2020 15:27	0.1	0.1	0.1	0.1
157	12/2/2020 15:28	0.1	0.1	0.1	0.1
158	12/2/2020 15:29	0.1	0.1	0.1	0.1
159	12/2/2020 15:30	0.1	0.1	0.1	0.1
160	12/2/2020 15:31	0.1	0.1	0.1	0.1
161	12/2/2020 15:32	0.1	0.1	0.1	0.1
162	12/2/2020 15:33	0.1	0.1	0.1	0.1
163	12/2/2020 15:34	0.1	0.1	0.1	0.1
164	12/2/2020 15:35	0.1	0.1	0.1	0.1
165	12/2/2020 15:36	0.1	0.1	0.1	0.1
166	12/2/2020 15:37	0.1	0.1	0.1	0.1
167	12/2/2020 15:38	0.1	0.1	0.1	0.1
168	12/2/2020 15:39	0.1	0.1	0.1	0.1
169	12/2/2020 15:40	0.1	0.1	0.1	0.1
170	12/2/2020 15:41	0.1	0.1	0.1	0.1
171	12/2/2020 15:42	0.1	0.1	0.1	0.1
172	12/2/2020 15:43	0.1	0.1	0.1	0.1
173	12/2/2020 15:44	0.1	0.1	0.1	0.1
174	12/2/2020 15:45	0.1	0.1	0.1	0.1
175	12/2/2020 15:46	0.1	0.1	0.1	0.1
176	12/2/2020 15:47	0.1	0.1	0.1	0.1
177	12/2/2020 15:48	0.1	0.1	0.1	0.1

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

=====	========		======	======		=======	======
	178	12/2/2020 15:49	0.1	0.1	0.1	0.1	
	179	12/2/2020 15:50	0.1	0.1	0.1	0.1	
	180	12/2/2020 15:51	0.1	0.1	0.1	0.1	
	181	12/2/2020 15:52	0.1	0.1	0.1	0.1	
	182	12/2/2020 15:53	0.1	0.1	0.1	0.1	
	183	12/2/2020 15:54	0.1	0.1	0.1	0.1	
	184	12/2/2020 15:55	0.1	0.1	0.1	0.1	
	185	12/2/2020 15:56	0.1	0.1	0.1	0.1	
	186	12/2/2020 15:57	0.1	0.1	0.1	0.1	
	187	12/2/2020 15:58	0.1	0.1	0.1	0.1	
	188	12/2/2020 15:59	0.1	0.1	0.1	0.1	
	189	12/2/2020 16:00	0.1	0.1	0.1	0.1	
	190	12/2/2020 16:01	0.1	0.1	0.1	0.1	
	191	12/2/2020 16:02	0.1	0.1	0.1	0.1	
	192	12/2/2020 16:03	0.1	0.1	0.1	0.1	
Peak			0.1	0.2	1.2	0.5	
Min			0	0.1	0.1	0.1	
Average			0.1	0.1	0.1	0.1	

TWA/STEL

			PID(ppm)	PID(ppm)
Index	Date/Time	9	(TWA)	(STEL)
	1	12/2/2020 12:52	0	
	2	12/2/2020 12:53	0	
	3	12/2/2020 12:54	0	
	4	12/2/2020 12:55	0	
	5	12/2/2020 12:56	0	
	6	12/2/2020 12:57	0	
	7	12/2/2020 12:58	0	
	8	12/2/2020 12:59	0	
	9	12/2/2020 13:00	0	
•	10	12/2/2020 13:01	0	
•	11	12/2/2020 13:02	0	
•	12	12/2/2020 13:03	0	
•	13	12/2/2020 13:04	0	
•	14	12/2/2020 13:05	0	
•	15	12/2/2020 13:06	0	0.1
•	16	12/2/2020 13:07	0	0.1
•	17	12/2/2020 13:08	0	0.1
•	18	12/2/2020 13:09	0	0.1
•	19	12/2/2020 13:10	0	0.1
2	20	12/2/2020 13:11	0	0.1
	21	12/2/2020 13:12	0	0.1
2	22	12/2/2020 13:13	0	0.1
2	23	12/2/2020 13:14	0	0.1
	24	12/2/2020 13:15	0	0.1
2	25	12/2/2020 13:16	0	0.1
2	26	12/2/2020 13:17	0	0.1
	27	12/2/2020 13:18	0	0.1
2	28	12/2/2020 13:19	0	0.1
2	29	12/2/2020 13:20	0	0.1
	30	12/2/2020 13:21	0	0.1
(31	12/2/2020 13:22	0	0.1

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Inst

strument: M	liniRAE 3000(PGM-73				
=====	32	12/2/2020 13:23	0	0.1	=======================================
	33	12/2/2020 13:24	0	0.1	
	34	12/2/2020 13:25	0	0.1	
	35	12/2/2020 13:26	0	0.1	
	36	12/2/2020 13:27	0	0.1	
	37	12/2/2020 13:28	0	0.1	
	38	12/2/2020 13:29	0	0.1	
	39	12/2/2020 13:30	0	0.1	
	40	12/2/2020 13:31	0	0.1	
	41	12/2/2020 13:32	0	0.1	
	42	12/2/2020 13:33	0	0.1	
	43	12/2/2020 13:34	0	0.1	
	44	12/2/2020 13:35	0	0.1	
	45	12/2/2020 13:36	0	0.1	
	46	12/2/2020 13:37	0	0.1	
	47	12/2/2020 13:38	0	0.1	
	48	12/2/2020 13:39	0	0.1	
	49	12/2/2020 13:40	0	0.1	
	50	12/2/2020 13:41	0	0.1	
	51	12/2/2020 13:42	0	0.1	
	52	12/2/2020 13:43	0	0.1	
	53	12/2/2020 13:44	0	0.1	
	54	12/2/2020 13:45	0	0.1	
	55	12/2/2020 13:46	0	0.1	
	56	12/2/2020 13:47	0	0.1	
	57	12/2/2020 13:48	0	0.1	
	58	12/2/2020 13:49	0	0.1	
	59	12/2/2020 13:50	0	0.1	
	60	12/2/2020 13:51	0	0.1	
	61	12/2/2020 13:52	0	0.1	
	62	12/2/2020 13:53	0	0.1	
	63	12/2/2020 13:54	0	0.1	
	64	12/2/2020 13:55	0	0.1	
	65	12/2/2020 13:56	0	0.1	
	66	12/2/2020 13:57	0	0.1	
	67	12/2/2020 13:58	0	0.1	
	68	12/2/2020 13:59	0	0.1	
	69	12/2/2020 14:00	0	0.1	
	70	12/2/2020 14:01	0	0.1	
	71	12/2/2020 14:02	0	0.1	
	72	12/2/2020 14:03	0	0.1	
	73	12/2/2020 14:04	0	0.1	
	74	12/2/2020 14:05	0	0.1	
	75	12/2/2020 14:06	0	0.1	
	76	12/2/2020 14:07	0	0.1	
	77	12/2/2020 14:08	0	0.1	
	78	12/2/2020 14:09	0	0.1	
	79	12/2/2020 14:10	0	0.1	
	80	12/2/2020 14:11	0	0.1	
	81	12/2/2020 14:12	0	0.1	
	82	12/2/2020 14:13	0	0.1	
	83	12/2/2020 14:14	0	0.1	
	84	12/2/2020 14:15	0	0.1	
	85	12/2/2020 14:16	0	0.1	

Activity: Down-wind air monitoring during drilling operations

139

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	MiniRAE 3000(PGM-73				
====:	======================================	======================================	0	0.1	:===========
	87	12/2/2020 14:18	0	0.1	
	88	12/2/2020 14:19	0	0.1	
	89	12/2/2020 14:20	0	0.1	
	90	12/2/2020 14:21	0	0.1	
	91	12/2/2020 14:22	0	0.1	
	92	12/2/2020 14:23	0	0.1	
	93	12/2/2020 14:24	0	0.1	
	94	12/2/2020 14:25	0	0.1	
	95	12/2/2020 14:26	0	0.1	
	96	12/2/2020 14:27	0	0.1	
	97	12/2/2020 14:28	0	0.1	
	98	12/2/2020 14:29	0	0.1	
	99	12/2/2020 14:27	0	0.1	
	100	12/2/2020 14:31	0	0.1	
	101	12/2/2020 14:31	0	0.1	
	102	12/2/2020 14:33	0	0.1	
	103	12/2/2020 14:34	0	0.1	
	104	12/2/2020 14:35	0	0.1	
	105	12/2/2020 14:36	0	0.1	
	106	12/2/2020 14:37	0	0.1	
	107	12/2/2020 14:38	0	0.1	
	108	12/2/2020 14:39	0	0.1	
	109	12/2/2020 14:40	0	0.1	
	110	12/2/2020 14:41	0	0.1	
	111	12/2/2020 14:42	0	0.1	
	112	12/2/2020 14:43	0	0.1	
	113	12/2/2020 14:44	0	0.1	
	114	12/2/2020 14:45	0	0.1	
	115	12/2/2020 14:46	0	0.1	
	116	12/2/2020 14:47	0	0.1	
	117	12/2/2020 14:48	0	0.1	
	118	12/2/2020 14:49	0	0.1	
	119	12/2/2020 14:50	0	0.1	
	120	12/2/2020 14:51	0	0.1	
	121	12/2/2020 14:52	0	0.1	
	122	12/2/2020 14:53	0	0.1	
	123	12/2/2020 14:54	0	0.1	
	124	12/2/2020 14:55	0	0.1	
	125	12/2/2020 14:56	0	0.1	
	126	12/2/2020 14:57	0	0.1	
	127	12/2/2020 14:58	0	0.1	
	128	12/2/2020 14:59	0	0.1	
	129	12/2/2020 15:00	0	0.1	
	130	12/2/2020 15:01	0	0.1	
	131	12/2/2020 15:02	0	0.1	
	132	12/2/2020 15:03	0	0.1	
	133	12/2/2020 15:04	0	0.1	
	134	12/2/2020 15:05	0	0.1	
	135	12/2/2020 15:06	0	0.1	
	136	12/2/2020 15:07	0	0.1	
	137	12/2/2020 15:08	0	0.1	
	138	12/2/2020 15:09	0	0.1	
	100	10/0/0000 15 10	_	0.4	

12/2/2020 15:10 0 0.1

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

Instrument: MiniRAE 3000(PGM-7320)				
======================================	12/2/2020 15:11	0	0.1	=======================================
141	12/2/2020 15:12	0	0.1	
142	12/2/2020 15:13	0	0.1	
143	12/2/2020 15:14	0	0.1	
144	12/2/2020 15:15	0	0.1	
145	12/2/2020 15:16	0	0.1	
146	12/2/2020 15:17	0	0.1	
147	12/2/2020 15:18	0	0.1	
148	12/2/2020 15:19	0	0.1	
149	12/2/2020 15:20	0	0.1	
150	12/2/2020 15:21	0	0.1	
151	12/2/2020 15:22	0	0.1	
152	12/2/2020 15:23	0	0.1	
153	12/2/2020 15:24	0	0.1	
154	12/2/2020 15:25	0	0.1	
155	12/2/2020 15:26	0	0.1	
156	12/2/2020 15:27	0	0.1	
157	12/2/2020 15:28	0	0.1	
158	12/2/2020 15:29	0	0.1	
159	12/2/2020 15:30	0	0.1	
160	12/2/2020 15:31	0	0.1	
161	12/2/2020 15:32	0	0.1	
162	12/2/2020 15:33	0	0.1	
163	12/2/2020 15:34	0	0.1	
164	12/2/2020 15:35	0	0.1	
165	12/2/2020 15:36	0	0.1	
166	12/2/2020 15:37	0	0.1	
167	12/2/2020 15:38	0	0.1	
168	12/2/2020 15:39	0	0.1	
169	12/2/2020 15:40	0	0.1	
170	12/2/2020 15:41	0	0.1	
171	12/2/2020 15:42	0	0.1	
172	12/2/2020 15:43	0	0.1	
173	12/2/2020 15:44	0	0.1	
174	12/2/2020 15:45	0	0.1	
175	12/2/2020 15:46	0	0.1	
176	12/2/2020 15:47	0	0.1	
177	12/2/2020 15:48	0	0.1	
178	12/2/2020 15:49	0	0.1	
179	12/2/2020 15:50	0	0.1	
180	12/2/2020 15:51	0	0.1	
181	12/2/2020 15:52	0	0.1	
182	12/2/2020 15:53	0	0.1	
183	12/2/2020 15:54	0	0.1	
184	12/2/2020 15:55	0	0.1	
185	12/2/2020 15:56	0	0.1	
186	12/2/2020 15:57	0	0.1	
187	12/2/2020 15:58	0	0.1	
188	12/2/2020 15:59	0	0.1	
189	12/2/2020 16:00	0	0.1	
190	12/2/2020 16:01	0	0.1	
191	12/2/2020 16:02	0	0.1	
192	12/2/2020 16:03	0	0.1	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

20/12/03 08:44

Summary

Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-900989
Unit Firmware Ver V2.16

Running Mode Hygiene Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Stop by User

QES00018 PES00000 Site ID User ID

Begin 12/3/2020 8:44 End 12/3/2020 12:37 Sample Period(s) 60 Number of Records 233

Sensor PID(ppm)
Sensor SN S02303019
Measure Type Min; Avg; S023030194J8 Min; Avg; Max; Real

100 Span Span 2 1000 Low Alarm 50 High Alarm 100 Over Alarm 15000 STEL Alarm 25 TWA Alarm 10

Measurement Gas Isobutylene

Calibration Time 12/3/2020 7:37 Peak 0.6 Min 0.2 Average 0.2

Datalog

Datalog						
•			PID(ppm)	PID(ppm)	PID(ppm)	PID(ppm)
Index	Date/Time		(Min)	(Avg)	(Max)	(Real)
	1	12/3/2020 8:45	0.2	0.2	0.2	0.2
	2	12/3/2020 8:46	0.2	0.2	0.2	0.2
	3	12/3/2020 8:47	0.2	0.2	0.2	0.2
	4	12/3/2020 8:48	0.2	0.2	0.2	0.2
	5	12/3/2020 8:49	0.2	0.2	0.2	0.2
	6	12/3/2020 8:50	0.2	0.2	0.2	0.2
	7	12/3/2020 8:51	0.2	0.2	0.2	0.2
	8	12/3/2020 8:52	0.2	0.2	0.2	0.2
	9	12/3/2020 8:53	0.2	0.2	0.2	0.2
	10	12/3/2020 8:54	0.2	0.2	0.2	0.2
	11	12/3/2020 8:55	0.2	0.2	0.2	0.2
	12	12/3/2020 8:56	0.2	0.2	0.2	0.2
	13	12/3/2020 8:57	0.2	0.3	0.9	0.4

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

rument: MiniRAE 3000(PGM-732 =======		======	======	.======	:=====:	======
14	12/3/2020 8:58	0.2	0.2	0.4	0.2	
15	12/3/2020 8:59	0.2	0.2	0.2	0.2	
16	12/3/2020 9:00	0.2	0.2	0.2	0.2	
17	12/3/2020 9:01	0.2	0.2	0.2	0.2	
18	12/3/2020 9:02	0.2	0.2	0.3	0.2	
19	12/3/2020 9:03	0.2	0.2	0.3	0.2	
20	12/3/2020 9:04	0.2	0.2	0.2	0.2	
21	12/3/2020 9:05	0.2	0.2	0.3	0.2	
22	12/3/2020 9:06	0.2	0.2	0.3	0.2	
23	12/3/2020 9:07	0.2	0.2	0.2	0.2	
24	12/3/2020 9:08	0.2	0.2	0.2	0.2	
25	12/3/2020 9:09	0.2	0.2	0.2	0.2	
26	12/3/2020 9:10	0.2	0.2	0.2	0.2	
27	12/3/2020 9:11	0.2	0.2	0.2	0.2	
28	12/3/2020 9:12	0.2	0.2	0.2	0.2	
29	12/3/2020 9:13	0.2	0.2	0.2	0.2	
30	12/3/2020 9:14	0.2	0.2	0.2	0.2	
31	12/3/2020 9:15	0.2	0.2	0.2	0.2	
32	12/3/2020 9:16	0.2	0.2	0.2	0.2	
33	12/3/2020 9:17	0.2	0.4	1	0.6	
34	12/3/2020 9:18	0.3	0.4	0.5	0.4	
35	12/3/2020 9:19	0.3	0.4	0.4	0.3	
36	12/3/2020 9:20	0.3	0.3	0.3	0.3	
37	12/3/2020 9:21	0.3	0.3	0.3	0.3	
38	12/3/2020 9:22	0.2	0.3	0.3	0.2	
39	12/3/2020 9:23	0.2	0.2	0.2	0.2	
40	12/3/2020 9:24	0.2	0.2	0.2	0.2	
41	12/3/2020 9:25	0.2	0.2	0.2	0.2	
42	12/3/2020 9:26	0.2	0.2	0.2	0.2	
43	12/3/2020 9:27	0.2	0.2	0.2	0.2	
44	12/3/2020 9:28	0.2	0.2	0.2	0.2	
45	12/3/2020 9:29	0.2	0.3	0.6	0.3	
46	12/3/2020 9:30	0.3	0.3	0.3	0.3	
47	12/3/2020 9:31	0.3	0.3	0.3	0.3	
48	12/3/2020 9:32	0.3	0.3	0.3	0.3	
49	12/3/2020 9:33	0.2	0.2	0.3	0.2	
50 51	12/3/2020 9:34 12/3/2020 9:35	0.2	0.2 0.2	0.2 0.2	0.2 0.2	
52	12/3/2020 9:36	0.2 0.2	0.2	0.2	0.2	
53	12/3/2020 9:37	0.2	0.2	0.2	0.2	
54	12/3/2020 9:38	0.2	0.2	0.2	0.2	
55	12/3/2020 9:39	0.2	0.2	0.2	0.2	
56	12/3/2020 9:39	0.2	0.2	0.2	0.2	
57	12/3/2020 9:41	0.2	0.2	0.2	0.2	
58	12/3/2020 9:42	0.2	0.2	0.2	0.2	
59	12/3/2020 7:42	0.2	0.2	0.2	0.2	
60	12/3/2020 7:43	0.2	0.2	0.2	0.2	
61	12/3/2020 9:45	0.2	0.2	0.2	0.2	
62	12/3/2020 9:46	0.2	0.2	0.2	0.2	
63	12/3/2020 7:40	0.2	0.2	0.2	0.2	
64	12/3/2020 9:48	0.2	0.2	0.2	0.2	
65	12/3/2020 9:49	0.2	0.2	0.2	0.2	
66	12/3/2020 9:50	0.2	0.2	0.2	0.2	
67	12/3/2020 9:51	0.2	0.2	0.2	0.2	
0.	. 2, 3, 2020 7.01	J.2	J.2	U.E	U.E	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

	3000(PGM-7	7320)					
======		12/2/2020 0.52	0.2		0.2	0.2	======
	68 69	12/3/2020 9:52 12/3/2020 9:53	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.2	
	70	12/3/2020 9:54	0.2	0.2	0.2	0.2	
	70 71	12/3/2020 9:55	0.2	0.2	0.2	0.2	
	72	12/3/2020 7:55	0.2	0.2	0.2	0.2	
	73	12/3/2020 7:50	0.2	0.2	0.2	0.2	
	73 74	12/3/2020 9:58	0.2	0.2	0.2	0.2	
	75	12/3/2020 7:50	0.2	0.2	0.2	0.2	
	76	12/3/2020 10:00	0.2	0.2	0.2	0.2	
	77	12/3/2020 10:01	0.2	0.2	0.2	0.2	
	78	12/3/2020 10:02	0.2	0.2	0.2	0.2	
	79	12/3/2020 10:03	0.2	0.2	0.2	0.2	
	80	12/3/2020 10:04	0.2	0.2	0.2	0.2	
	81	12/3/2020 10:05	0.2	0.2	0.2	0.2	
	82	12/3/2020 10:06	0.2	0.2	0.2	0.2	
	83	12/3/2020 10:07	0.2	0.2	0.2	0.2	
	84	12/3/2020 10:08	0.2	0.2	0.2	0.2	
	85	12/3/2020 10:09	0.2	0.2	0.2	0.2	
	86	12/3/2020 10:10	0.2	0.2	0.2	0.2	
	87	12/3/2020 10:11	0.2	0.2	0.2	0.2	
	88	12/3/2020 10:12	0.2	0.2	0.2	0.2	
	89	12/3/2020 10:13	0.2	0.2	0.2	0.2	
	90	12/3/2020 10:14	0.2	0.2	0.2	0.2	
	91	12/3/2020 10:15	0.2	0.2	0.2	0.2	
	92	12/3/2020 10:16	0.2	0.2	0.2	0.2	
	93 94	12/3/2020 10:17 12/3/2020 10:18	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.2	
	94 95	12/3/2020 10:18	0.2	0.2	0.2	0.2	
	96	12/3/2020 10:19	0.2	0.2	0.2	0.2	
	97	12/3/2020 10:21	0.2	0.2	0.2	0.2	
	98	12/3/2020 10:22	0.2	0.2	0.5	0.4	
	99	12/3/2020 10:23	0.2	0.2	0.4	0.2	
	100	12/3/2020 10:24	0.2	0.2	0.2	0.2	
	101	12/3/2020 10:25	0.2	0.2	0.2	0.2	
	102	12/3/2020 10:26	0.2	0.2	0.3	0.2	
	103	12/3/2020 10:27	0.2	0.2	0.2	0.2	
	104	12/3/2020 10:28	0.2	0.2	0.2	0.2	
	105	12/3/2020 10:29	0.2	0.2	0.3	0.2	
	106	12/3/2020 10:30	0.2	0.2	0.2	0.2	
	107	12/3/2020 10:31	0.2	0.2	0.2	0.2	
	108	12/3/2020 10:32	0.2	0.2	0.2	0.2	
	109	12/3/2020 10:33	0.2	0.2	0.2	0.2	
	110 111	12/3/2020 10:34 12/3/2020 10:35	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.2	
	112	12/3/2020 10:35	0.2	0.2	0.2	0.2	
	113	12/3/2020 10:37	0.2	0.2	0.2	0.2	
	114	12/3/2020 10:37	0.2	0.2	0.2	0.2	
	115	12/3/2020 10:39	0.2	0.2	0.2	0.2	
	116	12/3/2020 10:40	0.2	0.2	0.4	0.2	
	117	12/3/2020 10:41	0.2	0.2	0.2	0.2	
	118	12/3/2020 10:42	0.2	0.2	0.2	0.2	
	119	12/3/2020 10:43	0.2	0.2	0.2	0.2	
	120	12/3/2020 10:44	0.2	0.2	0.2	0.2	
	121	12/3/2020 10:45	0.2	0.2	0.2	0.2	

Activity: Down-wind air monitoring during drilling operations Geologist: M. Glinski, AECOM

strument: MiniRAE 3000(PGM-7320)					
122	12/3/2020 10:46	0.2	0.2	======= 0.2	0.2
123	12/3/2020 10:40	0.2	0.2	0.2	0.2
123	12/3/2020 10:47	0.2	0.2	0.2	0.2
125	12/3/2020 10:49	0.2	0.2	0.2	0.2
126	12/3/2020 10:47	0.2	0.2	0.2	0.2
127	12/3/2020 10:51	0.2	0.2	0.2	0.2
128	12/3/2020 10:51	0.2	0.2	0.2	0.2
129	12/3/2020 10:52	0.2	0.2	0.2	0.2
130	12/3/2020 10:54	0.2	0.2	0.2	0.2
131	12/3/2020 10:55	0.2	0.2	0.2	0.2
132	12/3/2020 10:56	0.2	0.2	0.2	0.2
133	12/3/2020 10:57	0.2	0.2	0.2	0.2
134	12/3/2020 10:58	0.2	0.2	0.2	0.2
135	12/3/2020 10:59	0.2	0.2	0.2	0.2
136	12/3/2020 11:00	0.2	0.2	0.2	0.2
137	12/3/2020 11:01	0.2	0.2	0.2	0.2
138	12/3/2020 11:02	0.2	0.2	0.4	0.2
139	12/3/2020 11:03	0.2	0.2	0.3	0.2
140	12/3/2020 11:04	0.2	0.2	0.2	0.2
141	12/3/2020 11:05	0.2	0.2	0.2	0.2
142	12/3/2020 11:06	0.2	0.2	0.2	0.2
143	12/3/2020 11:07	0.2	0.2	0.2	0.2
144	12/3/2020 11:08	0.2	0.2	0.2	0.2
145	12/3/2020 11:09	0.2	0.2	0.3	0.2
146	12/3/2020 11:10	0.2	0.2	0.2	0.2
147	12/3/2020 11:11	0.2	0.2	0.3	0.2
148	12/3/2020 11:12	0.2	0.2	0.2	0.2
149	12/3/2020 11:13	0.2	0.2	0.2	0.2
150	12/3/2020 11:14	0.2	0.2	0.2	0.2
151	12/3/2020 11:15	0.2	0.2	0.3	0.2
152	12/3/2020 11:16	0.2	0.2	0.2	0.2
153	12/3/2020 11:17	0.2	0.2	0.2	0.2
154	12/3/2020 11:18	0.2	0.2	0.2	0.2
155	12/3/2020 11:19	0.2	0.2	0.2	0.2
156 157	12/3/2020 11:20	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.2
157	12/3/2020 11:21 12/3/2020 11:22	0.2	0.2	0.2	0.2
159	12/3/2020 11:23	0.2	0.2	0.2	0.2
160	12/3/2020 11:24	0.2	0.2	0.2	0.2
161	12/3/2020 11:25	0.2	0.2	0.2	0.2
162	12/3/2020 11:26	0.2	0.2	0.2	0.2
163	12/3/2020 11:27	0.2	0.2	0.2	0.2
164	12/3/2020 11:28	0.2	0.2	0.2	0.2
165	12/3/2020 11:29	0.2	0.2	0.2	0.2
166	12/3/2020 11:30	0.2	0.2	0.2	0.2
167	12/3/2020 11:31	0.2	0.2	0.2	0.2
168	12/3/2020 11:32	0.2	0.2	0.2	0.2
169	12/3/2020 11:33	0.2	0.2	0.2	0.2
170	12/3/2020 11:34	0.2	0.2	0.2	0.2
171	12/3/2020 11:35	0.2	0.2	0.2	0.2
172	12/3/2020 11:36	0.2	0.2	0.2	0.2
173	12/3/2020 11:37	0.2	0.2	0.2	0.2
174	12/3/2020 11:38	0.2	0.2	0.2	0.2
175	12/3/2020 11:39	0.2	0.2	0.2	0.2

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

ent: MiniRAE 3000	(PGM-7320)					
========: 1·	:====== 76	======================================	====== 0.2	0.2	0.2	0.2
		12/3/2020 11:41	0.2	0.2	0.2	0.2
	7 7 78	12/3/2020 11:41	0.2	0.2	0.2	0.2
	79	12/3/2020 11:42	0.2	0.2	0.2	0.2
	30	12/3/2020 11:44	0.2	0.2	0.2	0.2
	31	12/3/2020 11:45	0.2	0.2	0.2	0.2
	32	12/3/2020 11:46	0.2	0.2	0.2	0.2
	33	12/3/2020 11:47	0.2	0.2	0.2	0.2
	34	12/3/2020 11:48	0.2	0.2	0.2	0.2
		12/3/2020 11:49	0.2	0.2	0.2	0.2
		12/3/2020 11:50	0.2	0.2	0.2	0.2
	37	12/3/2020 11:51	0.2	0.2	0.2	0.2
	38	12/3/2020 11:52	0.2	0.2	0.2	0.2
	39	12/3/2020 11:53	0.2	0.2	0.2	0.2
	90	12/3/2020 11:54	0.2	0.2	0.2	0.2
19	91	12/3/2020 11:55	0.2	0.2	0.2	0.2
19	92	12/3/2020 11:56	0.2	0.2	0.2	0.2
19	93	12/3/2020 11:57	0.2	0.2	0.2	0.2
19	94	12/3/2020 11:58	0.2	0.2	0.2	0.2
19	95	12/3/2020 11:59	0.2	0.2	0.2	0.2
19	96	12/3/2020 12:00	0.2	0.2	0.2	0.2
19	97	12/3/2020 12:01	0.2	0.2	0.2	0.2
19	98	12/3/2020 12:02	0.2	0.2	0.2	0.2
	99	12/3/2020 12:03	0.2	0.2	0.2	0.2
	00	12/3/2020 12:04	0.2	0.2	0.2	0.2
	01	12/3/2020 12:05	0.2	0.2	0.2	0.2
	02	12/3/2020 12:06	0.2	0.2	0.2	0.2
	03	12/3/2020 12:07	0.2	0.2	0.2	0.2
	04	12/3/2020 12:08	0.2	0.2	0.2	0.2
	05	12/3/2020 12:09	0.2	0.2	0.2	0.2
	06	12/3/2020 12:10	0.2	0.2	0.2	0.2
	07	12/3/2020 12:11	0.2	0.2	0.2	0.2
	08 09	12/3/2020 12:12 12/3/2020 12:13	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.2
	10	12/3/2020 12:13	0.2	0.2	0.2	0.2
2		12/3/2020 12:14	0.2	0.2	0.2	0.2
		12/3/2020 12:16	0.2	0.2	0.2	0.2
	13	12/3/2020 12:17	0.2	0.2	0.2	0.2
	14	12/3/2020 12:18	0.2	0.2	0.2	0.2
	15	12/3/2020 12:19	0.2	0.2	0.2	0.2
	16	12/3/2020 12:20	0.2	0.2	0.2	0.2
	17	12/3/2020 12:21	0.2	0.2	0.2	0.2
	18	12/3/2020 12:22	0.2	0.2	0.2	0.2
2	19	12/3/2020 12:23	0.2	0.2	0.3	0.2
22	20	12/3/2020 12:24	0.2	0.2	0.2	0.2
22	21	12/3/2020 12:25	0.2	0.2	0.2	0.2
	22	12/3/2020 12:26	0.2	0.2	0.2	0.2
	23	12/3/2020 12:27	0.2	0.2	0.2	0.2
	24	12/3/2020 12:28	0.2	0.2	0.2	0.2
	25	12/3/2020 12:29	0.2	0.2	0.2	0.2
	26	12/3/2020 12:30	0.2	0.2	0.2	0.2
	27	12/3/2020 12:31	0.2	0.2	0.2	0.2
	28	12/3/2020 12:32	0.2	0.2	0.2	0.2
22	29	12/3/2020 12:33	0.2	0.2	0.2	0.2

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

======	.=====:	, ============					
	230	12/3/2020 12:34	0.2	0.2	0.2	0.2	
	231	12/3/2020 12:35	0.2	0.2	0.2	0.2	
	232	12/3/2020 12:36	0.2	0.2	0.2	0.2	
	233	12/3/2020 12:37	0.2	0.2	0.2	0.2	
Peak			0.3	0.4	1	0.6	
Min			0.2	0.2	0.2	0.2	
Average			0.2	0.2	0.2	0.2	

TWA/STEL

Indov	Date/Time		PID(ppm) (TWA)	PID(ppm (STEL)	า)
Index 1		12/3/2020 8:45		(STEL)	
2		12/3/2020 8:46			
3		12/3/2020 8:47	_		
4		12/3/2020 8:47	_		
5		12/3/2020 8:49			
6		12/3/2020 8:49	_		
7		12/3/2020 8:51	_		
8		12/3/2020 8:51			
9		12/3/2020 8:53			
10		12/3/2020 8:54			
11		12/3/2020 8:55			
12		12/3/2020 8:56			
13		12/3/2020 8:57	_		
14		12/3/2020 8:58	0		
15		12/3/2020 8:59	0		0.2
16		12/3/2020 9:00	0		0.2
17		12/3/2020 9:01	0		0.2
18		12/3/2020 9:02	0		0.2
19		12/3/2020 9:03	0		0.2
20		12/3/2020 9:04	0		0.2
21		12/3/2020 9:05	0		0.2
22		12/3/2020 9:06	0		0.2
23		12/3/2020 9:07	0		0.2
24		12/3/2020 9:08	0		0.2
25		12/3/2020 9:09	0		0.2
26		12/3/2020 9:10	0		0.2
27		12/3/2020 9:11	0		0.2
28		12/3/2020 9:12	0		0.2
29		12/3/2020 9:13	0		0.2
30		12/3/2020 9:14	0	(0.2
31		12/3/2020 9:15	0	(0.2
32		12/3/2020 9:16	0	(0.2
33		12/3/2020 9:17	0	(0.2
34		12/3/2020 9:18	0	(0.3
35		12/3/2020 9:19	0	(0.3
36		12/3/2020 9:20	0	(0.3
37		12/3/2020 9:21	0	(0.3
38		12/3/2020 9:22	0	(0.3
39		12/3/2020 9:23	0	(0.3
40		12/3/2020 9:24	0	(0.3
41		12/3/2020 9:25	0	(0.3
42		12/3/2020 9:26	0	(0.3

Activity: Down-wind air monitoring during drilling operations

96

Geologist: M. Glinski, AECOM

Instru

iniRAE 3000(PGM-7: ========		======	:======	
43	12/3/2020 9:27	0	0.3	
44	12/3/2020 9:28	0	0.3	
45	12/3/2020 9:29	0	0.3	
46	12/3/2020 9:30	0	0.3	
47	12/3/2020 9:31	0	0.3	
48	12/3/2020 9:32	0	0.3	
49	12/3/2020 9:33	0	0.3	
50	12/3/2020 9:34	0	0.3	
51	12/3/2020 9:35	0	0.3	
52	12/3/2020 9:36	0	0.2	
53	12/3/2020 9:37	0	0.2	
54	12/3/2020 9:38	0	0.2	
55	12/3/2020 9:39	0	0.2	
56	12/3/2020 9:40	0	0.2	
57	12/3/2020 9:41	0	0.2	
58	12/3/2020 9:42	0	0.2	
59	12/3/2020 9:43	0	0.2	
60	12/3/2020 9:44	0	0.2	
61	12/3/2020 9:45	0	0.2	
62	12/3/2020 9:46	0	0.2	
63	12/3/2020 9:47	0	0.2	
64	12/3/2020 9:48	0	0.2	
65	12/3/2020 9:49	0	0.2	
66	12/3/2020 9:50	0	0.2	
67	12/3/2020 9:51	0	0.2	
68	12/3/2020 9:52	0	0.2	
69	12/3/2020 9:53	0	0.2	
70	12/3/2020 9:54	0	0.2	
71	12/3/2020 9:55	0	0.2	
72	12/3/2020 9:56	0	0.2	
73	12/3/2020 9:57	0	0.2	
74	12/3/2020 9:58	0	0.2	
75	12/3/2020 9:59	0	0.2	
76	12/3/2020 10:00	0	0.2	
77	12/3/2020 10:01	0	0.2	
78	12/3/2020 10:02	0	0.2	
79	12/3/2020 10:03	0	0.2	
80	12/3/2020 10:04	0	0.2	
81	12/3/2020 10:05	0	0.2	
82	12/3/2020 10:06	0	0.2	
83	12/3/2020 10:07	0	0.2	
84	12/3/2020 10:08	0	0.2	
85	12/3/2020 10:09	0	0.2	
86	12/3/2020 10:10	0	0.2	
87	12/3/2020 10:11	0	0.2	
88	12/3/2020 10:12	0	0.2	
89	12/3/2020 10:13	0	0.2	
90	12/3/2020 10:14	0	0.2	
91	12/3/2020 10:15	0	0.2	
92	12/3/2020 10:16	0	0.2	
93	12/3/2020 10:17	0	0.2	
94	12/3/2020 10:18	0	0.2	
95	12/3/2020 10:19	0	0.2	

0.2

12/3/2020 10:20

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

========		10/0/0000 10 01	======	======	=======================================
	97	12/3/2020 10:21	0	0.2	
	98	12/3/2020 10:22	0	0.2	
	99	12/3/2020 10:23	0	0.2	
	100	12/3/2020 10:24	0	0.2	
	101	12/3/2020 10:25	0	0.2	
	102	12/3/2020 10:26	0	0.2	
	103	12/3/2020 10:27	0	0.2	
	104	12/3/2020 10:28	0	0.2	
	105	12/3/2020 10:29	0	0.2	
	106	12/3/2020 10:30	0	0.2	
	107	12/3/2020 10:31	0	0.2	
	108	12/3/2020 10:32	0	0.2	
	109	12/3/2020 10:33	0	0.2	
	110	12/3/2020 10:34	0	0.2	
	111	12/3/2020 10:35	0	0.2	
	112	12/3/2020 10:36	0.1	0.2	
	113	12/3/2020 10:37	0.1	0.2	
	114	12/3/2020 10:38	0.1	0.2	
	115	12/3/2020 10:39	0.1	0.2	
	116	12/3/2020 10:40	0.1	0.2	
	117	12/3/2020 10:41	0.1	0.2	
	118	12/3/2020 10:42	0.1	0.2	
	119	12/3/2020 10:43	0.1	0.2	
	120	12/3/2020 10:44	0.1	0.2	
	121	12/3/2020 10:45	0.1	0.2	
	122	12/3/2020 10:46	0.1	0.2	
	123	12/3/2020 10:47	0.1	0.2	
	124	12/3/2020 10:48	0.1	0.2	
	125	12/3/2020 10:49	0.1	0.2	
	126	12/3/2020 10:50	0.1	0.2	
	127	12/3/2020 10:51	0.1	0.2	
	128	12/3/2020 10:52	0.1	0.2	
	129	12/3/2020 10:53	0.1	0.2	
	130	12/3/2020 10:54	0.1	0.2	
	131	12/3/2020 10:55	0.1	0.2	
	132	12/3/2020 10:56	0.1	0.2	
	133	12/3/2020 10:57	0.1	0.2	
	134	12/3/2020 10:58	0.1	0.2	
	135	12/3/2020 10:59	0.1	0.2	
	136	12/3/2020 11:00	0.1	0.2	
	137	12/3/2020 11:01	0.1	0.2	
	138	12/3/2020 11:02	0.1	0.2	
	139	12/3/2020 11:03	0.1	0.2	
	140	12/3/2020 11:04	0.1	0.2	
	141	12/3/2020 11:05	0.1	0.2	
	142	12/3/2020 11:06	0.1	0.2	
	143	12/3/2020 11:07	0.1	0.2	
	144	12/3/2020 11:08	0.1	0.2	
	145	12/3/2020 11:09	0.1	0.2	
	146	12/3/2020 11:10	0.1	0.2	
	147	12/3/2020 11:11	0.1	0.2	
	148	12/3/2020 11:12	0.1	0.2	
	149	12/3/2020 11:13	0.1	0.2	
	150	12/3/2020 11:14	0.1	0.2	

Activity: Down-wind air monitoring during drilling operations

204

Geologist: M. Glinski, AECOM

Instr

strument:	. Glinski, AECOM MiniRAE 3000(PGM-73				
====	======================================	-=====================================	 0.1	0.2	:===========
	152	12/3/2020 11:16	0.1	0.2	
	153	12/3/2020 11:17	0.1	0.2	
	154	12/3/2020 11:18	0.1	0.2	
	155	12/3/2020 11:19	0.1	0.2	
	156	12/3/2020 11:20	0.1	0.2	
	157	12/3/2020 11:21	0.1	0.2	
	158	12/3/2020 11:22	0.1	0.2	
	159	12/3/2020 11:23	0.1	0.2	
	160	12/3/2020 11:24	0.1	0.2	
	161	12/3/2020 11:25	0.1	0.2	
	162	12/3/2020 11:26	0.1	0.2	
	163	12/3/2020 11:27	0.1	0.2	
	164	12/3/2020 11:28	0.1	0.2	
	165	12/3/2020 11:29	0.1	0.2	
	166	12/3/2020 11:30	0.1	0.2	
	167	12/3/2020 11:31	0.1	0.2	
	168	12/3/2020 11:32	0.1	0.2	
	169	12/3/2020 11:33	0.1	0.2	
	170	12/3/2020 11:34	0.1	0.2	
	171	12/3/2020 11:35	0.1	0.2	
	172	12/3/2020 11:36	0.1	0.2	
	173	12/3/2020 11:37	0.1	0.2	
	174	12/3/2020 11:38	0.1	0.2	
	175	12/3/2020 11:39	0.1	0.2	
	176	12/3/2020 11:40	0.1	0.2	
	177	12/3/2020 11:41	0.1	0.2	
	178	12/3/2020 11:42	0.1	0.2	
	179	12/3/2020 11:43	0.1	0.2	
	180	12/3/2020 11:44	0.1	0.2	
	181	12/3/2020 11:45	0.1	0.2	
	182	12/3/2020 11:46	0.1	0.2	
	183	12/3/2020 11:47	0.1	0.2	
	184	12/3/2020 11:48	0.1	0.2	
	185	12/3/2020 11:49	0.1	0.2	
	186	12/3/2020 11:50	0.1	0.2	
	187	12/3/2020 11:51	0.1	0.2	
	188	12/3/2020 11:52	0.1	0.2	
	189	12/3/2020 11:53	0.1	0.2	
	190	12/3/2020 11:54	0.1	0.2	
	191	12/3/2020 11:55	0.1	0.2	
	192	12/3/2020 11:56	0.1	0.2	
	193	12/3/2020 11:57	0.1	0.2	
	194	12/3/2020 11:58	0.1	0.2	
	195	12/3/2020 11:59	0.1	0.2	
	196	12/3/2020 12:00	0.1	0.2	
	197	12/3/2020 12:01	0.1	0.2	
	198	12/3/2020 12:02	0.1	0.2	
	199	12/3/2020 12:03	0.1	0.2	
	200	12/3/2020 12:04	0.1	0.2	
	201	12/3/2020 12:05	0.1	0.2	
	202	12/3/2020 12:06	0.1	0.2	
	203	12/3/2020 12:07	0.1	0.2	
	7(1/1	エルスレカロカロコン・ロタ	() (11 /	

0.1

0.2

12/3/2020 12:08

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

205	12/3/2020 12:09	0.1	0.2
206	12/3/2020 12:10	0.1	0.2
207	12/3/2020 12:11	0.1	0.2
208	12/3/2020 12:12	0.1	0.2
209	12/3/2020 12:13	0.1	0.2
210	12/3/2020 12:14	0.1	0.2
211	12/3/2020 12:15	0.1	0.2
212	12/3/2020 12:16	0.1	0.2
213	12/3/2020 12:17	0.1	0.2
214	12/3/2020 12:18	0.1	0.2
215	12/3/2020 12:19	0.1	0.2
216	12/3/2020 12:20	0.1	0.2
217	12/3/2020 12:21	0.1	0.2
218	12/3/2020 12:22	0.1	0.2
219	12/3/2020 12:23	0.1	0.2
220	12/3/2020 12:24	0.1	0.2
221	12/3/2020 12:25	0.1	0.2
222	12/3/2020 12:26	0.1	0.2
223	12/3/2020 12:27	0.1	0.2
224	12/3/2020 12:28	0.1	0.2
225	12/3/2020 12:29	0.1	0.2
226	12/3/2020 12:30	0.1	0.2
227	12/3/2020 12:31	0.1	0.2
228	12/3/2020 12:32	0.1	0.2
229	12/3/2020 12:33	0.1	0.2
230	12/3/2020 12:34	0.1	0.2
231	12/3/2020 12:35	0.1	0.2
232	12/3/2020 12:36	0.1	0.2
233	12/3/2020 12:37	0.1	0.2
=======================================	========	=======	=========

20/12/04 12:42

Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-900989
Unit Firmware Ver V2.16

Running Mode Hygiene Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Stop by User

QES00018 PES00000 Site ID User ID

12/4/2020 12:42 12/4/2020 16:04 iod(s) 60 Begin End Sample Period(s) Number of Records 201

-----Sensor PID(ppm)
Sensor SN S023030194J8
Measure Type Min; Avg; Max;

Min; Avg; Max; Real

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

 Span
 100

 Span 2
 1000

 Low Alarm
 50

 High Alarm
 100

 Over Alarm
 15000

STEL Alarm 25
TWA Alarm 10
Measurement Gas Isobutylene

 Calibration Time
 12/4/2020 11:46

 Peak
 2

 Min
 0

 Average
 0.5

Datalog

Datalog					PID(ppm)	
Index	Date/	Time	(Min)	(Avg)	(Max)	(Real)
	1	12/4/2020 12:43	0.2			0.2
	2 3	12/4/2020 12:44				0.3
		12/4/2020 12:45	0.2			
	4	12/4/2020 12:46	0.2	0.7	2	0.2
	5	12/4/2020 12:47	0.2	0.5	0.9	0.2
	6	12/4/2020 12:48	0.2	0.3	0.5	0.2
	7	12/4/2020 12:49	0.2	0.3	0.3	0.3
	8	12/4/2020 12:50	0.2	0.3	0.4	0.3
	9	12/4/2020 12:51	0.2		0.4	0.3
	10	12/4/2020 12:52			1.2	
	11	12/4/2020 12:53			1.4	
	12	12/4/2020 12:54	0.3			
	13	12/4/2020 12:55	0.3		0.9	
	14	12/4/2020 12:56				
	15	12/4/2020 12:57	0.4		1.1	0.4
	16	12/4/2020 12:58				
	17	12/4/2020 12:59				
	18	12/4/2020 13:00				
	19	12/4/2020 13:01	0.4			
	20	12/4/2020 13:02				
	21	12/4/2020 13:03				
	22	12/4/2020 13:04	0.5			
	23	12/4/2020 13:05	0.5			
	24	12/4/2020 13:06				
	25	12/4/2020 13:07				
	26	12/4/2020 13:08				0.5
	27	12/4/2020 13:09				
	28	12/4/2020 13:10				
	29	12/4/2020 13:11	0.5			
	30	12/4/2020 13:12			1.8	
	31	12/4/2020 13:13	0.5		0.8	
	32	12/4/2020 13:14	0.5			
	33	12/4/2020 13:15	0.5			
	34	12/4/2020 13:16				
	35	12/4/2020 13:17				
	36	12/4/2020 13:17				0.6
	37	12/4/2020 13:19			1.2	
	37	12/7/2020 13.17	0.5	0.0	1.2	1.2

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

ent: MiniRAE 300	0(PGM-7320)					
=======	38	12/4/2020 13:20	======= 0.5	 ^ 0	====== 1.3	0.6
	39	12/4/2020 13:21	0.5	0.8 0.7	0.9	0.6 0.7
	40	12/4/2020 13:21	0.5	0.7	1.1	0.7
	41	12/4/2020 13:22	0.5	0.7	1.1	0.7
	42	12/4/2020 13:24	0.5	0.7	1.1	0.7
	43	12/4/2020 13:25	0.5	0.6	1.1	0.6
	44	12/4/2020 13:26	0.5	0.7	1.4	1.1
	45	12/4/2020 13:27	0.5	0.7	1.6	0.6
	46	12/4/2020 13:28	0.6	0.8	1.5	0.7
	47	12/4/2020 13:29	0.5	0.8	1.4	0.6
	48	12/4/2020 13:30	0.5	0.7	1.3	1.3
	49	12/4/2020 13:31	0.5	0.7	1.3	0.5
	50	12/4/2020 13:32	0.5	0.6	1.1	0.6
	51	12/4/2020 13:33	0.5	0.7	1	1
	52	12/4/2020 13:34	0.5	0.6	1	0.5
	53	12/4/2020 13:35	0.5	0.7	1.2	0.8
	54	12/4/2020 13:36	0.5	0.6	1.3	0.5
	55	12/4/2020 13:37	0.5	0.5	0.7	0.7
	56	12/4/2020 13:38	0.5	0.6	1.1	0.5
	57	12/4/2020 13:39	0.5	0.6	0.8	0.5
	58	12/4/2020 13:40	0.5	0.6	1	0.5
	59	12/4/2020 13:41	0.5	0.6	1.1	0.7
	60	12/4/2020 13:42	0.5	0.6	0.9	0.5
	61	12/4/2020 13:43	0.5	0.5	8.0	0.8
	62	12/4/2020 13:44	0.5	0.7	1.1	0.8
	63	12/4/2020 13:45	0.5	0.6	0.9	0.6
	64	12/4/2020 13:46	0.5	0.8	1.5	0.6
	65	12/4/2020 13:47	0.5	0.6	0.9	0.6
	66	12/4/2020 13:48	0.5	0.7	1	0.5
	67 68	12/4/2020 13:49	0.5	0.5	0.5 0.8	0.5 0.5
	69	12/4/2020 13:50 12/4/2020 13:51	0.5 0.5	0.6 0.5	0.6	0.5
	70	12/4/2020 13:51	0.5	0.5	0.0	0.5
	70 71	12/4/2020 13:53	0.5	0.6	0.7	0.5
	72	12/4/2020 13:54	0.5	0.7	1.1	1.1
	73	12/4/2020 13:55	0.4	0.7	1.7	0.5
	74	12/4/2020 13:56	0.4	0.7	1.2	0.6
	75	12/4/2020 13:57	0.4	0.5	1.4	0.4
	76	12/4/2020 13:58	0.4	0.6	2	2
	77	12/4/2020 13:59	0.4	0.9	2.3	1.4
	78	12/4/2020 14:00	0.4	0.6	1.1	0.5
	79	12/4/2020 14:01	0.4	0.6	1.7	0.4
	80	12/4/2020 14:02	0.4	0.6	1.1	0.4
	81	12/4/2020 14:03	0.4	0.5	1.3	1.3
	82	12/4/2020 14:04	0.5	0.8	1.9	1.9
	83	12/4/2020 14:05	0.4	0.6	1.7	0.6
	84	12/4/2020 14:06	0.4	0.7	1.2	0.5
	85	12/4/2020 14:07	0.4	0.6	1.1	0.5
	86	12/4/2020 14:08	0.4	0.8	1.3	1
	87	12/4/2020 14:09	0.5	0.7	1.2	0.8
	88	12/4/2020 14:10	0.5	0.8	1.4	0.7
	89	12/4/2020 14:11	0.5	0.7	1.2	0.8
	90	12/4/2020 14:12	0.5	0.5	0.7	0.7
	91	12/4/2020 14:13	0.5	0.6	1	1

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

ıment: MiniRAE 3000(PGM-7320	•					
92	12/4/2020 14:14	0.5	====== 0.7	====== 1.3	0.7	======
93	12/4/2020 14:15	0.5	0.5	0.7	0.5	
94	12/4/2020 14:16	0.4	0.6	1.1	0.5	
95	12/4/2020 14:17	0.4	0.5	0.7	0.5	
96	12/4/2020 14:18	0.5	0.6	0.9	0.6	
97	12/4/2020 14:19	0.4	0.6	1.5	0.5	
98	12/4/2020 14:20	0.4	0.5	1.1	0.4	
99	12/4/2020 14:21	0.4	0.7	1.4	0.5	
100	12/4/2020 14:22	0.4	0.6	1.3	0.5	
101	12/4/2020 14:23	0.4	0.7	1.2	0.5	
102	12/4/2020 14:24	0.4	0.6	1.1	0.6	
103	12/4/2020 14:25	0.4	0.7	1.7	0.5	
104	12/4/2020 14:26	0.4	0.6	0.9	0.4	
105	12/4/2020 14:27	0.4	0.6	1.3	0.5	
106	12/4/2020 14:28	0.4	0.7	1.5	0.4	
107	12/4/2020 14:29	0.4	0.6	1.1	0.4	
108	12/4/2020 14:30	0.4	0.4	0.5	0.5	
109	12/4/2020 14:31	0.4	0.7	1.6	0.6	
110	12/4/2020 14:32	0.4	0.4	0.6	0.4	
111	12/4/2020 14:33	0.4	0.5	0.9	0.9	
112	12/4/2020 14:34	0.4	0.6	1.3	0.4	
113	12/4/2020 14:35	0.4	0.4	0.6	0.4	
114	12/4/2020 14:36	0.4	0.4	0.7	0.5	
115	12/4/2020 14:37	0.4	0.5	0.9	0.4	
116	12/4/2020 14:38	0.3	0.5	1	0.5	
117	12/4/2020 14:39	0.4	0.5	0.8	0.4	
118	12/4/2020 14:40	0.4	0.5	0.8	0.4	
119	12/4/2020 14:41	0.4	0.5	0.7	0.4	
120	12/4/2020 14:42	0.4	0.5	0.7	0.4	
121 122	12/4/2020 14:43	0.4	0.5	0.7	0.4	
123	12/4/2020 14:44 12/4/2020 14:45	0.4 0.4	0.5 0.5	0.8 0.7	0.4 0.5	
123	12/4/2020 14:45	0.4	0.5	0.7	0.3	
125	12/4/2020 14:47	0.4	0.3	0.7	0.4	
126	12/4/2020 14:48	0.4	0.5	0.6	0.5	
127	12/4/2020 14:49	0.4	0.4	0.7	0.6	
128	12/4/2020 14:50	0.3	0.5	0.7	0.5	
129	12/4/2020 14:51	0.3	0.4	0.7	0.3	
130	12/4/2020 14:52	0.3	0.4	0.6	0.4	
131	12/4/2020 14:53	0.3	0.4	0.6	0.4	
132	12/4/2020 14:54	0.3	0.5	0.7	0.4	
133	12/4/2020 14:55	0.3	0.4	0.7	0.3	
134	12/4/2020 14:56	0.3	0.4	0.6	0.3	
135	12/4/2020 14:57	0.3	0.4	0.6	0.3	
136	12/4/2020 14:58	0.3	0.4	0.8	0.6	
137	12/4/2020 14:59	0.3	0.5	0.8	0.7	
138	12/4/2020 15:00	0.3	0.6	1	0.4	
139	12/4/2020 15:01	0.3	0.8	2.9	1.7	
140	12/4/2020 15:02	0.3	0.5	1.8	0.3	
141	12/4/2020 15:03	0.3	0.9	2.1	0.4	
142	12/4/2020 15:04	0.3	0.5	1.3	0.3	
143	12/4/2020 15:05	0.3	0.4	0.9	0.5	
144	12/4/2020 15:06	0.3	0.3	0.5	0.3	
145	12/4/2020 15:07	0.3	0.5	1	0.8	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

rument: Min	iRAE 3000(PGM-7:	320)					
=====	======================================	======================================	0.3	0.4	0.8	0.3	======
	147	12/4/2020 15:09	0.3	0.4	2.9	1.3	
	148	12/4/2020 15:10	0.3	0.8	1.9	0.4	
	149	12/4/2020 15:10	0.3	0.5	1.7	0.3	
	150	12/4/2020 15:11	0.3	0.5	1.1	0.4	
	151	12/4/2020 15:13	0.3	0.5	1.3	0.9	
	152	12/4/2020 15:14	0.3	0.5	1.6	1.4	
	153	12/4/2020 15:15	0.3	0.6	1.4	0.9	
	154	12/4/2020 15:16	0.2	0.6	1.4	0.3	
	155	12/4/2020 15:17	0.2	0.4	1.3	0.3	
	156	12/4/2020 15:18	0.3	0.4	1.2	0.5	
	157	12/4/2020 15:19	0.2	0.6	1.4	0.2	
	158	12/4/2020 15:20	0.2	0.4	0.8	0.4	
	159	12/4/2020 15:21	0.2	0.6	1.5	0.6	
	160	12/4/2020 15:22	0.2	0.4	0.7	0.2	
	161	12/4/2020 15:23	0.2	0.8	2.7	0.5	
	162	12/4/2020 15:24	0.2	0.7	1.5	0.4	
	163	12/4/2020 15:25	0.2	0.3	0.5	0.2	
	164	12/4/2020 15:26	0.2	0.4	0.9	0.2	
	165	12/4/2020 15:27	0.2	0.3	0.6	0.4	
	166	12/4/2020 15:28	0.2	0.6	2.2	0.7	
	167	12/4/2020 15:29	0.2	0.5	1.6	0.2	
	168	12/4/2020 15:30	0.2	0.2	0.4	0.3	
	169	12/4/2020 15:31	0.2	0.4	1.4	0.2	
	170	12/4/2020 15:32	0.2	0.3	1.1	0.2	
	171	12/4/2020 15:33	0.2	0.2	0.5	0.2	
	172	12/4/2020 15:34	0.2	0.4	1.5	0.5	
	173	12/4/2020 15:35	0.1	0.4	1.5	0.4	
	174	12/4/2020 15:36	0.1	0.4	0.7	0.2	
	175	12/4/2020 15:37	0.1	0.3	1.6	0.5	
	176	12/4/2020 15:38	0.1	0.5	1.3	0.4	
	177	12/4/2020 15:39	0.1	0.3	1.3	0.1	
	178	12/4/2020 15:40	0.1	0.3	1.1	0.2	
	179	12/4/2020 15:41	0.1	0.2	0.6	0.1	
	180	12/4/2020 15:42	0.1	0.4	0.9	0.4	
	181	12/4/2020 15:43	0.1	0.1	0.3	0.1	
	182 183	12/4/2020 15:44	0.1	0.3	1.7	0.1	
	184	12/4/2020 15:45 12/4/2020 15:46	0.1	0.3	1 0.5	0.4 0.3	
	185	12/4/2020 15:47	0.1 0.1	0.1 0.4	0.5	0.3	
	186	12/4/2020 15:47	0.1	0.4	1.4	0.2	
	187	12/4/2020 15:49	0	0.3	1.2	0.3	
	188	12/4/2020 15:50	0	0.2	0.7	0.3	
	189	12/4/2020 15:51	0	0.4	2	0	
	190	12/4/2020 15:52	0	0.1	0.5	0.1	
	191	12/4/2020 15:53	0	0.1	0.4	0	
	192	12/4/2020 15:54	0	0.1	0.3	0	
	193	12/4/2020 15:55	0	0.1	0.8	0	
	194	12/4/2020 15:56	0	0.1	0.6	0	
	195	12/4/2020 15:57	0	0.2	0.8	0	
	196	12/4/2020 15:58	0	0.1	0.3	0.1	
	197	12/4/2020 15:59	0	0.2	0.8	0.1	
	198	12/4/2020 16:00	0	0.2	1.7	0.3	
	199	12/4/2020 16:01	0	0.1	0.4	0	

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

=	==========	=============	======	======	======	======	=====
	200	12/4/2020 16:02	0	0.3	0.9	0	
	201	12/4/2020 16:03	0	0.1	0.2	0.2	
Peak			0.6	0.9	2.9	2	
Min			0	0.1	0.2	0	
Average	Э		0.3	0.5	1.1	0.5	

TWA/STEL

IVA/SILL			PID(ppm)	PID(ppm)
Index	Date/Tim	e	(TWA)	(STEL)
	1	12/4/2020 12:43		
	2	12/4/2020 12:44	0	
	3	12/4/2020 12:45	0	
	4	12/4/2020 12:46	0	
	5	12/4/2020 12:47	0	
	6	12/4/2020 12:48	0	
	7	12/4/2020 12:49	0	
	8	12/4/2020 12:50	0	
	9	12/4/2020 12:51	0	
	10	12/4/2020 12:52	0	
	11	12/4/2020 12:53	0	
	12	12/4/2020 12:54	0	
	13	12/4/2020 12:55	0	
	14	12/4/2020 12:56	0	
	15	12/4/2020 12:57	0	0.4
	16	12/4/2020 12:58	0	0.4
	17	12/4/2020 12:59	0	0.4
	18	12/4/2020 13:00	0	0.4
	19	12/4/2020 13:01	0	0.4
	20	12/4/2020 13:02	0	0.5
	21	12/4/2020 13:03	0	0.5
	22	12/4/2020 13:04	0	0.5
	23	12/4/2020 13:05	0	0.5
	24	12/4/2020 13:06	0	0.6
	25	12/4/2020 13:07	0	0.6
	26	12/4/2020 13:08	0	0.6
	27	12/4/2020 13:09	0	0.6
	28	12/4/2020 13:10	0	0.6
	29	12/4/2020 13:11	0	0.6
	30	12/4/2020 13:12	0	0.6
	31	12/4/2020 13:13	0	0.6
	32	12/4/2020 13:14	0	0.7
	33	12/4/2020 13:15	0	0.7
	34	12/4/2020 13:16	0	0.6
	35	12/4/2020 13:17	0	0.6
	36	12/4/2020 13:18	0	0.6
	37	12/4/2020 13:19	0	0.7
	38	12/4/2020 13:20	0	0.7
	39	12/4/2020 13:21	0	0.7
	40	12/4/2020 13:22	0	0.7
	41	12/4/2020 13:23	0	0.7
	42	12/4/2020 13:24	0	0.7
	43	12/4/2020 13:25	0	0.7
	44	12/4/2020 13:26	0.1	0.7

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

	iniRAE 3000(PGM-73	320)			
=====	======================================	======================================	0.1	0.8	
	46	12/4/2020 13:27	0.1	0.8	
	47	12/4/2020 13:29	0.1	0.8	
	48	12/4/2020 13:30	0.1	0.8	
	49	12/4/2020 13:31	0.1	0.8	
	50	12/4/2020 13:32	0.1	0.8	
	51	12/4/2020 13:33	0.1	0.8	
	52	12/4/2020 13:34	0.1	0.8	
	53	12/4/2020 13:35	0.1	0.8	
	54	12/4/2020 13:36	0.1	0.8	
	55	12/4/2020 13:37	0.1	0.8	
	56	12/4/2020 13:38	0.1	0.8	
	57	12/4/2020 13:39	0.1	0.8	
	58	12/4/2020 13:40	0.1	0.7	
	59	12/4/2020 13:41	0.1	0.7	
	60	12/4/2020 13:42	0.1	0.7	
	61	12/4/2020 13:43	0.1	0.7	
	62	12/4/2020 13:44	0.1	0.7	
	63	12/4/2020 13:45	0.1	0.7	
	64	12/4/2020 13:46	0.1	0.7	
	65	12/4/2020 13:47	0.1	0.7	
	66	12/4/2020 13:48	0.1	0.7	
	67	12/4/2020 13:49	0.1	0.6	
	68	12/4/2020 13:50	0.1	0.6	
	69	12/4/2020 13:51	0.1	0.6	
	70	12/4/2020 13:52	0.1	0.6	
	71	12/4/2020 13:53	0.1	0.6	
	72	12/4/2020 13:54	0.1	0.6	
	73	12/4/2020 13:55	0.1	0.6	
	74	12/4/2020 13:56	0.1	0.7	
	75	12/4/2020 13:57	0.1	0.6	
	76	12/4/2020 13:58	0.1	0.7	
	77	12/4/2020 13:59	0.1	0.8	
	78	12/4/2020 14:00	0.1	0.8	
	79	12/4/2020 14:01	0.1	0.7	
	80	12/4/2020 14:02	0.1	0.7	
	81	12/4/2020 14:03	0.1	0.8	
	82	12/4/2020 14:04	0.1	0.9	
	83	12/4/2020 14:05	0.1	0.9	
	84 85	12/4/2020 14:06	0.1 0.1	0.9 0.9	
		12/4/2020 14:07			
	86 87	12/4/2020 14:08 12/4/2020 14:09	0.1 0.1	0.9 0.9	
	88	12/4/2020 14:09	0.1	0.9	
	89	12/4/2020 14:10	0.1	0.9	
	90	12/4/2020 14:11	0.1	0.9	
	91	12/4/2020 14:12	0.1	1	
	92	12/4/2020 14:13	0.1	0.9	
	93	12/4/2020 14:15	0.1	0.7	
	94	12/4/2020 14:16	0.1	0.8	
	95	12/4/2020 14:17	0.1	0.8	
	96	12/4/2020 14:17	0.1	0.8	
	97	12/4/2020 14:19	0.1	0.8	
	98	12/4/2020 14:20	0.1	0.7	
	, 5	32029			

Activity: Down-wind air monitoring during drilling operations

152

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	MiniRAE 3000(PGM-73				
====:	======================================	======================================	-===== 0.1	0.7	=======================================
	100	12/4/2020 14:22	0.1	0.7	
	101	12/4/2020 14:23	0.1	0.7	
	102	12/4/2020 14:24	0.1	0.7	
	103	12/4/2020 14:25	0.1	0.6	
	104	12/4/2020 14:26	0.1	0.6	
	105	12/4/2020 14:27	0.1	0.6	
	106	12/4/2020 14:28	0.1	0.6	
	107	12/4/2020 14:29	0.1	0.5	
	108	12/4/2020 14:30	0.1	0.5	
	109	12/4/2020 14:31	0.1	0.5	
	110	12/4/2020 14:32	0.1	0.5	
	111	12/4/2020 14:33	0.1	0.5	
	112	12/4/2020 14:34	0.1	0.5	
	113	12/4/2020 14:35	0.1	0.5	
	114	12/4/2020 14:36	0.1	0.5	
	115	12/4/2020 14:37	0.1	0.5	
	116	12/4/2020 14:38	0.1	0.5	
	117	12/4/2020 14:39	0.1	0.5	
	118	12/4/2020 14:40	0.1	0.5	
	119	12/4/2020 14:41	0.1	0.5	
	120	12/4/2020 14:41	0.2	0.5	
	121	12/4/2020 14:42	0.2	0.5	
	122	12/4/2020 14:44	0.2	0.5	
	123	12/4/2020 14:45	0.2	0.5	
	124	12/4/2020 14:46	0.2	0.5	
	125	12/4/2020 14:47	0.2	0.5	
	126	12/4/2020 14:48	0.2	0.5	
	127	12/4/2020 14:49	0.2	0.5	
	128	12/4/2020 14:50	0.2	0.5	
	129	12/4/2020 14:51	0.2	0.5	
	130	12/4/2020 14:51	0.2	0.5	
	131	12/4/2020 14:53	0.2	0.5	
	132	12/4/2020 14:54	0.2	0.5	
	133	12/4/2020 14:55	0.2	0.4	
	134	12/4/2020 14:56	0.2	0.4	
	135	12/4/2020 14:57	0.2	0.4	
	136	12/4/2020 14:58	0.2	0.4	
	137	12/4/2020 14:59	0.2	0.5	
	138	12/4/2020 14:37	0.2	0.5	
	139	12/4/2020 15:01	0.2	0.5	
	140	12/4/2020 15:01	0.2	0.5	
	141	12/4/2020 15:02	0.2	0.5	
	142	12/4/2020 15:04	0.2	0.5	
	143	12/4/2020 15:05	0.2	0.5	
	144	12/4/2020 15:06	0.2	0.5	
	145	12/4/2020 15:07	0.2	0.5	
	146	12/4/2020 15:08	0.2	0.5	
	147	12/4/2020 15:09	0.2	0.6	
	148	12/4/2020 15:09	0.2	0.6	
	149	12/4/2020 15:10	0.2	0.6	
	150	12/4/2020 15:11	0.2	0.6	
	151	12/4/2020 15:12	0.2	0.6	
	151	12/7/2020 15.13	0.2	0.0	

0.2 0.7

12/4/2020 15:14

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	MiniRAE 3000(PGM-73				
====:	======================================	======================================	0.2	0.7	=======================================
	154	12/4/2020 15:16	0.2	0.7	
	155	12/4/2020 15:17	0.2	0.6	
	156	12/4/2020 15:18	0.2	0.6	
	157	12/4/2020 15:19	0.2	0.6	
	158	12/4/2020 15:20	0.2	0.6	
	159	12/4/2020 15:21	0.2	0.6	
	160	12/4/2020 15:22	0.2	0.6	
	161	12/4/2020 15:22	0.2	0.6	
	162	12/4/2020 15:24	0.2	0.6	
	163	12/4/2020 15:25	0.2	0.5	
	164	12/4/2020 15:26	0.2	0.5	
			0.2		
	165	12/4/2020 15:27		0.5	
	166	12/4/2020 15:28	0.2	0.5	
	167	12/4/2020 15:29	0.2	0.5	
	168	12/4/2020 15:30	0.2	0.4	
	169	12/4/2020 15:31	0.2	0.4	
	170	12/4/2020 15:32	0.2	0.4	
	171	12/4/2020 15:33	0.2	0.4	
	172	12/4/2020 15:34	0.2	0.4	
	173	12/4/2020 15:35	0.2	0.4	
	174	12/4/2020 15:36	0.2	0.4	
	175	12/4/2020 15:37	0.2	0.4	
	176	12/4/2020 15:38	0.2	0.4	
	177	12/4/2020 15:39	0.2	0.3	
	178	12/4/2020 15:40	0.2	0.3	
	179	12/4/2020 15:41	0.2	0.3	
	180	12/4/2020 15:42	0.2	0.3	
	181	12/4/2020 15:43	0.2	0.3	
	182	12/4/2020 15:44	0.2	0.3	
	183	12/4/2020 15:45	0.2	0.3	
	184	12/4/2020 15:46	0.2	0.3	
	185	12/4/2020 15:47	0.2	0.3	
	186	12/4/2020 15:48	0.2	0.3	
	187	12/4/2020 15:49	0.2	0.3	
	188	12/4/2020 15:50	0.2	0.3	
	189	12/4/2020 15:51	0.2	0.2	
	190	12/4/2020 15:52	0.2	0.2	
	191	12/4/2020 15:53	0.2	0.2	
	192	12/4/2020 15:54	0.2	0.2	
	193	12/4/2020 15:55	0.2	0.2	
	194	12/4/2020 15:56	0.2	0.1	
	195	12/4/2020 15:57	0.2	0.1	
	196	12/4/2020 15:58	0.2	0.1	
	197	12/4/2020 15:59	0.2	0.1	
	198	12/4/2020 16:00	0.2	0.1	
	199	12/4/2020 16:00	0.2	0.1	
	200	12/4/2020 16:01	0.2	0.1	
	201	12/4/2020 16:02	0.2	0.1	
	201	12/4/2020 10.03	0.2	U. I	

20/12/06 09:56

Summary

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-900989
Unit Firmware Ver V2.16

Running Mode Search Mode
Datalog Mode Manual
Diagnostic Mode No
Stop Reason Power Down

Site ID QES00019 User ID PES00000

Begin 12/6/2020 9:56 End 12/6/2020 14:10 Sample Period(s) 60 Number of Records 254

Sensor PID(ppm)
Sensor SN S023030194J8
Measure Type Min; Avg; Max; Min; Avg; Max; Real

Span 100 Span 2 1000 Low Alarm 50 High Alarm 100 Over Alarm 15000 STEL Alarm 25 TWA Alarm 10

Measurement Gas Isobutylene

12/6/2020 7:42 Calibration Time Peak 0.1 Min 0 Average 0

Datalog

Index	Date/Time	۵	PID(ppm) (Min)	PID(ppm) (Avg)	PID(ppm) (Max)	PID(ppm) (Real)
muex	1	12/6/2020 9:57	(101111)		(10101)	(Near)
	2	12/6/2020 9:58	0	_	0	0
	3	12/6/2020 9:59	0	•	0	0
	4	12/6/2020 10:00	0	0	0	0
	5	12/6/2020 10:01	0	0	0	0
	6	12/6/2020 10:02	0	0	0	0
	7	12/6/2020 10:03	0	0	0	0
	8	12/6/2020 10:04	0	0	0	0
	9	12/6/2020 10:05	0	0	0	0
	10	12/6/2020 10:06	0	0	0	0
	11	12/6/2020 10:07	0	0	0	0
	12	12/6/2020 10:08	0	0	0	0
	13	12/6/2020 10:09	0	0	0	0
	14	12/6/2020 10:10	0	0	0	0
	15	12/6/2020 10:11	0	0	0	0
	16	12/6/2020 10:12	0	0	0	0
	17	12/6/2020 10:13	0	0	0	0

Activity: Down-wind air monitoring during drilling operations

71

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	niRAE 3000(PGM-73						
=====	========= 18	12/6/2020 10:14	0	0	0	====== 0	======
	19	12/6/2020 10:15	0	0	0	0	
	20	12/6/2020 10:16	0	0	0	0	
	21	12/6/2020 10:17	0	0	0	0	
	22	12/6/2020 10:18	0	0	0	0	
	23	12/6/2020 10:19	0	0	0	0	
	24	12/6/2020 10:20	0	0	0	0	
	25	12/6/2020 10:21	0	0	0	0	
	26	12/6/2020 10:22	0	0	0	0	
	27	12/6/2020 10:23	0	0	0	0	
	28	12/6/2020 10:24	0	0	0.1	0	
	29	12/6/2020 10:25	0	0	0	0	
	30	12/6/2020 10:26	0	0	0	0	
	31	12/6/2020 10:27	0	0	0	0	
	32	12/6/2020 10:27	0	0	0	0	
	33	12/6/2020 10:29	0	0	0	0	
	34	12/6/2020 10:27	0	0	0	0	
	35	12/6/2020 10:30	0	0	0	0	
	36	12/6/2020 10:32	0	0	0.1	0	
	37	12/6/2020 10:33	0	0	0.1	0	
	38	12/6/2020 10:34	0	0	0	0	
	39	12/6/2020 10:35	0	0	0	0	
	40	12/6/2020 10:36	0	0	0	0	
	41	12/6/2020 10:37	0	0	0	0	
	42	12/6/2020 10:38	0	0	0	0	
	43	12/6/2020 10:39	0	0	0	0	
	44	12/6/2020 10:40	0	0	0	0	
	45	12/6/2020 10:41	0	0	0	0	
	46	12/6/2020 10:42	0	0	0	0	
	47	12/6/2020 10:43	0	0	0	0	
	48	12/6/2020 10:44	0	0	0	0	
	49	12/6/2020 10:45	0	0	0	0	
	50	12/6/2020 10:46	0	0	0	0	
	51	12/6/2020 10:47	0	0	0	0	
	52	12/6/2020 10:48	0	0	0	0	
	53	12/6/2020 10:49	0	0	0	0	
	54	12/6/2020 10:50	0	0	0	0	
	55	12/6/2020 10:51	0	0	0	0	
	56	12/6/2020 10:52	0	0	0	0	
	57	12/6/2020 10:53	0	0	0	0	
	58	12/6/2020 10:54	0	0	0	0	
	59	12/6/2020 10:55	0	0	0	0	
	60	12/6/2020 10:56	0	0	0	0	
	61	12/6/2020 10:57	0	0	0	0	
	62	12/6/2020 10:58	0	0	0	0	
	63	12/6/2020 10:59	0	0	0	0	
	64	12/6/2020 11:00	0	0	0	0	
	65	12/6/2020 11:01	0	0	0	0	
	66	12/6/2020 11:02	0	0	0	0	
	67	12/6/2020 11:03	0	0	0	0	
	68	12/6/2020 11:04	0	0	0.1	0	
	69	12/6/2020 11:05	0	0	0	0	
	70	12/6/2020 11:06	0	0	0	0	
		10///0000 11 07	0	0	•	-	

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

rument: MiniRAE 3000(PGM-7320)						
72	======================================	0	0	0	0	======
72	12/6/2020 11:09	0	0	0	0	
74	12/6/2020 11:10	0	0	0	0	
75	12/6/2020 11:11	0	0	0	0	
76	12/6/2020 11:12	0	0	0	0	
77	12/6/2020 11:13	0	0	0	0	
78	12/6/2020 11:14	0	0	0	0	
79	12/6/2020 11:15	0	0	0	0	
80	12/6/2020 11:16	0	0	0	Ö	
81	12/6/2020 11:17	0	0	0	0	
82	12/6/2020 11:18	0	0	0	0	
83	12/6/2020 11:19	0	0	0	0	
84	12/6/2020 11:20	0	0	0	0	
85	12/6/2020 11:21	0	0	0	0	
86	12/6/2020 11:22	0	0	0	0	
87	12/6/2020 11:23	0	0	0	0	
88	12/6/2020 11:24	0	0	0	0	
89	12/6/2020 11:25	0	0	0	0	
90	12/6/2020 11:26	0	0	0	0	
91	12/6/2020 11:27	0	0	0	0	
92	12/6/2020 11:28	0	0	0	0	
93	12/6/2020 11:29	0	0	0	0	
94	12/6/2020 11:30	0	0	0	0	
95	12/6/2020 11:31	0	0	0	0	
96	12/6/2020 11:32	0	0	0	0	
97	12/6/2020 11:33	0	0	0	0	
98 99	12/6/2020 11:34	0	0 0	0 0	0	
100	12/6/2020 11:35 12/6/2020 11:36	0 0	0	0	0 0	
101	12/6/2020 11:37	0	0	0	0	
102	12/6/2020 11:38	0	0	0	0	
103	12/6/2020 11:39	0	0	0	0	
104	12/6/2020 11:40	0	0	0	0	
105	12/6/2020 11:41	0	0	0	0	
106	12/6/2020 11:42	0	0.2	3.3	0	
107	12/6/2020 11:43	0	0	0	0	
108	12/6/2020 11:44	0	0	0	0	
109	12/6/2020 11:45	0	0	0	0	
110	12/6/2020 11:46	0	0	0	0	
111	12/6/2020 11:47	0	0	0	0	
112	12/6/2020 11:48	0	0	0	0	
113	12/6/2020 11:49	0	0	0	0	
114	12/6/2020 11:50	0	0	0	0	
115	12/6/2020 11:51	0	0	0	0	
116	12/6/2020 11:52	0	0	0	0	
117	12/6/2020 11:53	0	0	0	0	
118	12/6/2020 11:54	0	0	0.2	0	
119	12/6/2020 11:55	0	0	0	0	
120	12/6/2020 11:56	0	0	0	0	
121	12/6/2020 11:57	0	0	0	0	
122	12/6/2020 11:58	0	0	0	0	
123	12/6/2020 11:59	0	0	0	0	
124 125	12/6/2020 12:00 12/6/2020 12:01	0 0	0 0	0 0	0 0	
120	12/0/2020 12.01	U	U	U	U	

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

=====	12/	12///2020 12 02	======	======		======	======
	126	12/6/2020 12:02	0	0	0	0	
	127	12/6/2020 12:03	0	0	0	0	
	128	12/6/2020 12:04	0	0	0	0	
	129	12/6/2020 12:05	0	0	0	0	
	130	12/6/2020 12:06	0	0	0	0	
	131	12/6/2020 12:07	0	0	0	0	
	132	12/6/2020 12:08	0	0	0	0	
	133	12/6/2020 12:09	0	0	0	0	
	134	12/6/2020 12:10	0	0	0	0	
	135	12/6/2020 12:11	0	0	0	0	
	136	12/6/2020 12:12	0	0	0	0	
	137	12/6/2020 12:13	0	0	0	0	
	138	12/6/2020 12:14	0	0	0	0	
	139	12/6/2020 12:15	0	0	0	0	
	140	12/6/2020 12:16	0	0	0	0	
	141	12/6/2020 12:17	0	0	0	0	
	142	12/6/2020 12:18	0	0	0	0	
	143	12/6/2020 12:19	0	0	0.1	0	
	144	12/6/2020 12:20	0	0	0	0	
	145	12/6/2020 12:21	0	0	0	0	
	146	12/6/2020 12:22	0	0	0	0	
	147	12/6/2020 12:23	0	0	0	0	
	148	12/6/2020 12:24	0	0	0	0	
	149	12/6/2020 12:25	0	0	0	0	
	150	12/6/2020 12:26	0	0	0	0	
	151	12/6/2020 12:27	0	0	0	0	
	152	12/6/2020 12:28	0	0	0	0	
	153	12/6/2020 12:29	0	0	0	0	
	154	12/6/2020 12:30	0	0	0	0	
	155	12/6/2020 12:31	0	0	0	0	
	156	12/6/2020 12:32	0	0	0	0	
	157	12/6/2020 12:33	0	0	0	0	
	158	12/6/2020 12:34	0	0	0	0	
	159	12/6/2020 12:35	0	0	0	0	
	160	12/6/2020 12:36	0	0	0	0	
	161	12/6/2020 12:37	0	0	0	0	
	162	12/6/2020 12:38	0	0	0	0	
	163	12/6/2020 12:39	0	0	0	0	
	164	12/6/2020 12:40	0	0	0	0	
	165	12/6/2020 12:41	0	0	0	0	
	166	12/6/2020 12:42	0	0	0	0	
	167	12/6/2020 12:43	0	0	0	0	
	168	12/6/2020 12:44	0	0	0	0	
	169	12/6/2020 12:45	0	0	0	0	
	170	12/6/2020 12:46	0	0	0	0	
	171	12/6/2020 12:47	0	0	0	0	
	172	12/6/2020 12:48	0	0	0	0	
	173	12/6/2020 12:49	0	0	0	0	
	174	12/6/2020 12:50	0	0	0	0	
	175	12/6/2020 12:51	0	0	0	0	
	176	12/6/2020 12:52	0	0	0	0	
	177	12/6/2020 12:53	0	0	0	0	
	178	12/6/2020 12:54	0	0	0	0	
	179	12/6/2020 12:55	0	0	0	0	

Activity: Down-wind air monitoring during drilling operations

233

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

nstrument: MiniRAE 3000(PGM-7320)						
======================================	12/6/2020 12:56	-====== 0	0	0	0	======
181	12/6/2020 12:57	0	0	0	0	
182	12/6/2020 12:58	0	0	0	0	
183	12/6/2020 12:59	0	0	0	0	
184	12/6/2020 13:00	0	0	0	0	
185	12/6/2020 13:01	0	0	0	0	
186	12/6/2020 13:02	0	0	0	0	
187	12/6/2020 13:03	0	0	0	Ö	
188	12/6/2020 13:04	0	0	0	Ö	
189	12/6/2020 13:05	0	0	0	0	
190	12/6/2020 13:06	0	0	0	0	
191	12/6/2020 13:07	0	0	0	Ö	
192	12/6/2020 13:08	0	0	0	Ö	
193	12/6/2020 13:09	0	0	0	0	
194	12/6/2020 13:10	0	0	0	0	
195	12/6/2020 13:11	0	0	0	0	
196	12/6/2020 13:11	0	0	0	0	
197	12/6/2020 13:12	0	0	0	0	
198	12/6/2020 13:14	0	0	0	0	
199	12/6/2020 13:15	0	0	0	0	
200	12/6/2020 13:16	0	0	0	0	
200	12/6/2020 13:17	0	0	0	0	
202	12/6/2020 13:17	0	0	0	0	
202	12/6/2020 13:19	0	0	0	0	
203	12/6/2020 13:19	0	0	0	0	
205	12/6/2020 13:21	0	0	0	0	
203	12/6/2020 13:21	0	0	0	0	
200	12/6/2020 13:23	0	0	0	0	
	12/6/2020 13:24	0		0		
208 209		0	0 0	0	0 0	
209	12/6/2020 13:25 12/6/2020 13:26	0	0	0	0	
210	12/6/2020 13:27			0		
212		0	0	0	0	
212	12/6/2020 13:28 12/6/2020 13:29	0 0	0	0	0 0	
	12/6/2020 13:30		0			
214 215	12/6/2020 13:31	0	0 0	0	0	
		0	0	0	0	
216 217	12/6/2020 13:32	0 0	0	0 0	0 0	
217	12/6/2020 13:33	0	0	0	0	
219	12/6/2020 13:34 12/6/2020 13:35	-	-	-	_	
		0	0	0	0	
220	12/6/2020 13:36	0	0	0	0	
221	12/6/2020 13:37 12/6/2020 13:38	0	0	0	0	
222		0	0	0	0	
223	12/6/2020 13:39	0	0	0	0	
224	12/6/2020 13:40	0	0	0	0	
225	12/6/2020 13:41	0	0	0	0	
226	12/6/2020 13:42	0	0	0	0	
227	12/6/2020 13:43	0	0	0	0	
228	12/6/2020 13:44	0	0	0	0	
229	12/6/2020 13:45	0	0	0	0	
230	12/6/2020 13:46	0	0	0	0	
231	12/6/2020 13:47	0	0	0	0	
232	12/6/2020 13:48	0	0	0	0	

12/6/2020 13:49 0 0 0 0

Phase IV Remedial Investigation Camp Hero, Montauk, New York

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Instrument: MiniRAE 3000(PGM-7320)

=	=========		======	======	======	======	========
	234	12/6/2020 13:50	0	0	0	0	
	235	12/6/2020 13:51	0	0	0	0	
	236	12/6/2020 13:52	0	0	0	0	
	237	12/6/2020 13:53	0	0	0	0	
	238	12/6/2020 13:54	0	0	0	0	
	239	12/6/2020 13:55	0	0	0	0	
	240	12/6/2020 13:56	0	0	0	0	
	241	12/6/2020 13:57	0	0	0	0	
	242	12/6/2020 13:58	0	0	0	0	
	243	12/6/2020 13:59	0	0	0	0	
	244	12/6/2020 14:00	0	0	0	0	
	245	12/6/2020 14:01	0	0	0	0	
	246	12/6/2020 14:02	0	0	0	0	
	247	12/6/2020 14:03	0	0	0	0	
	248	12/6/2020 14:04	0	0	0	0	
	249	12/6/2020 14:05	0	0	0	0	
	250	12/6/2020 14:06	0	0	0	0	
	251	12/6/2020 14:07	0	0	0	0	
	252	12/6/2020 14:08	0	0	0	0	
	253	12/6/2020 14:09	0	0	0.1	0.1	
	254	12/6/2020 14:10	0	0	0.2	0	
Peak			0	0.2	3.3	0.1	
Min			0	0	0	0	
Average	9		0	0	0	0	

TWA/STEL

			PID(ppm)	
Index	Date/Tim		(TWA)	(STEL)
	1	12/6/2020 9:57	0	
	2	12/6/2020 9:58	0	
	3	12/6/2020 9:59	0	
	4	12/6/2020 10:00	0	
	5	12/6/2020 10:01	0	
	6	12/6/2020 10:02	0	
	7	12/6/2020 10:03	0	
	8	12/6/2020 10:04	0	
	9	12/6/2020 10:05	0	
1	0	12/6/2020 10:06	0	
1	1	12/6/2020 10:07	0	
1	2	12/6/2020 10:08	0	
1	3	12/6/2020 10:09	0	
1	4	12/6/2020 10:10	0	
1	5	12/6/2020 10:11	0	0
1	6	12/6/2020 10:12	0	0
1	7	12/6/2020 10:13	0	0
1	8	12/6/2020 10:14	0	0
1	9	12/6/2020 10:15	0	0
2	.0	12/6/2020 10:16	0	0
2	1	12/6/2020 10:17	0	0
2	.2	12/6/2020 10:18	0	0
2	:3	12/6/2020 10:19	0	0
2	4	12/6/2020 10:20	0	0
2	:5	12/6/2020 10:21	0	0

Activity: Down-wind air monitoring during drilling operations

79

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	niRAE 3000(PGM-73				
=====	:======== 26	======================================	0	0	=======================================
	27	12/6/2020 10:23	0	0	
	28	12/6/2020 10:24	0	0	
	29	12/6/2020 10:25	0	0	
	30	12/6/2020 10:26	0	0	
	31	12/6/2020 10:27	0	0	
	32	12/6/2020 10:28	0	0	
	33	12/6/2020 10:29	0	0	
	34	12/6/2020 10:30	0	0	
	35	12/6/2020 10:31	0	0	
	36	12/6/2020 10:32	0	0	
	37	12/6/2020 10:33	0	0	
	38	12/6/2020 10:34	0	0	
	39	12/6/2020 10:35	0	0	
	40	12/6/2020 10:36	Ö	0	
	41	12/6/2020 10:37	0	0	
	42	12/6/2020 10:38	0	0	
	43	12/6/2020 10:39	0	0	
	44	12/6/2020 10:40	0	0	
	45	12/6/2020 10:41	0	0	
	46	12/6/2020 10:41	0	0	
	47	12/6/2020 10:43	0	0	
	48	12/6/2020 10:44	0	0	
		12/6/2020 10:45	0	0	
	49 50	12/6/2020 10:45		0	
			0 0	0	
	51 52	12/6/2020 10:47		0	
		12/6/2020 10:48	0		
	53	12/6/2020 10:49	0	0	
	54	12/6/2020 10:50	0	0	
	55 54	12/6/2020 10:51	0	0	
	56	12/6/2020 10:52	0	0	
	57	12/6/2020 10:53	0	0	
	58	12/6/2020 10:54	0	0	
	59	12/6/2020 10:55	0	0	
	60	12/6/2020 10:56	0	0	
	61	12/6/2020 10:57	0	0	
	62	12/6/2020 10:58	0	0	
	63	12/6/2020 10:59	0	0	
	64	12/6/2020 11:00	0	0	
	65	12/6/2020 11:01	0	0	
	66	12/6/2020 11:02	0	0	
	67	12/6/2020 11:03	0	0	
	68	12/6/2020 11:04	0	0	
	69	12/6/2020 11:05	0	0	
	70	12/6/2020 11:06	0	0	
	71	12/6/2020 11:07	0	0	
	72	12/6/2020 11:08	0	0	
	73	12/6/2020 11:09	0	0	
	74	12/6/2020 11:10	0	0	
	75	12/6/2020 11:11	0	0	
	76	12/6/2020 11:12	0	0	
	77	12/6/2020 11:13	0	0	
	78	12/6/2020 11:14	0	0	
	70	40///0000 44 45	^	_	

0

12/6/2020 11:15 0

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

MiniRAE 3000(PGM-73 	·	======	======	=======================================
80	12/6/2020 11:16	0	0	
81	12/6/2020 11:17	0	0	
82	12/6/2020 11:18	0	0	
83	12/6/2020 11:19	0	0	
84	12/6/2020 11:20	0	0	
85	12/6/2020 11:21	0	0	
86	12/6/2020 11:22	0	0	
87	12/6/2020 11:23	0	0	
88	12/6/2020 11:24	0	0	
89	12/6/2020 11:25	0	0	
90	12/6/2020 11:26	0	0	
91	12/6/2020 11:27	0	0	
92	12/6/2020 11:28	0	0	
93	12/6/2020 11:29	0	0	
94	12/6/2020 11:30	0	0	
95	12/6/2020 11:31	0	0	
96	12/6/2020 11:32	0	0	
97	12/6/2020 11:33	0	0	
98 99	12/6/2020 11:34	0	0	
	12/6/2020 11:35	0	0	
100 101	12/6/2020 11:36 12/6/2020 11:37	0 0	0 0	
102	12/6/2020 11:38	0	0	
103	12/6/2020 11:39	0	0	
104	12/6/2020 11:40	0	0	
105	12/6/2020 11:41	0	0	
106	12/6/2020 11:42	0	0	
107	12/6/2020 11:43	0	0	
108	12/6/2020 11:44	0	0	
109	12/6/2020 11:45	0	0	
110	12/6/2020 11:46	0	0	
111	12/6/2020 11:47	0	0	
112	12/6/2020 11:48	0	0	
113	12/6/2020 11:49	0	0	
114	12/6/2020 11:50	0	0	
115	12/6/2020 11:51	0	0	
116	12/6/2020 11:52	0	0	
117	12/6/2020 11:53	0	0	
118	12/6/2020 11:54	0	0	
119	12/6/2020 11:55	0	0	
120	12/6/2020 11:56	0	0	
121	12/6/2020 11:57	0	0	
122	12/6/2020 11:58	0	0	
123	12/6/2020 11:59	0	0	
124	12/6/2020 12:00	0	0	
125	12/6/2020 12:01	0	0	
126	12/6/2020 12:02	0	0	
127	12/6/2020 12:03	0	0	
128	12/6/2020 12:04	0	0	
129	12/6/2020 12:05	0	0	
130	12/6/2020 12:06	0	0	
131	12/6/2020 12:07	0	0	
132	12/6/2020 12:08	0	0	
133	12/6/2020 12:09	0	0	

Activity: Down-wind air monitoring during drilling operations

187

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

strument: MiniRAE		(320)			
=======	====== 134	12/6/2020 12:10	0	0	:======================================
	135	12/6/2020 12:11	0	0	
	136	12/6/2020 12:12	0	0	
	137	12/6/2020 12:13	0	0	
	138	12/6/2020 12:14	0	0	
	139	12/6/2020 12:15	0	0	
	140	12/6/2020 12:16	0	0	
	141	12/6/2020 12:17	0	0	
	142	12/6/2020 12:18	0	0	
	143	12/6/2020 12:19	0	0	
	144	12/6/2020 12:20	0	0	
	145	12/6/2020 12:21	0	0	
	146	12/6/2020 12:22	0	0	
	147	12/6/2020 12:23	0	0	
	148	12/6/2020 12:24	0	0	
	149	12/6/2020 12:25	0	0	
	150	12/6/2020 12:26	0	0	
	151	12/6/2020 12:27	0	0	
	152	12/6/2020 12:28	0	0	
	153	12/6/2020 12:29	0	0	
	154	12/6/2020 12:30	0	0	
	155	12/6/2020 12:31	0	0	
	156	12/6/2020 12:31	0	0	
	157	12/6/2020 12:33	0	0	
	158	12/6/2020 12:34	0	0	
	159	12/6/2020 12:35	0	0	
	160	12/6/2020 12:36	0	0	
	161	12/6/2020 12:37	0	0	
	162	12/6/2020 12:38	0	0	
	163	12/6/2020 12:39	0	0	
	164	12/6/2020 12:40	0	0	
	165	12/6/2020 12:41	0	0	
	166	12/6/2020 12:42	0	0	
	167	12/6/2020 12:43	0	0	
	168	12/6/2020 12:44	0	0	
	169	12/6/2020 12:45	0	0	
	170	12/6/2020 12:46	0	0	
	170	12/6/2020 12:47	0	0	
	171	12/6/2020 12:48	0	0	
	172	12/6/2020 12:49	0	0	
	173	12/6/2020 12:50	0	0	
	174	12/6/2020 12:51		0	
	175	12/6/2020 12:52	0	0	
	176	12/6/2020 12:52	0	0	
	177	12/6/2020 12:54	0 0	0	
	179	12/6/2020 12:55 12/6/2020 12:56	0	0	
	180		0	0	
	181	12/6/2020 12:57	0	0	
	182	12/6/2020 12:58	0	0	
	183	12/6/2020 12:59	0	0	
	184	12/6/2020 13:00	0	0	
	185	12/6/2020 13:01	0	0	
	186	12/6/2020 13:02	0	0	

0

12/6/2020 13:03 0

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM Instrument: MiniRAE 3000(PGM-7320)

	liniRAE 3000(PGM-73				
=====	188	 12/6/2020 13:04	0	0	
	189	12/6/2020 13:05	0	0	
	190	12/6/2020 13:06	0	0	
	191	12/6/2020 13:07	0	0	
	192	12/6/2020 13:08	0	0	
	193	12/6/2020 13:09	0	0	
	194	12/6/2020 13:10	0	0	
	195	12/6/2020 13:11	0	0	
	196	12/6/2020 13:12	0	0	
	197	12/6/2020 13:13	0	0	
	198	12/6/2020 13:14	0	0	
	199	12/6/2020 13:15	0	0	
	200	12/6/2020 13:16	0	0	
	201	12/6/2020 13:17	0	0	
	202	12/6/2020 13:18	0	0	
	203	12/6/2020 13:19	0	0	
	204	12/6/2020 13:20	0	0	
	205	12/6/2020 13:21	0	0	
	206	12/6/2020 13:22	0	0	
	207	12/6/2020 13:23	0	0	
	208	12/6/2020 13:24	0	0	
	209	12/6/2020 13:25	0	0	
	210	12/6/2020 13:26	0	0	
	211	12/6/2020 13:27	0	0	
	212	12/6/2020 13:28	0	0	
	213	12/6/2020 13:29	0	0	
	214	12/6/2020 13:30	0	0	
	215	12/6/2020 13:31	0	0	
	216	12/6/2020 13:32	0	0	
	217	12/6/2020 13:33	0	0	
	218	12/6/2020 13:34	0	0	
	219	12/6/2020 13:35	0	0	
	220	12/6/2020 13:36	0	0	
	221	12/6/2020 13:37	0	0	
	222	12/6/2020 13:38	0	0	
	223	12/6/2020 13:39	0	0	
	224	12/6/2020 13:40	0	0	
	225	12/6/2020 13:41	0	0	
	226	12/6/2020 13:42	0	0	
	227	12/6/2020 13:43	0	0	
	228	12/6/2020 13:44	0	0	
	229	12/6/2020 13:45	0	0	
	230	12/6/2020 13:46	0	0	
	231	12/6/2020 13:47	0	0	
	232	12/6/2020 13:48	0	0	
	233	12/6/2020 13:49	0	0	
	234	12/6/2020 13:50	0	0	
	235	12/6/2020 13:51	0	0	
	236	12/6/2020 13:52	0	0	
	237	12/6/2020 13:53	0	0	
	238	12/6/2020 13:54	0	0	
	239	12/6/2020 13:55	0	0	
	240	12/6/2020 13:56	0	0	
	241	12/6/2020 13:57	0	0	

Activity: Down-wind air monitoring during drilling operations

Geologist: M. Glinski, AECOM

Strument: M		320)			 _
====	242	12/6/2020 13:58	0	0	 _
	243	12/6/2020 13:59	0	0	
	244	12/6/2020 14:00	0	0	
	245	12/6/2020 14:01	0	0	
	246	12/6/2020 14:02	0	0	
	247	12/6/2020 14:03	0	0	
	248	12/6/2020 14:04	0	0	
	249	12/6/2020 14:05	0	0	
	250	12/6/2020 14:06	0	0	
	251	12/6/2020 14:07	0	0	
	252	12/6/2020 14:08	0	0	
	253	12/6/2020 14:09	0	0	
	254	12/6/2020 14:10	0	0	

AECOM 250 Apollo Drive Cheimsford, MA 01824

978.905.2100 (tel) 978.905.2101 (fax)

Routine Operations Check List Portable Air Monitoring Stations

CH-1 JH

Activity			Techniciar	r's Results		
Daily Start-Up	Mon	Tue	Wed	Thu	Fri	Sat/Sun
1. Time of Calibration			0900	0732	1140	0745
2. Technician's Initials			SHE	ا ء ٰز	11-1	JH
Perform <u>zero</u> check of RAE. Record results.	1	/	0,00.1	0.0/0.1	010	010
4. Perform <u>span</u> check of RAE. Record results. (Re-span if > 5.0 +/- 0.1 ppm)	1	/	100 196.6	100/1065	100 18xceed	1001Excu
Perform <u>zero</u> check of DustTrak. Record initial results. (Re-zero if > +/- 1.0 ug/m³)	/	/	00 10.0	010	0 10	0 /
Perform flow check of DustTrak. Record initial results. (Acceptable flow 1.5 – 1.9 lpm)			1.5	1.5	1.5	1.5
Weekly			,			
Check DustTrak filter following rain events for moisture. If filter is wet, then replace with new filter.						
Perform an upscale response check of DustTrak particulate monitor, using a smoke generator. Record upscale response and time of check.						
Monthly		h				FITTERTHORNE
Replace sample line filters on RAE PID.						

Comments:	Mon	Tue	Wed	Thu	Fri	Sat/Sun
					* PID reading > 15,000 ppm on evening calibration. Could be due to almost dead batteries	*Sæ Fri

С	:۱	ι	isers	\bore	dena\	Deskto	p\Pc	rtable	Monitor	checklist	2020 d	OCY.

Reviewed	Bv:	Date:

AECOM

Community /				
Project:	Camp Hero			
Project: No.:	60443903	CAMP Station	CH-1	
Weather:	AM	Cloudy	PM	,
Temp. (°F):	High:	45° F	Low: 41'F	
Wind Directi	on(WD):	Noth	G CH-MNOUS 21	of from ri-
Upwind (backg	round) Readings (Initail Reading Re	eguired)	
Time:	PID(PPM)	PM10(μg/m³)	Notes (WD; location)	
Hourly Down	l wind (of rig) Mai	l nual Boadings	On @ 1248	
Time:	1			
	PID(PPM)	PM10(µg/m³)	Notes (WD; location)	
1745 1250		0.904	N; Ron ID: MA	NUAL -001
1305	0.1	0.003		
1335	0.1	0.003	Manager Control of the Control of th	
12/50	0.1	0.003	N	
1405	0.1	0,002		
1422	0.1	0.002	· · · · · · · · · · · · · · · · · · ·	
1435	0.1	0.002		
1450	0.1	0.001	N	
1507	0.1	0.001		
1520	0.1	0.001		
1535	01	0,001		
1550	ರಿ. (0.001		
1599	0.1	0.001	OFF 6 1600	
1600 -	- OFF			

AECOM	
-------	--

Community	Air Monitoring	Program Log S	heet	·
Project:	Camp Hero	Date: (2/3/		
Project: No.:		CAMP Station		
Weather:	AM	SURRY	PM	
Temp. (°F):	High:	55	Low: 45	
Wind Directi	on(WD):	N	CH-MW045~1	20 ft from rig
Upwind (backg	round) Readings (Initail Reading Re	equired))
Time:	PID(PPM)	PM10(μg/m³)	Notes (WD; location)	
Hourly Down	wind (of rig) NAo	l Doodings	11 11 (000	
	wind (of rig) Mai	7.3.2	Manual-002	
Time:	PID(PPM)	PM10(µg/m³)	Notes (WD; location)	,
0855	0.2	0,004 2003	N 0008	ko
0910	0.2	0.003	Wind very gentle Attached moisture	-filter
0925		0.003	Attached MOBSTURE	7,(1,0)
0940 0955	0.2	0.002	(31 3 4 3)	
1010 T=122	8.2	0.002	Light wind, N	from (AMP 21020-1025
1025	0.2	0.001	Was to are to 11	1,130 0 (1,100 1,10
1040	0.2	0.001	light wind N	
[15	0.2	0.001	profess dead to	red on orige to collectus batter
c.	~ ·	1110		red on prior to replacing battery to get receding
1116	0.2	0.002	N; Charging Q.	wikes con
1175	0.2	0.002		west cut.
1140	0.2	0,003		
1155	0.2	0.003	\mathcal{N}	
1210	0.2	0.003		
1225	D.Z	0.604	N	
- OFF	C 1232			

AECOM

- END-

- RAIN

Community	Air Monitoring	Program Log S	heet	
Project:	Camp Hero	Date: 14기	20	
Project: No.:	60443903	CAMP Station	#: CH-1	
Weather:	AM	Survey	PM (lovdy, rain	
Temp. (°F):	High:	\	Low:	
Wind Direct	ion(WD):	N. Gentle	(H-MW044, ~50	a from rig
Upwind (back	ground) Readings	(Initail Reading Ro	<u>equired</u>))
Time:	PID(PPM)	PM10(μg/m³)	Notes (WD; location)	
		\		
Hourly Down	<u>l</u> wind (of rig) Mai	nual Boadings	11 11 677	
Time:			Manual -003	
1208	PID(PPM)	PM10(µg/m³)	Notes (WD; location)	
1223		0.010	One 1153	
1238	0.0	0,607	N Publication	1 - 1 Has 2- moderal foods air
1253	6.5	0.012	N TOWNER ON TO	replace batteries. Zeroed w/ Fresh air
30%	0,5	0.006	73	
1323	0.6	0.00	2	
1338	0.8	0,010	NING	
1353	0.21	510.0	NE, wind picki	ng up w/ sprinkling of rain
1408	0.5	0.007		74 14
1423	0,5	0,015	NE	
1438	0,4	0.007	:	
M53	0,4	800,0	Replaced Dust To	ale intake - See NOTES
1508	0.5	5.007	,	
1523	D.Y	0.010		
1538	0.1	0.007		
1553	0.0	6.00%		

AECOM

Community Air Monitoring Program Log Sheet Project: Camp Hero Date: 12 (6/20) Project: No.: 60443903 CAMP Station#: CUI-1 Weather: AM which PM Temp. (°F): High: 33°F Wind Direction(WD): B N NE 2 CH-MOONU SO Ft From 17 Upwind (background) Readings (Initial Reading Required) Timbs: PID(PPM) PM10(µg/m²) Notes (WD; location) Hourly Downwind (of rig) Manual Readings MANUAL 20 CH Time: PID(PPM) PM10(µg/m²) Notes (WD; location) 1007					
Project: No.: 60443903 CAMP Station#: CH-1 Weather: AM whicky Temp. (°F): High: 35° Upwind (bockground) Readings (Intail Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings AAA VA L & QU Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 0.0 0.001 NE 1022 0.00 0.001 NE 1025 0.00 0.001 Distribut dead, 1025 0.00 0.002 Distling stocked, 1026 0.00 0.002 Distling stocked 1027 0.00 0.000 MR 1250 1251 0.00 0.000 MR 1250 1327 0.00 0.000 MNE 1327 0.00 0.000 MNE 1327 0.00 0.000 MNE	Community .	Air Monitoring	Program Log S	Sheet	
Project: No.: 60443903 CAMP Station#: CH-1 Weather: AM whicky Temp. (°F): High: 35° Upwind (bockground) Readings (Intail Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings AAA VA L & QU Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 0.0 0.001 NE 1022 0.00 0.001 NE 1025 0.00 0.001 Distribut dead, 1025 0.00 0.002 Distling stocked, 1026 0.00 0.002 Distling stocked 1027 0.00 0.000 MR 1250 1251 0.00 0.000 MR 1250 1327 0.00 0.000 MNE 1327 0.00 0.000 MNE 1327 0.00 0.000 MNE	Project:	Camp Hero	Date: 12/10/20		
Temp. (FF): High: 397 Wind Direction(WD): 3 N/NE 2 CH-MNOVUL, 250 ft From 17 Upwind (background) Readings (Inital Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings MANUAL SOU Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 0.0 0.001 0.007 0.0001 0.007 0.0001 0.00	Project: No.:	60443903	***************************************		
Wind Direction(WD): 3 N/NE & CH-LWOULL, but 50 ft from 19 Upwind (background) Readings (Initall Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings MANUAL DOLL Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 O.O 0.001 G.P 0952 N 1022 O.O 0.001 NE 1024 O.O 0.001 DISTRUCK decal, going to pluy in 1055 O.C 0.002 O.R 1055 107 O.O 0.000 DISTRUCK decal, going to pluy in 1055 O.C 0.002 O.R 1055 107 O.O 0.000 DISTRUCK decal, going to pluy in 1055 O.C 0.002 O.R 1055 107 O.O 0.000 DISTRUCK decal, going to pluy in 1056 O.C 0.000 DISTRUCK decal, going to pluy in 1057 O.O 0.000 DISTRUCK decal, going to pluy in 1058 O.C 0.000 DISTRUCK decal, going to pluy in 1059 O.C 0.000 DISTRUCK decal, going to pluy in 1050 O.O 0.000 DISTRUCK decal, going to pluy in 1050 DISTRUCK decal, going to pluy in 1050 DISTRUCK decal, going to pluy in 1050 DIST	Weather:				
Upwind (background) Readings (Inital Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings MANUAL _ 804 Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 O.O 0.001 G.P O952 N 1022 O.O 0.001 NE 1025 O.C 0.002 O.D NE 1025 O.C 0.002 Dailing STOAPE 1026 O.O 0.000 DEFT while tracks getting water 1251 O.O 0.000 MP 1250 1354 O.O 0.000 MP 250 1328 O.O 0.000 MP 250 1328 O.O 0.000 MP 250 1328 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1357 O.O 0.000 MP 255 1358 O.O	Temp. (°F):	High: 39°		Low: 3년	
Upwind (background) Readings (Inital Reading Required) Time: PID(PPM) PM10(µg/m³) Notes (WD; location) Hourly Downwind (of rig) Manual Readings MANUAL _ 804 Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 O.O 0.001 G.P O952 N 1022 O.O 0.001 NE 1025 O.C 0.002 O.D NE 1025 O.C 0.002 Dailing STOAPE 1026 O.O 0.000 DEFT while tracks getting water 1251 O.O 0.000 MP 1250 1354 O.O 0.000 MP 250 1328 O.O 0.000 MP 250 1328 O.O 0.000 MP 250 1328 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1356 O.O 0.000 MP 255 1357 O.O 0.000 MP 255 1358 O.O	Wind Directi	on(WD): 3 N/	NE	ech-mody,	2 50 ft from rig
Hourly Downwind (of rig) Manual Readings MANUAL_804 Time: PID(PPM) PM10(µg/m³) Notes (WD; location) 1007 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0				equired)])
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE	Time:	PID(PPM)	PM10(μg/m ³)	Notes (WD; location)	
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(Kg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dust Trake dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dust trake unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1328 0.0 0.000 N/NE 1356 0.0 0.000 N/NE					
Time: PID(PPM) PM10(Kg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dust Trake dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dust trake unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1328 0.0 0.000 N/NE 1356 0.0 0.000 N/NE	-				
Time: PID(PPM) PM10(xg/m³) Notes (WD; location) 1807 0.0 0.001 Gr. p. 0952. N 1022 0.0 0.001 NE 1040 0.0 0.001 Dustrak dead, 1055 0.0 0.002 On p. 1055 107 0.0 0.000 Drilling STOPDED. Dustrak unplugged for trucks to move. 1251 0.0 0.000 On p. 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE	Hourly Down	wind (of rig) Max	l nual Poadings	A4 - 1210 1 805 1	
1007 0.0 0.001 Chp 0952, N/NE 1070 0.00 0.001 Distrak dead, going to pluy in 1055 0.0 0.002 On P 1055 1007 0.0 0.000 Dailing STOPPED. Distrak unplugged for trucks to move. 1251 0.0 0.000 MP 1250 1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 N/NE 1345 0.0 0.000 N/NE 1356 0.0 0.000		1			
1040 0.0 0.001 Dust Trake cheech, going to plug in 1055 0.0 0.002 On P 1055 1107 0.0 0.000 Dilling STOPPED. Dust trake unplugged for trucks to move 1251 0.0 0.000 On P 1250 1304 0.0 0.000 Off for trucks to get by 1378 0.0 0.000 N/NE 1356 0.0 0.000 N/NE		· · · · · · · · · · · · · · · · · · ·		Notes (WD; location)	1
1040 0.0 0.001 Dust Trake cheech, going to plug in 1055 0.0 0.002 On P 1055 1107 0.0 0.000 Dilling STOPPED. Dust trake unplugged for trucks to move 1251 0.0 0.000 On P 1250 1304 0.0 0.000 Off for trucks to get by 1378 0.0 0.000 N/NE 1356 0.0 0.000 N/NE				0752 N	ME
100 0.00 Dalling STORDED. Disting unplugged for trucks to move. 100 0.0 0.004 Dr. @ 1700 1257 0.0 0.000 Dr.@ 1750 1304 0.0 0.000 Off for trucks to get by 1378 0.0 0.000 Dr. 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE	1 -			Distrate de la	Laborator 1 xe 3ra
100 0.00 Dalling STORDED. Disting unplugged for trucks to move. 100 0.0 0.004 Dr. @ 1700 1257 0.0 0.000 Dr.@ 1750 1304 0.0 0.000 Off for trucks to get by 1378 0.0 0.000 Dr. 1345 0.0 0.000 N/NE 1356 0.0 0.000 N/NE	1055			DUST WALL CHECK.	going to flog in
1251 0.0 0.000 Def for tracks to get by 1328 0.0 0.000 On 1328 0.0 0.000 N/NE 1356 0.0 0.0001				Dalling STAPOS	D D Its () d ()
1251 0.0 0.000 me 1250 1364 0.0 0.000 off for tracks to get by 1328 0.0 0.000 on 1345 6.0 0.000 N/NE 1356 0.0 0.0001			0,900	Marine Storre	move unprogress for trucks to
1257 0.0 0.000 DAR 1250 1304 0.0 0.000 Off for tracks to get by 1328 0.0 0.000 OA 1345 0.0 0.000 N/NE 1356 0.0 0.0001	1200		0.004		
1304 0.0 0.000 Off for tracks to get by 1328 0.0 0.000 On 1348 0.0 0.000 N/NE 1356 0.0 0.0001	·				OFF while trucks getting unto
1304 0.0 0.000 Off for trucks to get by 1328 0.0 0.000 On 1345 0.0 0.000 N/NE 1356 0.0 0.001	1257		0.000	DAG 1250	J. J. 5000
1328 0.0 0.000 0n 1345 0.0 0.000 N/NE 1356 0.0 0.0001	1304	6.0			set by
1345 0.0 0.000 N/NE 1356 0.0 0.001	in the second se	-OFF -			7 1
1345 0.0 0.000 N/NE 1356 0.0 0.001			0,000	011	
		· · · · · · · · · · · · · · · · · · ·	0.000	NNE	
- OFF-	1356		0.001		
		COFF			

Appendix C3 Well Boring and Construction Logs

AECOM AECOM

TOTAL DEPTH 160 FT BGS PAGE 1 OF 6

	CLIENT USACE New England District PROJECT NUMBER 60443903													
		•									NORTHING		2250 2837	
	DRILLING CONTRACTOR ADT													
	DRILLING EQUIPMENT Fraste XL MAX													
	DRILLING METHOD Rotary Sonic							AT TIME OF DRILLING						
							CHECKED BY J. Hollingsworth	_						
	O DEPTH (ft) SAMPLE TYPE NUMBER RECOVERY % U.S.C.S. GRAPHIC LOG			GRAPHIC LOG		MATERIAL DESCRIPTION		ENVIRONMENTAL	NAI A			WELL DIAGRAM		
ARNG SMART LOG 8,5X11_V2 3/22/21 17:20 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ	0		100 72	ML		5.0 7.0	SILT WITH SAND, dry, dark redd soft with 15% fine-grained sand a gravel up to 7 cm in diameter. Ro throughout top 6 inches. SANDY SILT, dry, dark yellowish medium stiffness with 30% fine-g. Changes to brown (7.5YR 4/3) ar to medium-grained sand. SILTY SAND, dry, brown (10YR 4 with 30% stiff silt and 5% rounder gravel ranging in size up to 3 cm in the sample results: 59.3% sand, 36. gravel.	brown (10YR 4/4), for ained sand. brown (10YR 4/4), for ained sand. and grading into fine- 4/3), fine-grained d to subrounded in diameter.	5.8 0.8 8.8 1.8 CH-MW044				Annular Seal Top: 0 ft bgs Bottom: 104 ft bgs Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 147 ft bgs	
ARNG SM	 25													

AECOM AECOM

ARNG SMART LOG 8.5X11 V2 - - 3/22/2117;20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GPJ

TOTAL DEPTH 160 FT BGS PAGE 2 OF 6

CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC RECOVERY DEPTH (ft) U.S.C.S. LOG MATERIAL DESCRIPTION WELL DIAGRAM 54.8 SM SILTY SAND, dry, brown (10YR 4/3), fine-grained with 30% stiff silt and 5% rounded to subrounded gravel ranging in size up to 3 cm in diameter. (continued) Changes to dark greenish gray (5GY 4/1). Sample results: 64.2% sand, 35.8% fines, and 0% gravel. 27.0 38.8 CH-MW044D-SB-27-29 28.0 Changes to brown (10YR 4/3). 37.8 30 30.0 Changes to dark olive gray (5Y 3/2) with trace 35.8 rounded gravel ranging in size up to 6 cm in diameter. 35 65 37.0 Sample results: 60.5% sand, 35.4% fines, 4.1% 28.8 gravel. CH-MW044D-SB-37-39 Well Casing Type: Schedule 40 PVC Diameter: 2 in 40 Top: 0 ft bgs Bottom: 147 ft bgs 45 46.0 Sample results: 62.3% sand, 36.6% fines, and 1.1% CH-MW044D-SB-46-47 50 Changes to olive gray (5Y 4/2). Coarsening to contain less fines. Trace amounts of rounded to subangular 50.0 gravel ranging in size up to 3 cm.

AECOM AECOM

ARNG SMART LOG 8.5X11 V2 - - 3/22/2117;20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GPJ

TOTAL DEPTH 160 FT BGS PAGE 3 OF 6

CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM Changes to olive gray (5Y 4/2). Coarsening to contain less fines. Trace amounts of rounded to subangular gravel ranging in size up to 3 cm. (continued) 55 80 58.0 Sample results: 67.7% sand, 25.3% fines, and 7.0% CH-MW044D-SB-58-59 gravel. 60 60.0 Changes to wet, dark gray (5Y 4/1), soft with 5.8 decreasing gravel. 63.0 Sample results: 66.7% sand, 20.1% fines, and 13.2% CH-MW044D-SB-63-64 gravel. 65 45 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 147 ft bgs 70 -4.2 WELL-GRADED SAND WITH SILT, dry, olive (5Y SW-SM 5/3), fine- to medium-grained, moderately loose with <15% slightly cohesive fines. Sample results: 83.1% CH-MW044D-SB-70-72 sand, 14.5% fines, and 2.4% gravel. 75 75.0 Fractured/pulverized gneiss boulder. -92 SILT WITH SAND, dry, olive gray (5Y 3/2) and yellowish brown (10YR 5/4), stiff with 15-25% sand. ML 77.0 -11.2 80 SP-80.0 POORLY GRADED SAND WITH SILT, moist, olive -14.2 gray (5Y 5/2), loose with 10% fines. SM

AECOM AECOM

TOTAL DEPTH 160 FT BGS

PAGE 4 OF 6 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC RECOVERY DEPTH (ft) U.S.C.S. LOG MATERIAL DESCRIPTION WELL DIAGRAM 0.08 -14.2 -17.2 83.0 ML SILT WITH SAND, dry, olive gray (5Y 5/2), very stiff, low plasticity with white laminations and >15% sand. 85 60 85.0 Sample results: 71.1% fines, 28.9% sand, and 0% -19.2 CH-MW044D-SB-85-86 90 ARNG SMART LOG 8.5X11 V2 - - 3/22/21 17:20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GP 90.0 CLAYEY SAND, moist, dark grayish brown (10YR -24 2 4/2), loose with >15% clay. 93.0 LEAN CLAY, dry, dark grayish brown (10YR 4/3), -27.2 very stiff, medium plasticity. 95 82 Well Casing Type: Schedule 40 PVC 96.0 Sample results: 95.0% fines, 5.0% sand, and 0% -30.2 CH-MW044D-SB-96-97 gravel. Diameter: 2 in Top: 0 ft bgs Bottom: 147 ft bgs 100 Annular Seal Top: 104 ft bgs Bottom: 107 ft bgs 105 65 Annular Seal Top: 107 ft bgs Bottom: 108 ft bgs 108.0 LEAN CLAY WITH SAND, dry, gray (2.5Y 5/1), Filter Pack CH-MW044D-SB-108-109 slightly cohesive with >15% fine-grained sand and 5% Type: #2 Filter gravel. Sample results: 69.5% fines, 21.6% sand, and/ 109.0 -43.2 SP Sand 8.9% gravel. Top: 108 ft bas 110 POORLY GRADED SAND, dry, gray (2.5Y 5/1), Bottom: 120 ft bgs loose, fine-grained

AECOM AECOM

ARNG SMART LOG 8.5X11 V2 - - 3/22/21 17:20 - C:USERSUACK.HOLLINGSWORTH/DOCUMENTS/GINT/CAMP HERO/CAMP HERO PHASE IV.GPJ

TOTAL DEPTH 160 FT BGS

PAGE 5 OF 6 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 109.0 POORLY GRADED SAND, dry, gray (2.5Y 5/1), -43.2 SP loose, fine-grained. (continued) 115 40 115.0 Sample results: 88.1% sand, 9.8% fines, and 2.1% CH-MW044D-SB-115-116 gravel. 120 Annular Seal Top: 120 ft bgs Bottom: 138 ft bgs Sample results: 88.8% sand, 8.3% gravel, and 2.9% fines. CH-MW044D-SB-123-125 Well Casing Type: Schedule 40 125 48 Diameter: 2 in Top: 0 ft bgs Bottom: 147 ft bgs 130 Coarsening to fine-to medium-grained with 5% -65.2 subrounded gravel ranging up to 4 cm in diameter. 135 41 WELL-GRADED SAND WITH GRAVEL, dry, gray, SW -70.2 fine- to coarse-grained with 15% gravel and 5% fines. Sample results: 77.8% sand, 15.8% gravel, and 6.4% CH-MW044D-SB-136-138 fines. Annular Seal Top: 138 ft bgs Bottom: 142 ft bgs

AECOM AECOM

TOTAL DEPTH 160 FT BGS PAGE 6 OF 6

		CT NUM				SHICL		ME Camp Hero	Helo Filase IV		
FR	OJE.	CT NOW	DEN .	0044	1		SHE NAI	WIE Camp nero			
DEPTH	(H)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		ENVIRONMENTAL DATA	w	/ELL DIAGRAM
_140	0			SW	<u> </u>	136.0		-70.2			
						140.0	NO RECOVERY.	-74.2			
MP HEROICAMP HERO PHASE IV.GPJ	_		0	SP		150.0	POORLY GRADED SAND, dry, gray, loose, fine-grained, slightly cohesive.	-84.2	CH-MW044D-1220		Annular Seal Top: 142 ft bgs Bottom: 143 ft bgs Bottom: 143 ft bgs Filter Pack Type: #2 Filter Sand Top: 143 ft bgs Bottom: 157 ft bgs Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 147 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in
C:\USERS\JACK.HOLLINGS\WORTH\DOCUMENTS\G\INT\CAMP\HERO\CAMP\HERO_PHASE\IN.GPJ	_		60	SP- SM		155.5 157.0	Coarsening to fine- to medium-grained. POORLY GRADED SAND WITH SILT, dry, fine-grained with 10% silt. Sample results: 8 sand, 10.4% fines, and 1.6% gravel.	-89.7 gray, -91.2 8.0%	CH-MW044D-SB-157-159		Top: 147 ft bgs Bottom: 157 ft bgs Backfill Top: 157 ft bgs Bottom: 160 ft bgs
1. F with 2. C 3. F 4. A	lead 10. Coor irst	.6 eV lan dinates a five feet ılar seal :	np. and ele dug u sand d	vation sing a on diag	data ii hand a ram is	n NAVE auger. #00 ch	Bottom of borehole at 160.0 feet. otal volatile organic vapors (referenced to an is 88 for vertical datum and NAD83 NY Long Isla oker sand. rehole prior to well construction completion.	-	•	notoioniza	tion Detector (PID)

- Notes:

 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.
- 2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83 NY Long Island State Plane for horizontal datum.

- First five feet dug using a hand auger.
 Annular seal sand on diagram is #00 choker sand.
 Riser sunk approximately two feet in borehole prior to well construction completion.

AECOM AECOM

TOTAL DEPTH 120 FT BGS PAGE 1 OF 5

	NT USAC				strict								
	ECT NUN						SITE NAME Camp			Ne==		0000=0	
						COMPLETED <u>12/6/20</u>							
1	LING CON									HOLE	SIZE	/ inches	
1						X							
	LING MET GED BY					CHECKED BY J. Hollingsworth	_		ING				
	T					onzonza za <u>otromingoworum</u>		0 ,			0110		
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION		ENVIRONMENTAL DATA			WELL DIAGRA	AM
	-	100	ML		0.0	SILT WITH SAND, dry, dark redd soft with 15% fine-grained sand a gravel up to 7 cm in diameter. Ro throughout top 6 inches.	and trace rounded	65.8				Annular S Top: 0 ft by Bottom: 10	gs s
INTICAMP HEROICAMP HERO_PHASE IV		72			7.0	SANDY SILT, dry, dark yellowish medium stiffness with 30% fine-g Changes to brown (7.5YR 4/3) ar to medium-grained sand.	rained sand.	60.8 58.8					
ORTH/DOCUMENTS/G	-		SM		11.0	SILTY SAND, dry, brown (10YR 4 with 30% stiff silt and 5% rounder gravel ranging in size up to 3 cm	d to subrounded	54.8				Well Casi Type: Sche PVC Diameter: Top: 0 ft bo Bottom: 11	edule 40 2 in
ARNG SMART LOG 8,5X11_V2 3/22/21 17:20 - C:USERSUACK.HOLLINGSWORTHIDOCUMENTS/GINTICAMP HERO/CAMP HERO_PHASE IV.GPU TO THE CONTRACT LOG 8,5X11_V2 3/22/21 17:20 - C:USERSUACK.HOLLINGSWORTHIDOCUMENTS/GINTICAMP HERO/CAMP HERO_PHASE IV.GPU TO THE CONTRACT LOG 8,5X11_V2 3/22/21 17:20 - C:USERSUACK.HOLLINGSWORTHIDOCUMENTS/GINTICAMP HERO/CAMP HERO_PHASE IV.GPU		60			14.0	Sample results: 59.3% sand, 36. gravel.	1% fines, and 4.6%	51.8	CH-MW044D-SB-	.14-15			S IL DYS

AECOM AECOM

ARNG SMART LOG 8.5X11 V2 - - 3/22/2117;20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GPJ

TOTAL DEPTH 120 FT BGS PAGE 2 OF 5

CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC RECOVERY DEPTH (ft) U.S.C.S. LOG MATERIAL DESCRIPTION WELL DIAGRAM 54.8 SM SILTY SAND, dry, brown (10YR 4/3), fine-grained with 30% stiff silt and 5% rounded to subrounded gravel ranging in size up to 3 cm in diameter. (continued) Changes to dark greenish gray (5GY 4/1). Sample results: 64.2% sand, 35.8% fines, and 0% gravel. 27.0 38.8 CH-MW044D-SB-27-29 28.0 Changes to brown (10YR 4/3). 37.8 30 30.0 Changes to dark olive gray (5Y 3/2) with trace 35.8 rounded gravel ranging in size up to 6 cm in diameter. 35 65 37.0 Sample results: 60.5% sand, 35.4% fines, 4.1% 28.8 gravel. CH-MW044D-SB-37-39 Well Casing Type: Schedule 40 PVC Diameter: 2 in 40 Top: 0 ft bgs Bottom: 110 ft bgs 45 46.0 Sample results: 62.3% sand, 36.6% fines, and 1.1% CH-MW044D-SB-46-47 gravel. 50 Changes to olive gray (5Y 4/2). Coarsening to contain less fines. Trace amounts of rounded to subangular 50.0 gravel ranging in size up to 3 cm.

AECOM AECOM

ARNG SMART LOG 8.5X11 V2 - - 3/22/2117;20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GPJ

TOTAL DEPTH 120 FT BGS PAGE 3 OF 5

CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM Changes to olive gray (5Y 4/2). Coarsening to contain less fines. Trace amounts of rounded to subangular gravel ranging in size up to 3 cm. (continued) 55 80 58.0 Sample results: 67.7% sand, 25.3% fines, and 7.0% CH-MW044D-SB-58-59 gravel. 60 60.0 Changes to wet, dark gray (5Y 4/1), soft with 5.8 decreasing gravel. 63.0 Sample results: 66.7% sand, 20.1% fines, and 13.2% CH-MW044D-SB-63-64 gravel. 65 45 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 110 ft bgs 70 -4.2 WELL-GRADED SAND WITH SILT, dry, olive (5Y SW 5/3), fine- to medium-grained, moderately loose with <15% slightly cohesive fines. Sample results: 83.1% CH-MW044D-SB-70-72 sand, 14.5% fines, and 2.4% gravel. 75 52 75.0 Fractured/pulverized gneiss boulder. -92 SILT WITH SAND, dry, olive gray (5Y 3/2) and yellowish brown (10YR 5/4), stiff with 15-25% sand. ML 77.0 -11.2 80 SP-80.0 POORLY GRADED SAND WITH SILT, moist, olive -14.2 gray (5Y 5/2), loose with 10% fines. SM

TOTAL DEPTH 120 FT BGS AECOM AECOM PAGE 4 OF 5 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER RECOVERY GRAPHIC DEPTH (ft) U.S.C.S. LOG MATERIAL DESCRIPTION WELL DIAGRAM 0.08 -14.2 -17.2 83.0 ML SILT WITH SAND, dry, olive gray (5Y 5/2), very stiff, low plasticity with white laminations and >15% sand. 85 60 85.0 Sample results: 71.1% fines, 28.9% sand, and 0% -19.2 CH-MW044D-SB-85-86 gravel. 90 90.0 CLAYEY SAND, moist, dark grayish brown (10YR -24.2 4/2), loose with >15% clay. 93.0 LEAN CLAY, dry, dark grayish brown (10YR 4/3), -27.2 very stiff, medium plasticity. 95 Well Casing
Type: Schedule 40
PVC 82 96.0 Sample results: 95.0% fines, 5.0% sand, and 0% -30.2 Diameter: 2 in CH-MW044D-SB-96-97 gravel. Top: 0 ft bgs Bottom: 110 ft bgs 100 Annular Seal Top: 104 ft bgs Bottom: 107 ft bgs 105 65 Annular Seal Top: 107 ft bgs Bottom: 108 ft bgs 108.0 LEAN CLAY WITH SAND, dry, gray (2.5Y 5/1), Filter Pack CH-MW044D-SB-108-109 slightly cohesive with >15% fine-grained sand and 5% Type: #2 Filter gravel. Sample results: 69.5% fines, 21.6% sand, and/ 109.0 -43.2 SP Sand 8.9% gravel. 110 Top: 108 ft bgs POORLY GRADED SAND, dry, gray (2.5Y 5/1), CH-MW044S-1220 Bottom: 120 ft bgs loose, fine-grained

ARNG SMART LOG 8.5X11 V2 - - 3/22/21 17:20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GP

AECOM AECOM

TOTAL DEPTH 120 FT BGS PAGE 5 OF 5

CLIEN	IT USAC	E Ne	w Engl	land Di	strict		PROJECT NAME Camp	Hero Phase IV	
PROJ	ECT NUM	BER	6044	3903			SITE NAME Camp Hero	1	
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRII	PTION	ENVIRONMENTAL DATA	WELL DIAGRAM
115		40	SP		115.0	POORLY GRADED SAND, dry, g loose, fine-grained. (continued) Sample results: 88.1% sand, 9.89 gravel.	% fines, and 2.1% -49.2		Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 110 ft bgs Bottom: 120 ft bgs
:						Bottom of borehole at 1	20.0 feet.		

- Notes:

 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

 2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83 NY Long Island State Plane for horizontal datum.
- 3. First five feet dug using a hand auger.
- 4. Annular seal sand on diagram is #00 choker sand.
 5. Nested stickup well with CH-MW044D installed in the same borehole. See CH-MW044D boring log for complete lithology.

ARNG SMART LOG 8.5X11_V2 - - 3/22/21 17:20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ

AECOM AECOM

TOTAL DEPTH 136 FT BGS PAGE 1 OF 6

CLI	ENT USA	CE Nev	w Engl	and Di	strict		PROJECT NAME	Camp He	ero Phase IV			
1	DJECT NUI											
						COMPLETED <u>12/3/20</u>						331674.7725
										HOLE S	IZE _	7 inches
1						X						
	LLING ME											
LOC	GGED BY	M. Glii	nski		_	CHECKED BY J. Hollingsworth	▼ AT TIME OF	SAMPLIN		/ Elev 1.18	3 ft	
DEPTH	(ii) SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI			ENVIRONMENTAL DATA		٧	WELL DIAGRAM
E IV.GPJ - 2	-	100	ML		0.0	SANDY SILT, dry, brown (7.5YR non-plastic with 30% fine-grained	5/4), soft, cohesive, sand.	45.2				Annular Seal Top: 0 ft bgs Bottom: 81 ft bgs
AMP HERO\CAMP HERO_PHASI	- - - -	90			6.0	5% rounded to subrounded grave to 3 cm.	l ranging in size up	39.2				
-3/22/21 17:20 - C:USERSUJACK.HOLLINGSWORTHIDOCUMENTSIGINTICAMP HEROICAMP HERO_PHASE IV.GPJ	-	100			10.0	SILT WITH SAND, dry, dark yello 4/4), stiff, cohesive, non-plastic w sand and trace amounts of gravel 2 cm.	ith 15% fine-grained	35.2				Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 126 ft bgs
ARNG SMART LOG 8.5X11_V2 3/22/21 	-				20.0	Changes to dark gray.		25.2				

AECOM AECOM

TOTAL DEPTH 136 FT BGS

PAGE 2 OF 6 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 25.2 Changes to dark gray. (continued) 30 ARNG SMART LOG 8.5X11_V2 - -3/22/21 17:20 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ 35 100 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 126 ft bgs 40 45 55 45.0 0.2 Wet from 45 to 46 feet bgs. 46.0 -0.8 SW WELL-GRADED SAND lens. SILTY SAND, dry, olive brown (2.5Y 4/3), soft $\,$ with 30% fines, cohesive, non-plastic. SM 47.0 -1.8 50

AECOM AECOM

ARNG SMART LOG 8.5X11_V2 - -3/22/21 17:20 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ

TOTAL DEPTH 136 FT BGS

PAGE 3 OF 6 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM SM SILTY SAND, dry, olive brown (2.5Y 4/3), soft with -1.8 30% fines, cohesive, non-plastic. (continued) 55 55 SILT, dry, greenish gray (10Y 5/1) with 5% fine-grained, olive gray (5Y 5/2) sand. 56.0 -10.8 ML 60 65 55 Well Casing 67.0 Changes to olive (5Y 4/3) with dark yellowish brown -21.8 Type: Schedule 40 PVC (10YR 4/4) laminations. Diameter: 2 in Top: 0 ft bgs Bottom: 126 ft bgs 70 POORLY GRADED SAND, moist, olive gray (5Y 5/2), SP 70.0 fine-grained, loose. 73.0 LEAN CLAY, dry, olive gray (5Y 4/2), stiff, low to -27.8 CL medium plasticity. 75 60 80 **Annular Seal** Top: 80 ft bgs Bottom: 81 ft bgs Annular Seal Top: 81 ft bgs

A ECO N	AEG	COM			TOTAL DEPTH 136 FT BG PAGE 4 OF
CLIENT USA				PROJECT NAME Camp Hero Phase IV SITE NAME Camp Hero	
DEPTH (ft) (ft) SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL MOITHINGON MENTAL DATA	WELL DIAGRAM
85	48	CL SP		3.0 LEAN CLAY, dry, olive gray (5Y 4/2), stiff, low to medium plasticity. (continued) 5.0 POORLY GRADED SAND, dry, gray (10YR 5/1), loose, fine-grained.	Bottom: 83 ft bg Filter Pack Type: #2 Filter Sand Top: 83 ft bgs Bottom: 95 ft bg
90		_			
95	40				Annular Seal Top: 95 ft bgs Bottom: 121 ft I Well Casing Type: Schedule PVC Diameter: 2 in Top: 0 ft bgs Bottom: 126 ft I
100		-			Bottom: 126 ft t
105	43			08.0 Changes to fine- to medium-grained62.8	
110					

AECOM AECOM

TOTAL DEPTH 136 FT BGS PAGE 5 OF 6

	IT <u>USAC</u>				strict		PROJECT NAME Camp H		Hero Phase IV		
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR			ENVIRONMENTAL DATA	WE	LL DIAGRAM
1115 120 125		40	SP		85.0	POORLY GRADED SAND, dry, loose, fine-grained. (continued)	gray (10YR 5/1), -	39.8			Well Casing Type: Schedule 4 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 126 ft bgs Annular Seal Top: 121 ft bgs Bottom: 123 ft bgs Filter Pack Type: #2 Filter Sand Top: 123 ft bgs Bottom: 136 ft bgs
130 130 135		100			130.0	Changes to fine-grained.	-	-84.8	CH-MW045D-1220		Well Screen Type: Schedule 4 PVC Slot Size: 0.01 in Top: 126 ft bgs Bottom: 136 ft bg
Notes No	dspace so 0.6 eV land Indinates a t five feet	np. and ele dua u	evation sing a	data ir	n NAVE luger.	Bottom of borehole at total volatile organic vapors (reference Name 188 for vertical datum and NAD83 Industrial sand.	nced to an isobutylene sta			Photoionizatio	n Detector (PID)

Notes:

1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83 NY Long Island State Plane for horizontal datum.

^{3.} First five feet dug using a hand auger.4. Annular seal sand on diagram is #00 choker sand.

AECOM AECOM

TOTAL DEPTH 136 FT BGS PAGE 6 OF 6

 CLIENT
 USACE New England District
 PROJECT NAME
 Camp Hero Phase IV

PROJECT NUMBER 60443903 SITE NAME Camp Hero

SAMPLE TYPE NUMBER RECOVERY % U.S.C.S. GRAPHIC LOG

MATERIAL DESCRIPTION

ENVIRONMENTAL DATA

WELL DIAGRAM

5. Riser sunk approximately one foot in borehole prior to well construction completion.

ARNG SMART LOG 8.5X11_V2 - - 3/22/21 17:20 - C:\USERS\JACK.HOLLINGS\WORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ

AECOM AECOM

TOTAL DEPTH 100 FT BGS PAGE 1 OF 4

DATE DRILLI DRILLI DRILLI	STARTE ING CON ING EQU ING MET ED BY	ED 12 NTRAC JIPMEI THOD	:/2/20 CTOR _ NT _Fr Rotar	ADT aste XI y Sonic	L MAX	COMPLETED 12/3/20 X CHECKED BY J. Hollingsworth	GROUND ELEVATI GROUND WATER I AT TIME OF	1.0745 ION <u>45</u> LEVELS DRILLI	5.18 ft S: ING	HOLE SIZE	7 inches
о DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI			ENVIRONMENTAL DATA		WELL DIAGRAM
 5		100	ML		0.0	SANDY SILT, dry, brown (7.5YR non-plastic with 30% fine-grained	5/4), soft, cohesive, I sand.	45.2			Annular Seal Top: 0 ft bgs Bottom: 81 ft bgs
		90			6.0	5% rounded to subrounded grave to 3 cm.	l ranging in size up	39.2			
		100			10.0	SILT WITH SAND, dry, dark yello 4/4), stiff, cohesive, non-plastic w sand and trace amounts of gravel 2 cm.	ith 15% fine-grained	35.2			Well Casing Type: Schedule 4 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 85 ft bgs
20		100			20.0	Changes to dark gray.		25.2			

AECOM AECOM

TOTAL DEPTH 100 FT BGS

PAGE 2 OF 4 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 25.2 Changes to dark gray. (continued) 30 ARNG SMART LOG 8.5X11_V2 - -3/22/21 17:20 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ 35 100 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 85 ft bgs 40 45 55 45.0 0.2 Wet from 45 to 46 feet bgs. 46.0 -0.8 SW WELL-GRADED SAND lens. SILTY SAND, dry, olive brown (2.5Y 4/3), soft $\,$ with 30% fines, cohesive, non-plastic. SM 47.0 -1.8 50

AECOM AECOM

ARNG SMART LOG 8.5X11_V2 - -3/22/21 17:20 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\CAMP HERO\CAMP HERO_PHASE IV.GPJ

TOTAL DEPTH 100 FT BGS

PAGE 3 OF 4 CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM SM SILTY SAND, dry, olive brown (2.5Y 4/3), soft with -1.8 30% fines, cohesive, non-plastic. (continued) 55 55 SILT, dry, greenish gray (10Y 5/1) with 5% fine-grained, olive gray (5Y 5/2) sand. 56.0 -10.8 ML 60 65 55 Well Casing 67.0 Changes to olive (5Y 4/3) with dark yellowish brown -21.8 Type: Schedule 40 PVC (10YR 4/4) laminations. Diameter: 2 in Top: 0 ft bgs Bottom: 85 ft bgs 70 POORLY GRADED SAND, moist, olive gray (5Y 5/2), SP 70.0 fine-grained, loose. 73.0 LEAN CLAY, dry, olive gray (5Y 4/2), stiff, low to -27.8 CL medium plasticity. 75 60 80 **Annular Seal** Top: 80 ft bgs Bottom: 81 ft bgs Annular Seal Top: 81 ft bgs

AECOM AECOM

TOTAL DEPTH 100 FT BGS PAGE 4 OF 4

CLIENT USACE New England District PROJECT NAME Camp Hero Phase IV PROJECT NUMBER 60443903 SITE NAME Camp Hero ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM Bottom: 83 ft bgs 73.0 LEAN CLAY, dry, olive gray (5Y 4/2), stiff, low to -27.8 CL medium plasticity. (continued) Filter Pack Type: #2 Filter Sand Top: 83 ft bgs 85 Bottom: 95 ft bgs 48 SP 85.0 POORLY GRADED SAND, dry, gray (10YR 5/1), -39.8 loose, fine-grained. Well Screen Type: Schedule 40 PVC 90 CH-MW045S-1220 ARNG SMART LOG 8.5X11 V2 - - 3/22/2117;20 - C:USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINTCAMP HERO\CAMP HERO PHASE IV.GPJ Slot Size: 0.01 in Top: 85 ft bgs Bottom: 95 ft bgs 95 **Annular Seal** 40 Top: 95 ft bgs Bottom: 100 ft bgs 100 Bottom of borehole at 100.0 feet.

Notes:

- 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.
- 2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83 NY Long Island State Plane for horizontal datum.

3. First five feet dug using a hand auger.

- 4. Annular seal sand on diagram is #00 choker sand.
- 5. Nested stickup well with CH-MW045D installed in the same borehole. See CH-MW045D boring log for complete lithology.

Monitoring Woll Construction Diagram

Project Name: Camp Hero	Site:	Camp Hero	LocID: CH-M	W044S/D
Project Number: 60443903	Northing: 332250	<u> </u>	1570419.5106	- ·-· -
				1 1 1
Orilling Agency: ADT/TWS	Elevation (feet MSL):		1 7 8	, shown below
Oriller: T. Palomeque	Date / Time Started:	12-06-2020 / 1102	Well Depths (feet):	120.0 and 157.0
Drilling Equipment: Fraste XL MAX	Date / Time Finished:	12-06-2020 / 1500	Borehole Diameter (in):	7
Drilling Method: Sonic	Recorded By:	M. Glinski	Checked By: J. Holling	sworth
Shallow Well Casing Elevation (ft amsl): 68.09 Top of Grout: 0.0' bgs	Deep Well Casing Elevation (ft amsl): 68.38 Ground Surface (Elevation): 65.82	Cap or Plug Manufacturer: Koby Type: Compression Locked (Y/N): No Well Casing Type: PVC		No
Grout Thickness 104.0	Upper Well Casing Length	Manufacturer: Length per Section: 10 Casing O.D.: 2.3 Joint Type: Flush Threa	Casing I.D.: 6 Length of Caded Taped Welder	asing: Varies
Upper 104' bgs	Lower Well Casing Length Top of Upper Screen: 110' bgs	Manufacturer: Lehigh Bentonite Powder Type: Manufacturer: Baroid Grout is mixed per specific gallons water to each bag	3/8" Hole Plug vations [4 lbs bentonite power (94 lbs) of cement]	ler; and 8
Upper Filter Pack Thickness 12.0'	10' Upper Screen Length	Upper and Lower S Type: Pel Plug 1/4" Per Manufacturer: PDS Amount (lbs): Hydration: Volume Water		
Top of Lower Seal: Lower Seal Thickness 5.0'	Bottom of Upper Screen: 120' bgs	Filter Pack Type: Filpro #2 Manufacturer: US Silic Amount (lbs): 600	ea Sands Co	
Top of Lower Filter Pack: Lower Filter Pack Thickness 143' bgs	Top of Lower Screen: 147' bgs Lower Screen Length	Screen Type: PVC Manufacturer: 10 Length/Sec. 2.36 Slot Size: .010	No of Sec I.D No. Slots/f	2.06
	Bottom of Lower Screen: 157' bgs Well Depth: 157' bgs	Slotted Length: 9.67 Bottom Cap or Plug Type: Flush Threaded Manufacturer	S w/ O-Ring Ler	ngth:
NOT TO SCALE	Bottom of Borehole: 160.0' bgs			

NOTES:

Tracking Codes: C:\USERS\LARSENE1\DOCUMENTS\\ 100_PROJECTS\\ CAMP HERO GINT WORK\NEW GINT NESTED WELLS\\ CH_NESTED_PAIRS. GPJ, \ 6/24/21, \ 10:42

A total of 200 lbs of #00 Choke Sand was installed from 107 to 108 ft bgs, 120 to 138 ft bgs and 142 to 143 ft bgs; a total of 600 lbs of Filpro #2 Sand was installed from 108 to 120 ft bgs and from 143 to 157 ft bgs, 500 gallons water added during well construction including seal hydration. Well completed as stick-up with a 2x2 ft concrete pad.

Monitoring Well Construction Diagram

Project Name: Camp Hero	Site:	Camp Hero	LocID: CH-MV	W045S/D
Project Number: 60443903	Northing: 331674	.7725 Easting.	1570351.2595	
Drilling Agency: ADT/TWS	Elevation (feet MSL)	: Ground: 45.18	Top of Casing: varies,	shown below
Oriller: T. Palomeque	Date / Time Started:	12-03-2020 / 0955	Well Depths (feet):	95.0 and 136.0
Drilling Equipment: Fraste XL MAX	Date / Time Finished:	12-03-2020 / 1300	Borehole Diameter (in):	7
Drilling Method: Sonic	Recorded By:	M. Glinski	Checked By: J. Hollings	sworth
Upper Seal 2.0' Top of Upper Filter Pack: Upper Filter Pack: 12.0' Upper Seal 2.0' Upper Filter Pack 12.0'	Deep Well Casing Elevation (ft amsl): 46.85 Ground Surface (Elevation): 45.18 St' Upper Well Casing Length Lower Well Casing Length Top of Upper Screen: 85' bgs	Locked (Y/N): No Well Casing Type: PVC Manufacturer: Length per Section: 10 Casing O.D.: 2 Joint Type: Flush Thre Grout Cement Type: Portla Manufacturer: Lehigh Bentonite Powder Type: Manufacturer: Baroic Grout is mixed per specific gallons water to each bag Upper and Lower S Type: Benseal Manufacturer:	Vented (Y/N): Key No.: NA Casing I.D.: Length of Ca aded ✓ Taped □ Welder Mathematical Type I-II Hanson 3/8" Hole Plug cations [4 lbs bentonite powd (94 lbs) of cement]	2.06 Varies d □ O-Ring
Top of Lower Seal: Lower Seal Lower Seal Thickness Lower Seal 2.0'	Bottom of Upper Screen: Top of	Amount (lbs): Hydration: Volume Wate Filter Pack Type: Filpro #2 Manufacturer: US Sili Amount (lbs): 600	see note ca Sands Co	
Top of Lower Filter Pack: Lower Filter Pack Thickness 12.0' 12.0'	Lower Screen Lower Screen: 126' bgs 0' Lower Screen Length	Screen Type: PVC Manufacturer:	No of Sec. I.D. No. Slots/fi	2.06
	Bottom of Lower Screen: 136' bgs Well Depth: 136' bgs	3.5	g w/ O-Ring Len	gth:

NOTES:

NOT TO SCALE

Tracking Codes: C:\USERS\LARSENE1\DOCUMENTS\\ 100_PROJECTS\\ CAMP HERO GINT WORK\NEW GINT NESTED WELLS\\ CH_NESTED_PAIRS. GPJ, \ \ 6/24/21, \ 10:42

A total of 200 lbs of #00 Choke Sand was installed from 80 to 81 ft bgs and 95 to 121 ft bgs; a total of 600 lbs of Filpro #2 Sand was installed from 83 to 95 ft bgs and from 123 to 136 ft bgs, 200 gallons water added during well construction including seal hydration. Well completed as stick-up with a 2x2 ft concrete pad.

Bottom of Borehole: 136.0' bgs

Appendix C4 Well Development Forms

Page 1 of <u>2</u>

	Site: C.	ing Hero				LocID: 514	1494				Date: 12/03/2020		
LOCATION	Project Nar	ne: (Lyny	Hero 14	ase 1V	/	Project #: 6	0 44 39 03				Recorded By: McChecked By:		
EQUIPMENT	H2O Quality	y Meter Type/ID	#: YST 6	00 XLM	#16662	Development De	Equipment:	Watera nox					
	Trater Leve	- maioutor Type	75116										
	Casing I.D.	(in): 5194	94	(219)		Water Column	Thickness (ft): 39.	14		Initial Depth to Water (ft): 42.77		
WELL	Total Well I	Depth (ft): 75	. 95			Water Volume	(gal/lin ft) :	0.16					
INFO	Remarks:				<u> </u>								
	ENERGY IN		Drum 11			Healts W							
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed VCels)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes		
2/03/2020	0455	55.25	4.00"		10.66	0.515	4,34	6.70	-37.6	~			
1	0900	55.19	4.25"		11.12	0.513	3.17	6.51	-43.1	-			
	0905	55.[1億	4.75		11.36	0.516	5.57	6.42	-43.0	•			
	0910	55. 5 13	5		11.64	0.516	13.18	6.33	-42.7		0		
	0415	55.15	5.25		11.90	6.515	8.37	6.40	-41.1	633 au			
	0920	55.14	5.15		12.27	0.515	6.70	6.40	-37.5	85	leaking due to O-rings		
	0925		(30)				× _				changed flow cell - no rend.		
	0950	55.79	10,5		12.53	0.513	24.97	6.86	-31.2	12830			
	1000	55.67	10.75		12.62	0.505	33.14	6.17	-18.3	828 au			
	1005	55.64	- H		12.41	6.506	37.16	6.07	-14.3	706 au			
	(010	55.65	11.25		13.28	0.513	42.90	6.30	-35-6	loq			
	1015	55.64	11.25		13.44	0.511	40.02	6.32		107			
	1020	55.62	11.5		13.70	0.511	37.66	6.34	-45.4	104			
	1025	55.60			13.58	0.512	27.36	4.40	-41.5	-			
	1030	55.59	11.5		13.63	0.502	25.12	6.32	-39.7	43			
	1035	55.57	11.75		13.71	0.511	19.80		-37.2	124			
	1040	55.58			13.90	0.514	25.64		-34.3	- 0 1 6			
V	1045	55.59	11.75	.1 000	13.95	0.574	24.37	4.5	-36-2	92.9	consecutive readings		

Page 人 of 上

	Site: Lan	- H+10				LocID:	19494				
LOCATION	Project Nam	e: /-ma }	hero Chase	ĮV		Project #:	604434	a 3			
	514494			X 11 11 11 11 11 11 11 11 11 11 11 11 11					oat II Ta	1077	
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)	Notes
1/03/2010	1050	55.61	11.75		13.94	0.514	27,10	4.32	-35.7	81.5	
1	1055	55.59		8	13.73	0.513	19.72	6.28	-37.5	61.3	
V	1100	55.60	12.25		13.72	0.513	18.64	G.27	-34.2	54.5	
						<u> </u>	-			<u> </u>	
					_ = =	1	•				
						-					
			II I			2 1					7
							-				
		(C									

Drawdown: minimal Measurements:3-5 min Stabilization: +- 0.5 C, +- 3% conductivity, +- 10% DO, +- 0.1 pH, +-10 mv ORP, turb=as low as possible (=10 NTU ideal) All for 3 consecutive readings

	Site: /	a Hura				LocID: 51	1495				Date: 12/4/2020			
LOCATION	Project Nam	p Hero 10: Carp H	uro Mase	, וע		Project #: [04431 03				Recorded By: MChecked By:			
EQUIPMENT	H2O Quality	Meter Type/ID	#: 600 XL	m # 466		Development Equipment: Watera								
	Water Level	Indicator Type	IID#: Solinst	101 /# 80	43	Equipment Dec	con.: Alcoro	×	1-11					
		17 18		Ή")		Water Column	Thickness (ff	1.62 %	100000		Initial Depth to Water (ft): 53.8			
		(in): 51949		1)		Water Column Thickness (ft): 62.8 Initial Depth to Water (ft): 53.8 Water Volume (gal/lin ft): 9.65								
WELL	Total Well L	epth (ft): 116	1-6 0			Water Winnie	(gamm tt) .	0.63						
	Remarks:				-			-						
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes			
12/4/2020	1026	53.84		300	13.14	0.134	3.51	7.71	-135.8					
1	1030	53. 64			12,17	0.130	2.99	7.71	-146.5					
	1040	1	133		12.44	0.126	λ.23	7.72	131.4	-				
	1050				12.87	6.123	1.35	7.71	-124.6	31.4				
	1000				13.14	6.121	3.17	7.61	-91.2	18.8				
	1110			550	13.03	0.119	2.86	7.58	-44.0	-	increase in page rate			
1	1120			T_ (_	12.96	0.119	2.33	7.53	-93.1	23.1	increase in page rate attributed to clearer nat			
	1130				12.96	0.119	2.34	7.54	-91,2	20.0				
	1140				12.99	0.118	2.47	7.47	- 93.6	18.2				
	1150				12.27	0.118	3.47	7.39	-84.0	18.1				
	1200				11.95	0.118	2.29	2.34	-10.1	11.3	thek supended theeks			
	1210				13.03	0.117	1.92	7.32	-47.4	17.6				
	1220				13.03		1.61	7.24	-83.1	18.0				
	1230				13.01	0.118	1.93	7.11	- 84.3	3 م2				
	1240				13.10	0.118	1.11	7.22	-15.5	27.1				
	1720			1			1.50				tixing lank in those coll			
/	1300			<u> </u>	13.15	0,118	1.54	7.1	-103.1	24.4				
	1310	W.		V	13.11	0.11	DOWN ORD turber	7,23	ible (<10 MT)	rigal) All for 3	consecutive readings			

Page 2 of 2

LODATION	Site: La	my Hero	Hero Play			LocID: 5194	195				
LOCATION	Project Nan	ie: Lan	Hero Plas	. 10		Project #: (4)	5443903				
	- mg	EN XUPAII							3	29X X X	
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes
12/4/2020	1326	53.84		550	13.08	0-118	1.44	7.17	-103.5	24.7	
17	1330	1	130		13.14	0.119	1.40	7.26	-107.9	24.5	
	1340	V		ال	13.14	0.119	2.13	7.19	-105.7	20.4	<u> </u>
				ļ						<u>.</u>	
		–									
						ļ					, A
							 				
					<u> </u>						
			×					-			
				-				-			
			ļ			#0°					
			<u> </u>					\$\frac{1}{2}			
			<u> </u>			-					

Drawdown: minimal Measurements: 3-5 min Stabilization: +1- 0.5 C, +1- 3% conductivity, +1- 10% DO, +1- 0.1 pH, +1-10 mv ORP, turb=as low as possible (=10 NTU ideal) All for 3 consecutive readings

Page 1 of 1

·	Site: (a_	y Huro				LocID: 5/14	145				Date: 12/6/2020		
LOCATION	Project Nan	ne: Comp	Hero 12	use IV		Project #: 4	0443903				Recorded By: Mk Checked By:		
EQUIPMENT	H2O Quality	/ Meter Type/ID Indicator Type	#: YSC 530	6 MB #271		Development Equipment: Gradies #43265 Equipment Decon.: Alorex							
WELL INFO	Total Well C	(in): 51949 Depth (ft): 11		27) (<u>'(+")</u>	Water Column Thickness (ft): 43 Initial Depth to Water (ft): 5 Water Volume (gal/lin ft): 5.45							
	Remarks:		Prom "			u-,		4		S 12 ESI			
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume	Pumping Rate (Lpm)	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes		
	804	53.68					137				(S)		
16/20	810	59.50	18	4	-	A= 4			_	10.37			
1	812	55.19	33	3	_	-				9.10			
1	870	55.19	49	31			_	*>-	-	5.96	ii ii		
22	823	55.19	58	3+			-			8:11	Pump off		
_	136	1	₹"		14.58	0.115	4.89	7.51	87.7		YSI ATTACHEO-		
	839		4 "	117	提·#8	0.113	5.67	1.59	40.4	6.20			
	342		6"		12.57	0.113	6.21	7.41	23.8	7.77	+		
	\$45	_=	\$		12.55	0.112	4.88	7.43	15.1	7.43			
	948		(0		12.56	0.112	4.49	7.42	8.4	7.47			
	451		12		12.54	0.112	5.13	7.40	6.4	9.00			
353	854		14	Sev V	[2.51	0.111	3.41	7.39	1.8	10.11			
	858		16		12-62	0-111	4.15	7.38	0.2	7.5]			
	101		14		12.60	0,111	2-61	7.37	-1.5	5.30			
	904		20		15-64	0.110	2.36	7.37	-2.5	4.52			
	907		12		12.63	0.110	7,15	7.36	-3.9	3.94			
/	910		२५	 	12. G3	0.109	1.96	7.35	-5.1	7. 36			
mdown, winim	114 Measureme	nts:3-5 min Stabil	2 6 ization;+/- 0.5 C.	+/- 3% conductiv	14. 6 8 rity, +/- 10% DX	O .108	0 mv ORP, turb=	as low as poss	sible (<10 NTU	ideal) All for 3	consecutive readings		
	417		24	5		0, 107	1.64			2.81	consecutive readings		
	920		30		12-63	0.107	1.46	7.37	- 1.3	Or + D.			

Page 1 of ___

	Site: 4.	my Hero				LociD: 51	7131				Date: 12/07/2020
LOCATION		ne: Lume	Hyo	Thus e	עו	Project #: 4	०५५ ३५०	3			Recorded By: McChecked By:
EQUIPMENT		y Meter Type/ID I indicator Type				Development E		Grund	os #	43263	5
WELL	Casing I.D.		5 17	72/		Water Column Water Volume					Initial Depth to Water (ft): 63.89
INFO	Remarks:										
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Grate (Lpm)	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)	Notes
2/07/2020	1290	64.92	SYS	4	11.00	0 211	7.65	7.73	-134.6		
)	1255	67.97	7	1	11.71	6.297	4-04	8.21	-313.5		
	1300	71.28	15		11.85	0.326	1.11	8.40	.360.2		
	1305	72.40	22		11.98	6.330	1.10	6.61	-375.6		
Ш	1310										
	1315			= =	12.06	0.331	1.70	8.40	-373.4		black splor nate
	1320		40		12.31	0.296	1. 88	8.23	-322.2		stwaye odor very open
	1315				12.15	0446	1.37	7.04	-271.4		
	1330				12.09	6.441	1.26	6.94	-213.4		
	1335				12.01	0.431	1.22	6.82	-198.6		
	1340	74.71			12.63	0.429	1.18	6.77	-190.9		light brown/grey coloration
	1345	74.73			11.99	0.429	1.08	6.73	-145.3		less aprepa
	1350	74.71	110		11.97	0.427	0.95	4.69	-140,2		
	1355				12.00	0.425	6.81	6.67	-176.7		
	1400	74.67	_		11.97	6.425	6.71	6.65	-174.5		
	1409	74.66	135		11.93	0.424	0.54	6.64	-171.7		Chearing murky gres
	1410				11.96	0.423	0.42	6.62	- 169.4		
V	1415	74.55	155	V 20/	11.97	0.422	0.35	6.61	168.1	eal) All for 1	3 consecutive readings

Page 1 of _____

	Site: (y Huo				LocID: 558	વય		=		Date: 12/8/2020
LOCATION	Project Nan	ne: Camp t	hero Physic	. IV		Project #: 4	44.34 03				Recorded By: Mr-Checked By:
		Meter Type/ID		All property	性1666人	Development E	quipment:	Grundfos			# 43265
EQUIPMENT	Water Level	Indicator Type	10#: Salinst	101 #	018027	Equipment Dec	on.: Mu	neK.		1	1+1
		554	922		nde –		A THE	1000	300		20 11-12-11-11-11-11-11-11-11-11-11-11-11-1
	Casing I.D.	(in): 5 fa	cahentas_	(4")		Water Column			- 64		Initial Depth to Water (ft): 44.
WELL	Total Well D	epth (ft): 5				Water Volume	(gal/lin ft) :	0.362	_		
INFO	Remarks:	MPFE Hull	e used							8	
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)	Notes
44/200	1530	45.03			10.01	0.264	5.75	6.81	50.5	0.36	
1/1	1537	45.05			11.13	0.262	5.43	6.50	66.4	1, 05	
_	1534	45.05	20		11.75	0.261	5.90	6.37	78.5	0.09	
	1536		22		11.92	0-261	5.50	6.27	92.7	0.09	
	1534		٦4		11,95	0.261	19,93	6.23	100.4	0.15	
	1540		26		11.97	0.261	4.78	6.20	108.5	0.16	
V	1542	\lor	28		11.90	0-261	5.08	4-17	115.6	1.47	
				-		=					
							9				
	ļ										
	-			<u> </u>	 						
	*										
											consecutive readings

	Site: /.	- Mes	- TAT			Locid: 54	579	5000000			Date: 12/64/2024	
LOCATION	Project Nan	ne: Lamp	the phy	L IV		Project #: 6		43			Recorded By: Mc Checke	ed By:
EQUIPMENT	H2O Quality	/ Meter Type/ID	#: YSI 58	sc mys #					#43	165	#us28	8
	Water Leve	I Indicator Type		101 #	014017	Equipment Dec	on.: Mear	n)v				
		548		[6"]		Water Column	Th. I (64)	. 29 %	(Initial Depth to Water (ft):	77 34
	Casing i.D.		Kanah	(6)		Water Column			<u> </u>		illidal Deput to Water (it).	7.17
WELL INFO	Total Well [Depth (ft): 63	. 25			water volume	(gainin it) :	1.191	- W.			
INFO	Remarks:											
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes	
12/4/1020	0925	37.79			12.72	0-232	2.64	7.47	-48.7		plack torbid	water
1,1	0930	38.74	19		13.58	0.215	1-92	7.61	-63.9	1419 au	sewage olus	grey/brown
	0435	38.86	24	7 - 7 1	13-91	0.215	1.80	G-92	-19.9	756 av		
	0940	34.74	36	10 - 31	14-11	0-233	1.18	6.53	-0-8	42.4	water improving	light gray
	0145	38.65	49		14.03	0.236	2.14	6.34	13.3	32.8		. / / [.
	0950	38.61	55		14.14	0-239	2-26	6.25	18.3	24.6		
	3555	38.59	60		14.05	0.243	2.27	6-17	19.5	323	<u> </u>	
	7800	34.54	72		14.01	0.244	2.38	G-13	24.3	36.1		
	1905	38.05	79		14.28	0.249	2.57	6.09	7.1	21.3		
	1010	37.89	90	· · ·	14.35	6. 253	2.76	6.07	15.3	27.6		
	1015	36.87	160		15.11	0.260	3.25	6.20	·67	38.1	guns dans to	215 Hz
	1020	36.42	110		13.92	0.256	2-47	6.06	20.0	26.8	,	
	1025	36-39	115		13.56	0-255	2.59	5.91	32.6	12.8		
	1630	36-41	. [20		13.56	6 157	2.58	5-89	31.6	9.68		
	1035	36.44	125		13.49	0.256	2.60	5.86	27.8	8.01		
	1040	36.40	130		13.49	0.256	2.59	5.48	31.8	11.5		
	1045	36.42	135		i3-43	0-256	2.58	5.85	<u> ३</u> 9.6	8.01		
				. 2007	1 400 PC	1 0 3 pH = 140	my ODD turbs	ac law ac pace	blo (<10 NT) (ideal) All for 3	consecutive readings	

LOCATION	Site: Cour	p Hero				LocID: CH-	MWO44	-IS			Date: 12/8/20
LOCATION	Project Name	: Comp	Hero PI	hase IV		Project #: 6	644390	57			Recorded By: MChecked By:
EQUIPMENT	H2O Quality	Meter Type/II	0#:556 MP	S / R85	27		duct. (mg/L) pH ORP (mv) 573 5.92 10.47 -98.9 62 6.18 9.33 -73.8				
epityakasi karaterika	Water Level I	ndicator Typ	e/ID#: Heron	Dippert	127112	Equipment De	con.: Alco	X0/V			
	Ta	. 7	u			I					I
WELL	Casing I.D. (i	117.								· · · · · · · · · · · · · · · · · · ·	Initial Depth to Water (ft): 66.44
INFO	Remarks:	or fallon	3 added a	during dril	ling; Mu	ST Percove	(gamin it): _ Voluvul	0:16 Libetwee.	a wells	in pair	27.6 = 3x Volume
			T		.						
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)		рН	ı	Turb. (NTU)	Notes
12/8/20	1349				10.30	0.373	5.92	1047	-98,9	Outroffe	One 1348
·			MANCE AND ADDRESS OF THE PARTY	Rivain	·	er der falls falls die Geleicher der Weise der der der Geleicher von der werden der für Geleicher von	de de compresentamente de la compresentación		ALL THE SECOND PROPERTY OF THE PERSON NAMED IN		
	1415		~125			0.262	6.18	9.33	-73.8	Range	
	1422					0.266	6.13	9.27	-80.2	.1 1	
	1427				10.53	0.257	6.17	8.96	-72.9		
<u> </u>	1432		175		10,47	0.253	6.18	8.80	-70.60	, 4	
									455		
	and the second state of the second state of the second	and the transmitted the section of t	2 + 000 to	1							
			And the second s	1/5/		1					
	-		ļ		Tres	4/					
				1	And the state of t	Land Same					
	,					The state of the s	in the state of th				
							The state of the s	The state of the s			
								and produced to the restate	to allow history to the property of the second		
	1								The state of the s		
	 									** Northead and Arthurst	
	-										
rawdown: minim	al Measurement	s:3-5 min Stat	pilization:+/- 0.5 C,	+/- 3% conductiv	ity, +/- 10% DC), +/- 0.1 pH, +/-1	0 mv ORP, turb=	as low as poss	sible (<10 NTU	ideal) All for 3	L consecutive readings

	Site: /-	· Han				LociD: 44	5				Date: 12/10/20		
LOCATION	Project Nam	e: Lump	there the	u 10		Project #: (4	4437 03			- S	Recorded By: MAC	hecked By:	
EQUIPMENT	H2O Quality	Meter Type/ID	#: YSI 55	6M15 #		Development E			# 4	3265			
	Water Level	Indicator Type	ID#: Solins	- 101 #	018027	Equipment Dec	on.: Mean	•>					
	Casing I.D. (in): 44	5 /2')			Water Column	Thickness (ft)	: 57.	99		Initial Depth to Wate	er (ft): 66.56	
WELL	Total Well D		4.55			Water Column Thickness (ft): 57,99 Initial Depth to Water (ft): 66.56 Water Volume (gal/lin ft): 0.1632 28.39 = 3 well V							
INFO	Remarks:					363				200			
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)		Notes	
2/10/2020										- 271 -4			
1	0930	66.82			13.07	0.256	5.42	9.76	-771'3	39.0	. 225 14		
	0935	66.84	lo		12.85	0.257	2.97	9.89	-270.3	1896 au	fine silt	light brown	
	0940	,	ાય		12.86	0-251	1-41	10.21	-35५.ኢ	1806 م			
	0145		18		12.89	0.251	2.24	4.33	-372.1	853 av	1		
	0950		7.7		12.60	0-249	1.02	8.84	-385.4				
	0955		26		12.62	0.246	0.89	8.56	-377.9	69.2			
	1000		30		12.62	6.244	0.80	8.27	-361.8				
	1005		34		12-61	0.242	6.76	8.10	-350.4	25.4			
14	1610		34		_	-	-	-	,		1007 and	1010 your f	
	1015		42		13.47	0.244	0.94	8.22	-299.1	35.5			
	1020		ય 6		13.42	0.243	0.68	7.47	.306.5	80.1	fine gilt .	· clearing qui	
	1025		50		13.35	0.239	0.61	7.76	-311.4	31. a			
	1030		54		13.32	0.239	0.54	7,64	-706.6	19.1			
	1035		58		13.29	0.240	0.51	7.65	-303.4				
	1040		62		13-23	0.240	0.50	7.64	-301.6	9.13			
<u> </u>	1045		66		13.28	0.240	0.50	7.62	-197.8	7.73			

LOCATION	Site: Cam	p Hero	>			LocID: CH	-MW06	14D			Date: 1/2/15/120
LOCATION	Project Name	e: Camp	Hero Ph	ase (V		Project #: 6	044390	3			Recorded By: J
				et et fa tit taan al finant in et etatat tiet bek				11/2 34	(
EQUIPMENT	H2O Quality	Meter Type/ID	o#: √S1 SS	6MPS/R	FJSB	Development	Equipment: (Localita	rist		
	Water Level I	Indicator Typ	e/ID#: fleron	Dippert	27112	Equipment De	con.: Alco	NOX			
				· ·							
	Casing I.D. (i				***************************************	Water Column	Thickness (ft): 93.67			Initial Depth to Water (ft): 66.49
WELL INFO	Total Well De	epth (ft):	60,1		,	Water Volume	(gal/lin ft): (5,16			44.9=3x Vostorne
INFO	Soo Remarks:	gallong	s of wat readings	er need Via buc	l to b	e taken	out et	horehe	ile; wat	er ockle	14.9=3x Volume
			<u> </u>				T				
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes
12/8/20	1123				8.86	0.520	6.04	9:44	-80.4	1743	
		<u> </u>	<u>j WNWC</u>	π			* do a thatachara an araw pampa a saar mirrim casaca da da da da		William of the State of the Sta	-	No parameters taken
	72255		450			1.339	5.63	8,90	-113,C	41.9	Reduced Flow
	1233					2,124		8.22	-108.3	793	
	1240					2,956		8.027	-1087	38	
	1245				10,05	3.383	5.90	7,70	-107.5	51	
<u> </u>	1250		450		10:12	3.722	6.26	758	-1028	76.1	
		The state of the s									
		The state of the s	The state of the s		4						
				AM	<i>F</i>	1_1					
				7200	TOUL						
				/							
				- American		1					
								The state of the s			
									The state of the s		
										March Control of the State of t	
			3.5							The state of the s	
Drawdown: minim	nal Measurement	s:3-5 min Stab	oilization:+/- 0.5 C,	+/- 3% conductiv	rity, +/- 10% DC	O, +/- 0.1 pH, +/-1	0 mv ORP, turb=	as low as poss	ble (<10 NTU	ideal) All for 3	consecutive readings

	Site: La	my Haro	- X			LocID: 44	D				Date: 12/1/1020			
LOCATION	Project Nam	ie: Cune	theo the	a IV		Project #: 60	448463				Recorded By: MCGhecked By:			
EQUIPMENT	H2O Quality	Meter Type/ID	#: YSI 550 #ID#: Soliast	MPS #	\$8527 018027	7 Development Equipment: Grand tos #43265 7 Equipment Decon.: Manax								
WELL INFO	Casing I.D. (19	<u>(21)</u>		Water Column Water Volume	_		Initial Depth to Water (ft): 66.03					
	Remarks:				The same		3113							
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	pH	ORP (mv)	Turb. (NTU)	Notes			
12/2/2020	1565		1		13.14	2.845	8.75	6.78	18.3	30.3				
1	1510	65.96	4	7,54	12.01	2.578	20:01	7.01	79	31.7				
	1515	64.96	8		11.59	2749	9.53	6.44	12.9	34.6				
1	1520	1	也15		12,78	3-002	7, 23	7-07	3.1	38.7	325 hte			
	(525		20		15.42	1.184	7.93	7.11	17.6	41.3				
	1530		28-		13.39	2.331	5-74	7.12	3.2	27.4				
	1535		26.45 34-46 40		13.25	2.396	3.21	7.06	-19.8	12.3				
	1540		40		13.02	1-301	2.39	7.10	-29.1	3.08				
	1545		4846		12.97	2-190	1.86	7.07	-39.5	1.85				
	1550		58		12.98	2.031	1.66	7.03	-50.5	1.66				
,	1555		70		12.91	1 - 847	1.48	7-04	-56.5	1.42				
	1600		80		12.47	1,780	1,40	7.01	-61.5	0.91				
	1605		90	-	12-92	1.735	1.34	7,00	-63-5	1,56				
	1610		[00		12-95	1.716	1.26	6-98	-64.8	0.06				
	1615		110		12.47	1.718	1.21	6.97	-67.3	0.17				
									-					

LOCATION	Site: Cow	y Hero	Hero Ph			LocID: ((-/ -	MWOH	22			Date: 12/7/20
LOUATION	Project Nam	ie:Camp	Hero Ph	ase IV	49 - Manuary 1994 - 1995	Project #: 🜘	04439	03			Recorded By: 16 Checked By:
					· · ·	<u> </u>			<u>, </u>		
EQUIPMENT	H2O Quality	Meter Type/ID	D#: YS1 56	6MES1	K8577	Development E	equipment:	Ecosty 1	Ar IH	-	
	Water Level	Indicator Typ	e/ID#:Heron	DipperT	12+112	Equipment De	con.: /->\c	WOX)			
	Casing I.D. (in): 7 '				Water Column	Thickness (ff	1. ~75.			Initial Depth to Water (ft): ~23
WELL	Total Well D	epth (ft):	98.4			Water Volume	(gal/lin ft):	21/2			36=3x Volume
INFO	Remarks:	200 ga	98.4 llous add	ed dunu	g drillin	. Will ren	vove bet	ween tu	o well	sin pan	0
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes
12/4/20		~ 23	150								
12/5/20	0831				9,98	0.738	5.78	8.22	-12.0	94	
Í	0836		150		10,08	0.230	1006	7.93	-11.7	75	
	0348		150		10,13	0.224	6.06	7.49	-21.6	27.8	Priller hard to step away, u
4	0826	w	700		80.01	o.ni	6.07	7.36	-9.4	21.4	
· www.pagestametar			077								Purpe Volume met
											٥
	`			6/							
			Yai	Hole Ca	#-						
· · · · · · · · · · · · · · · · · · ·			 		11						
										<u> </u>	
							,				
					<u> </u>						
							The state of the s				
							·	The same of the sa			
									17 Section and the Contraction		3 consecutive readings

LOCATION	Site: (icu	of Here	Hero			LocID: (H-	MWOUS	D			Date: 12/8/20
	Project Name	:: (amp	Hero	Phase 1	<u>V</u>	Project #:	Le04431	703			Recorded By: \ Checked By:
						T		<u> </u>	н		
EQUIPMENT	H2O Quality	Meter Type/ID	#: 451.55	16 MPS	188527	Development I	Equipment: -	- T	+ Lift		
	Water Level I	ndicator Type	110#: Hero.	1 Differt	127-112	Equipment De	con.: Alco	sno7			
						1		00 1	•		
	Casing I.D. (i	n): Z ¹¹	- /3			Water Column	Thickness (ft): 45,1	6		Initial Depth to Water (ft): 45.67 45.
WELL INFO	Total Well De	epth (ft): \	59	.	1 1 1 .	Water Volume	(gal/lin ft) :	0.16	Α	a	144.7= Sx Volume
INI O	Remarks:	the two	ons adde	a during	drilling pair	to be re	movied -	durity of	elevelop	ment. V	Initial Depth to Water (ft): 46.67 45. 44.7=3x Volume Sill take out between
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes
12/8/20	0924				10.05	5,991	6.08	6.76	-51.5	(603	Praye on Q 0922 No readings
	0945		<u> - მა/</u>	NP RUS	UNINC	1	e de la companya de l				No readings
	0949		150		9.9	6.539	5.94	7.16	-66.2	162.4	J
	0955				10.10	4.309	6.09	7.17	-65.1 -66.7	23,0	
	loco		175		10.54	4.213	5,95	7.09	-66.7	20.3	
7	1005		175		10,09	5.658	5.79	7.01	-60.2		
-		TOFF	-			/			***************************************		Volume reached
•											
			10/1	Z-A							
			7/00	X							
			-	21							
	-										

Draudoum: minim	ol Moscuroment	c.2 5 min Ctabil	lization: 4 0 5 C	1/ 20/ ponductivi	h/ 100/ DC	1 / 0.1 pU 1/10	000 4 4	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 411 5 0	consequitive readings

	Site: (em Hero				LocID: 45	D				Date: 12/10/2020			
LOCATION	Project Nan	amp Hero 10: Lump Y	ho Phas	2 1V		Project #: 4	04431 03				Recorded By: Checked By:			
EQUIPMENT	H2O Quality	/ Meter Type/ID #	1: YSE 55	G MPS #	= P4527 = 018027	Development Equipment: Grund fos # 43265 Equipment Decon.: Muses								
	Casing I.D.		(2")	DI 118 T	, Mae a	Water Column				THE STATE OF	Initial Depth to Water (ft): 45-26			
WELL	Total Well D	Pepth (ft): 3 1	4.85			Water Volume (gal/lin ft): 0. [632 45. 71 = 3 الأساد المادية								
INFO	Remarks:								O 1 11 1					
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes			
1/10/2021	145	45-24	2	_ =	13.11	2.501	6-21	7.12	1.61/-	103.4	225 Hz			
1	1250	45.25	4		14.45	2.090	3.81	6.94	-155.3	110	<u> </u>			
	1255	45.27	6		14.52	2.105	3.36	6.91	-{77.3	50.7				
	1300	45.30	10		14.09	2.941	2.79	6.76	-191.8	22.8				
	1305				1						day - missed readily			
	1310		20		13,1(3.390	1.07	6.95	-145.3	7.16				
	1315	45.28	27		13.02	3,371	6.89	7.02	-298.3	4.24				
	1320	Y	33	_ =	12.95	3.336	6.71	7.06	-297.1	3.93				
	1325		40		12.94	3.306	0.63	7.07	-287.1	1-68	XESA			
	1330		46		12.94	3.277	0.57	7.07	-272.8	1.50				
	1335		51		12.94	3.163	6.48	7.67	-258.4	1.49				
	1340		57	λ.	12.98	3,242	6.48	7.08	-241.8	1.43				
	1345	= (1)	63		12.95	3.246	0,48	7.07	-233.2	1.64				
	1350		70 🐇		12,90	3.245	0,44	7.07	-223.1	2-99				
=	1355		77	* 7%	11.88	3.246	0.42	7.67	-218.4	7.34				
1/	1400	4	<u>83</u>		12.87	3.247	6.42	7.07	-214.9	3.23				
_	1405								1					

320											Page 1 of A	
LOCATION	Project Name: Camp Hero Phase IV					LocID: 576364 Project #: 60443403					Date: (2/11/2020 Recorded By: MF-Checked By:	
LOGATION												
EQUIPMENT	H2O Quality Meter Type/ID#: 556 M/5 サトッシュフ Water Level Indicator Type/ID#: Solins+ (OL # のほっとフ					Development Equipment: Watern						
210100000000000000000000000000000000000						Equipment Decon.:						
WELL	Casing I.D. (in): 576304					Water Column Thickness (ft) : -					Initial Depth to Water (ft): 80,80	
	Total Well Depth (ft):					Water Volume (gal/lin ft) :						
	Remarks:											
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTU)	Notes	
12/11/2020	0737	80.80			12						start hand purge	
	6743	80.7시										
**	0750	80.90										
	0800	80.54										
	0819				r						start materna	
	9811	81.19										
	0812	81.81										
	0815	82.30									stopped to investigate of	
	1230										MH Wells	
	1292	82.95									thish turbidity waiting	
	1249		<u> </u>							811 au	for water charity to impro	
	1252	81.9									before parameter collection	
	1321	81.54		ļ	15		242		41. 1	58.2		
	1325	81.57	45		13.66	6.266	3.42	8.95	-61.6	55.9		
	1330	81.40	47	4-1	13.09	0.259	2.71	6.93	-67.6	51.2		
	1340	81.35	53		13.13	2.258	1.58	8.86	-78.6	49.2	1	
	1350	Rusty A	ng 0	rater,	polled	tobing	- che	e va	ve	worn 1	rough	
awdown: minima	Measureme	nts:3-5 min Stabili	zation:+/- 05 C	+/- 3% conductiv	ity. +/- 10% DC) +/- 0.1 pH +/-10	my ORP turbs	es low as nos	ible (<10 NTI	ideal All for 3	consecutive readings	

MONITORING WELL DEVELOPMENT FORM

Page 2 of 2

LOCATION	Site: (a	no thero				LocID: 57	6304				
LOCATION	Project Nam	e: Camp	Hes P	use II	/	Project #: 6	044340	3			
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gais)	Pumping Rate (Lpm)	Temp. (C)	Specific Conduct. (mS/cm)	DO (mg/L)	Hq	ORP (mv)	Turb. (NTU)	Notes
2/11/2020	1450		71		12.15	0.266	1.97	9,15	16.3	662 au	JC w/ JH - MK Managh
1 / -	1546	82.92	165		11.65	0.251	1.83	8.36	-51.7	41.8	watern tubing/juge water
	196										no parameters collected
7											JC w/JH - MK managel materia tubing/fuge mater in parameters collected between 1450 and 1546.
-											
			- *								
	T										
									1 1	-	
		-		1							
										- 1	
171	N.							11	-		
	1 2										
			1						- 40		
						- 13					

Drawdown: minimal Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 3% conductivity, +/- 10% DO, +/- 0.1 pH, +/-10 mv ORP, turb=as low as possible (=10 NTU ideal) All for 3 consecutive readings

MONITORING WELL DEVELOPMENT FORM

Page 1 of _\

			******								Page 1 of \(\lambda\)
LOCATION	Site: (a.	of Hero				LocID: 5	20627				Date: 12 /02/ 2020
LOCATION	Project Nar	ne: Lany	Heo M	e IV		Project #: 6	443903				Recorded By: Mr Checked By:
EQUIPMENT)#: (50 Mp e/ID#: 601224			Development Equipment De		wa terro			
WELL		(in): 570 Depth (ft): 9(rft botho	m)	Water Column): 22.	77		Initial Depth to Water (ft): 73, 66
	Remarks:										
Date (mm/dd/yy)	Time (24 hr)	Water Level (FTOC)	Volume Removed (Gals)	Pumping Rate (Lpm)	Temp.	Specific Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mv)	Turb. (NTŲ)	Notes
120											
12/02/2020	1220										tubing primed hand
1	225										connected to watern
	1233	45.83									check value fell off - connectu
	1243].			check value fell off again - swit
	1255										hand jurge - stert
	1259	88.54									
	1310	94.92									silty flow
	[31]							İ			check value blocked by silt
	1325		3.7		9.04	0.463	8.14	6.70	51.5		cheened and resumed purge
₩		well	reged dry	715	min rec	have to	1 (+				
2/04/2020	1400	73.16	1								water level closele
2/06/2020	1305	73.40									start gurge (1314)
U.	1324	91.00	3				1				well dry
			phal=6.7			-					
						<u> </u>					
rawdown: minima	Measureme	nts:3-5 min Stab	ilization:+/- 0.5 C,	H-3% conductiv	ity, +/- 10% Do	O, +/- 0.1 pH, +/-1	0 mv ORP, turb=	as low as poss	sible (<10 NTU	ideal) All for	3 consecutive readings

Appendix C5 Groundwater Sampling Forms

OCATION	Site: Can	y Heo				LocID: 5	19494				Date: 12/67	1/2020			
	Lam	Mero	Phase I	V		Project #:-6	0190175	2044 340	3		Recorded By: M	W	Checked By:		
QUIPMENT		ty Meter Type er Type/ID #:	e/ID#: YSI Go o	OXLM # 16	662		Indicator Typ			母019027	PID Type/ID #: Equipment Deco	111	000		
WELL INFO	Casing I.D. (Total Well D Ambient PID		9494 <i>L</i> 2	L")			Volume (gal/l nn Thickness PID (ppm):			7)	Initial Depth to W Well Volume (ga Ground Condition	l) {[d-c] x b}:	55-80		
CASING	Casing I.D.	(in) [a]: 31	9494 (2"	')		1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	Volume (gal/l	lin ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	pH	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharg	Pressure (PSI)	1	Remarks r, clarity,	etc.)
12/7/2020	0853	55.80		350	12.45	6.41	0.392	9.24	5.09	-35.8	6/7	150	clear		
	0858	55.85			12-79	6.37	G.374	8.67	1.98	-40.3					
	0903	55.90			12-81	6.37	6-373	7.26	1,27	-40.9					
	0908				12.84	6.39	6,372	4.66	1.17	-40-7					
	0913				12.84	6.38	0.372	6.48	1.04	-39.5					
	0918	\(\bullet \)		Ψ	12.84	6.38	0-372	L.25	6.91	-39.6	y				
ıp Rate: <=0	5 L/min Dr	rawdown: <	0.33 ft Measu	rements: 3-5 m	in Stabiliza	ation: +/- 0.5	5 C, +/- 0.1 pH	, +/- 3% cond	luctivity, +/- 1	10% DO, +/- 10% t	urb (<= 10 NTU id	leal) for 3 conse	ecutive reading	gs	
ple ID #(s)/T	ime(s)/Ferro	us Iron Resu	ılt(s)		No. Contair	ners/Volume	Туре		Preserv.	Filter (Y/N)	Pump OR Baile	r	Parameter(s	s)	
		.1			16 x	0.0 -		nber	~	N	אינים אינים		STD		
0.	125 50	ample			ζ ×		me Po	7	HN03	3×7 3×N			1-1-		
51°	1494 - 1494 -	nmple 1220 1220 Mg	5		9 x	150	ml so	PA	MCI	3 2 7 3 2 10			\		
519	1494 -	1220 MS	V			Пп									

OCATION	Site: Ca	my He	7			LociD: 5	19495				Date: 12/8	/2	مده			
	1 Cha	se Iv				Project #: -6	0190175	6044	3903	The state shalles	Recorded By:	MK	-	Checked By:		
QUIPMENT		ty Meter Type r Type/ID #:	e/ID#: //31 (.o	mm # 1661	62	Water Level Sampling Ed	Indicator Typquipment: 6	e/ID #: S.):	nst 101 =	± 018027	PID Type/ID #: Equipment Dec			90		
WELL	Casing I.D. Total Well D Ambient PIE	epth (ft) [d]:	0_6				Volume (gal/l nn Thickness PID (ppm):				Initial Depth to Well Volume (g Ground Conditi	al) {	[d-c] x b}:	53.59		
CASING INFO	Casing I.D. Unit Casing	(in) [a]: Volume (gal/	in ft) [b]: o.	16		1.5	2.0	2.2 0.20	3.0	4.0 0.65	4.3 0.75		5.0 1.0	6.0 1.5	7.0	8.0
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp. (C)	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Dischar	rge	Pressure (PSI)		Remarks or, clarity,	etc.)
2/8/20	0830	53.59	-	80	4.18	7.76	6-163	4.36		4.7	7/5		175	clear	no a	مه
<u> </u>	0835	53.59	•	80	9.02	7.62	0.165	3.55		- 22.5	9/4					
	0840		-		9.12	7.54	0.160	3.10		-35.7	9/6					
	0845		-		9.12	7.51	0.157	3.08		-43.1						
	0829		`		9.11	7.50	0.151	2.75		-49.5						
 	0855		`		8.95	7.49	0.146	2,47		-63.4						
	0100		-		8.85	7.47	0.144	2.32		-73.7						
	0905	<u> </u>	2001	V	8-87	7,47	0.144	2.17		-79.4	V	1.	₩			
	ime(s)/Ferro			rements: 3-5 m	ī			, +/- 3% cond		10% DO, +/- 10% t			·			
HE ID #(5)/ 1	iiiie(S)/Feiio	us iioii nest	ii(s)			ners/Volume			Preserv.	Filter (Y/N)	Pump OR Bail	-		Parameter(s)	
<i>(</i>) <i>(</i>	1495-	12.16	3475			250 ml			HNO2	1×7 L×N	Porm		<u> </u>	579 570		
2 1.	1773 -	(220 (27.20			250 mg			NHy	IXY IXN				שיונ		
						40 00	L UOA		HCL	N	\			БГР		

4=COM

MONITORING WELL SAMPLE COLLECTION FORM

OCATION	Site: C.	emo the	~ò					- 6	LociD:	519495			
	Project Nam	e: Forest Gle	on Annex Remed	lial Investigation	r (has	e IV			Project #: -	60100175	604439	03	
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)	Remarks (odor, clarity, etc.)
2/8/20	0910	53,59	•	80	8.72	7.46	0.145	2.14		-85.1	9/6	175	
	0915		•	1	8.53	7.45	0.145	1.99		- 87. 9	1 1		
	0920		•		8.40	7.45	0-145	1.91	21.1	-92.3	3		
.0	0925				8.23	7.44	0.145	1.90	19.3	-95.1			
	0930	Ψ	2	V	8.02	7.44	0,145	1.89	16.9	-96.6	V	V	
				· ·									
							-						
													Sex.
													(i)
									-				
					A)	ļ							
						68			ļ				
	-						-						· · · · · · · · · · · · · · · · · · ·
				<u> </u>									<u> </u>
							-						
							ļ						

p Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 0.1 pH, +/- 3% conductivity, +/- 10% DO, +/- 10% turb (<= 10 NTU ideal) for 3 consecutive readings

	Site:	amp Ho	D			LocID: S	7926	7			Date: 12/8/				
OCATION		-				Project #:-6	0190175	604	4 3903		Recorded By:	JC	Checked By:		
					井16			The state of the s		- 10	V2.5	ian ()	2	44	
QUIPMENT	Water Qualit	y Meter Type	#: YS1	600 X	LM	Water Level	Indicator Typ		IA			Mini Rac .	5000	#1489	8
ZOIFMENT	Explosimete	r Type/ID #:	NA			Sampling Ed	quipment: _ <	care pos	1		Equipment Decon.:	NA			
	Casing I.D.	(in) (a):	6"			Unit Casing	Volume (gal/l	in ft) [b]:	UNK		Initial Depth to Wat	er (ft) [c]:			
WELL	Total Well D					Water Colur	nn Thickness	(ft) [d-c]:			Well Volume (gal) {	[d-c] x b}:			
INFO	Ambient PID					Well Mouth	PID (ppm):		* ***		Ground Condition of	of Well:			
O A O INI O	Casing I.D.	lin) (a):				1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
CASING INFO		Volume (gal/l	lin ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)		Remarks r, clarity, e	etc.)
218/20	1155	UNK	8	~ Igem	11.07	6.99	0.363	5.25		57.8	UNK	UNK	clem	- 00 0	dor
									ļ						
		-													
-															
				-											-
	.5 Umin D r			rements: 3-5 m				, +/- 3% con	1	_	turb (<= 10 NTU idea		Parameter(s		
ple ID #(s)/1	ime(s)/Ferro	us Iron Resu	ılt(s)			ners/Volume		.	Preserv.	Filter (Y/N)	Pump On Bailet			(above)	
4579	1269 -1	220"				50ml			HNO3	1+4, 1×N	Pump		STD	(alve	
			, W			250 ML			HN4	1= 4, 1+N	Pump		STD	Labore	7
1 570	1269 -	1200	1		3-	250 ml 40 ml			HCI	N	Pump		STD	_	
						19 140									
					<u> </u>						<u> </u>				

Δ	Binist	C	0	A	A
	-	•	V		4

Page 1 of

						_							Page 1 of
LOCATION	Site: C	me: Camp Equipment - Pur)			LocID:	53599				Date: 12/	09/2020	
LOCATION	Project Na	me: Camp	Heo 1	Phase 1	V	Project N	umber: 6044	3903	005000000000000	000000000000000000000000000000000000000	Recorded By	/	Checked By:
	Sampling	Equipment - Pur	np: Same	e 001+				C	ontroller: -	-	C	compressor: ~	
EQUIPMENT	Water Lev	el Indicator Type	e/ID#: -				Water Quality Mete	er Type: Y 5	556 MB	6nde ID: 💆		Han	dset ID: ##K 8 527
	PID Type/I	D#: -					Equipment Decon:	PF			***************************************		
	Description	n: Sample po	A from	LH susta	Screen Inte	erval (BTOC	;); -	Initial De	epth to Wate	r (BTOC): ~		Ambient PID	(ppm): -
WELL & SAMPLING	Historic Pu	ımp Settings:	-	7				_	let Depth (B			Well Head P	ID (ppm): ~
INFO		of Well/Commer						Height	of stick-up	(ft): -			
	NOTE:								·	,			7000 650 N S
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specifi Conducting (mS/cm	vity (mali)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
12/04/2020	1705	~	4	1-1-1-	5.16	0.42		6.99	22.2	27.9			
	•		•										
				-									
					2								
			·										•
Pumping Rate:_<	0.5L/min; N	leasurements:	very 3 - 5 minute	es; Stabilizatio							_		± 10mV ORP; 10% Turb
Sample ID Num	bers and S	Sample Time			Con	tainer Cou	nt, Volume & Typ	е	Preservati	ve	Param	eter(s)	
					6	- 250	ne Apoles		-		SVOC	SUOC SIM	CB,
5 3 5	99 -	1220	(la	(68.	1	- 250	one Poly		HNO3		Mutels	(total a	PCBs nd dissolved)
					1	- 150	on Poly		HNM		Hex L	(total	and dissolved)
						- 40 -			HLI		VOC		,
					1								
											h []		
								_					
					olympiasi	A perm	death or	1303512	PER LOS	100			

	Site: Car	upHen	<u> </u>			LociD:	H-M	1145			Date: 2 9	172			<u> </u>	1
OCATION		uselV				Project #: _6	_	60443			Recorded By:	1-1	Checked By:			1
	1	occio_				1, 191001 111		<u> </u>	103		r tooolood By.) [-1	Oncomba By.	·		1
DUDMENT	Water Qualit	y Meter Type	/ID#: 650M	DS /616	7	Water Level	Indicator Typ	e/ID #: \{e,c	on Dipos	51/27112	PID Type/ID #: μ	Mini RAE	2000/14	(858)		1
QUIPMENT	Explosimeter					7	quipment:				Equipment Decor					1
			l					19643		041220		, , , ,		·		1
	Casing I.D. (in) [a]: 2"				Unit Casing	Volume (gal/	in ft) [b]:	0.16		Initial Depth to W	ater (ft) [c]:	44.83		<u> </u>	1
WELL	Total Well Do	epth (ft) [d]:	98,81			Water Colur	nn Thickness	(ft) [d-c]:	53.98		Well Volume (gal)			·		1
	Ambient PID			350		Well Mouth	PID (ppm):	1.10			Ground Condition	of Well: M	oddy			1
			xpomp	inlet @	mid-sci	seen							1]
CASING	Casing I.D. (1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	
INFO	Unit Casing	Volume (gal/li	n ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6	
	Time	Water	Volume	Pumping	Temp.	l	Conduc-	DO	Turb.	ORP		Pressure		Remarks]
Date	(24 hr)	Level (BTOC)	Removed (Galions)	Rate (mL/min)	(C)	pН	tivity (mS/cm)	(mg/L)	(NTU)	(mV)	Refill/Discharge	(PSI)	1	or, clarity,	etc.)	
12/9/26	0937	44,86		200	8,43		0.377		84	1621	817	52	000	092	7]
((10195				10.25	7,46	0.462	567	81	-85.1						
	0948				10.45	7.33	0.470	5.54	79	== 111.1						
	0953		0.5		10.52	7.28	0.472	5.37	91.7	-119.8			water	Slight	y effer	راو ز
	0958				10,47	7,26	0.472	5,27	94.6	-129.8				ل	1 "	
	1004		1		10.46	7.24	0.470	4.94	97.3	-132.3						
	1009				10.49	7.23	0467	4.83	63.4	-133.7						
	1014		15		1	7.22	0.461	4,99	70.3	-128.7					•	
PRate: <=0	.5 L/min Dra	awdown: < ().33 ft Measu	rements: 3-5 m	in Stabiliz	ation: +/- 0.5	C, +/- 0.1 pH	, +/- 3% cond	ductivity, +/-	10% DO, +/- 10% t	turb (<= 10 NTU ide	eal) for 3 conse	ecutive readin	igs		_
ole ID #(s)/T	ime(s)/Ferro	us Iron Resu	lt(s)		No. Contair	ners/Volume	/Туре		Preserv.	Filter (Y/N)	Pump OR Bailer		Parameter(s)]
						-Oul	(7055		HCI	N	Puns		V60	(S)		
(H-M	WOY	55-12	7/2	2 x Z	JN, 02	ambe			10	l l		SVC			
			73.16	-4		50 m				N				cs S	IM	1
		0	1129				ambe		1.0	N.			PCP	<u>5</u>		_
			1161		1 ×	250 ju	Lpoly		HNO3	N			Meto	als (To	stal +	₽
		_		CC -	×	750 ml	- ,0014		Yes*	N	Y		Hex	Cr (To	3+217	15
		16.70	ops of b	offer	[x	250 ml	boly		HNO3	1 4			Metal	ls Dis	5	1
		1 32	d tall	x (<	1 × 7	50 ml	CPIAI		Ye5*	1 4	4		Hex	(cD	155	
			(0.9, 1)				1	* NH.	M HON	1Hy)2504						
		C 1.	•						,	, ,				Page	of	

4ECOW

MONITORING WELL SAMPLE COLLECTION FORM

CATION		mp He							LocID: (H-MWO	155		
	Project Nam	e: F orest Gle	n Annex Remed	lial Investigation	(aup	Hero i	Phase	IV	Project #:	-60190175	604430	103	
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	pН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)	Remarks (odor, clarity, etc.)
	1020	44.84	*	200	10.53	7.21	0.450	4.91	51.2	-140,2	87	52	
	1025		2		10.58	7.20	0,448	4.84	48.4	-139.9			
167	1030		2.5		10.55	7119	0.441	4,59	50.1	-142.1			
	1035				10:55	7.17	0.432	4.47	42.3	-141.1			
	1044		Ч		10.61	7.14	6.416	5.09	39.8	-150.2			Do jumping a round
	10-18				10.62	7.13	0.407		37.1	-147.2			3 1)
	1054		4.5		10.60				36.6	-146.4			
	1100				10.62	7.12	0.390						
	1106		5		10.53		0.384		36,6	-158.6			
	1111				10.5h		0.380		31.2	-159,3			
	1116				10.5%	7.10	6.372		29.0	-164.7			
	1121		7		10,63		0.308		29,4	-162.0		<u> </u>	
	1126	- A	. 11.0		10,59	7,09	0.364	4.16	30.4	-167.4			
2	1129 -	- 3 41	NPLE										Slight odor notice
										 		ļ	When Sampling
					1	/							
					last 1	1	/						
				7	1	W W	-					-	
				/	-/-	1	1						
				,			1		<u> </u>			-	
							-					 	
							-						

1p Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 0.1 pH, +/- 3% conductivity, +/- 10% DO, +/- 10% turb (<= 10 NTU ideal) for 3 consecutive readings

OCATION	Site: (c	ing He	10			LocID: <	55897	2			Date: 12/9	120			
		Phase	1			Project #:_6	0190175	6041	13903		Recorded By:	1-1	Checked By:		
TNEMPIUÇ		lity Meter Typ er Type/ID #;	e/ID#: 650,	MDS/6	0167	Water Level Sampling Ed	quipment: 🖞	pe/ID#: He	son Dip Pump		PID Type/ID #: Equipment Decor			1485	58
WELL		(in) [a]: Depth (ft) [d]: D (ppm):	58.4	(Water Colur	Volume (gal/l mn Thickness PID (ppm):	(ft) [d-c]: 1	3,78		Initial Depth to W Well Volume (gal Ground Condition) {[d-c] x b}: '		and in	વ્યવડેડેડ વર્ષ્ય
CASING INFO	Casing I.D.		≠ por /lin ft) [b]:	ip inlet	@ 53	1.5	2.0	2.2	3.0	(0.65)	4.3	5.0	6.0	7.0	8.0
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp. (C)	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)	ł	Remarks r, clarity,	etc.)
12/9/2		44.63	44.63	150	9,25	10. 7.	0,225	9,40	10.06	80.9	317	30	One	125	(,,
	130% 1314 1319 1324 1329 - 1334		1,5 MPLE		10.49	5.99 5.95 5 .93 5.92	0.247	47	0.53	103.8 118.4 129.9 137.2 142.1 145.6					
			0.33 ft Measu	rements: 3-5 m	ī		· · · · · · · · · · · · · · · · · · ·	l, +/- 3% cond	T		urb (<= 10 NTU id			<u> </u>	
şı		8927 C	1343 100ps of bu		3× 40 2× 25 2× 25 2× 25 1× 25 1× 25 1× 25		Cilass amber amber poly poly		Preserv.	Filter (Y/N) N N N N N N N N N N N N	Pump OR Bailer		Parameter(s VO(SVO(PCP Meta Hex Hex	5 5 5 5 15 (+0 15 (di	M sscheal) ofal) dissolved)
	to He	× (1	PH18.	1-8.3										Dane	\

Page 1 of

														rage for
LOCATION	Site: Ca	ing Hero				LocID:	512	62				Date: ()	09/2020	27 10
LOCATION	Project Na	me: Camp H	les three	IV		Project I	Number:	60 44	3903			Recorded By	: proc	Checked By:
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sampling I	Equipment - Pur	mp: Sample	Port						ontroller:	_		Compressor:	
EQUIPMENT	Water Leve	el Indicator Type	e/ID#:							556 MB S	onde ID: ~		Han	dset ID:# R852)
V/44/4/	PID Type/I	D#: -					Equipme	nt Decon:	PI					
WELL &	Descriptio	n: Sapale part	tron (15	system	Screen Inte	erval (BTO	C): ~	3565 ocust - 190-cm		epth to Water			Ambient PID	
SAMPLING	Historic Pu	mp Settings:	_						<u> </u>	ilet Depth (B			Well Head Pl	D (ppm): ~
INFO		of Well/Commer	nts: -		-				Height	of stick-up	(ft): –			
	NOTE:													
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specif Conduct (mS/cr	ivity	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
12/04/2020	1700	-	チ		4.75	0.416	6	.15	6.72	47.6	26.3			
													4	
								, ,						
Dumning Date:	O. El /min: N	looguramento: c	wood 2 5 minute	o: Stabilizatio	n is defined a	no the fello	uina for th	roo conco	outive read	lings: + 2% To	20/ Cor	advetivity; ± 100	/ DO: +0.1 pH:	± 10mV ORP; 10% Turb
Sample ID Nun				55, Stabilizatio		tainer Co	_			Preservativ		_	neter(s)	FIGHTY OTC , 10 % Tulb
<u> </u>	·	<u> </u>			6	- 150	ml	Amber				SVOC,	SVOC SIM	PCBs
			_	•	2 .		ml	10/y		4H03		Netch	(total and	dissolved)
= 5 1	202	- 1220) (1150)	2	- 250		Paly		HWY			(total an	d dissolved)
					3 .	- 40	ML	Vox		HCL		voc		
					4						4			
					tijk <u>aan</u>	il name	734116							

OCATION	Site: Ph 1	V RI, Fo	rmer Campl	lero		LocID:	54587	7		· · · · · · · · · · · · · · · · · · ·	Date: 12/10	12020			
						Project #: -64	0 190175 -	604493	03		Recorded By:	SC	Checked By:	-1	
	Water Qualit	v Meter Type	/ID#: YS1 697	20 /		Water Level	Indicator Typ	e/ID#: H ar	Dan T	/	PID Type/ID #:	Min: D. 700	26		
QUIPMENT	Explosimete	· · · · · · ·	NA				quipment: G			<u> </u>	Equipment Deco			lled Wa	h.,
		, , po//.5	70.0			ouriping co	jurpinorit. O	LD 9 1444	W/ ······	······································	requipment 5005	7/12070	1 11307	iles 00 7	47
	Casing I.D. (in) [a]: 6)			Unit Casing	Volume (gal/l	in ft) [b]:			Initial Depth to W	ater (ft) [c]:	33.51		
WELL INFO	Total Well D	epth (ft) [d]:	63.			Water Colun	nn Thickness	(ft) [d-c]:			Well Volume (ga) {[d-c] x b}:			
	Ambient PID	(ppm):	of O	·O		Well Mouth I	PID (ppm):	jul-	0.0		Ground Condition	n of Well: G	assy, nel	l in ful	I MH
	Γ							Sc				71			
CASING INFO	Casing I.D. (in) [a]: Volume (gal/li	n ft\ fb].			1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO	Unit Casing	volume (gai/ii	וו זו) נסן:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp. (C)	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharg	Pressure (PSI)	1	lemarks , clarity, e	etc.)
12/10/20	1325	33.59	_	250	12.79	6.40	0.317	9.54	12.9	~35.U	CPM4 8/7	38	Clear	no 00	10/
1	1330	33,59	-	250	12.70	6.34	6.314	9,26	11-8	~30.1	r	ч	Clenv	no o	dor
C.	1335	33.60	2	250	12,65	6.27	0,311	8.80	7.67	-19.4	16)t	н		
×	1340	33.61	-	350	12.65	6.11	0.305	8.71	6.47	-7,4	ĸ	и	И		
	1345	33,60	^	350	12.71	6-16	0.303	8.36	-	3.1	11	n	P		
	1350	33.60	3	350	12.62	6.15	0.302	8.13	6.61	6.9	14	εl	ı	•	
	1355	33.60		350	12.70	6.26	0.311	6.96	10.00	-7.3	ic	t/		11	
7	1400	33.60		350	12.71	6.26			7.25	-15.2			=		
<u> </u>		awdown: < 0		rements: 3-5 m							urb (<= 10 NTU id		· · · · · · · · · · · · · · · · · · ·		
ple ID #(s)/T	ime(s)/Ferro	us Iron Resu	lt(s)			ers/Volume/			Preserv.	Filter (Y/N)	Pump OR Baile	r	Parameter(s)	
11 < 11	- 8 7a		e 152			50 m L 1	•		~	N	Pump		STD		
0 9	3 0 14 -	1220	@ 150	7	3 × 4		VOA		HCI	N	Pump		STD	· · · · · ·	
						SOML	Plastic		HNO3	1243 121	Pump		STD		
					LX	250ml	Plastic		NHy	144,141	Pump		STD		*
						-									
			-						 						
	* 2	5 drops	of boffer	. PH 181		-									
		\		1 '	<u> </u>				<u> </u>	L			L		

4ECOM

MONITORING WELL SAMPLE COLLECTION FORM

		a U	e00										
AHON	Site: Ca									45879			
	Project Nam	e: Forest Gle	n Annex Remed	lial Investiga tion	Pha	se IV			Project #:	60190175	60443°	103	
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharg	Pressure (PSI)	Remarks (odor, clarity, etc.)
110/20	1405	33.60	-	350	17.66	6.21	0.369	6.30	6.34	-6,2	CPM48/	- 38	Clear, no odor
	1460	33.60	4	350	12.63	(0,14)	0303	5.93	5.48	3.0	71	//	71
	1415	39,60		350	12.67	6.15	6,301		5.07	9.3	9	. /	10
	1420	33,60		350	17.61	611	6.300	4.97	4560	15.9	11	11	11
	1425	33,60		350	17.58	6,10	0.298	4.63	4.14	19.2	17	11	10
	1430	33.60		350	12.58	6,10	6,298	4.22	3.97	20.4	17	17	10
	1435	33.60	÷	350	12.53	6.10	0.299		424	19.4	17	11	10
	1440	33,60	6	350	12,21	6,09	6.298	3.48	4.29	23.0	11	10	11
	1445		<u> </u>	350	12.43	6.08	0296	3.16	3,97	24.1	11	/1	11
	1450	33,60		\$ 50	12.44	6.07	0.296	2.87	3.81	25.7	1(11	11
	1455	33.60	B.5	350	12.48	10,07	0.294	2.77	4.09	27,0	10	U	11
	1500	33.60		250	12.37	6.06	0.295	2162	3.60	28.7	11	11	• 11
,	1565	33,60		250	12.28	6,06	0 294	2.43	3.87	31.0	16	11	/1
	1510	33.60	. 7	256	12.27	6.07	0.295	2.25	3.48	27.8	11	10	1)
•	1515	33.56		250	12.23	6,06	6.293	2.16	330	30.0	11	11	i c
	1520	33.56	7.5	0750	12.20	6,04	0.292	2.08	3.29	33.0	10	ll	41
	1515			SAMP	128-								
					/								
					111		1						
			-	/as	Hus	4							
					7	ex	1						
				·		$\geq \leq$	7						
		<u> </u>											

p Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 0.1 pH, +/- 3% conductivity, +/- 10% DO, +/- 10% turb (<= 10 NTU | deal) for 3 consecutive readings

								0.8.1.1	•		· · · · · ·	- :	. / -				
OCATION		10 Her				-	H-M					-	1/20		-		
	190	rase IV				Project #: 6	0190175	6044	3903		Recorde	d By:	14		Checked By:		
	I		- () 0		1	1		1.		٦ -			11.5	A n c	2 2 4 4 5	1	/ -
QUIPMENT	-	y Meter Type		MDS/	6167					per 7/27112						0467	17
	Explosimete	r Type/ID #:	NA			Sampling Ed		1281) bla 1038 /	dder /		Equipme	nt Decor	1.: Al		2700		
	Castina ED ((fa) (a)	711			lui a o i i i			04127	,0	luse up	-11-1-142	-1 (1) [,	1, 110		
WELL	Casing I.D. (L			 	Volume (gal/		0.16		Initial De				66.45		
INFO	Total Well D		<u> </u>				nn Thickness				Well Vol				A 1.		
	Ambient PID	(ppm): O	0,0			Well Mouth	PID (ppm):	2.6			Ground (Condition	of Well:	Mi	sdory		
CASING	Casing I.D. (in) [a]·				1.5	(2.0)	2.2	3.0	4.0	1 4	4.3	5.	n	6.0	7.0	8.0
INFO		Volume (gal/li	in ft) [b]:			0.09	(0.16)	0.20	0.37	0.65	_	.75	1.	_	1.5	2.0	2.6
						1						İ					
	Time	Water	Volume	Pumping	Temp.		Conduc-	DO	Turb.	ORP			Pres	SIIFE	F	Remarks	
Date	(24 hr)	Level	Removed	Rate	(C)	рН	tivity	(mg/L)	(NTU)	(mV)	Refill/D	ischarge	P(P)			, clarity,	etc.)
-2/1/20	~CC	(BTOC)	(Gallons)	(mL/min)	11 04	7.82	(mS/cm)	6.416.	1-0	151.5	710						
12/11/20		66.59	0.5	330	11.06				20,9	1 1 1 1 1	8/7	<u> </u>	+0	7	one		- 7
	1000	66,57	. 0.5	330	11.61	7.94	0.299	5.65	21.7	-44.4					No 00	roc've	3 Color
	1005		1.5		11.65				21.0	†		\ 	-				
	1		1,5		11.69	9,03	0,296		20.8	-133.7				-			
	1010		2.5		11.71	8.05	0.296	5.45	23.1	-143.1		_	ii .				
	1015		3		11.72		0.296		77.0	-147.6			-				
 	1020		5		11-71	3,01	0.296	4.62	26.9	171.8		<u> </u>					
□ Pate: <=0	V- 9	awdown: < (0 33 ft Measu	rements: 3-5 m				1	1 1	10% DO, +/- 10% t					cutivo roadina		
		us Iron Resu		irements. 0-5 ii		ners/Volume	-	1, 77- 070 0011	Preserv.	Filter (Y/N)	Pump O			COLISC	Parameter(s)		
pic 1D #(3)/1	mic(s)/i ciro	us iron nesu	11(3)		2 /	40ml			HU	N	i unip o	Pom			VICC		
,	. ,				1/x -	750 ml	Lub		1,,,	1/2		10000	1		SUO		
(H-M	20445	5-1220			250 in				TÜ TÜ						CS 511	1
	0	103	7			250 ml	aus			N					PCE		
	C		•			Some	pole		HNOZ	IXY, IXN					Met		
			_	. 00 =	(250 ml	_		HYWHI	1 1 1	1	¥			Hex		
		* 25 dr	d to H	potter		·	-		1	17							
		adde	d'to H	ex Cr,													
		01-1	1811	-													

ZOF

CATION	Site: Co	up He	.50						LocID:	RH-MW	0445		3
	Project Nam	e: Forest Ol	en Annex Remed	lial Investig ation	Phas	e IV			Project #:	60190175	60443	963	
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)	Remarks (odor, clarity, etc.)
12/11/20	1030	66,57	4	330	11.56	7,91	0.295	4.85	17,4	-173.9	817	62	
	1035			-	11.60	7.91	0,299	14,70	18:3	-1702			
81	1037		SAMPL	E -									
					<u> </u>								
									-	(10)			
								-		<u> </u>			
								-					
							1/1	_		<u>. </u>			
						X 💎							
					/		Me L	1e/		* 19.0			
18											-		
		91						7/1					
		ļ											
			-	***			ļ		-				
		<u> </u>	0.00 (1	. 0.5		<u> </u>	<u> </u>		<u> </u>		I de NEUT		

p Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 0.1 pH, +/- 3% conductivity, +/- 10% DO, +/- 10% turb (<= 10 NTU | deal) for 3 consecutive readings

OCATION	Site:	1-MW	DH Cam	P Hero		LocID: (H- Mu	14400	$\overline{}$		Date: 2/11	20			
JOATION		Phas		1		Project #: 6	0190175	60443	६०१८		Recorded By: 3	H	Checked By:		
QUIPMENT			/ID#: 650	MDS/6	167	Water Level	Indicator Typ	e/ID#: He.	ran Dip	per T/27(12	PID Type/ID #: /	KINIPA	2300/0	046417	6
	Explosimete	er Type/ID #:		•		Sampling Ed	quipment: V	Stadder	Pump	OED/UPS	⊉ quipment Decon	: Algon	20		
	T		7' * 1.	Nlet @ 1		T	19643		770				4 1 -0		
WELL	Casing I.D.	(/[-]				1	Volume (gal/l		0.16		Initial Depth to Wa		66.29		
INFO		Depth (ft) [d]:	150				nn Thickness				Well Volume (gal)		1 1		
	Ambient PIL) (ppm): 💍	,0			Well Mouth	PID (ppm):	5.2			Ground Condition	of Well: 4	uddy		
CASING	Casing I.D.	(in) [a]:				1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
INFO		Volume (gal/l	in ft) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
											(k)				_
Date	Time	Water Level	Volume Removed	Pumping Rate	Temp.	pН	Conduc- tivity	DO	Turb.	ORP	Refill/Discharge	Pressure	1	emarks	
	(24 hr)	(BTOC)	(Gallons)	(mL/min)	(C)	h	(mS/cm)	(mg/L)	(NTU)	(mV)	Tremin bisonal ge	(PSI)	(odor,	clarity, etc.	1
	1123	66.83		110	11,47	7.01	1.359	3.84	9.31	-74.8	18/5	011	Pumpa	on@ Ole	3
	1128	66.83			11,51	6.94	1.214	2.96	8,31	-84.0			'	L	7 .C
	1136	66.83	0.5		ilisi	6.90	1.150	2.86	7.95	-88.3			Buldules	in Car	-18
	1141				11.58	6.88	1.124	2.55	7.41	-88.6		<u> </u>		74	
	1146				11.62	6.87	1.106	2.45	7.47	-90.4					
	1453		j		11.73	6.87	1,085	2.44	5.81	-89.7					
	1158				11.77	6.86	1.072		6.45	-90.1					
	1203	V		, j	11.77	6.86	1,067	2.34	5.78	-87.7	L L		mary and		
		rawdown: < 0		rements: 3-5 m				, +/- 3% cond	· · · · · · · · · · · · · · · · · · ·		urb (<= 10 NTU de	al) for 3 conse	T		
ple ID #(s)/	ime(s)/Ferro	us Iron Resu	lt(s)			ners/Volume		(*)	Preserv.	Filter (Y/N)	Pump OR Bailer		Parameter(s)		
	0 (11. 6	0/1/12	770		OML	glass		HCI		pourp		VOCS		_
	CHI	-Music	1212	100		SOML SOML	ambe			N	'		500		
		0	1712			50 mL	ambei			N	 		PCB		1
						50 ML	poly		HN05	1×4, 1×N			Meta		
						SOML	boly	8 AVEL		1×4.1×N			Hex	-	_
						South		NINI	CNING TO	7,170			FICE		
						JU	- 11							· · · · · · · · · · · · · · · · · · ·	
										•	•				

7.fZ

CATION	Site:	Carry	o Hero		1 c				LocID:	CH-MWC	044D	202	
	Project Nam	ie: Forest Gie	n Annex Remed	iai investigation	Pha	se IV		***	Project #:	,60190175	60443	<07C	
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp. (C)	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharge	Pressure (PSI)	Remarks (odor, clarity, etc.)
2/11/20	1208	66.83	1,5	116	11:50	6.86	1,055	2.28	5.47	-87,4			
	1212		- SAM	PLED-									
000													
						1	111						
						Hour	177						
							Lal	1					
						/							
		-					 						
								7		<u> </u>			
©								1					
		<u> </u>						<u> </u>					
		-							-			17	
-													
							-						
							 		-				
						\vdash	 						
						-	-				-		
	<u> </u>						-			-			
							-						

p Rate: <=0.5 L/min Drawdown: < 0.33 ft Measurements: 3-5 min Stabilization: +/- 0.5 C, +/- 0.1 pH, +/- 3% conductivity, +/- 10% DO, +/- 10% turb (<= 10 NTU ideal) for 3 consecutive readings

OCATION	Site: C	amp Her	'o			LocID:	H-MW				Date: 12/2	12020		
			20	3101		Project #: 60	190175	60443	903		Recorded By:	SH/JC	Checked By:	
QUIPMENT	Water Quali	ity Meter Type	/ID#: YSI (650 MDS /	6167	Water Level	Indicator Typ	e/ID#: He	ron Dipper	T/27112	PID Type/ID #:	Mini Rac	3000/04	16412
	Explosimete	er Type/ID #:	NA	•		Sampling Ed	uipment: G	ED Blad	der Pump	147038	Equipment Deco			
	Casing I.D.	(in) [a]:	? "		411124	Unit Casing	Volume (gal/l	in ft) [b]: C)-16		Initial Depth to W	Vater (ft) [c]:	44.67	
WELL INFO	Total Well D	Depth (ft) [d]:	138.0	0		Water Colum	n Thickness	(ft) [d-c]:	93.33		Well Volume (ga		14.9	
	Ambient PI	O (ppm):	0.0	-		Well Mouth F	PID (ppm):	0.4			Ground Conditio		Soil	
CASING	Casing I.D.	(in) (al:	2"			1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0 8.0
INFO		Volume (gal/li		0.16		0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0 2.6
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp. (C)	pН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharg	Pressure (PSI)		Remarks , clarity, etc.)
12/12/20	855	44.70		350	11.56	7.28	2.449	7.09	48.7	57.4	CPM4 8/7	80	clear	/ no odor
	900	44.70	_	350	11.59	6.63	2.248	6.52	68.5	-21.9			N	и
	905	44.71	~	350	11.61	6.50	2.210	6.31	60-7	-42.6			n	h
	910	44-73	_	320	11.56	6.44	2.177	5.42	62.2	-49.9			N	н
	915	44.75	1.5	760	11.58	6.44	2.152	4.90	89.7	-521			n	n
	920	44.78		350	11-61	6.43	7.110	4.11	61.9	-620			n	K
	925	14-85		380	11.62	6.46	2.099	4.16	62.1	-64.2			The	
	950	44.82	3.5	360	11.64	6.47	2.098	4.15	64.4	-64.0	V	4	Sex de	ĸ
				ırements: 3-5 m				, +/- 3% cond	luctivity, +/- 1	0% DO, +/- 10% t	urb (<= 10 NTU ic		ecutive reading	s
ple ID #(s)/T	ime(s)/Ferro	us Iron Resu	lt(s)			ners/Volume/			Preserv.	Filter (Y/N)	Pump OR Baile		Parameter(s))
n .					3 x	40 ML	VOA		HCI	N	Bladder	Pump	VOC	
CH-1	UM 0421	D-1220"			2+	250 mL	AG			N	1		SVOC	
	@ 935	•			2×	250 ML	46		-	N				s Sim
					2×	250 ML	AG		1610	N			PCB:	
					2 ×	250 ML			HWO ₃	1×7 1×N				15 (Total, Dist
	,		11 1 1.	6-	2 ×	250 m	V PI		BUFFER	1×4 1×N	V		Hex Cr	(Total, Diss
- 25	drops of	- butter	added to	Cr					-					

OCATION	Site: Cq	mp Hero				LocID: S	706	27			Date: 12/12	12020			
						Project #: 6	0190175 <i>E</i>	604439	03		Recorded By:	IC/JH	Checked By:		
JUIPMENT			/ID#: YS1 6	50 mos /6	167					T/27112	PID Type/ID #:			46412	
	Explosimete	er Type/ID #:	NA		<u> </u>	Sampling Ed	quipment: G	PED Black	lder Pump	147038	Equipment Deco	n.: Alcon	lox .		
	Casing I.D.	(in) [a]:	2 n			Unit Casing	Volume (gal/l	in ft) fhl:	0.16		Initial Depth to W	later (ft) [c]:	1C 23.44	To 74 15	
WELL INFO		Pepth (ft) [d]:	96.43				nn Thickness			7 22.28	Well Volume (gal		3.73c		
	Ambient PIE		0.0			Well Mouth		1.4			Ground Condition		G19554		
	loi ID	C.A.F.1	2.4		-	1 7 5									
CASING INFO	Casing I.D. Unit Casing	Volume (gal/l	2 th in ft) [b]: /).16	<u> </u>	1.5 0.09	2.0 0.16	2.2 0.20	3.0 0.37	4.0 0.65	4.3 0.75	5.0 1.0	6.0		.6
	13	(30		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.00	1	0.20	0.01	1 0.00	0.70	1.0	1 1.0	2.0 2.	-
Date	Time (24 hr)	Water Level (BTOC)	Volume Removed (Gallons)	Pumping Rate (mL/min)	Temp.	рН	Conduc- tivity (mS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mV)	Refill/Discharg	e Pressure (PSI)	1	Remarks r, clarity, etc.)	
12/12/20	1120	73-73	-	80	12.80	6.98	0.609	7-67	13-3	24.1	CPM4 8/7	40	chear	1 no ode	or
	1125	75.06	-	80	12.59	6.69	0.603	5-25	9.46	43.0			4	N	
	1130	75.42	-	80	12-61	6.65	0.595	8-43	9.96	49.5			n	15	
	1135	75.80		80	12-60	6.62	0.592	6.62	9.12	55.8			H		
	1140	76.16	-	80	12.63	6.60	0.590	6-60	8.91	59.0			11	61	
	1145	76-44		80	12.65	6-59	0.587	6.59	10-14	61.4				41	
	1150	76.81	0.75	80	12-65	6.60	0.585	6.59	9.11	61.8	V	A	n	11	
ıp Rate: <=0.	5 l/min Dr	awdown: < (33 ft Measu	remente: 3-5 m	in Stabilia	ration: 4/- 0.5	C 1/- 0.1 pH	1/- 3º/- cond	luctivity /- 1	0% DO 1/- 10%	turb (<= 10 NTU id	loal) for 3 conce	Poutivo roadino	10	
		us Iron Resu		Tellients. 5-5 III		ners/Volume		1, 17- 070 00110	Preserv.	Filter (Y/N)	Pump OR Baile	· · · · · · · · · · · · · · · · · · ·	Parameter(s		
	(0)			<u> </u>	3*	40 mL	VOA		HCI	N	Bladdy		Voc		
					2×	250mL	AG	·. · · · ·		N	3,000	· one)CS	
" 5 7	0627	-1220	*		2*	250mL	A		+	N				s SIM	
	2 115	~			2×	250 mL	AG		-	N			PCB	5	
`	<u>e</u> 113.	2			Z×	250 ml			HNOZ	1×4 /×N			Metals); <u>ss</u>)
					2 ×	250 mi	- Pl		BUFFER	124, 120		7	Hex-Cr	(Tulal/Dis	52)
- 75	d. ac . (h.fc.	added to (r.6"										· · · · · · · · · · · · · · · · · · ·	
- 00 0	410 b > 0 +	- 001701	and ed to	J -	<u> </u>				L	<u> </u>	1			,	

Page 1 of Z

LOCATION	Site: 6	emp He	50			LocID: 5	17231	S			Date: 12	10/20	
LOCATION	Project Na		selv			Project Nur	mber: 6044	5903			Recorded By	عد	Checked By:
	Sampling I	Equipment - Pu	mp: VS1	6970 ³¹⁴	Blade	ler Ps.	щP	C	Controller: "W	P<()	(Compressor:	MPSO
EQUIPMENT	Water Lev	el Indicator Typ	e/ID#: Hea	on Dea	00 rT	W	ater Quality Mete				<u> </u>		ndset ID:
	PID Type/I	D#: Minix	2AE 300	30	-		quipment Decon:				-		
	Description	n:Flosh			Screen Int	terval (BTOC):		Initial F	epth to Water	r (RTOC)·		Ambient PI) (nnm).
WELL &		ımp Settings:			0010011111	(B100).			nlet Depth (B			Well Head F	· · · · · · · · · · · · · · · · · · ·
SAMPLING INFO			nte:		الله الله	-1-1-0 CL	anl	<u> </u>	t of stick-up			Well Flead I	ть (ррпп).
INFO	NOTE: 0	of Well/Commer	ACIL L	No Tente	1/1/	SLOCK 24		neign	t of Stick-up	(11).			
	NOTE: NO	my m	03 11 6	3									
	(41.000 May 10.000 May		200000000000000000000000000000000000000	************	******	00.000	****	400000000000000000000000000000000000000	7,70,70,70,70,70,70,70	<u> </u>		***********	
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate ► (Lpm)	Temp (°C)	Specific Conductivit (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
12/10/20	1015		,	80	5.99	0.312	8.43	7.50	-41.0		, ,	`	
	1020			60	6.03	0.307	8.59	7.50		~			
	1025			1	6.10	0.302	8.72	750	-54.9	7.56			
	1030				6.28	0.296	8,28	7,49	-630	7-			
	1035				6.35	0.295		7.48	-65.8	7.59			
	1040				6.69	0.288	7.81	7.47	-51.7				
	1045				6.85	0.285	7.70	7.47	-49.3	6.21			
	1050				6.98	0.283	7.88	7.46	-49.0				
	1055				7.16	0.281	8.03	7.45	-51.4	7.22			
	1100				7.27	0.281	7.85	7.46					
y	1105	71		À	7.34	0.281	7.89	7.46					
Pumping Rate:	≤ 0.5L/min; N	leasurements:	every 3 - 5 minut	es; Stabilizatio	n is defined	as the following	ng for three conse	cutive rea	dings: ± 3% T	emp, <u>+</u> 3% Co	nductivity; + 10%	DO; <u>+</u> 0.1 pH	; <u>+</u> 10mV ORP; 10% Turb
Sample ID Nun	nbers and S	Sample Time			Cor	ntainer Count	t, Volume & Typ	е	Preservativ	/e	Param	eter(s)	
						2			1808		. 1.5	_	

Sample ID Numbers and Sample I Ime	Container Count, Volume & Type	Preservative	Parameter(s)
1 102 I 2 MANGE	3 x 40 m L 9 (95)	HU	VOCs
eleganting in S	2 x 250ml grass		SUOCS
5 172315-1220	2 x 250mc glass	a hd la	SUOCS SIM
@ 1115	2x 250 ml flass		PCBS
@ 1115	2 x 250 mc poly	HNO3	Metals (Ifiltered)
the second state of the second	2 x 25 mc poly	NHy(NHy)2503	Hex (r (Ifiltered)
	•		
* 25 drops of buffer addled to HexCr.	DELETE, MARKE TEXT FOR COMM	O CANCEL STORE IN	

A=COM

Monitoring Well Sample Collection Form

LOCATION	Site: C	and Ho	92			LocID: \$	17231	S			Date:	120120	Page Z
**********		***************	X IV	rarranner er en en en en	8880 R880000000000000000000000000000000	Project Numb	er: 604	13903			Date: 12	20	Checked By:
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate **(Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
2/10/20	1110			60	7.37	0.280	7.82	7.47	-50.8	-	(seconus)	(PSI)	
₹	1115		SAMP	18-									
							7	P					
							*	8 , 7					
					111				* * *				
	* .				,			1 .					
							1 2 2	1 - 1		-			
							1 1	V 1					
								1 1 1 1					
									, ,	: '			
			+				-	1	,				
. ,							$\overline{}$						
	•												
				·									
					,]								
											1		
								-					
				. :	1								
				-									
							2						
		, ,	-				4 00						
			ery 3 - 5 minutes;										

tion is defined as the following for three consecutive readings: ± 3% Temp, + 3% Conductivity; + 10% DO; + 0.1 pH; + 10mV ORP; 10% Turb

Page 1 of [

Site: Camp Hero LocID: CH-MW044S Date: 2 - 22- 2021 LOCATION Project Name: Camp Hero Phase IV Project Number: 60443903 Recorded By: MY Checked By: # 9516 Controller/Compressor: QED MP56 # 04704) Sampling Equipment - Pump: QED Sample & Handset ID: 030 776 Water Level Indicator Type/ID#: 501705+ WCM Water Quality Meter Type: Y5 1 6920 / Y5T 670 Sonde ID: 43305 **EQUIPMENT** 3540 PID Type/ID#: Min RAE 3000 # 12219 Equipment Decon: Initial Depth to Water (BTOC): 66, 47 Screen Interval (BTOC): 110 - 120 Total Depth (BTOC): 123.90 0.0 Ambient PID (ppm): WELL & Historic Pump Settings: Refill/Discharge = 8/7, Pressure = 62 PSI, Rate = 330 mLpm 0.0 Well Head PID (ppm): SAMPLING Condition of Well/Comments: Excellent Pump Inlet Depth (BTOC): \1% INFO NOTE: 1055 10mp on Depth to Volume Pumping pН Specific Pump Refill/ Pump DO ORP Date Time Temp Turbidity Salinity Water Rate Comment Removed Conductivity Discharge Pressure (MM/DD/YY) (°C) (mg/L) (mV) (PPT) (24 hr) (NTU) (BTOC) (gallons) (mLpm) (seconds) (PSI) (mS/cm) CPM 2 02/12/21 64.40 100 8.83 6.64 1120 6.48 6-258 -69.5 20.1 20/10 105 6.12 CPM Z 02/27/21 11:25 64.62 4.79 6.42 7.63 1269 -92.6 5.5 20/10 105 100 6.13 9.90 02/22/20 64.67 100 6.87 7.34 -48.5 3.6 0.13 20/10 105 CPMZ 1130 0.270 02/22/21 64.71 6.89 7.20 0.268 4.6 d. 13 20/10 CPMZ 1135 -lo1.2 105 10.02 100 02/22/21 64.73 10.16 6.93 7.41 0.267 5.5 0.13 20/10 CPMZ 1140 -100.9 105 100 02/22/21 64.69 foo 7.55 0.265 - 97.1 6.9 20/10 CPMZ 1145 10.23 6.94 0.13 105 02/22/21 20/10 105 CPM2 1150 64.72 6.94 7.67 0.266 -99.3 10.5 6.13 (00 10.25 12/32/20 \$7.74 -99.9 3.4. 20/10 CPMZ 64-73 6.94 0.165 105 1155 1.5 100 10-27 0.13

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)	
"CH-MW0445-0221" @ 1155	3 x 40 mL Glass VOA	HCL	N	VOC	
Ch - 1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 x 250 mL Glass Amber	-	N	SVOCs	
	2 x 250 mL Glass Amber	-	N	SVOCs SIM	
	2 x 250 mL Glass Amber	-	N	PCBs	
	/ x 250 mL Poly	HNO ₃	N	Metals (Total)	
	/ x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)	
	/ x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)	
	x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)	

Monitoring Well Sample Collection Form

Page 1 of

	Site: Camp	Hero Hero				Locil	D: CH-MW)44D				Date: 2/21	1202/2		
LOCATION	Project Nar	ne: Camp H	ero Phase l'	V		Proje	ct Number:	60443903			1	Recorded By:	MK	Checked By:	
	Sampling E	quipment - F	Pump: QED	Sample P	ro # 35	589				oller/Compre		D MPS		7 042	
EQUIPMENT	Water Leve	el Indicator T	ype/ID#; S	olinst	WLM	3540	Water Qu	ality Meter	Гуре: У \$ <i>169</i>		nos Sonde	ID: 433	os Hand	Iset ID: 030776	
	PID Type/II	O#: Mini R	ae 3000	1 12210	1		Equipme	nt Decon:	Alcono	×					
	Initial Depth	n to Water (B	TOC): 6	6.48	Scree	n Interval (B	TOC): 140~	150	Total Depth	(BTOC):	50.00		Ambient Pl		
WELL &				arge = 15/5,	Pressure =	110 PSI, Ra	SI, Rate = 110 mLpm						Well Head PID (ppm): ⊘, ∂		
SAMPLING INFO		f Well/Comm		xcellent					18.75				Pump Inlet	Depth (BTOC): /u/	
	NOTE: PU	IMP ON	@ 123	35		***									
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	pH	DO (mg/L)	Specific Conductivit (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment	
2/22/21	1156	66.43	•	40	7.44	6.98	6.72	0,370	-42.0	6.6	0.18	20/10	105	CPM 2	
12/22/21	1255	66.46	•	40	7.78	7.04	4.79	0.384	-92.7	8.3	0.19	20/16	105		
וגן גגלג	1300	66.45	-	40	7.60	7.15	4,13	0.391	-112.5	8.3	0,19	20/10	105		
2/22/21	1305	66-47	-	40	7.39	7.22	3.65	0.397	-125.3	8.0	0.19	20/10	105		
1/22/21	1310	64.45	-	40	7.24	7.28	3.17	0.400	-133.7	7. 7	0.19	20/10	105		
12/22/21	1315	66-47	-	Чо	6.99	7.31	2.80	0.403	-139.1	8.0	0.19	20/10	165		
142/21	1320	66.48	-	40	6.72	7.33	2.52	0.405	-142.0	7.5	0.23	20/10	105		
2/22/21	1325	66.46	•	40	6.44	7.34	2,34	0.406	-144.6	7.7	0-21	20/10	105		
52/22/21	1330	66.49	0.5	40	4.29	7.35	2.27	6.407	- 146.3	7. 7	0.20	20/10	105	\vee	
7															
	1	1 1				I	1				I	1	1		

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)
Kar my 01115 02214 @ 1330	3 x 40 mL Glass VOA	HCL	N	VOC
"CH-MW 044D-0221" @ 1530	2 x 250 mL Glass Amber	-	N	SVOCs
	2 x 250 mL Glass Amber	-	N	SVOCs SIM
	2 x 250 mL Glass Amber	-	N	PCBs
	1 x 250 mL Poly	HNO ₃	N	Metals (Total)
	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
	x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
	l x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)

LocID: CH-MW045S Date: 2-22-2021 Site: Camp Hero **LOCATION** Checked By: Recorded By: CH Project Number: 60443903 Project Name: Camp Hero Phase IV Controller/Compressor: MPS0 / 047526 Sampling Equipment - Pump: Bladder Pump /33121 Handset ID: 15969 Sonde ID: 15969 00 Water Quality Meter Type: YSI 6290 Water Level Indicator Type/ID#: Solinist WLM / 29515 **EQUIPMENT** 100251 Equipment Decon: Alconox PID Type/ID#: Multi Rac 3000 / 18120 Ambient PID (ppm): (). O ppm Total Depth (BTOC): 98.81 Screen Interval (BTOC): 88-98 Initial Depth to Water (BTOC): 45.00 ft Well Head PID (ppm): 0.5ppm WELL & Historic Pump Settings: Refill/Discharge = 8/7, Pressure = 52 PSI, Rate = 200 mLpm **SAMPLING** Pump Inlet Depth (BTOC): QUEL Condition of Well/Comments: EXCEL (EX)+ INFO NOTE: clear water, no odor 8/7 50 psi Pump Refill/ Pump Specific ORP **Turbidity** Salinity pН DO Depth to Volume Pumping Temp Time Discharge (seconds) Date Pressure Comment Conductivity Water Removed Rate (mg/L) (mV) (NTU) (PPT) (°C) (MM/DD/YY) (24 hr) (PSI) (BTOC) (mS/cm) (mLpm) (gallons) 8/7 50 137.2 36.6 0.16 clear; no odor 0.341 6.58 6.12 240 02 - 21: 21 1115 45.00 9.89 50 817 0.343 102.6 34.6 0.17 10.28 6.93 290 5.10 02.22.21 1120 45.00 50 8/7 25.2 0.16 74.6 7.04 4.89 0.343 175 02. 22.21 1125 45.00 10.39 8/7 50 0.16 4.71 43.2 18.4 0.343 7.13 10.41 1130 45.00 280 02.22.21 50 2/7 0.343 13.2 14.9 0.16 7.19 4.45 290 10.48 02.22.21 1135 45.00 8/7 50 0.16 0.342 -12.1 12.3 4.05 280 7.24 10.50 1140 45.00 02.22.21 8/7 50 0.16 10.6 3.96 0.342 -26.6 275 10.56 7.26 45.00 1145 02.22.21 50 811 -40.2 0.16 3.95 0.342 8.40 7.29 275 45.00 10.62 02-21-21 1150 8/7 50 0.16 0.341 -51.8 7.31 3.74 7.7 10.61 02.22.21 1155 45.00 2.80 8/7 50 -58.6 8.5 0.16 0.341 10.61 7.32 3.62 290 02-22:21 1200 45.00 817 50 -66.3 11.6 6.340 0.16 7.33 10.63 3.62 290 02.28.21 1205 45.00 Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)
CH-MW0455-0221 1240	3 x 40 mL Glass VOA	HCL	N	VOC
CH Live 100 and 15 to	2 x 250 mL Glass Amber	-	N	SVOCs
	2 x 250 mL Glass Amber	-	N	SVOCs SIM
	2 x 250 mL Glass Amber	-	N	PCBs
	x 250 mL Poly	HNO ₃	N	Metals (Total)
	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
	x 250 mL Poly	NH4OH/(NH4)2SO4	Ñ	Hex Cr (Total)
	x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
			<u> </u>	

LOCATION

Date: 2.22.2021 LocID: CH-MW045S Site: Camp Hero Project Number: 60443903 Project Name: Camp Hero Phase IV

Checked By: Recorded By: CH

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
02.22.21	1210	45.00	_	290	10.72	7.34	3.51	0.346	-72.4	13.1	0.16	8/7	50	clear/no odon
02.22.21	1215	45.00		295	10.68	7.36	3.13	0.340	-78.3	10.6	0.16	817	50	
02.55.51	1220	45.00	-	290	10.63	7.38	2.73	0.339	-84.6	10.5	0.16	817	50	
02-22-21	1225	45.00		300	10.66	7.39	2.61	0.339	-89.1	10.2	0.16	811	56	
02. 22.21	1230	45.00		290	10.59	7.41	2.39		- 93.3	9.0	0.16	817	50	-
02.22.21	1235	45.00		290	10.57	7.42	2.28	0.338	-97.9	9.2	0.16	87	50	V .
02.22.21	1240	45.00		285	10.53	7.43	2,22	0.337	-101.5	7.8	0.16	817	50_	sample collected
00.00 01	1440	13.00	6.5 gal			1,1								<u> </u>
		1												
														-
									-					
								-						
								 				,		
					<u> </u>									
			<u> </u>											
								-						
							-					-		
							 							
								 						
									-					
								1						
										-				
												NITI I) for 3 co		

Monitoring Well Sample Collection Form

Page 1 of

LOCATION	Site: Camp	Hero				Loci	CH-MW0	45D				Date: 2-22			
LOCATION	Project Nar	ne: Camp He	ero Phase l'	V	NEW T	Proje	ct Number:	60443903				Recorded By: CHI Checked By:			
	Sampling E	quipment - F	Pump: Bla	dder Pu	mp R9-	123			Contr	oller/Compre	ssor: MP	50/04752	26		
EQUIPMENT	Water Leve	Indicator Ty	/pe/ID#: So	inist wi	M/29515		Water Q	uality Meter Ty	pe: YSI6	290	Sond	e ID: 10025	Han	dset ID: 15961	
		D#: MULTIS					Equipment Decon: Al Conox								
	Initial Depth	to Water (B	TOC): 44.	.85	Screen	Interval (B	TOC): 129	-138	Fotal Depth ((BTOC): 138	.00 ff	Ambient PID (ppm): 0.0 ppm			
WELL &					ressure = 80									PID (ppm): O. I ppm	
SAMPLING INFO		f Well/Comm				The state of								Depth (BTOC): 23	
	NOTE: 20	100 100 01/1												1	
	CPM=4					hā.	,								
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	pН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment	
2/22/2021	13200	49.56		110	8.86	6.88	5.20	2.233	-3.7	17.3	1.21	20/10	100	water clear; no	
12/22/2021	1405	44.72	-	Ho	9.28	6.93	2.43	3.336	-34.7	8.9	1.77	20/10	100	odor	
2/22/21	1410	44.66		110	9.24	7.03	1.43	3,427	-67.0	2.9	1.81	20/10	100	-	
02/22/21		44.66		110	9.16	7.11	1.16	3.340	- SQ. g.	1.1	1.76	20/10	100	4.77	
0400		74.60		ILU	1.10		1.16	3.04	08.8		1410	1			
E 2 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1420	44.66		110	9.07	7.14	1.00	3.240		-0.3	1.70	20/10	100		
02/22/21					9.07		-		-			-		- 2	
02/22/21	1420	44.66		110	9.07 9.11 9. 15	7.14	1.00	3.240	-104.6	-0.3 -1.3	1.70	20/10	100		
02/22/21	1426	44.66		110	9.07	7.14	0.90	3.240	-104.6	-0.3 -1.3	1.70	20/10	100		
02/22/21 02/22/21 02/22/21	1426	44.66 44.66 44.60		110	9.07 9.11 9. 15	7.17	0.90	3.240 3.113 3.013	-104.6 -115.2 -122.5	-0.3 -1.3 -2.0	1.63	20/10 20/10 20/10	100		
02/22/21	1425 1430 1435	44.66 44.66 44.66		110	9.07 9.11 9.15 9.14	7.14 7.17 7.18 7.20	0.90 0.83 0.76	3.240 3.113 3.013 3.048	-104.6 -115.2 -122.5 -129.1	-0.3 -1.3 -2.0 -3.0	1.70 1.63 1.61 1.60	20/10 20/10 20/10 20/10	100 100 100	sample coilecte	

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)
CH-MW045D-140221 1445	3 x 40 mL Glass VOA	HCL	N	VOC
	2 x 250 mL Glass Amber	-	N	SVOCs
	2 x 250 mL Glass Amber		N	SVOCs SIM
	2 x 250 mL Glass Amber	-	N	PCBs
) x 250 mL Poly	HNO ₃	N	Metals (Total)
	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
	x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
	x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)

Monitoring Well Sample Collection Form

Page 1 of 2

						1	040405					Date: 2 - 2	2 2021			
LOCATION	Site: Camp	Hero				-	: S19495							Checked By:		
LOCATION	Project Na	me: Camp H	ero Phase l'	V		Projec	ct Number: (60443903				Recorded By:	<u>CH</u>	Cileuxeu by.		
	Sampling E	auipment - F	Pump: Kiaa	der fun	op 9516				Contr	oller/Compre	ssor: O4	7042 M				
EQUIPMENT					M /24515		Water Qu	uality Meter T	ype: YSI (240	Sond	e ID: 10052	21 Hand	dset ID: 15969		
Edon men				0/18120		-	Equipme									
						opust (P1	(OC): 10g	- 11001	Total Denth	(BTOC): 11	07154		Ambient PID (ppm): 0.0 ppm			
WELL &	<u> </u>	to Water (B		16+	Screen iii	ervar (D	100]. 100	-11044	Total Deptil	(6100). 11	0,7111		Well Head PID (ppm): Q.O PPm			
SAMPLING		mp Settings:		and the Hea	Henry An L	rcn s	Salah						Pump Inlet Depth (BTOC): 105.03			
INFO			ients. WCT	SL II) AC	ult; well	CLIP 3	eateu					Voult P				
	NOIE: -4	TE: -4.53 D														
		Depth to	Volume	Pumping	Temp	pH	DO	Specific	ORP	Turbidity	Salinity	Pump Refill/	Pump			
Date (MM/DD/YY)	Time (24 hr)	Water (BTOC)	Removed (gallons)	Rate (ml.pm)	(°C)		(mg/L)	Conductivity (mS/cm)	(mV)	(NTU)	(PPT)	Discharge (seconds)	Pressure (PSI)	Comment		
02/23/21	1020	53.58		150	11.20 6	.34	8.53	0.112	162.0	681.0	0.05	20/10	100	orang/brewn coler, ne odor		
02/23/21	1025	53.58		150		.62	7.92	0 095	157.6	825.4	0.04	20/10	100	color; ne odor		
02/23/21	1030	53.54		150		.78	7.55	0.093	152.9	834.8	0.04	20/10	100			
02/23/21	1035	53,53		150		.99	7,29	0 073	148.7	759.4	100	20/10	105			
02/23/21	1040	53.58		150		.98	7.12	0.073	145.7	662.2	0.04	20/10	100			
02/23/21	1045	53.42		150		.01	6.97	0.001	143.9	409.5	0.00	20/10	100			
02/23/21	1050													brimb patternaged		
62/23/21	1055	53.54		150	10.49 7	09	7.77	0.072	140 2	583.7	0 0+	20/10	100			
02/23/21	1100	53.52		150		.16_	6.86	0.033	131.1	438.4	0 04	20/10	100			
02/23/21	1105	53,52		150		.22	6.54	0.093	135.0	361.5	064	26/16	100			
02/23/21	1110	53.52		150		.25	6.43	0 073	133.4	301.6	0.04	20/10	100			

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Container Count, Volume & Type	Preservative	riiter	Parameter(s)	
3 x 40 mL Glass VOA	HCL	N	VOC	
2 x 250 mL Glass Amber	•	N	SVOCs	
2 x 250 mL Glass Amber	-	N	SVOCs SIM	
2 x 250 mL Glass Amber	-	N	PCBs	
1 x 250 mL Poly	HNO ₃	N	Metals (Total)	
1 x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)	
x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)	
x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)	
	3 x 40 mL Glass VOA 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 1 x 250 mL Poly 1 x 250 mL Poly 1 x 250 mL Poly	3 x 40 mL Glass VOA HCL 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 1 x 250 mL Poly HNO3 1 x 250 mL Poly HNO3 1 x 250 mL Poly NH4OH/(NH4)2SO4	3 x 40 mL Glass VOA HCL N 2 x 250 mL Glass Amber - N 2 x 250 mL Glass Amber - N 2 x 250 mL Glass Amber - N 1 x 250 mL Poly HNO ₃ N 1 x 250 mL Poly HNO ₃ Y 1 x 250 mL Poly NH ₄ OH/(NH ₄) ₂ SO ₄ N	

Page **2** of **2**

LOCATION Site: Camp Hero LocID: Si Q US Project Number: 60443903 Date: 2.23-2021

Project Name: Camp Hero Phase IV Project Number: 60443903 Recorded By: CH Checked By:

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
2/23/21	1115	53.52		150	11.06	7.27	6.32	0.093	132.8	259.4	0.04	20/10	100	
02/23/21	1120	53.52		150	10.98	7.30	6.16	0.093	131.2	182.2	0.04	20/10	100	
02/23/21	1125	53.52		150	10.97	7.30	6.10	0.093	131.0	160.4	0.04	20/10	100	
02/23/21	1130	53.52		150	10.95	7.33	5.48	0.093	129.9	136.1	0.04	20/10	100	
02/23/21	1135	53.52		150	10.92	7.36_	5.12	0.094	1284	121.0	0.04	20/10	160	
02/23/21	1140	53.52		150	10.36	7.37	5.45	0.094	127.5	104.8	0.04	20/16	100	
02/23/21	1145	53.52		150	10.53	7.39	5.16	0.075	126.9	\$3.3	0.04	20/10	100	
02/23/21	1150	53,52		150	11,01	7.40	5.04	0.095	125.4	92.3	0.04	20/16	100	
02/23/21	1155	53.52		150	11.10	7.43	4.83	0075	123.C	100.0	0.04	20/10	105	
02/23/21	1200	53.52		150	10.85	7.43	4.77	0.075	122.5	119.4	0.04	20/10	100	
02/23/21	1205	53.52		150	10.90	7.44_	4.66	0.095	122.0	103.2	COT	20/10	100	
02/23/21	1210	53.52		150	10.95	7.45	4.44	0ଔ5	120.9	\$2,7	0.04	20110	100	
02/23/21	1215	53.52		50	10.97	7.46	4.30	0.095	119.7	69.7	0.04	20/10	100	
02/23/21	1220	53.52		150	10.82	7,47	4.19	0.095	119.1	62.4	0.04	20/10	100	
02/23/21	1225	53.52	_ ـــ	150	10.98	7.47	4.03	0.095	118.8	57.7	0.04	26/10	100	
02/23/21	1230	53.52		156	10.85	7.50	3.93	0.096	117.3	55.8	004	20/10	100	
02/23/21	1235	53.52	هست	150	10.93	7.49	3.83_	0.096	117.0	51.0	0.64	20/10	100	
02/23/21	1240	53.52		156	10.86	7.49	3.77	0.096	116.2	48.3	0.04	20/10	100	
02/23/21	t245	53.52		150	11.16	7.52	3.70	0.096	114.0	45.2	0.04	2010	100	
02/23/21	1250	53.52		150	11.00	7.52	3.61	0.096	113.4	41.7	0.04	20/10	(00	<u> </u>
02/23/21	1255	53.52		150	11.06	7.53	3.48	0.096	112,2	39.1	0.04	20/16	106	
02/23/21	1300	53.52		160	10.94	7.52	3.45	6.097	112-1	35.8	6.04	20/10	100	
02/23/21	1305	53.52	-	150	10.93	7.53	3.36	0.096	111.2	34.5	0.04	20/10	100	
02/23/21	1310	53,52		150	10.86	7.53_	3.30	0.097	110.3	33.3	0.04	20/10	100	
		(5gal)										_ =	<u> </u>
			9						<u> </u>					
												-		<u> </u>
										<u> </u>		1		
					-	[<u> </u>		NTI I) for 3 co		-17

A	344
A	

Page 1 of ____

LOCATION	Site: Camp) Hero				Locic); S58922					Date: 02		
LOCATION	Project Na	me: Camp H	ero Phase l'	V		Proje	ct Number: 6	60443903						Checked By:
	Sampling E	quipment - F	Pump: 📿 E	D Bludd	W Pump		355 89					-50		
EQUIPMENT	Water Leve	el Indicator Ty	ype/ID#: 🤇	Solinst V	VLM (01	# 3540			ype: YSI		Sonde	ID: 433a	5 Hand	set ID: 30776
	PID Type/I	D#: Mini	Fac 3000	0 / 17	219		Equipme	nt Decon:	riquinox					
		h to Water (B				n Interval (B'			Total Depth ((BTOC):	58.15			O (ppm): O, B
WELL & SAMPLING		mp Settings:					= 150 mLpm	1						PID (ppm): 0.0
INFO	Condition of	of Well/Comm	nents: 😽	nod ,	no plug								Pump Inlet L	Depth (BTOC): 45 53
	NOTE:			_	′			**						づく
							<u> </u>	Specific	·		0.11.11.	Pump Refill/	Pump	
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Discharge (seconds)	Pressure (PSI)	Comment
2/25/21	945	44.50	_	300	10.78	5-34	10.31	0.238	195.2	0.5	0.11	8/7	40	
02/23/21	950	44.50			11.10				147.7		0.12	1		
02/23/21	955	44.50							151.2		0.12			
		44.51							154.6	0.1	0.12			
	10 05	44.51		1/	11.24	5.85	10.26	0.242	157.4		0.12	y		
02/23/21	1010	44.51	2.25		11.23	5.84	10.26	0.242	159.2	0.1	0.12			
					20									
					314	X /	Strong							
Bumping Pate: <	0.51 Imin: Ma	seuromente:	wen 3 - 5 min	Stabilization	1: +/- 1°C: +/-	0.2 pH: +/- 3%	Conductivity:	+/- 10% DO; +	+- 10mV ORP;	+/- 10% Turbi	idity (ideal <10	NTU) for 3 co	nsecutive rea	dings

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)
	3 x 40 mL Glass VOA	HCL	N	VOC
5 0 0 0 0 0 7 1 1	Z x 250 mL Glass Amber	•	N	SVOCs
558922-0221	2 x 250 mL Glass Amber	-	N	SVOCs SIM
	Z x 250 mL Glass Amber	-	N	PCBs
1015	t x 250 mL Poly	HNO ₃	N	Metals (Total)
1019	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
	x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
	x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)

Page 1 of

Date: LocID: \$48579 Site: Camp Hero LOCATION Recorded By: mg/Jc Checked By: Project Name: Camp Hero Phase IV Project Number: 60443903 # 047526 Controller/Compressor: (JED MP-50 Sampling Equipment - Pump: QED Bludgle Pump #33121 Handset ID: 3077 6 Sonde ID: 43305 Water Level Indicator Type/ID#: Solinst 101 # 3540 Water Quality Meter Type: YST 6920 **EQUIPMENT** Equipment Decon: Liquinox PID Type/ID#: MiniRAE 3000 / 12219 61.21 Total Depth (BTOC): Ambient PID (ppm): 0.0 Screen Interval (BTOC): Initial Depth to Water (BTOC): 35.04 WELL & Historic Pump Settings: Refill/Discharge = 8/7, Pressure = 38 PSI, Rate = 250 mLpm, CPM = 4 Well Head PID (ppm): 0.0 **SAMPLING** Pump Inlet Depth (BTOC): 57 Condition of Well/Comments: Good no plug INFO NOTE: Transducer not pulled, pump on @ 1101 Pump Refill/ Pump Specific ORP Turbidity Salinity **Pumping** DO Depth to Volume Temp Time Date Discharge Pressure Comment Conductivity Water Removed Rate (mq/L)(mV) (NTU) (PPT) (°C) (MM/DD/YY) (24 hr) (seconds) (PSI) (BTOC) (gallons) (mLpm) (mS/cm) 40 0.369 -33.8 33.2 02/23/21 135 2.42 1105 32.99 0.370 -93,6 23.2 0.18 1.06 8/> 40 188 1110 33.19 19.4 8/17 40 0.36 6.56 0.371 -107.1 33.24 185 1115 40 8/> 0.369 -114.3 6.60 0-77 15.8 018 37.28 185 1120 8/7 0.766 -111.7 40 0.85 185 11.65 6.59 1125 37.29 40 0.86 0.365 -109.2 12.7 33.29 1130 40 0.90 0.363 -105.4 1135 33.29 185 40 0.360 -100.8 10.3 1140 33.29 2.0 185

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Sample ID Numbers and Sample Time									
"548579-0221" @	1145								

	Container Count, Volume & Type	Preservative	Fliter	Parameter(s)	
1	🛪 x 40 mL Glass VOA	HCL	N	VOC	
	2 x 250 mL Glass Amber	-	N	SVOCs	
	7 x 250 mL Glass Amber	-	N	SVOCs SIM	
Ì	2 x 250 mL Glass Amber	-	N	PCBs	
	x 250 mL Poly	HNO ₃	N	Metals (Total)	v
	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)	
	x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)	
1	x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)	
		The second second			

Date: 02/23/21 LocID: S19494 Site: Camp Hero LOCATION Recorded By: mc/5c Checked By: Project Number: 60443903 Project Name: Camp Hero Phase IV 475 26 7 48695 Sampling Equipment - Pump: Sample Pro blacker R9723 Controller/Compressor: MP-50 Sonde ID: 43305 Handset ID: 30774 Water Quality Meter Type: YST 4920 Water Level Indicator Type/ID#: Solinst 10 **EQUIPMENT Equipment Decon:** PID Type/ID#: MINIRAE 3000 82.97 Ambient PID (ppm): 0 - 7 Total Depth (BTOC): Initial Depth to Water (BTOC): 49.79 Screen Interval (BTOC): Well Head PID (ppm): 💋 - 📆 WELL & Historic Pump Settings: Refill/Discharge = 9/6, Pressure = 175 PSI, Rate = 80 mLpm, CPM = 4 **SAMPLING** Pump Inlet Depth (BTOC): Condition of Well/Comments: INFO Initially, very trobid -> suggest purging until visibly chars Pump Refill/ Pump Specific ORP Turbidity Salinity **Pumping** DO Depth to Volume Temp Time Date Comment Discharge Pressure Conductivity (PPT) Removed Rate (mV) (NTU) Water (°C) (mg/L) (MM/DD/YY) (24 hr) (seconds) (PSI) (BTOC) (mLpm) (mS/cm) (gallons) change mp-50 60 42.7 1372 0.14 3,66 12.46 0.301 6:20 51.01 310 1200 0.15 7.9 1109 0.320 1305 5/10 531 0.16 0.328 -11.9 0.83 51.10 191 0.16 0.326 -24.1 1.06 51.15 0.16 -30.7 0.329 1.02 151.24 87.8 1,330 0.95 1225 51.24 0.97 0.331 0.16 51.6 A 1330 27.2 -40.3 0.16 12-51 0.97 0.331 1335 51.76 0.331 -41.1 31.2 0-16 6.12 0.95 12.51 57.78 0.329 -43.1 101 0.16 1.03 bomot 51.78 1345 12-44 6.13 1.05 0.330 -42.3 51-70 1350 Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Container Count Volume & Type

Container Count, volume & Type	Pleservative	Liifei	Lai amerci (2)
y 40 mL Glass VOA	HCL	/ N	VOC
4 x 250 mL Glass Amber	-	N	SVOCs
6 x 250 mL Glass Amber	-	N	SVOCs SIM
6 x 250 mL Glass Amber	-	N	PCBs
3 x 250 mL Poly	HNO ₃	N	Metals (Total)
3 x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
3 x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
3 x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
	7 x 40 mL Glass VOA 6 x 250 mL Glass Amber 6 x 250 mL Glass Amber 6 x 250 mL Glass Amber 3 x 250 mL Poly 3 x 250 mL Poly 3 x 250 mL Poly	7 x 40 mL Glass VOA HCL 6 x 250 mL Glass Amber 6 x 250 mL Glass Amber 7 x 250 mL Glass Amber 7 x 250 mL Poly HNO3 8 x 250 mL Poly HNO3 9 x 250 mL Poly NH4OH/(NH4)2SO4	7 x 40 mL Glass VOA HCL N 6 x 250 mL Glass Amber - N 6 x 250 mL Glass Amber - N 6 x 250 mL Glass Amber - N 7 x 250 mL Glass Amber - N 8 x 250 mL Poly HNO ₃ N 8 x 250 mL Poly HNO ₃ Y 9 x 250 mL Poly NH ₄ OH/(NH ₄) ₂ SO ₄ N

Filter

Droconvativo

Parameter(s)

Page 2 of 2

LOCATION
Site: Camp Hero
LocID: S19494
Project Name: Camp Hero Phase IV
Project Name: Camp Hero Phase IV
Project Number: 60443903
Date: 0 z /23/21
Recorded By: m G / 5 C Checked By:

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)		Comment
02/23/21	1355	51.78		310	12.39	6-13	1.03	0.330	-42.7	40.3	0.16	8/7	60	
0 4 1 1 1 -1	1400	51.78				6-14	1.06	0.330	- 43.6		0.16		1	
	1405	51-78			12.43	6.15	1.07	0.330	-44.4	11.1	0.16			
	1410	51.78	6.25	- 10		6.15	1.07	0.329	-44.4	12.8	0-16			
	1110	21. 0												
<u>.</u>														
								 						
								 						
														A
							1							
								-						
							\							
							7							

Page 1 of 2

	Site: Camp	Hero				LocID	: S70627					Date: 2.24					
LOCATION	Project Nar	ct Name: Camp Hero Phase IV Project Number: 60443903 Recon								Recorded By:	CH	Checked By:					
	Sampling E	quipment - F	oump: Blai	der pun	p/951	6						56 /048	_				
EQUIPMENT	Water Leve	I Indicator Ty	ype/ID#: δο	lonist h	ILM / 295	15	+	uality Meter Ty	e ID: 43305	, нап	dset ID: U30776						
	PID Type/II	D#: MUH	Rae 300	00/18120			Equipment Decon: AICONOX										
N 9, 9,	Initial Depth to Water (BTOC): 73.97 Screen Interval (BTOC): 86 - 96									(BTOC): 9	6.43			D (ppm): 0.0			
WELL &	Historic Pu	mp Settings:	Refill/Disch	arge = 8/7, P	ressure = 40	PSI, Rate	= 80 mLpm ,	CMP = 4						PID (ppm): 0.0			
SAMPLING INFO				ellent									Pump Inlet Depth (BTOC): 92				
,,,,,	NOTE:																
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment			
02-24 -21	0860	74.75		100	10.47	6.22	5.81	0.845	147.5	97.1	0.42	8/7	50	clearing oder			
2.24.21	0855	75.80		100	10.60	6.41	4.51	0.841	142.8	82.5	0.42	8/7	50				
02.24.21										1 - 1	ž.						
32 0 (21	inunn s	76 50		99	10-60	6.46	4.12	0.841	140.7	57.1	0.42	8/1	50	 			
10.40.00	0900	76.50		100	10.66	6.46 6.49	4.12 3.84	0.841 0.840	140.7 138.5	57.1 44.0	0.42	8/1	50 50				
	0905	77.00		[00	10.66	6.49	3.84					,					
02-24-21	0905 0910	77.00		90	10.62	6.49 6.50		0.840	1385	44.0	0.42	817	50				
02.24.21	0905 0910 0915	77.00 77.76 78.35		100 90 88	10.66	6.49	3.84 3.68	0.840 0.841	138-5 136.1	44 <u>.</u> 0 31.3	0.42	817	50 50				
02·24·21 02·24·21 02·24·21	0905 0910 0916 0920	77.00 77.76 78.35 78.98		90 90 98 86	10.66 10.62 10.57 10.5%	6.49 6.50 6.51	3.84 3.68 3.62	0.840 0.841 0.844	138.5 36.1 33.0	44.0 31.3 27.7 28.3 25.9	0.42 0.42 0.42 6.42 0.42	817 817 817 817 817	50 50 50				
02·24·21 02·24·21 02·24·21 02·24·21 02·24·21	0905 0910 0915 0920 0925	77.00 77.76 78.35 78.98		90 90 88 86	10.66	6.49 6.50 6.51	3.84 3.68 3.62 3.51	0.840 0.841 0.844 0.846	138-5 36.1 33.0 29.5	44.0 31.3 27.7 28.3	0.42 0.42 0.42 6.42 0.42	817 817 817 817 817 817	50 50 50 50				
02·24·21 02·24·21 02·24·21	0905 0910 0916 0920	77.00 77.76 78.35 78.98		90 90 98 86	10.66 10.62 10.57 10.58	6.49 6.50 6.51 6.53	3.84 3.68 3.62 3.51 3.49	0.840 0.841 0.844 0.846	138-5 36. 33.0 29.5 23.1	44.0 31.3 27.7 28.3 25.9	0.42 0.42 0.42 6.42 0.42	817 817 817 817 817	50 50 50 50 50	Hach=24.3			

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Filter	Parameter(s)	
-CH- \$70627-0221 1015	3 x 40 mL Glass VOA	HCL	N	VOC	
-5H 310021 0221 1019	2 x 250 mL Glass Amber		N	SVOCs	
	2 x 250 mL Glass Amber	3_	N	SVOCs SIM	
	2 x 250 mL Glass Amber		N	PCBs	
8	x 250 mL Poly	HNO ₃	N	Metals (Total)	
	x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)	
	x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)	
	1 x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)	

Monitoring Well Sample Collection Form

Page 2_ of 2

LOCATION

Site: Camp Hero LocID: \$70627

Project Name: Camp Hero Phase IV Project Number: 60443903

Date: 02-24-2021

Recorded By: CH

Checked By:

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
02-24-21	0945	81.68		82	11.75	6.53	3.37	0.854	106-1	-3.5	0.42	8/7	48	Hach=21.7
02-24-21	0950	82.03		60	11.95	6.54	3.33	0.853	103.6	- 3.6	0.42	817	48	Hach=19.9
02.24.21	0955	82,30		44	12.29	6.55	3.25	0.857	99.4	-3.7	6.42	8/4	48	Hach=17.2
02.24.21	1000	82.47		50	12.41	6.56	3.27	0.859	95.2	-4.2	0.42	814	48	Hach = 16.4
02-24-21	1005	82.69		48	12.43	6.55	3.26	0.861	93.4	-3.7	0.43	8/4	48	Hack= 18.0
02-24-21	1010	82.85	-	48	12.44	6.54	3.19	0.863	91.1	-3.6	0.43	8[4	48	Hach= 17.7
		011.25	2 gal.)	vl afte	V C () (00 D)	e Collec	†i/k/\							
		84.35	+mal r	or arto	A 2 mansh	<u>~_()(((;)</u>								
4	= 40													
								-		-		-		
						-								
								1						

AECOM

Monitoring Well Sample Collection Form

Page 1 of _____

	Site: Camp	Hero				LocID	S1202_					Date: 2/2		
LOCATION	Project Na	me: Camp H	ero Phase l'	V		Projec	t Number:	60443903				Recorded By:	30	Checked By:
	Sampling F	quinment - f	Pump: Samp	ole Port						Controller/Compre	essor:			
EQUIPMENT		el Indicator T		NA			Water Q	uality Meter T	ype:	151 6920 V	7 Sonde	eID: 1005	721 Hand	lset ID: 15969
EQUIPMENT		D#: Minik	* *	12219			-		NA					
		177			0	- 1-4			1000	epth (BTOC):	WK		Ambient PII	O (ppm): 0.3
WELL &	Initial Depth to Water (BTOC). VMC Scient Interval (BTOC). VMC Initial Depth to Water (BTOC).													
SAMPLING	Historic Pump Settings: Sample Port Condition of Well/Comments: NA										Pump Inlet Depth (BTOC): NA			
INFO				m										
	NOTE: YU	19e @ 95	7											
		Depth to	Volume	Pumping	Temp	рН	DO	Specific	OR	RP Turbidity	Salinity	Pump Refill	Pump	
Date (MM/DD/YY)	Time (24 hr)	Water (BTOC)	Removed (gallons)	Rate (mLpm)	(°C)		(mg/L)	Conductivity (mS/cm)	(m)		(PPT)	Discharge (seconds)	Pressure (PSI)	Comment
02/24/21	1009	_	2	580	8.78	6.17	8.22	0.554	151.	0 3.7	027			-
													-	
										:				
														. 3
Pumping Rate: <	0.5 L/min; Me	asurements:	every 3 - 5 min	; Stabilization	: +/- 1°C; +/- (0.2 pH; +/- 3%	Conductivity;	+/- 10% DO;	+/- 10mV	/ ORP; +/- 10% Turb	dity (ideal <1	0 NTU) for 3 c	onsecutive rea	dings
Sample ID Nu						Container Co	ount, Volu	me & Type		Preservative	Filte	er Parar	neter(s)	

70 - N - N -	- 100000		
11 S1202	1550-	@	1010

x 40 mL Glass VOA	HCL	N	VOC	
x 250 mL Glass Amber	-	N	SVOCs	
x 250 mL Glass Amber	-	N	SVOCs SIM	
x 250 mL Glass Amber	-	N	PCBs	
	HNO ₃	N	Metals (Total)	
	HNO ₃	Y	Metals (Dissolved)	
	NH4OH/(NH4)2SO4	N	Hex Cr (Total)	
x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)	
	x 250 mL Glass Amber x 250 mL Glass Amber x 250 mL Glass Amber x 250 mL Poly x 250 mL Poly x 250 mL Poly	x 250 mL Glass Amber - x 250 mL Glass Amber - x 250 mL Glass Amber - x 250 mL Poly HNO3 x 250 mL Poly HNO3 x 250 mL Poly NH4OH/(NH4)2SO4	x 250 mL Glass Amber - N x 250 mL Glass Amber - N x 250 mL Glass Amber - N x 250 mL Poly HNO3 N x 250 mL Poly HNO3 Y x 250 mL Poly NH40H/(NH4)2SO4 N	x 250 mL Glass Amber - N SVOCs x 250 mL Glass Amber - N SVOCs SIM x 250 mL Glass Amber - N PCBs x 250 mL Poly HNO3 N Metals (Total) x 250 mL Poly HNO3 Y Metals (Dissolved) x 250 mL Poly NH40H/(NH4)2SO4 N Hex Cr (Total)

A	-004	A
7	=(()/	1
		4

			- 1	ľ
Page	1	of	ા	

	Site: Camp	Hero				LocID:	S3599						24/202	
LOCATION	Project Nar	ne: Camp H	ero Phase I	V		Projec	t Number:	60443903			1	Recorded By:	se	Checked By:
	Sampling F	auinment - P	oump: Samp	ole Port					Contr	oller/Compre	ssor:	NA		
EQUIPMENT		I Indicator T		NA			Water Q	uality Meter T	ype: YSI	69201	て Sonde	ID: 1005	フリ Hand	set ID: 15969
EGOII MEN		O#: Mini		世12	219		Equipme	ent Decon:	NA					
				UNK		nterval (BT	OC): 1	INR !	Total Depth	(BTOC):	UN	K	Ambient PI) (ppm): <i>O-1</i>
WELL &	Initial Depth to Water (BTOC): UNK Screen Interval (BTOC): UNK Total Depth (BTOC): UNK Historic Pump Settings: Sample Port										Well Head PID (ppm): NA			
SAMPLING INFO		пр осканда. f Well/Comm		VA									Pump inlet I	Depth (BTOC): NA
INFO		vrae @												
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-400	,0 5.0									<u> </u>		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
02/24/21	1045	~	1.5	630	17.73	6.43	6.50	0.493	131.0	11.4	<i>0.</i> 77			
00101101	1073													
										<u> </u>				
								ļ						
												-		
Pumping Rate: <			2.5	. Ct-bill-att-		5U- 4 20/	Conductivity	10% DO: 4	/ ₋ 10mV ORP	· +/- 10% Turhir	lity (ideal <10	NTU) for 3 co	nsecutive rea	dings
Pumping Rate: <	0.5 L/min; Me	asurements: (every 3 - 5 min	; Stabilization	1; +1- 110; +1-0.2	μπ, -11- 3%	COMBUUCIIVILY	ר,טט וויטן פודי,	7- 101117 0131) 1070 Talbit	2.17 (1.000.111	1 -		

		24-6	
11 S 3599-	0221	@	1045

Sample ID Numbers and Sample Time

niner Count, Volume & Type	Preservative	Filter	Parameter(s)
x 40 mL Glass VOA	HCL	N	VOC
x 250 mL Glass Amber	-	N	SVOCs
x 250 mL Glass Amber	-	N	SVOCs SIM
	-	N	PCBs
x 250 mL Poly	HNO ₃	N	Metals (Total)
x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
	x 40 mL Glass VOA x 250 mL Glass Amber x 250 mL Glass Amber x 250 mL Glass Amber x 250 mL Poly x 250 mL Poly x 250 mL Poly	x 40 mL Glass VOA HCL x 250 mL Glass Amber - x 250 mL Glass Amber - x 250 mL Glass Amber - x 250 mL Poly HNO3 x 250 mL Poly HNO3 x 250 mL Poly NH4OH/(NH4)2SO4	x 40 mL Glass VOA HCL N x 250 mL Glass Amber - N x 250 mL Glass Amber - N x 250 mL Glass Amber - N x 250 mL Poly HNO3 N x 250 mL Poly HNO3 Y x 250 mL Poly NH40H/(NH4)2SO4 N

Page 1 of _ 2

Date: 2/25/2021 LocID: S17231S Site: Camp Hero LOCATION Recorded By: M.K. Checked By: Project Number: 60443903 Project Name: Camp Hero Phase IV # 048695 M 50 Controller/Compressor: QED #9516 Sampling Equipment - Pump: GED Bladd fump Water Quality Meter Type: YSI 650 M/s/ (120 V) Sonde ID: 43305 Handset ID: 03077 6 Water Level Indicator Type/ID#: Soling + Mala 101 #354 0 **EQUIPMENT Equipment Decon:** PID Type/ID#: M:..: PAE 7000 # 12219 Ambient PID (ppm): 0,0 107.45 Screen Interval (BTOC): Total Depth (BTOC): Initial Depth to Water (BTOC): (3,42 UNK Well Head PID (ppm): 0.0 WELL & UNK **Historic Pump Settings:** SAMPLING Pump Inlet Depth (BTOC): 100 Condition of Well/Comments: Ashed Tom Pess OK removing plywood ACC-455 INFO (a) 0900 NOTE: 2000 Pump Specific Pump Refill/ **Turbidity** Salinity ORP Pumping pН DΩ Depth to Volume Temp Time Comment Date Discharge Pressure Conductivity (PPT) Water Removed Rate (mg/L) (mV) (NTU) (°C) (MM/DD/YY) (24 hr) (seconds) (PSI) (gallons) (mLpm) (mS/cm) (BTOC) CPM 2 172.6 6.14 78 0.293 23. I 6.63 5.40 9.64 20/16 63.42 200 0965 2/25/2021 153.6 16.7 0.15 20/10 70 200 10.32 8 33 1.49 0.305 63.64 0910 Clear 147.1 0.15 70 8.45 1.05 6.307 16.1 20/10 63.76 10.36 ٥٥٨ 125/21 0915 sewage odor 6.15 0.82 0.307 131.9 16.6 70 10.48 8.86 20/10 63.87 20-0 2/25/21 0920 70 8.99 95.9 6.2 20/10 10.53 0.67 6.306 0.15 64.08 Loo 0925 2/25/21 16-2 20/10 20 0.308 57.3 0.15 10.54 1.03 0.62 64.15 2/25/21 0930 200 15.7 20/10 20 19.6 0.15 0.307 9.07 0.55 10.55 64.23 200 2/25/21 0935 15.7 0.15 0.309 -44.1 20/10 10 9.07 6.51 200 10.53 0440 64.28 2/25/21 0.310 15.7 0.15 20/10 70 -115.7 0.48 16.56 1.05 2/25/21 64.32 200 0945 0.44 0.311 -117.7 15.7 20/10 70 0.15 10.53 1.03 200 64.37 0150 1/25/2 0.15 20/10 10 -243.3 6.43 15.7 9.02 6.312 0955 10-59 64-43 200

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Conductivity; +/- 10% DO; +/- 10mV ORP; +/- 10% Turbidity (ideal <10 NTU) for 3 consecutive readings

40 mL Glass VOA 250 mL Glass Amber 250 mL Glass Amber	HCL -	N N	VOC SVOCs
	•	N	SVOCs
	-	N	SVOCs SIM
250 mL Glass Amber	-	N	PCBs
250 mL Poly	HNO ₃	N	Metals (Total)
250 mL Poly	HNO ₃	Y	Metals (Dissolved)
250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
-			250 III.E F GIT

Page 2 of 2

LOCATION

Sile: Camp Hero LociD: \$172315 Date: 2/25/2020 NF

Project Name: Camp Hero Phase IV Project Number: 60443903 Recorded By: No Checked By:

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)		Comment
2/25/2021	1000	64.44	-	200	10.56	9.00	0.41	0.313	-272.6	15.7	0.15	20/10	70	
2/25/2021	1005	64.47	-	206	10.56	4.43	0.38	0.315	- 214.9	16-4	0.15	20/10	70	
2/25/2021	1010	64.49	_	260	10.59	8.86	0.37	0.318	-303.2	17.0	0.15	20/10	70	
425/21	1015	64.52	_	200	10.58	8.82	0.35	6.319	-511.8	17,2	0.15	20/10	20	
2/25/25	1020	64.55	5.5	200	10.60	8.79	0_34	0.320	- 304.7	17.2	0.15	20/10	70	Sample
~/ ~ 5/ ~ 5	Į O ···· O	1												
-								 						
				-				-						
												-		
								-						
												-		<u></u>

AECOM

Monitoring Well Sample Collection Form

Page 1 of ____

	Site: Camp	Hero				LociD:	S79269					Date: 02-2	5.2021	
LOCATION			ero Phase I	٧		Projec	t Number:	60443903				Recorded By:	CH	Checked By:
	Sampling F	ouinment - F	Pump: Sam	ple Port		311.500.000	30,17	04 10	Conti	roller/Compre	essor: -	-		
EQUIPMENT			ype/ID#: -				Water Q	uality Meter 1	Type: YS{ (290	Sond	le ID: 43309	- Hand	Iset ID: 030776
Lagott Million	PID Type/II		7,000				1	ent Decon: •						
	20		TOC).		Caroon I	ntonial /PT	00%		Total Donth	(BTOC):	13/12/14/12		Ambient Pli	D (ppm): 🗫 0.0
WELL &	Initial Depth to Water (BTOC): — Screen Interval (BTOC): — Total Depth (BTOC): —										Well Head PID (ppm): —			
SAMPLING	Historic Pump Settings: Sample Port Condition of Well/Comments: Excellent									Depth (BTOC):				
INFO					- A 1 m - 12 C A									
			em to 1 hted 0 1		AIT WSA									
Date Date	Time	Depth to	Volume	Pumping	Temp	pH	DO	Specific	ORP	Turbidity	Salinity	Pump Refill/ Discharge	Pump Pressure	Comment
(MM/DD/YY)	(24 hr)	Water (BTOC)	Removed (gallons)	Rate (mLpm)	(°C)		(mg/L)	Conductivity (mS/cm)	/ (mV)	(NTU)	(PPT)	(seconds)	(PSI)	Comment
02.25.21	1200		N-2	240	17.26	6.97	6.59	0.349	61.9	2.8	0.17			purge Started
06.23.21	1200			750	1.2.0									@1135
-														
		,												
								ļ						
								ļ <u> </u>						
												O A ITI D C T		
Pumping Rate: <	0.5 L/min; Me	asurements:	every 3 - 5 min	; Stabilization:	+/- 1°C; +/- 0.2	pH; +/- 3% (Conductivity	; +/- 10% DO;	+/- 10mV ORP	; +/- 10% Turbio	dity (ideal <1	0 NTU) for 3 cc	insecutive rea	laings

Sample ID Numbers and Sample Time	Container Count, volume & Type	LieselAdnae	1 life!	1 diameter(5)
579269-0221 1145	6 x 40 mL Glass VOA	HCL	N	VOC
Q 1 (4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L x 250 mL Glass Amber	•	N	SVOCs
S79269-0221D 1145	x 250 mL Glass Amber	-	N	SVOCs SIM
	LL x 250 mL Glass Amber	-	N	PCBs
	2 x 250 mL Poly	HNO ₃	N	Metals (Total)
	2 x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
	2 x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
	2 x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
	·			

	Site: Camp	Hero				Locil	LocID: \$76304					Date: 2-27-2021			
LOCATION	Project Na	me: Camp H	ero Phase l'	V		Proje	Project Number: 60443903					Recorded By: Checked By:			
	Sampling E	auipment - F	Pump: W/	wle Pumo	-3 sta	ge :	#664789	4941	Contr	oller/Compre	essor: —	6			
EQUIPMENT					-		Water Q	uality Meter T	ype: YS1 E	290	Sonde	D: 43305	Han	dset ID: 030776	
	Water Level Indicator Type/ID#: SKIN RY DIPPER / 046. PID Type/ID#: MiniRae 3000 / 12219						Equipment Decon: ALCONOX								
		h to Water (B	(100)	80.62		Interval (B	TOC): [3]	- 141	Total Depth ((BTOC):	UNK			D (ppm): 0.0 ppm	
WELL &	-	mp Settings:												PID (ppm): 0.0 ppm	
SAMPLING INFO	Condition of Well/Comments: Fair - very old								Pump Inlet Depth (BTOC): 47						
	NOTE:														
								Constitution	1	<u> </u>	T	Duma Defill	Dumn		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (mLpm)	Temp (°C)	рН	DO (mg/L)	Specific Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (PPT)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment	
02/27 21	1000	81.96			11.96	2.43	0.26	0.294	-277.6	-5.2	0.14			Hach: 0 22	
2/27/21	1005	81.79			11.96	8.42	0.26	0.294	-277.1	-6.1	0.14				
2/27/21	1010	81.78			11.97	8.44	0.26	0.294	-277.4	0.24	0.14			Hach D. 21	
21/21	1015	81.76			11.94	8 43	0.26	0.293	-277.6		0-14				
02/27 21	1020	81.91			12.01	9.43	0.25	0.293	-277.7		0.14		-		
02/27/21	1025	81.65			11.99	8.43	0.26	0.293	-2777		0.14				
02/27/21	1030	81.65			11.99	8.42	0.25	0 293	-277.4	0.60	0.14	-			
02/27/21	1035	81.62			11.98	8.44	6.25	0.293	-277.6	0.31	0.14	-			
			2								1103				
		_			<u> </u>										
Pumping Rate: <														<u> </u>	

Pumping Rate: < 0.5 L/min; Measurements: every 3 - 5 min; Stabilization: +/- 1°C; +/- 0.2 pH; +/- 3% Cond

Container Count, Volume & Type	Preservative	Filter	Parameter(s)
3 x 40 mL Glass VOA	HCL	N	VOC
2 x 250 mL Glass Amber	-	N	SVOCs
2 x 250 mL Glass Amber	-	N	SVOCs SIM
2 x 250 mL Glass Amber	-	N	PCBs
x 250 mL Poly	HNO ₃	N	Metals (Total)
x 250 mL Poly	HNO ₃	Y	Metals (Dissolved)
x 250 mL Poly	NH4OH/(NH4)2SO4	N	Hex Cr (Total)
x 250 mL Poly	NH4OH/(NH4)2SO4	Y	Hex Cr (Dissolved)
	3 x 40 mL Glass VOA 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 2 x 250 mL Glass Amber 1 x 250 mL Poly 1 x 250 mL Poly 1 x 250 mL Poly	3 x 40 mL Glass VOA HCL 2 x 250 mL Glass Amber - 2 x 250 mL Glass Amber - 2 x 250 mL Glass Amber - 1 x 250 mL Poly HNO3 - 1 x 250 mL Poly HNO3 - 1 x 250 mL Poly NH4OH/(NH4)2SO4	3 x 40 mL Glass VOA HCL N 2 x 250 mL Glass Amber - N 2 x 250 mL Glass Amber - N 2 x 250 mL Glass Amber - N 1 x 250 mL Poly HNO ₃ N 1 x 250 mL Poly HNO ₃ Y 1 x 250 mL Poly NH ₄ OH/(NH ₄) ₂ SO ₄ N

Appendix C6 Land Surveying Report

Land Surveying Report - Phase IV Remedial Investigation, Camp Hero, Montauk, New York

From: Doug Adams < DEA@youngengineering.com>

Sent: Tuesday, December 22, 2020 2:30 PM **To:** Martin, Amanda (Chelmsford); Tom Kruel

Cc: Doris Connolly; Donahue, Megan; Tom Wolpert; Bourdeau, James

Subject: [EXTERNAL] RE: Camp Hero - Land Surveying

Attachments: 2017_0107_CAMP_HERO_WELL.xlsx

Follow Up Flag: Follow up Flag Status: Completed

Hi Amanda,

Attached please find the survey coordinates for our field work, as requested.

Please let me know if you have any questions.

Please have a safe and happy remainder of the holiday season.

Warm regards,

Doug

Douglas Adams, PE, PG

Young & Young 400 Ostrander Avenue Riverhead, NY 11901 631.727.2303 (o) 631.774.3521 (m)

dea@youngengineering.com

This e set interestence is intended only by the use of the individual or entity named above and may contain information that the collection of services of the individual or entity named above and may contain information that the collection of services of the individual or entity named above and may contain information contained in the interestence of the collection of the interestence of the individual or entity individual or other use of any of the information contained in this transmission is service problems of the information contained in this transmission is service problems of the information contained in this transmission is serviced in the information contained in this transmission is serviced in the information contained in this transmission is serviced in the information contained in this transmission is serviced in the information contained in the information con

AECOM - Camp Hero State Park

POINT NO.	NORTHING	EASTING	ELEVATION	DESCRIPTION
NYPE_Montauk	323180.2590	1551577.4963	53.25	BASE STATION
11001	334054.5890	1569624.7473	55.91	S 19495 T/CASING
11002	334056.2205	1569625.0299	60.31	S 19495 GROUND SURFACE
11003	334735.4824	1570010.8186	58.27	S 19494 GROUND SURFACE
11004	334735.2101	1570010.8283	58.12	S 19494 T/CASING
11007	333996.0015	1570746.3276	63.64	S 17231D GROUND
11008	333996.3612	1570747.0485	64.98	S 17231D T/CASING
11009	333996.9786	1570747.2021	64.86	S 17231D T/RISER
11010	333997.6370	1570718.5462	65.34	S 17231S CONC FLOOR
11011	334001.0634	1570722.9408	65.88	S 17231S T/RISER
11012	332250.4936	1570419.1840	65.82	CH-MW044 GROUND SURFACE
11013	332250.1293	1570418.9190	68.93	CH-MW044 T/CASING
11014	332250.4144	1570419.0395	68.09	CH-MW044 T/RISER S
11015	332250.2837	1570419.5106	68.38	CH-MW044 T/RISER D
11016	332355.7731	1571124.1102	72.92	S 19496 CONC
11017	332355.9428	1571124.2968	73.21	S 19496 T/RISER
11018	332355.7554	1571124.8607	72.63	S 19496 GROUND SURFACE
11019	331674.6083	1570351.4399	45.18	CH-MW045 GROUND SURFACE
11020	331674.6871	1570351.3065	47.75	CH-MW045 T/CASING
11021	331674.7725	1570351.2595	46.85	CH-MW045 D T/RISER
11022	331674.6989	1570351.0745	46.89	CH-MW045 S T/RISER
11023	335654.9906	1569814.3588	71.74	S 121811 T/CASING
11024	335655.2919	1569815.0387	69.88	S 121811 GROUND SURFACE
11025	335726.9261	1570332.5094	73.31	S 121808 T/CASING
11026	335726.7261	1570332.3094	71.31	S 121808 GROUND SURFACE
11027	336044.0839	1570491.7518	83.00	S 76304 T/CASING
11028	336044.0719	1570491.3827	80.84	S 76304 GROUND SURFACE
11029	332875.3128	1569181.3203	48.52	S 21084 CONC FLOOR
11032	332878.3287	1569177.8465	49.12	S 21084 T/CASING

Appendix C7 Investigation-Derived Waste Documentation

AWT Environmental Services, Inc. P.O. Box 128, Sayreville, NJ 08871

732-613-1660 Fax 732-613-1536

Material Profile She	t
Product Code:	
Generator No:	

A. GENERATOR INFO	DRMATION			GENERATOR USEPA ID N Y R 0 0 0 1 5 7 6 4 4					
GENERATOR CONTACT GENERATOR PHONE # 973-3 SITE ADDRESS 1898	ates Army Corps of Engir iinia Road I, MA 01743 818-8962 Montauk Highway, Mon nent/Soil			AWT COORDINATOR M. Postorino PROJECT # 17349 WASTE ID# PROCESS GENERATING WASTE Cleaning of a Frac Tank that contained monitoring well purge water.					
B. PHYSICAL CHARACTERISTI	CS OF WASTE			D. REGULATORY INFORMATION					
Color/Physical Description	Brown								
STRONG INCIDENTAL ODOR PRES	ENT PHYSICAL: X SO X LIC		_SINGLE PHASE _BI-LAYERED	USEPA HAZARDOUS WASTE ?: YES X NO USEPA CODE(S) APPLICABLE SUBCATEGORIES:					
WASTEWATER SPECI	FIC SFI	WDER MI SOLID	_ MULTI-LAYERED _ SLUDGE	STATE HAZARDOUS WASTE?: YES X NO STATE CODE(S): D.O.T. HAZARDOUS WASTE?: YES X NO					
FLASHPOINT <70°F _ >200°F _ 70°F-100°F _ 101°F-141°F _ 142°F-200°F >200°F X NO FLASH	LIQUID/SOLID/SLUDGE % Sludge % Suspended Solid %Solid/Debris 90-100 % Free Liquid 0-10	X	pH <2.0 2.01-5 5.01-9 9.01-12.4 >12.50 EXACT	PROPER SHIPPING NAME: Non RCRA Non DOT Material CLASS: I.D. NO.: P.G.: R.Q.:					
EXACT Ignitable (if solid)Yes _v_NoClosed CupOpen Cup	Dumpable X Pumpable Pourable	Yes X Yes X		E. SHIPPING INFORMATION/SHIPMENT METHOD: BULK LIQUID ANTICIPATED VOLUME: 1-2 x 55					
C. CHEMICAL COMPOSITION	Is MSDS Attached? Is Analysis Attached?	Yes X Yes RANGE MINIMUM	No No RANGE MAXIMUM	BULK SOLID DRUM TRAILER QUANTITY: ROLL-OFF X DRUM SIZE UNITS: PALLETS PRICE: CUBIC YARD BOX FREQUENCY:					
Sediment/ Water		90% 0%	100% 10%	F. SPECIAL HANDLING CONSIDERATIONS					
				CERCLA FACILITIES INCINERATE ONLY NO LANDFILL CCI SALES CODE PROJECT CODE OTHER					
G. TRANSPORTATION ARRANG	EMENTS LTL PIC	CK-UP		DEDICATED LOAD X AWT to handle					
H. OTHER HAZARDOUS CHAINDICATE IF THE WASTE IS: RCRA REACTIVE WATER REACTIVE RADIOACTIVE SUBJECT TO SUBPART FF BENZENE REGULATIONS ETIOLOGICAL TSCA REGULATED OXIDIZING MATERIAL PYROPHORIC EXPLOSIVE/SHOCK SENSITIVE X NONE OF THE ABOVE	Indicate If Waste Control None X Pcb's X Cyanides X Phenolics X Sulfides X	ontains Any Of The I Or Less Than <pre></pre>	Or Actual M PPM PPM	Is this waste characteristically hazardous for metals or organics (EPA Waste Code D004–D043)? Yes X No. If yes please list the constituents and concentrations in Section D PPM Does this waste contain underlying hazardous constituents as defined in 40 CFR 268 (2)(I) PPM at concentrations exceeding the UTS treatment standards? Yes X No. If yes, please list constituents and concentrations in Section D					
GENERATOR CERTIFICATION: I hereby waste material, and that all relevant in that any waste does not conform to the waste to the point of origin as set fort transportation costs or charges, dama correction is performed, I will be cont.	certify that all information subn formation regarding known or s e identification and description n on the manifest or to such oth ge to equipment, and cost assoc	nitted in this and all attuspected hazards in the on this MPS then the Tiger locations designated with lost time incural.	ached documents is core possession of the gen- SD shall provide notice in writing by the Gener urred by the TSD during	mplete, contains true and accurate descriptions and it is representative of the erator has been disclosed. If the TDSF discovers, after having taken delivery of the waste, of such condition to the Generator and coordinate the return of the nonconforming rator. Generator agrees to reimburse AWT for all handling, packaging, clean-up and g the receipt, handling, temporary storage and return of such nonconforming waste to corps of Engineers Project Manager O7 MAY 2021 DATE:					

AWT Environmental Services, Inc. P.O. Box 128, Sayreville, NJ 08871

732-613-1660 Fax 732-613-1536

Material Profile Sh	et
Product Code:	
Generator No:	
_	

A. GENERATOR INFO	ORMATION			GENERATOR USEPA ID N Y R 0 0 0 1 5 7 6 4 4					
	ates Army Corps of Engin ginia Road 1, MA 01743	eers		AWT COORDINATOR M. Postorino PROJECT # 17349 WASTE ID#					
GENERATOR CONTACT GENERATOR PHONE # 973-3 SITE ADDRESS 1898	3, MA 01745 318-8962 Montauk Highway, Mon vith high pH	tauk, NY		PROCESS GENERATING WASTE Corrosive due to Portland cement					
B. PHYSICAL CHARACTERISTIC Color/Physical Description	CS OF WASTE Brown			D. REGULATORY INFORMATION					
STRONG INCIDENTAL ODOR PRESE	PHYSICAL S		SINGLE PHASE BI-LAYERED	USEPA HAZARDOUS WASTE ?: X YES NO USEPA CODE(S) D002 APPLICABLE SUBCATEGORIES:					
WASTEWATER SPECI X NONWASTEWATER GRAV	IFIC SEN		MULTI-LAYERED SLUDGE	STATE HAZARDOUS WASTE?: X YES NO STATE CODE(S): C, S D.O.T. HAZARDOUS WASTE?: X YES NO					
FLASHPOINT	LIQUID/SOLID/SLUDGE % Sludge % Suspended Solid %Solid/Debris 100 % Free Liquid		0H <2.00 2.01-5 5.01-9 9.01-12.4 >12.50 EXACT	PROPER SHIPPING NAME: Corrosive Solids, NOS CLASS: 8 I.D. NO.: UN1759 P.G.: III R.Q.:					
EXACT Ignitable (if solid)YesV_NoClosed CupOpen Cup	Dumpable X Pumpable Pourable	Yes X Yes X	No No No	E. SHIPPING INFORMATION/SHIPMENT METHOD: BULK LIQUID ANTICIPATED VOLUME: 8 x 55					
C. CHEMICAL COMPOSITION	Is MSDS Attached? Is Analysis Attached?		No No RANGE MAXIMUM	BULK SOLID DRUM TRAILER QUANTITY: ROLL-OFF X DRUM SIZE UNITS: PALLETS PRICE: CUBIC YARD BOX FREQUENCY:					
Soil with hig	şh pH	100%	100%	F. SPECIAL HANDLING CONSIDERATIONS					
				CERCLA FACILITIES INCINERATE ONLY NO LANDFILL CCI SALES CODE PROJECT CODE OTHER					
G. TRANSPORTATION ARRANGE	EMENTS LTL PIC	CK-UP		DEDICATED LOAD X AWT to handle					
H. OTHER HAZARDOUS CHAF NDICATE IF THE WASTE IS: RCRA REACTIVE WATER REACTIVE RADIOACTIVE SUBJECT TO SUBPART FF BENZENE REGULATIONS ETIOLOGICAL TSCA REGULATED OXIDIZING MATERIAL PYROPHORIC EXPLOSIVE/SHOCK SENSITIVE X NONE OF THE ABOVE	Indicate If Waste Co None Pcb's X Cyanides X Phenolics X Sulfides X	ontains Any Of The Fol Or Less Than <pre></pre>	Or Actual M M M	Is this waste characteristically hazardous for metals or organics (EPA Waste Code D004-D043)? Yes X No. If yes please list the constituents and concentrations in Section D PPM Does this waste contain underlying hazardous constituents as defined in 40 CFR 268 (2)(I) PPM at concentrations exceeding the UTS treatment standards? Yes X No. If yes, PPM please list constituents and concentrations in Section D					
waste material, and that all relevant in that any waste does not conform to the waste to the point of origin as set forth	nformation regarding known or sume identification and description of home the manifest or to such othe ge to equipment, and cost associacted as such to issue any approv	uspected hazards in the proon this MPS then the TSD ser locations designated in liated with lost time incurrental.	ossession of the gene shall provide notice o writing by the Genera red by the TSD during US Army Co	omplete, contains true and accurate descriptions and it is representative of the nerator has been disclosed. If the TDSF discovers, after having taken delivery of the waste, e of such condition to the Generator and coordinate the return of the nonconforming erator. Generator agrees to reimburse AWT for all handling, packaging, clean-up and ng the receipt, handling, temporary storage and return of such nonconforming waste to Corps of Engineers Project Manager O7 May 2021 DATE:					

100000	nt or type.	1. Generator ID Number	In Description	2 5	DL	A Hariford	The second second	n Approved. ON	MB No. 2050-
	ORM HAZARDOUS ASTE MANIFEST	NYR000157644	2. Page 1 of	3. Emergency Response	Phone	4. Manifest		5245	JJK
8	96 Virginia Road oncord, MA 017	y Corps of Engineers		Generator's Site Address (3898 Montau Montauk, NY	uk Highw	ay	The second secon		
6. Tra	rator's Phone: 973 nsporter 1 Company Nam WT Environment	ne ports and official state with a sign of		Par Facilities		U.S. EPA ID	Number R986647	362	
7. Tra	nsporter 2 Company Nam	ne				U.S. EPA ID I	0.82 (2.10)		
2	signated Facility Name ar South Frest Strategy Tradeth, NJ 972	reet 100 years 1		munity Parketter		U.S. EPA ID	Number 2002200	046	
9a.	y's Phone: 9b. U.S. DOT Descripti	ion (including Proper Shipping Name, Hazard Class	s, ID Number,	10. Contain	ers and	11. Total	12. Unit	13 Was	te Codes
HM	and Packing Group (if a	osive Solids, NOS - 8, PG III - ERG	#154	No. 8	Type DM	Quantity 4,000	Wt./Vol.	D002	ile codes
	2. Non RCRA No	sn DOT Material- A 0			- DM	s sandro	G		
		total proposition of the comment	iun Tara i meet	The contract					
	The second								
	4.								
	Soil with high pi		AWT P.O. #173		cribed above	a by the proper sh	lipping name	and are classifie	nd packaged
1	marked and labeled/placa Exporter, I certify that the o certify that the waste min	rded, and are in all respects in proper condition for contents of this consignment conform to the terms imization statement identified in 40 CFR 262.27(a) ped Name	transport according to applic of the attached EPA Acknowle (if I am a large quantity gene Sigr	able international and national	nal governm	nental regulations	If export sh	ipment and I am t	Day
	ernational Shipments porter signature (for expo	Import to U.S.	Export from U	.S. Port of entr		A Company of the Comp			10
2730 S C C	ansporter Acknowledgmen porter 1 Printed/Typed Na	me	Sign	ature		2 1		Month	Day
Frans	ON Printed/Typed Na		Sigr	ature				Month	Day Y
8. Di	screpancy	Comment was					The same	THE REAL PROPERTY.	
8a. C	iscrepancy Indication Spa	ace Quantity	Туре	Residue		Partial Rej	ection		Full Rejection
18b. A	Iternate Facility (or Gener	rator)		Manifest Reference	wumber.	U.S. EPA ID N	Number		
	y's Phone: ignature of Alternate Faci	lity (or Generator)						Month	Day
19. Ha	zardous Waste Report M	anagement Method Codes (i.e., codes for hazardo	us waste treatment, disposal	and recycling systems)	7	4.			
		or Operator: Certification of receipt of hazardous m			18a		110		
	d/Typed Name	170001	Sign	ature	1	MA	1	Month	Day)
orm	8/00-22 (Rev. 12-17)	Previous editions are obsolete.		ATTO LINE OF THE PARTY OF THE P				TRANSP	DRIFE (

Clean Water of New York, Inc.

3249 Richmond Terrace Staten Island, NY 10303

Phone: 718-981-4600 Fax: 718-981-5213

JOB RECEIPT

Job Number JOB0182336 Date 5/10/21

Job#

Time 8:14 am Job Type Truck Job

Generator

US ARMY CORPS OF ENGINEERS

1898 Montauk Highway Montauk, NY 11954 (631) 668-3781 EPA Permit #

Customer

AWT ENVIRONMENTAL SERVICES, INC.

P.O. Box 128

Sayerville, NJ 08871

PO #: 1734

17349-MP

Profile Sheet: Yes

Approval Code: 242-268

Site / Vessel Name: CAMP HERO

Transporter

WILLIAM J. LAUER CORP.

P.O. Box 030178

Staten Island, NY 10303

EPA Permit #:

NYR000157644

NYS DEC Permit #: 2A-531

Transport / Vessel: VAC # 53

of Tanks:

Total Capacity:

6,300

U of M:

Gallons

Received 2,353 Gallons Of Oily Water For Proper Treatment and Disposal.

Products & Code Description **UoM** Category Quantity Test Results N018 Oily Water D 2,353 Gallons % Water Compartment % Oil % Solid PH Value Halogens (ppm) Flash Point (oF) 96.00 3.00 1.00 100 6.00

Other Tests Peformed: No

/ 11.25 hrs

Did this load or any portion of this load orginate at a utility? No

Receiver's Signature and Date 5/11/2021 8:16 am

and Date

Generator's Representative Signature and Date

Page 1 of 1

A -	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2. Page 1 of	3. Emergency Response	Phone		acking Numbe	er .	14
	5. Generator's Name and Mail	Not Required		732-613-1660 Generator's Site Address	s 6f different ti	1734	9-1		
		y Corps of Engineers				-	3 3/		
	696 Virginia Road	ř .		1898 Montau Montauk, NY					
	Concord, MA 0176 Generator's Phone: 973		į	ivioritator, 141	Carron	<u> </u>			
	6. Transporter 1 Company Nar	3-318-8962 me	<u>)</u>	<u>!</u>		U.S. EPA ID N	lumber	(VE)	
	william 5	J-lauer (orp. C	7			INYRO	015711	244(KE)	
	7. Transporter 2 Company Nar	me				U.S. EPA ID		••••	
	8. Designated Facility Name and Clean Water of Net 3249 Richmond Te	and Site Address W York ETRACE/P.O. Box 030312				U.S. EPA ID I	lumber		
	Staten Island, NY Facility's Phone: 718-981	10303-0312							
Ш				10. Conta	ainers	11. Total	12. Unit		
	9. Waste Shipping Nam	ne and Description		No.	Туре	Quantity	Wt./Vol.		
H.	1. Non RCRA N	on DOT Liquids			TΤ		G		
ξŢ		-			1	17/2			
ER,				00/		235.5			
GENERATOR	2.								
Ī									
									8
	3.								
	4.								
	"								
	13. Special Handling Instruction	ons and Additional Information			Ll				
	1. Oily Water - App	roval #242-268							Ī
	AWT P.O. # 17349	9-MP							ļ.
	14 GENERATOR'S/OFFERO	PC'S CERTIFICATION: I bosoby decis	are that the contents of this consignment	are fully and accurately dos	ceibad abovo	by the proper chi	nning name, as	nd are classified packs	aged .
	, marked and labeled/placar	rded, and are in all respects in proper	condition for transport according to appli	icable international and nati	ional governm	ental regulations.	pping name, a	io are classified, packa	ayeu.
	Generator's/Offeror's Printed/T	Typed Name Signed as	an agent of si	ignature	1)(i	4 , ,		Month Day	Year
*	1 Chanei Ha	urcių the Genera	Ltor (USACE)	1 Chan	1 CV	XXX (25/10	121
7	15. International Shipments	Import to U.S.	Export from	U.S. Port of er	ntrv/exit:	0			
Ξ	Transporter Signature (for exp			Date leav	-				
띮	16. Transporter Acknowledgm			1			4		
TRANSPORTER	Transporter 1 Printed/Typed N	lame 0 10/		ignature // .		-11 ///		Month Day	Year
SP(CABINOL	1/1e GAS	XIII	~U	UNUL		4510	
Ž.	Transporter 2 Printed/Typed N	lame /	/ Si	ignature				Month Day	Year
E									
A	17. Discrepancy			····					
	17a. Discrepancy Indication S	Quantity	Type	L. Residue		Partial Rej	ection	Full Reje	ection
Ļ	17b. Alternate Facility (or Gen	nerator)		Manifest Reference I	Number:	U.S. EPA ID I	Number		
E						 11 10 1			
ÄCI	Facility's Phone:					1			
Ö	Facility's Phone: 17c. Signature of Alternate Fa	acility (or Generator)				1		Month Day	Year
ATE			1					1 1	
S									
DESIGNATED FACILITY									Ī
Ī									1
	18. Designated Facility Owner	r or Operator: Certification of receipt of	of materials covered by the manifest exce	ept as noted in Item 17a				<u> </u>	
							<u>.</u>	Month Day	Year
V	" 	rilit from	1	ignature P-PJ	no			1511	121

Appendix D Analytical Results and Validation

Appendix D1

Eurofins Lancaster Laboratories Environmental Laboratory Reports(Provided Upon Request)

Appendix D2 Data Validation Reports

Facility: C02NY0024-03, Camp Hero

Event: Camp Hero Fall 2020

SDG: 410-23193-1_52_2a_FUDSChem_rev2

Guidance Document: Quality Assurance Project Plan, Remedial Investigation Former Camp Hero,

Montauk, New York, June 2016

Prime Contractor: AECOM, Arlington, VA

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: AECOM

Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: February 06, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH_TB-1220-01	410-23193-2	Water	Trip Blank/TB									Χ	
S19494-1220	410-23193-1	Water	Field Sample/N	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	X

Page 1 of 24

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-23193-1_52_2a_FUDSChem_rev2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative

Extracted Internal Standard

Lab Blank

Lab Replicate RPD

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 14 results (7.91%) out of the 177 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, LCS RPD

The objective of laboratory control sample/laboratory control sample duplicate (LCS/LCSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. LCS/LCSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory control sample/laboratory control sample duplicate RPD results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCSD 410-76129/3-A (BD)/ LCSD 410-76129/3-A	2- Methylnaphthalene	21.99	< 20	< 20	rpd	J/UJ	Z	
LCSD 410-76129/3-A (BD)/ LCSD 410-76129/3-A	1- Methylnaphthalene	23.04	< 20	< 20	rpd	J/UJ	Z	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS RPD for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q J1	0.0300 UJ		ug/l	Z/D
S19494-1220	N	2-Methylnaphthalene	0.0700	0.0600 U Q J1	0.0600 UJ		ug/l	Z/D

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method BNASIM, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220MS (SD)/ 410-23193-1MSD	Naphthalene	23.27	< 20	< 20	rpd	J/UJ	D	
S19494-1220MS (SD)/ 410-23193-1MSD	2- Methylnaphthalene	23.69	< 20	< 20	rpd	J/UJ	D	
S19494-1220MS (SD)/ 410-23193-1MSD	1- Methylnaphthalene	25.48	< 20	< 20	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q J1	0.0300 UJ		ug/l	Z/D
S19494-1220	N	2-Methylnaphthalene	0.0700	0.0600 U Q J1	0.0600 UJ		ug/l	Z/D
S19494-1220	N	Naphthalene	0.0700	0.0600 U J1	0.0600 UJ		ug/l	D

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method E218.6, Dissolved, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220 (N)/ 410-23193-1		38.17	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S19494-1220 (N)/ 410-23193-1DUP		38.17	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6020B, Dissolved, Lab Replicate RPD

The objective of duplicate sample (LR) analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220 (LR)/ 410-23193-1DUP	Nickel	1.800	< 1.5	< 1.5	ug/l	J/UJ	D1	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Lab Replicate RPD for SW6020B, Dissolved

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	Nickel	1.50	1.80 J1	1.80 J		ug/l	D1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW6020B, Dissolved, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220MS (MS)/ 410-23193-1MS	Iron	0.000	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Manganese	135.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Sodium	140.0	85 - 117	30 - 117	percent	J/None	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Magnesium	185.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Calcium	50.00	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Sodium	120.0	85 - 117	30 - 117	percent	J/None	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Manganese	145.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Magnesium	150.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Calcium	25.00	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Iron	25.00	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6020B, Total, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
\$19494-1220M\$ (M\$)/ 410-23193-1M\$	Magnesium	164.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Calcium	40.00	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MS (MS)/ 410-23193-1MS	Barium	76.92	86 - 114	30 - 114	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Iron	-60.00	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Calcium	0.000	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Magnesium	40.00	83 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Manganese	44.00	87 - 115	30 - 115	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Barium	61.54	86 - 114	30 - 114	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Sodium	68.00	85 - 117	30 - 117	percent	J/UJ	М	Spike amount Insignificant
S19494-1220MSD (SD)/ 410-23193-1MSD	Cobalt	84.81	85 - 118	30 - 118	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6020B, Total

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	Ν	Cobalt	0.500	0.290 J J1	0.290 J	-	ug/l	M/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8082A, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220 (N)/ 410-23193-1		7.050	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S19494-1220 (N)/ 410-23193-1		7.050	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8270D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-76130/2-A (BS)/ LCS 410-76130/2-A	Dimethyl phthalate	37.20	45 - 127	10 - 127	percent	J/UJ	С	
LCSD 410-76130/3-A (BD)/ LCSD 410-76130/3-A	Dimethyl phthalate	44.80	45 - 127	10 - 127	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S19494-1220	Ν	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, LCS RPD

The objective of laboratory control sample/laboratory control sample duplicate (LCS/LCSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. LCS/LCSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory control sample/laboratory control sample duplicate RPD results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCSD 410-76130/3-A (BD)/ LCSD 410-76130/3-A	Benzoic acid	25.77	< 20	< 20	rpd	J/UJ	Z	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS RPD for SW8270D

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S19494-1220	N	Benzoic acid	25.0	24.0 U	24.0 UJ	ug/l	Z

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220 (N)/ 410-23193-1		8.020	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8270D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-1220 (N)/ 410-23193-1	2-Fluorophenol	17.00	19 - 119	10 - 119	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8270D

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	1
S19494-1220	N	4-Chloro-3-methylphenol	3.50	3.20 U	3.20 UJ		ug/l	1
S19494-1220	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	1

Table of All Qualified Results

Total Marth and DNIA CORE	Footne of	M						
Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	Naphthalene	0.0700	0.0600 U J1	0.0600 UJ		ug/l	D
S19494-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q J1	0.0300 UJ		ug/l	Z/D
S19494-1220	N	2-Methylnaphthalene	0.0700	0.0600 U Q J1	0.0600 UJ		ug/l	Z/D
Test Method: SW6020B	Extract	ion Method: Dissolved						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	Nickel	1.50	1.80 J1	1.80 J		ug/l	D1
Test Method: SW6020B	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	Cobalt	0.500	0.290 J J1	0.290 J	-	ug/l	M/TR
Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-1220	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	1
S19494-1220	N	4-Chloro-3-methylphenol	3.50	3.20 U	3.20 UJ		ug/l	I
S19494-1220	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	ı
S19494-1220	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
S19494-1220	N	Benzoic acid	25.0	24.0 U	24.0 UJ		ug/l	Z

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

		.=					
Modified Qualifiers for te		·					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	,
S19494-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S19494-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
Modified Qualifiers for te	st method	i E218.6					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S19494-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S19494-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
Modified Qualifiers for te	st method	I SW8082A					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S19494-1220	N	PCB, Total	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1016 (Aroclor 1016)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1221 (Aroclor 1221)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1232 (Aroclor 1232)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1242 (Aroclor 1242)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1248 (Aroclor 1248)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1254 (Aroclor 1254)	0.550	0.330 U	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1260 (Aroclor 1260)	0.550	0.330 U M	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1262 (Aroclor 1262)	0.550	0.330 U M	0.330 UJ	0.330 U	
S19494-1220	N	PCB-1268 (Aroclor 1268)	0.550	0.330 U M	0.330 UJ	0.330 U	
Modified Qualifiers for te	st method	1 SW8270D					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S19494-1220	N	1,4-Dichlorobenzene	5.00	1.00 U	1.00 UJ	1.00 U	
S19494-1220	N	2-Chloronaphthalene	1.00	0.800 U	0.800 UJ	0.800 U	
S19494-1220	N	4-Chloroaniline	10.0	9.00 U	9.00 UJ	9.00 U	
S19494-1220	N	Benzaldehyde	10.0	9.00 U	9.00 UJ	9.00 U	
S19494-1220	N	Benzoic acid	25.0	24.0 U	24.0 UJ	24.0 UJ	Z
S19494-1220	N	Benzyl butyl phthalate	5.00	4.00 U	4.00 UJ	4.00 U	
S19494-1220	N	Biphenyl (Diphenyl)	10.0	9.00 U	9.00 UJ	9.00 U	
S19494-1220	N	Bis(2-ethylhexyl)phthalate	11.0	10.0 U	10.0 UJ	10.0 U	
S19494-1220	N	Caprolactam	11.0	10.0 U	10.0 UJ	10.0 U	
S19494-1220	N	Carbazole	2.00	1.00 U	1.00 UJ	1.00 U	
S19494-1220	N	Dibenzofuran	2.00	1.00 U	1.00 UJ	1.00 U	
S19494-1220	N	Diethyl phthalate	5.00	4.00 U	4.00 UJ	4.00 U	
S19494-1220	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ	4.00 UJ	С
S19494-1220	N	Di-n-butyl phthalate	5.00	4.00 U	4.00 UJ	4.00 U	
S19494-1220	N	di-n-Octyl phthalate	11.0	10.0 U	10.0 UJ	10.0 U	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
D	MS RPD
D1	Lab Replicate RPD
H1	Test Hold Time
H2	Prep Hold Time
I	Surrogate recovery outside project limits.
М	MS Recovery
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect
Z	LCS RPD
Z	LCS RPD

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; cooler temperature at 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?		•		
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?		•		see outlier report
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: E218.6 (Hexavalent Chromium by EPA Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?		•		pH approximately 8.2; validator modified qualifiers from U to UJ; bias low; used reason code P
Were holding times met?		•		pH approximately 8.2; validator modified qualifiers from U to UJ; bias low; used reason code P
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•		,	
Was the MS/MSD RPD within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; cooler temperature at 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•		,	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		see outlier report; S19494-1220 MS recovery outside control limits
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance imits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?		•		see outlier report
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	110	100	Common
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; cooler temperature at 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance limits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; cooler temperature at 0.5 C
Were holding times met?	•			prep hold time exceeds 7 days according to the eQAPP; EPA NFG recommends 1 year; validator modified the qualifiers
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples received in good condition; cooler temperature was 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			trip blank had no detects
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples received in good condition; cooler temperature was 0.5 C
Were holding times met?	•			S19494-1220 surrogate (1) were outside QC limits; lab reanalyzed outside hold and met criteria; the first set of data was reported and qualified for the surrogate out
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		2-fluorophenol outside QC limits at 17% for sample S19494-1220; sample re-prepped outside hold time; first set of data reported and base neutral compounds were not qualified for the one acid surrogate that is out; validator modified qualifiers
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		see outlier report
Was the LCS/LCSD RPD within project acceptance limits?		•		see outlier report
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Facility: C02NY0024-03, Camp Hero

Event: Camp Hero Fall 2020

SDG: 410-23807-1_52_2a_FUDSChem_rev2

Guidance Document: Quality Assurance Project Plan, Remedial Investigation Former Camp Hero,

Montauk, New York, June 2016

Prime Contractor: AECOM, Arlington, VA

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: AECOM

Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: February 08, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH_TB-1220-02	410-23807-12	Water	Trip Blank/TB									Χ	
CH-EB-1220-01	410-23807-4	Water	Equipment Blank/EB	Χ	Х		Х		Х		Χ	Χ	Χ
CH-EB-1220-02	410-23807-10	Water	Equipment Blank/EB	Х	Х		Χ		Χ		Χ	Х	Χ
CH-MW045S-1220	410-23807-5	Water	Field Sample/N	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S1202-1220	410-23807-8	Water	Field Sample/N	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S17231S-1220	410-23807-9	Water	Field Sample/N	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S19495-1220	410-23807-1	Water	Field Sample/N	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S3599-1220	410-23807-7	Water	Field Sample/N	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ
S48579-1220	410-23807-11	Water	Field Sample/N	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S58922-1220	410-23807-6	Water	Field Sample/N	X	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
S79269-1220	410-23807-2	Water	Field Sample/N	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ
S79269-1220D	410-23807-3	Water	Field Duplicate/FD	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-23807-1_52_2a_FUDSChem_rev2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative Equipment Blank

Extracted Internal Standard

Field Duplicate RPD

Lab Blank

Lab Replicate RPD

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 204 results (13.63%) out of the 1497 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-1220-02 (EB)/ 410-23807-10	Chrysene	0.01100	< 0.011	< 0.053	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Fluorene	0.01400	< 0.011	< 0.053	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Pyrene	0.01400	< 0.011	< 0.053	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Anthracene	0.01800	< 0.011	< 0.053	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Fluoranthene	0.01800	< 0.011	< 0.053	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method BNASIM, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-77182/1-A (LB)/ MB 410-77182/1-A	2- Methylnaphthalene	0.02180	< 0.02	< 0.07	ug/l	U/None	L	
MB 410-77182/1-A (LB)/ MB 410-77182/1-A	Naphthalene	0.07250	< 0.03	< 0.07	ug/l	U/None	L	
MB 410-77323/1-A (LB)/ MB 410-77323/1-A	Naphthalene	0.09960	< 0.03	< 0.07	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Lab Blank for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Naphthalene	0.0740	0.0440 J M B	0.0630 UJ		ug/l	L/C

Quality Control Outliers for test method BNASIM, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	1,4-Dioxane (p- Dioxane)	0.000	18 - 91	10 - 91	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Acenaphthylene	0.000	35 - 121	10 - 130	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	2- Methylnaphthalene	0.000	39 - 114	10 - 117	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Naphthalene	0.000	43 - 114	10 - 121	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Benzo (g,h,i)perylene	0.000	44 - 128	10 - 129	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Dibenz (a,h)anthracene	0.000	44 - 131	10 - 134	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Phenanthrene	0.000	53 - 115	10 - 130	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Benzo(a)pyrene	0.000	53 - 120	10 - 128	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Benzo (b)fluoranthene	0.000	53 - 126	10 - 134	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Benzo (k)fluoranthene	0.000	54 - 125	10 - 125	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Acenaphthene	1.060	48 - 114	10 - 130	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	1- Methylnaphthalene	1.090	41 - 115	10 - 115	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Indeno(1,2,3- c,d)pyrene	1.210	48 - 130	10 - 130	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Chrysene	1.360	57 - 120	10 - 127	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Benzo (a)anthracene	1.410	59 - 120	10 - 128	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Fluoranthene	1.750	58 - 125	10 - 125	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Pyrene	1.820	53 - 121	10 - 130	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Fluorene	2.060	50 - 118	10 - 118	percent	J/X	С	
LCS 410-77182/2-A (BS)/ LCS 410-77182/2-A	Anthracene	2.190	53 - 119	10 - 130	percent	J/X	С	
LCS 410-77323/2-A (BS)/ LCS 410-77323/2-A	2- Methylnaphthalene	117.0	39 - 114	10 - 117	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-EB-1220-01	EB	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 UJ	ug/l	С
CH-EB-1220-01	EB	1-Methylnaphthalene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	2-Methylnaphthalene	0.0740	0.0630 U Q	0.0630 UJ	ug/l	С

ENV.ADR February 10, 2021

Qualified Results associated with the LCS Recovery for BNASIM

		•					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-EB-1220-01	EB	Acenaphthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Acenaphthylene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Anthracene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Chrysene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 UJ	ug/l	С
CH-EB-1220-01	EB	Fluoranthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Fluorene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-EB-1220-01	EB	Naphthalene	0.0740	0.0630 U Q	0.0630 UJ	ug/l	С
CH-EB-1220-01	EB	Phenanthrene	0.0740	0.0630 U Q	0.0630 UJ	ug/l	С
CH-EB-1220-01	EB	Pyrene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 UJ	ug/l	С
CH-MW045S-1220	N	1-Methylnaphthalene	0.0530	0.0320 U M Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	2-Methylnaphthalene	0.0740	0.0630 U M Q	0.0630 UJ	ug/l	С
CH-MW045S-1220	N	Acenaphthene	0.0530	0.0320 U M Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Acenaphthylene	0.0530	0.0320 U M Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Anthracene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Chrysene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 UJ	ug/l	С
CH-MW045S-1220	N	Fluoranthene	0.0530	0.0120 J M Q	0.0120 J	- ug/l	C/TR
CH-MW045S-1220	N	Fluorene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 UJ	ug/l	С
CH-MW045S-1220	N	Naphthalene	0.0740	0.0440 J M B	0.0630 UJ	ug/l	L/C
CH-MW045S-1220	N	Phenanthrene	0.0740	0.0360 J M Q	0.0360 J	- ug/l	C/TR
CH-MW045S-1220	N	Pyrene	0.0530	0.0320 U M Q	0.0320 UJ	ug/l	С
S1202-1220	N	1,4-Dioxane (p-Dioxane)	0.300	0.110 J Q	0.110 J	- ug/l	C/TR
S1202-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q	0.0300 UJ	ug/l	С
S1202-1220	N	2-Methylnaphthalene	0.0710	0.0600 U Q	0.0600 UJ	ug/l	С
-							

Qualified Results associated with the LCS Recovery for BNASIM

		•						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S1202-1220	N	Acenaphthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Acenaphthylene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Anthracene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(a)anthracene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(a)pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Chrysene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Fluorene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Naphthalene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Phenanthrene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S3599-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 UJ		ug/l	С
S3599-1220	N	1-Methylnaphthalene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	2-Methylnaphthalene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Acenaphthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Acenaphthylene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Anthracene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(a)anthracene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(a)pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(b)fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(g,h,i)perylene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(k)fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Chrysene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Dibenz(a,h)anthracene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Fluorene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Naphthalene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Phenanthrene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 UJ		ug/l	С
S58922-1220	N	1-Methylnaphthalene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	2-Methylnaphthalene	0.0720	0.0620 U Q	0.0620 UJ		ug/l	С
S58922-1220	N	Acenaphthene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Acenaphthylene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Anthracene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(a)anthracene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С

Qualified Results associated with the LCS Recovery for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias l	Jnits	Reason
S58922-1220	N	Benzo(a)pyrene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Benzo(b)fluoranthene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Benzo(g,h,i)perylene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Benzo(k)fluoranthene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Chrysene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Dibenz(a,h)anthracene	0.0720	0.0620 U Q	0.0620 UJ	ι	ıg/l	С
S58922-1220	N	Fluoranthene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Fluorene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Indeno(1,2,3-c,d)pyrene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С
S58922-1220	N	Naphthalene	0.0720	0.0620 U Q	0.0620 UJ	ι	ıg/l	С
S58922-1220	N	Phenanthrene	0.0720	0.0620 U Q	0.0620 UJ	ι	ıg/l	С
S58922-1220	N	Pyrene	0.0510	0.0310 U Q	0.0310 UJ	ι	ıg/l	С

Quality Control Outliers for test method BNASIM, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-1220-01 (EB)/ 410-23807-4		14.85	< 7	< 14	days	J/X	H2	Prep Exceeds UCL
CH-MW045S-1220 (N)/ 410-23807-5		15.02	< 7	< 14	days	J/X	H2	Prep Exceeds UCL
S1202-1220 (N)/ 410-23807-8		15.01	< 7	< 14	days	J/X	H2	Prep Exceeds UCL
S3599-1220 (N)/ 410-23807-7		14.98	< 7	< 14	days	J/X	H2	Prep Exceeds UCL
\$58922-1220 (N)/ 410-23807-6		14.93	< 7	< 14	days	J/X	H2	Prep Exceeds UCL
S79269-1220 (N)/ 410-23807-2		9.220	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method E218.6, Dissolved, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW045S-1220 (N)/ 410-23807-5		36.08	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S1202-1220 (N)/ 410-23807-8		36.07	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S17231S-1220 (N)/ 410-23807-9		35.09	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S19495-1220 (N)/ 410-23807-1		37.16	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S3599-1220 (N)/ 410-23807-7		36.04	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S48579-1220 (N)/ 410-23807-11		34.92	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S58922-1220 (N)/ 410-23807-6		35.99	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S79269-1220 (N)/ 410-23807-2		37.06	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S79269-1220D (FD)/ 410-23807-3		37.06	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6020B, Dissolved, Lab Replicate RPD

The objective of duplicate sample (LR) analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. Duplicate analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S48579-1220 (LR)/ 410-23807-11DUP	Antimony	1.100	< 1	< 1	ug/l	J/UJ	D1	
S48579-1220 (LR)/ 410-23807-11DUP	Nickel	2.100	< 1.5	< 1.5	ug/l	J/UJ	D1	
S48579-1220 (LR)/ 410-23807-11DUP	Copper	2.240	< 1	< 1	ug/l	J/UJ	D1	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Lab Replicate RPD for SW6020B, Dissolved

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Un	its Reason
S48579-1220	N	Antimony	1.00	1.10 J1	1.10 J	ug/	l D1
S48579-1220	N	Copper	1.00	0.820 U	0.820 UJ	ug/	l D1
S48579-1220	N	Nickel	1.50	2.10 J1	2.10 J	ug/	l D1

Quality Control Outliers for test method SW6020B, Dissolved, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S48579-1220 (MS)/ 410-23807-11MS	Barium	117.0	86 - 114	30 - 114	percent	J/None	М	
S48579-1220 (MS)/ 410-23807-11MS	Magnesium	130.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S48579-1220 (MS)/ 410-23807-11MS	Calcium	57.50	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S48579-1220 (SD)/ 410-23807-11MSD	Magnesium	75.00	83 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S48579-1220 (SD)/ 410-23807-11MSD	Iron	77.50	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S48579-1220 (SD)/ 410-23807-11MSD	Calcium	125.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6020B, Dissolved

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S48579-1220	N	Barium	2.10	26.0 J1	26.0 J	+	ug/l	М

Quality Control Outliers for test method SW6020B, Total, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-1220-01 (EB)/ 410-23807-4	Chromium	0.3700	< 0.33	< 2	ug/l	U/None	V	
CH-EB-1220-01 (EB)/ 410-23807-4	Nickel	0.6800	< 0.6	< 1.5	ug/l	U/None	V	
CH-EB-1220-01 (EB)/ 410-23807-4	Magnesium	16.00	< 10	< 50	ug/l	U/None	V	
CH-EB-1220-01 (EB)/ 410-23807-4	Calcium	200.0	< 74	< 130	ug/l	U/None	V	
CH-EB-1220-01 (EB)/ 410-23807-4	Aluminum	24.00	< 20	< 35	ug/l	U/None	V	
CH-EB-1220-01 (EB)/ 410-23807-4	Sodium	780.0	< 50	< 200	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Chromium	0.7800	< 0.33	< 2	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Manganese	1.100	< 0.63	< 2	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Magnesium	15.00	< 10	< 50	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Calcium	270.0	< 74	< 130	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Aluminum	33.00	< 20	< 35	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Sodium	5800	< 50	< 200	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Equipment Blank for SW6020B, Total

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Nickel	1.50	1.50	1.50 U		ug/l	V
S1202-1220	N	Aluminum	35.0	27.0 J	35.0 U		ug/l	V
S1202-1220	N	Chromium	2.10	0.720 J	2.10 U		ug/l	V
S17231S-1220	N	Sodium	210	37000	37000 J	+	ug/l	V
S17231S-1220	N	Aluminum	35.0	55.0 J1	55.0 J	+	ug/l	V
S17231S-1220	N	Chromium	2.00	0.620 J	2.00 U		ug/l	V
S3599-1220	N	Chromium	2.00	3.50	3.50 J	+	ug/l	V
S3599-1220	N	Nickel	1.50	2.50	2.50 J	+	ug/l	V
S48579-1220	N	Sodium	210	30000	30000 J	+	ug/l	V
S48579-1220	N	Aluminum	35.0	78.0	78.0 J	+	ug/l	V
S48579-1220	N	Chromium	2.10	0.420 J	2.10 U		ug/l	V
S58922-1220	N	Chromium	2.10	0.440 J	2.10 U		ug/l	V
S58922-1220	N	Nickel	1.50	1.00 J	1.50 U		ug/l	V

Quality Control Outliers for test method SW6020B, Total, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
\$17231\$-1220 (M\$)/ 410-23807-9M\$	Iron	-87.50	87 - 118	30 - 118	percent	J/X	М	Spike amount Insignificant
S17231S-1220 (MS)/ 410-23807-9MS	Calcium	40.00	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S17231S-1220 (MS)/ 410-23807-9MS	Sodium	55.00	85 - 117	30 - 117	percent	J/UJ	М	Spike amount Insignificant
S17231S-1220 (MS)/ 410-23807-9MS	Manganese	70.00	87 - 115	30 - 115	percent	J/UJ	М	Spike amount Insignificant
S17231S-1220 (SD)/ 410-23807-9MSD	Sodium	40.00	85 - 117	30 - 117	percent	J/UJ	М	Spike amount Insignificant
S17231S-1220 (SD)/ 410-23807-9MSD	Iron	47.50	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
\$17231\$-1220 (\$D)/ 410-23807-9M\$D	Calcium	82.50	87 - 118	30 - 118	percent	J/UJ	М	Spike amount Insignificant
S17231S-1220 (SD)/ 410-23807-9MSD	Manganese	85.00	87 - 115	30 - 115	percent	J/UJ	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW7470A, Total, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-1220-01 (EB)/ 410-23807-4	Mercury	0.1200	< 0.079	< 0.3	ug/l	U/None	V	
CH-EB-1220-02 (EB)/ 410-23807-10	Mercury	0.08900	< 0.079	< 0.3	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Equipment Blank for SW7470A, Total

CH-MW045S-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V S1202-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S17231S-1220 N Mercury 0.300 0.120 J 0.300 U ug/l V S3599-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S48579-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V									
S1202-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S17231S-1220 N Mercury 0.300 0.120 J 0.300 U ug/l V S3599-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S48579-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V	FieldSample ID	Type Ar	nalyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S17231S-1220 N Mercury 0.300 0.120 J 0.300 U ug/l V S3599-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S48579-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V	CH-MW045S-1220	N Me	1ercury	0.300	0.110 J	0.300 U		ug/l	V
S3599-1220 N Mercury 0.300 0.100 J 0.300 U ug/l V S48579-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V	S1202-1220	N Me	1ercury	0.300	0.100 J	0.300 U		ug/l	V
\$48579-1220 N Mercury 0.300 0.110 J 0.300 U ug/l V	S17231S-1220	N Me	1ercury	0.300	0.120 J	0.300 U		ug/l	V
	S3599-1220	N Me	1ercury	0.300	0.100 J	0.300 U		ug/l	V
\$58922-1220 N Mercury 0.300 0.100 L 0.300 U ug/l V	S48579-1220	N Me	1ercury	0.300	0.110 J	0.300 U		ug/l	V
0.000 0.100 0 0.000 0 ug/1 V	S58922-1220	N Me	1ercury	0.300	0.100 J	0.300 U		ug/l	V

Quality Control Outliers for test method SW7470A, Total, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-76889/1-A (LB)/ MB 410-76889/1-A	Mercury	0.1480	< 0.079	< 0.3	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8082A, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-1220-02 (EB)/ 410-23807-10		7.150	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-EB-1220-02 (EB)/ 410-23807-10		7.150	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S17231S-1220 (N)/ 410-23807-9		7.250	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S17231S-1220 (N)/ 410-23807-9		7.250	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S19495-1220 (N)/ 410-23807-1		7.330	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S19495-1220 (N)/ 410-23807-1		7.330	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S48579-1220 (N)/ 410-23807-11		7.080	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S48579-1220 (N)/ 410-23807-11		7.080	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-1220 (N)/ 410-23807-2		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-1220 (N)/ 410-23807-2		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-1220D (FD)/ 410-23807-3		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-1220D (FD)/ 410-23807-3		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Prep Hold Time for SW8082A

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-EB-1220-02	EB	PCB, Total	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1016 (Aroclor 1016)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1221 (Aroclor 1221)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1232 (Aroclor 1232)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1242 (Aroclor 1242)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1248 (Aroclor 1248)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1254 (Aroclor 1254)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1260 (Aroclor 1260)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1262 (Aroclor 1262)	0.500	0.300 U	0.300 UJ	ug/l	H2
CH-EB-1220-02	EB	PCB-1268 (Aroclor 1268)	0.500	0.300 U M	0.300 UJ	ug/l	H2

Quality Control Outliers for test method SW8260C, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment	
CH-EB-1220-01 (EB)/ 410-23807-4	Acetone	1.600	< 0.7	< 20	ug/l	U/None	V		

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Equipment Blank for SW8260C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Acetone	20.0	2.00 J M	20.0 U		ug/l	V

Quality Control Outliers for test method SW8270D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-76539/2-A (BS)/ LCS 410-76539/2-A	1,4- Dichlorobenzene	26.00	29 - 112	10 - 112	percent	J/UJ	С	
LCS 410-76539/2-A (BS)/ LCS 410-76539/2-A	Benzoic acid	54.00	10 - 47	10 - 47	percent	J/None	С	
LCS 410-76812/2-A (BS)/ LCS 410-76812/2-A	Dimethyl phthalate	35.40	45 - 127	10 - 127	percent	J/UJ	С	
LCS 410-76812/2-A (BS)/ LCS 410-76812/2-A	Benzyl butyl phthalate	49.00	53 - 134	10 - 134	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S19495-1220	N	1,4-Dichlorobenzene	5.40	1.10 U Q	1.10 UJ	ug/l	С
S79269-1220	N	1,4-Dichlorobenzene	5.40	1.10 U Q	1.10 UJ	ug/l	С
S79269-1220D	FD	Benzyl butyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S79269-1220D	FD	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С

Quality Control Outliers for test method SW8270D, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S79269-1220 (N)/ 410-23807-2		9.220	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-1220D (FD)/ 410-23807-3		18.53	< 7	< 14	days	J/X	H2	Prep Exceeds UCL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8270D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S79269-1220 (N)/ 410-23807-2	2-Fluorobiphenyl	37.00	44 - 119	10 - 119	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8270D

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S79269-1220	N	2-Methylphenol (o-Cresol)	2.10	1.10 U	1.10 UJ		ug/l	1
S79269-1220	N	4-Chloro-3-methylphenol	3.80	3.40 U	3.40 UJ		ug/l	1
S79269-1220	N	4-Methylphenol (p-Cresol)	2.10	1.10 U	1.10 UJ		ug/l	1

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-EB-1220-01	EB	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 UJ		ug/l	С
CH-EB-1220-01	EB	1-Methylnaphthalene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	2-Methylnaphthalene	0.0740	0.0630 U Q	0.0630 UJ		ug/l	С
CH-EB-1220-01	EB	Acenaphthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Acenaphthylene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Anthracene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Chrysene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 UJ		ug/l	С
CH-EB-1220-01	EB	Fluoranthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Fluorene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-EB-1220-01	EB	Naphthalene	0.0740	0.0630 U Q	0.0630 UJ		ug/l	С
CH-EB-1220-01	EB	Phenanthrene	0.0740	0.0630 U Q	0.0630 UJ		ug/l	С
CH-EB-1220-01	EB	Pyrene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 UJ		ug/l	С
CH-MW045S-1220	N	1-Methylnaphthalene	0.0530	0.0320 U M Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	2-Methylnaphthalene	0.0740	0.0630 U M Q	0.0630 UJ		ug/l	С
CH-MW045S-1220	N	Acenaphthene	0.0530	0.0320 U M Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Acenaphthylene	0.0530	0.0320 U M Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Anthracene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Chrysene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 UJ		ug/l	С
CH-MW045S-1220	N	Fluoranthene	0.0530	0.0120 J M Q	0.0120 J	-	ug/l	C/TR
CH-MW045S-1220	N	Fluorene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 UJ		ug/l	С
CH-MW045S-1220	N	Naphthalene	0.0740	0.0440 J M B	0.0630 UJ		ug/l	L/C
CH-MW045S-1220	N	Phenanthrene	0.0740	0.0360 J M Q	0.0360 J	-	ug/l	C/TR

Table of All Qualified Results

Test Method: BNASIM	Extraction	n Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Pyrene	0.0530	0.0320 U M Q	0.0320 UJ		ug/l	С
S1202-1220	N	1,4-Dioxane (p-Dioxane)	0.300	0.110 J Q	0.110 J	-	ug/l	C/TR
S1202-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	2-Methylnaphthalene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Acenaphthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Acenaphthylene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Anthracene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(a)anthracene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(a)pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Chrysene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Fluoranthene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Fluorene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S1202-1220	N	Naphthalene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Phenanthrene	0.0710	0.0600 U Q	0.0600 UJ		ug/l	С
S1202-1220	N	Pyrene	0.0500	0.0300 U Q	0.0300 UJ		ug/l	С
S3599-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 UJ		ug/l	С
S3599-1220	N	1-Methylnaphthalene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	2-Methylnaphthalene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Acenaphthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Acenaphthylene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Anthracene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(a)anthracene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(a)pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(b)fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(g,h,i)perylene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Benzo(k)fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Chrysene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Dibenz(a,h)anthracene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Fluoranthene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Fluorene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S3599-1220	N	Naphthalene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Phenanthrene	0.0730	0.0630 U Q	0.0630 UJ		ug/l	С
S3599-1220	N	Pyrene	0.0520	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 UJ		ug/l	С
S58922-1220	N	1-Methylnaphthalene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	2-Methylnaphthalene	0.0720	0.0620 U Q	0.0620 UJ		ug/l	С

eQAPP Version: eQAPP_USNAE-C02NY0024-03-RIFS.063341 ENV.ADR February 10, 2021

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S58922-1220	N	Acenaphthene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Acenaphthylene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Anthracene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(a)anthracene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(a)pyrene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(b)fluoranthene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(g,h,i)perylene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Benzo(k)fluoranthene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Chrysene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Dibenz(a,h)anthracene	0.0720	0.0620 U Q	0.0620 UJ		ug/l	С
S58922-1220	N	Fluoranthene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Fluorene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Indeno(1,2,3-c,d)pyrene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
S58922-1220	N	Naphthalene	0.0720	0.0620 U Q	0.0620 UJ		ug/l	С
S58922-1220	N	Phenanthrene	0.0720	0.0620 U Q	0.0620 UJ		ug/l	С
S58922-1220	N	Pyrene	0.0510	0.0310 U Q	0.0310 UJ		ug/l	С
Test Method: SW6020E	- Evtroot	ion Method: Dissolved						
FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N N	Nickel	1.50	1.50	1.50 U	Dias	ug/l	V
S1202-1220	N	Chromium	2.10	0.720 J	2.10 U		ug/l	
S17231S-1220	N	Sodium	210	37000	37000 J	+	ug/l	
S3599-1220	N	Nickel	1.50	2.50	2.50 J	+	ug/l	
S48579-1220	N	Sodium	210	30000	30000 J	+	ug/l	
S48579-1220	N	Antimony	1.00	1.10 J1	1.10 J		ug/l	 D1
S48579-1220	N	Copper	1.00	0.820 U	0.820 UJ		ug/l	D1
S48579-1220	N	Nickel	1.50	2.10 J1	2.10 J		ug/l	D1
S48579-1220	N	Barium	2.10	26.0 J1	26.0 J	+	ug/l	M
S48579-1220	N	Chromium	2.10	0.420 J	2.10 U		ug/l	V
S58922-1220	N	Chromium	2.10	0.440 J	2.10 U		ug/l	
		Onionium	2.10	0.440 0	2.100		чул	
Test Method: SW6020E	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Nickel	1.50	4.20	4.20 J	+	ug/l	V
S1202-1220	N	Aluminum	35.0	27.0 J	35.0 U		ug/l	V
S1202-1220	N	Chromium	2.00	2.80	2.80 J	+	ug/l	V
S17231S-1220	N	Sodium	200	38000 J1	38000 J	+	ug/l	V
S17231S-1220	N	Aluminum	35.0	55.0 J1	55.0 J	+	ug/l	V
S17231S-1220	N	Chromium	2.00	0.620 J	2.00 U		ug/l	V
S3599-1220	N	Chromium	2.00	3.50	3.50 J	+	ug/l	V
S3599-1220	N	Nickel	1.50	1.50	1.50 U		ug/l	V
S48579-1220	N	Sodium	200	43000	43000 J	+	ug/l	V
S48579-1220	N	Aluminum	35.0	78.0	78.0 J	+	ug/l	V

Table of All Qualified Results

Test Method: SW6020B	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S48579-1220	N	Chromium	2.00	1.60 J	2.00 U		ug/l	V
S58922-1220	N	Chromium	2.00	0.810 J	2.00 U		ug/l	V
S58922-1220	N	Nickel	1.50	1.00 J	1.50 U		ug/l	V
Test Method: SW7470A	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S1202-1220	N	Mercury	0.300	0.100 J	0.300 U		ug/l	V
S3599-1220	N	Mercury	0.300	0.100 J	0.300 U		ug/l	V
S48579-1220	N	Mercury	0.300	0.110 J	0.300 U		ug/l	V
Test Method: SW7470A	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Mercury	0.300	0.110 J	0.300 U		ug/l	V
S1202-1220	N	Mercury	0.300	0.110 J	0.300 U		ug/l	V
S17231S-1220	N	Mercury	0.300	0.120 J	0.300 U		ug/l	V
S3599-1220	N	Mercury	0.300	0.110 J	0.300 U		ug/l	V
S58922-1220	N	Mercury	0.300	0.100 J	0.300 U		ug/l	V
Test Method: SW8082A	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-EB-1220-02	EB	PCB, Total	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1016 (Aroclor 1016)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1221 (Aroclor 1221)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1232 (Aroclor 1232)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1242 (Aroclor 1242)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1248 (Aroclor 1248)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1254 (Aroclor 1254)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1260 (Aroclor 1260)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1262 (Aroclor 1262)	0.500	0.300 U	0.300 UJ		ug/l	H2
CH-EB-1220-02	EB	PCB-1268 (Aroclor 1268)	0.500	0.300 U M	0.300 UJ		ug/l	H2
Test Method: SW8260C	Extract	ion Method: SW5030C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-1220	N	Acetone	20.0	2.00 J M	20.0 U		ug/l	V
Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19495-1220	N	1,4-Dichlorobenzene	5.40	1.10 U Q	1.10 UJ		ug/l	С
S79269-1220	N	2-Methylphenol (o-Cresol)	2.10	1.10 U	1.10 UJ		ug/l	1
S79269-1220	N	4-Chloro-3-methylphenol	3.80	3.40 U	3.40 UJ		ug/l	1
S79269-1220	N	4-Methylphenol (p-Cresol)	2.10	1.10 U	1.10 UJ		ug/l	I
S79269-1220	N	1,4-Dichlorobenzene	5.40	1.10 U Q	1.10 UJ		ug/l	С
070200 1220	• •	.,. =					. 3	

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S79269-1220D	FD	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for							
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	
CH-EB-1220-01	EB	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 X	0.210 UJ	С
CH-EB-1220-01	EB	1-Methylnaphthalene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	2-Methylnaphthalene	0.0740	0.0630 U Q	0.0630 X	0.0630 UJ	С
CH-EB-1220-01	EB	Acenaphthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Acenaphthylene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Anthracene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Chrysene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 X	0.0630 UJ	С
CH-EB-1220-01	EB	Fluoranthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Fluorene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-EB-1220-01	EB	Naphthalene	0.0740	0.0630 U Q	0.0630 X	0.0630 UJ	С
CH-EB-1220-01	EB	Phenanthrene	0.0740	0.0630 U Q	0.0630 X	0.0630 UJ	С
CH-EB-1220-01	EB	Pyrene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U Q	0.210 X	0.210 UJ	С
CH-MW045S-1220	N	1-Methylnaphthalene	0.0530	0.0320 U M Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	2-Methylnaphthalene	0.0740	0.0630 U M Q	0.0630 X	0.0630 UJ	С
CH-MW045S-1220	N	Acenaphthene	0.0530	0.0320 U M Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Acenaphthylene	0.0530	0.0320 U M Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Anthracene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Benzo(a)anthracene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Benzo(a)pyrene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Benzo(b)fluoranthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Benzo(g,h,i)perylene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Benzo(k)fluoranthene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Chrysene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Dibenz(a,h)anthracene	0.0740	0.0630 U Q	0.0630 X	0.0630 UJ	С
CH-MW045S-1220	N	Fluorene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Indeno(1,2,3-c,d)pyrene	0.0530	0.0320 U Q	0.0320 X	0.0320 UJ	С
CH-MW045S-1220	N	Naphthalene	0.0740	0.0440 J M B	0.0630 X	0.0630 UJ	L/C
CH-MW045S-1220	N	Pyrene	0.0530	0.0320 U M Q	0.0320 X	0.0320 UJ	С
S1202-1220	N	1-Methylnaphthalene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	2-Methylnaphthalene	0.0710	0.0600 U Q	0.0600 X	0.0600 UJ	С

Table of Results with Modified Qualifiers

FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S1202-1220	N	Acenaphthene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Acenaphthylene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Anthracene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Benzo(a)anthracene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Benzo(a)pyrene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Chrysene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U Q	0.0600 X	0.0600 UJ	С
S1202-1220	N	Fluoranthene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Fluorene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S1202-1220	N	Naphthalene	0.0710	0.0600 U Q	0.0600 X	0.0600 UJ	С
S1202-1220	N	Phenanthrene	0.0710	0.0600 U Q	0.0600 X	0.0600 UJ	С
S1202-1220	N	Pyrene	0.0500	0.0300 U Q	0.0300 X	0.0300 UJ	С
S3599-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 X	0.210 UJ	С
S3599-1220	N	1-Methylnaphthalene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	2-Methylnaphthalene	0.0730	0.0630 U Q	0.0630 X	0.0630 UJ	С
S3599-1220	N	Acenaphthene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Acenaphthylene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Anthracene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Benzo(a)anthracene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Benzo(a)pyrene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Benzo(b)fluoranthene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Benzo(g,h,i)perylene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Benzo(k)fluoranthene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Chrysene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Dibenz(a,h)anthracene	0.0730	0.0630 U Q	0.0630 X	0.0630 UJ	С
S3599-1220	N	Fluoranthene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Fluorene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S3599-1220	N	Naphthalene	0.0730	0.0630 U Q	0.0630 X	0.0630 UJ	С
S3599-1220	N	Phenanthrene	0.0730	0.0630 U Q	0.0630 X	0.0630 UJ	С
S3599-1220	N	Pyrene	0.0520	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U Q	0.210 X	0.210 UJ	С
S58922-1220	N	1-Methylnaphthalene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	2-Methylnaphthalene	0.0720	0.0620 U Q	0.0620 X	0.0620 UJ	С
S58922-1220	N	Acenaphthene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Acenaphthylene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	C
S58922-1220	N	Anthracene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С

Table of Results with Modified Qualifiers

Modified Qualifiers for t	est method	BNASIM					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S58922-1220	N	Benzo(a)anthracene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Benzo(a)pyrene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Benzo(b)fluoranthene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Benzo(g,h,i)perylene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Benzo(k)fluoranthene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Chrysene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Dibenz(a,h)anthracene	0.0720	0.0620 U Q	0.0620 X	0.0620 UJ	С
S58922-1220	N	Fluoranthene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Fluorene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Indeno(1,2,3-c,d)pyrene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S58922-1220	N	Naphthalene	0.0720	0.0620 U Q	0.0620 X	0.0620 UJ	С
S58922-1220	N	Phenanthrene	0.0720	0.0620 U Q	0.0620 X	0.0620 UJ	С
S58922-1220	N	Pyrene	0.0510	0.0310 U Q	0.0310 X	0.0310 UJ	С
S79269-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U	0.210 U	0.210 UJ	I
S79269-1220	N	1-Methylnaphthalene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	2-Methylnaphthalene	0.0750	0.0640 U	0.0640 U	0.0640 UJ	I
S79269-1220	N	Acenaphthene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Acenaphthylene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Anthracene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Benzo(a)anthracene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Benzo(a)pyrene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Benzo(b)fluoranthene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Benzo(g,h,i)perylene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Benzo(k)fluoranthene	0.0540	0.0320 U M	0.0320 U	0.0320 UJ	I
S79269-1220	N	Chrysene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Dibenz(a,h)anthracene	0.0750	0.0640 U	0.0640 U	0.0640 UJ	I
S79269-1220	N	Fluoranthene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Fluorene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Indeno(1,2,3-c,d)pyrene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
S79269-1220	N	Naphthalene	0.0750	0.0640 U	0.0640 U	0.0640 UJ	I
S79269-1220	N	Phenanthrene	0.0750	0.0640 U	0.0640 U	0.0640 UJ	I
S79269-1220	N	Pyrene	0.0540	0.0320 U	0.0320 U	0.0320 UJ	I
Modified Qualifiers for t	est method	E218.6, Dissolved					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-MW045S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW045S-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S1202-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S1202-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S17231S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S17231S-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S19495-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р

Table of Results with Modified Qualifiers

Modified Qualifiers for	test method	I ⊏∠18.6, DISSOIVEd					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S19495-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S3599-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S3599-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S48579-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S48579-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S58922-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S58922-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S79269-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S79269-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S79269-1220D	FD	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S79269-1220D	FD	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
Modified Qualifiers for	test method	I E218.6					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-EB-1220-01	EB	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-EB-1220-01	EB	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-EB-1220-02	EB	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-EB-1220-02	EB	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW045S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW045S-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S1202-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S1202-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S17231S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S17231S-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S19495-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S19495-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S3599-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S3599-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S48579-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S48579-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S58922-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S58922-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S79269-1220	N	Chromium, Hexavalent	10.0	9.00 U J1	9.00 U	9.00 UJ	Р
S79269-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S79269-1220D	FD	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S79269-1220D	FD	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
Modified Qualifiers for	test method	I SW8082A					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S17231S-1220	N	PCB, Total	0.500	0.300 U	0.300 UJ	0.300 U	
S17231S-1220	N	PCB-1016 (Aroclor 1016)	0.500	0.300 U M	0.300 UJ	0.300 U	
S17231S-1220	N	PCB-1221 (Aroclor 1221)	0.500	0.300 U	0.300 UJ	0.300 U	

Table of Results with Modified Qualifiers

Modified Qualifiers for to	est method	d SW8082A				
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result Reason
S17231S-1220	N	PCB-1232 (Aroclor 1232)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1242 (Aroclor 1242)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1248 (Aroclor 1248)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1254 (Aroclor 1254)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1260 (Aroclor 1260)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1262 (Aroclor 1262)	0.500	0.300 U M	0.300 UJ	0.300 U
S17231S-1220	N	PCB-1268 (Aroclor 1268)	0.500	0.300 U M	0.300 UJ	0.300 U
S19495-1220	N	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S19495-1220	N	PCB-1016 (Aroclor 1016)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1221 (Aroclor 1221)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1232 (Aroclor 1232)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1242 (Aroclor 1242)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1248 (Aroclor 1248)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1260 (Aroclor 1260)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U
S19495-1220	N	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
S48579-1220	N	PCB, Total	0.500	0.300 U	0.300 UJ	0.300 U
S48579-1220	N	PCB-1016 (Aroclor 1016)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1221 (Aroclor 1221)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1232 (Aroclor 1232)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1242 (Aroclor 1242)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1248 (Aroclor 1248)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1254 (Aroclor 1254)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1260 (Aroclor 1260)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1262 (Aroclor 1262)	0.500	0.300 U M	0.300 UJ	0.300 U
S48579-1220	N	PCB-1268 (Aroclor 1268)	0.500	0.300 U M	0.300 UJ	0.300 U
S79269-1220	N	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1016 (Aroclor 1016)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1232 (Aroclor 1232)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1242 (Aroclor 1242)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1248 (Aroclor 1248)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220	N	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-1220	N	PCB-1260 (Aroclor 1260)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-1220	N	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-1220	N	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-1220D	FD	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220D	FD	PCB-1016 (Aroclor 1016)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220D	FD	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-1220D	FD	PCB-1232 (Aroclor 1232)	0.520	0.310 U	0.310 UJ	0.310 U

Table of Results with Modified Qualifiers

Modified Qualifiers for test	method	SW8082A					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S79269-1220D	FD	PCB-1242 (Aroclor 1242)	0.520	0.310 U	0.310 UJ	0.310 U	
S79269-1220D	FD	PCB-1248 (Aroclor 1248)	0.520	0.310 U	0.310 UJ	0.310 U	
S79269-1220D	FD	PCB-1254 (Aroclor 1254)	0.520	0.310 U	0.310 UJ	0.310 U	
S79269-1220D	FD	PCB-1260 (Aroclor 1260)	0.520	0.310 U	0.310 UJ	0.310 U	
S79269-1220D	FD	PCB-1262 (Aroclor 1262)	0.520	0.310 U	0.310 UJ	0.310 U	
S79269-1220D	FD	PCB-1268 (Aroclor 1268)	0.520	0.310 U	0.310 UJ	0.310 U	
Modified Qualifiers for test	method	SW8270D					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S79269-1220	N	1,4-Dichlorobenzene	5.40	1.10 U Q	1.10 UJ	1.10 UJ	С
S79269-1220	N	2-Chloronaphthalene	1.10	0.860 U	0.860 UJ	0.860 U	
S79269-1220	N	4-Chloroaniline	11.0	9.60 U	9.60 UJ	9.60 U	
S79269-1220	N	Benzaldehyde	11.0	9.60 U	9.60 UJ	9.60 U	
S79269-1220	N	Benzoic acid	27.0	26.0 U	26.0 UJ	26.0 U	
S79269-1220	N	Benzyl butyl phthalate	5.40	4.30 U	4.30 UJ	4.30 U	
S79269-1220	N	Biphenyl (Diphenyl)	11.0	9.60 U	9.60 UJ	9.60 U	
S79269-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U	11.0 UJ	11.0 U	
S79269-1220	N	Caprolactam	12.0	11.0 U	11.0 UJ	11.0 U	
S79269-1220	N	Carbazole	2.10	1.10 U	1.10 UJ	1.10 U	
S79269-1220	N	Dibenzofuran	2.10	1.10 U	1.10 UJ	1.10 U	
S79269-1220	N	Diethyl phthalate	5.40	4.30 U	4.30 UJ	4.30 U	
S79269-1220	N	Dimethyl phthalate	5.40	4.30 U	4.30 UJ	4.30 U	
S79269-1220	N	Di-n-butyl phthalate	5.40	4.30 U	4.30 UJ	4.30 U	
S79269-1220	N	di-n-Octyl phthalate	12.0	11.0 U	11.0 UJ	11.0 U	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
D1	Lab Replicate RPD
H1	Test Hold Time
H2	Prep Hold Time
I	Surrogate recovery outside project limits.
L	Lab Blank
M	MS Recovery
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect
V	Equipment Blank
Flag Cod	e and Definitions
Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
	The analyte was not detected however, the result is estimated due to discrepancies in meeting certain analyte-specific

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.
х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			due a known mis-spike of LCS for prep batch 410-77182; the associated samples were reprep but outside holding time with acceptable limits; first set of data was reported and qualified
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		1-methylnaphthalene-d10 had a low surrogate recovery at 39% for sample S79269-1220; sample was re-prep outside hold time; first set of results were reported and qualified
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		MB 410-77182 had detections of 2- methylnaphthalene and naphthalene; MB 410- 77323 had a detection of naphthalene; see outlier report
Were target analytes in the field blank less than MDL?		•		CH-EB-1220-02 had several BNASIM analytes detected; see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		٠		LCS failure that resulted in J/X qualifications was the result of a known mis-spike by the laboratory; the associated samples were re-prep but outside holding time with acceptable limits; first set of data was reported and qualified for CH-MW044S-1220, S3599-1220,S1202-1220, S58922-1220; the qualified field sample results should be considered usable as estimated values with a negative bias; validator modified the qualifiers
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: E218.6 (Hexavalent Chromium by EPA Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?		•		pH was found to be approximately 8.0-8.5; validator modified qualifiers; added P for the reason code
Were holding times met?		•		pH was found to be approximately 8.0-8.5; validator modified qualifiers; added P for the reason code
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?		•		both EBs had several analytes detected; see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		see outlier report
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance limits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?		•		see outlier report
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW7470A (Mercury in Water (Manual Cold-Vapor T	echnique))		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		MB 410-76889 had detection of mercury; see outlier report
Were target analytes in the field blank less than MDL?		•		both EBs had mercury detections; see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance limits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			prep hold time exceeds 7 days according to the eQAPP; EPA NFG recommends 1 year; validator modified the qualifiers
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW8260C (Volatile Organic Compounds by GC/MS)			
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?				The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?		•		see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•		,	
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			The container count for the following samples did not match the information listed on the Chain-of-Custody (COC): CH-EB-1220-01 (410-23807-4) and CH-EB-1220-02 (410-23807-10). The laboratory received 11 containers, while the COC lists 13 containers
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperature of the 3 coolers were 1.7 C, 2.3 C, and 2.4 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		2-fluorophenol had a low surrogate recovery at 37% for sample S79269-1220; sample was reprep outside hold time; first set of results were reported and base neutral compounds were not qualified for the one acid surrogate that is out (the duplicate sample was within surrogate limits)
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		see outlier report; low LCS; sample S79269- 1220D was re-prep outside hold time; first set of results were reported and qualified
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Facility: C02NY0024-03, Camp Hero

Event: Camp Hero Fall 2020

SDG: 410-24516-1_52_2a_FUDSChem_rev3

Guidance Document: Quality Assurance Project Plan, Remedial Investigation Former Camp Hero,

Montauk, New York, June 2016

Prime Contractor: AECOM, Arlington, VA

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: AECOM

Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: February 06, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH_TB-1220-03	410-24516-7	Water	Trip Blank/TB									Χ	
CH-MW044D-1220	410-24516-2	Water	Field Sample/N	Χ	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х
CH-MW044S-1220	410-24516-1	Water	Field Sample/N	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	X
CH-MW045D-1220	410-24516-3	Water	Field Sample/N	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	X
S70627-1220	410-24516-4	Water	Field Sample/N	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	X
S76304-1220	410-24516-5	Water	Field Sample/N	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
S76304-1220D	410-24516-6	Water	Field Duplicate/FD	Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-24516-1_52_2a_FUDSChem_rev3. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative

Extracted Internal Standard

Field Duplicate RPD

Lab Blank

Lab Replicate RPD

LCS Recovery

LCS RPD

MS Recovery

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 268 results (31.09%) out of the 862 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW044D-1220 (N)/ 410-24516-2		11.29	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW044S-1220 (N)/ 410-24516-1		11.36	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW045D-1220 (N)/ 410-24516-3		10.40	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S70627-1220 (N)/ 410-24516-4		10.31	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220 (N)/ 410-24516-5		9.390	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220D (FD)/ 410-24516-6		9.390	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044D-1220	N	1,4-Dioxane (p-Dioxane)	0.300	0.200 U H H3	0.200 UJ		ug/l	H2/I
CH-MW044D-1220	N	1-Methylnaphthalene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	2-Methylnaphthalene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Acenaphthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Acenaphthylene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Anthracene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)anthracene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Chrysene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Fluorene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044D-1220	N	Naphthalene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Phenanthrene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044S-1220	N	1,4-Dioxane (p-Dioxane)	0.330	1.10 H H3	1.10 J	-	ug/l	H2
CH-MW044S-1220	N	1-Methylnaphthalene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	2-Methylnaphthalene	0.0770	0.0660 U H H3	0.0660 UJ		ug/l	H2
CH-MW044S-1220	N	Acenaphthene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Acenaphthylene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Anthracene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(a)anthracene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(a)pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(b)fluoranthene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(g,h,i)perylene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(k)fluoranthene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Chrysene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Dibenz(a,h)anthracene	0.0770	0.0660 U H H3	0.0660 UJ		ug/l	H2
CH-MW044S-1220	N	Fluoranthene	0.0550	0.0110 J H H3	0.0110 J	-	ug/l	H2/TR
CH-MW044S-1220	N	Fluorene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Indeno(1,2,3-c,d)pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Naphthalene	0.0770	0.0660 U H H3	0.0660 UJ		ug/l	H2
CH-MW044S-1220	N	Phenanthrene	0.0770	0.0380 J H H3	0.0380 J	-	ug/l	H2/TR
CH-MW044S-1220	N	Pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	1,4-Dioxane (p-Dioxane)	0.330	0.190 J H H3	0.190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	1-Methylnaphthalene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	2-Methylnaphthalene	0.0780	0.0670 U H H3	0.0670 UJ		ug/l	H2
CH-MW045D-1220	N	Acenaphthene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Acenaphthylene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Anthracene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045D-1220	N	Benzo(a)anthracene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Benzo(a)pyrene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Benzo(b)fluoranthene	0.0560	0.0160 J H H3	0.0160 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Benzo(g,h,i)perylene	0.0560	0.0190 J H H3	0.0190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Benzo(k)fluoranthene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Chrysene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Dibenz(a,h)anthracene	0.0780	0.0670 U H H3	0.0670 UJ		ug/l	H2
CH-MW045D-1220	N	Fluoranthene	0.0560	0.0180 J H H3	0.0180 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Fluorene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Indeno(1,2,3-c,d)pyrene	0.0560	0.0190 J H H3	0.0190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Naphthalene	0.0780	0.0330 J H H3	0.0330 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Phenanthrene	0.0780	0.0740 J H H3	0.0740 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Pyrene	0.0560	0.0210 J H H3	0.0210 J	-	ug/l	H2/TR
S70627-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U H H3	0.210 UJ		ug/l	H2/I
S70627-1220	N	1-Methylnaphthalene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	2-Methylnaphthalene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Acenaphthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Acenaphthylene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Anthracene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Benzo(a)anthracene	0.0520	0.0380 J H H3	0.0380 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(a)pyrene	0.0520	0.0130 J H H3	0.0130 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(b)fluoranthene	0.0520	0.0440 J H H3	0.0440 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(g,h,i)perylene	0.0520	0.0370 J H H3	0.0370 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(k)fluoranthene	0.0520	0.0460 J H H3	0.0460 J	-	ug/l	H2/TR
S70627-1220	N	Chrysene	0.0520	0.0440 J H H3	0.0440 J	-	ug/l	H2/TR
S70627-1220	N	Dibenz(a,h)anthracene	0.0720	0.0410 J H H3	0.0410 J	-	ug/l	H2/TR
S70627-1220	N	Fluoranthene	0.0520	0.0370 J H H3	0.0370 J	-	ug/l	H2/TR
S70627-1220	N	Fluorene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S70627-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0450 J H H3	0.0450 J	-	ug/l	H2/TR
S70627-1220	N	Naphthalene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Phenanthrene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Pyrene	0.0520	0.0290 J H H3	0.0290 J	-	ug/l	H2/TR
S76304-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U H H3	0.210 UJ		ug/l	H2
S76304-1220	N	1-Methylnaphthalene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	2-Methylnaphthalene	0.0750	0.0640 U H H3	0.0640 UJ		ug/l	H2
S76304-1220	N	Acenaphthene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Acenaphthylene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Anthracene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(a)anthracene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(a)pyrene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(b)fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(g,h,i)perylene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(k)fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Chrysene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Dibenz(a,h)anthracene	0.0750	0.0640 U H H3	0.0640 UJ		ug/l	H2
S76304-1220	N	Fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Fluorene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Indeno(1,2,3-c,d)pyrene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Naphthalene	0.0750	0.0640 U H H3	0.0640 UJ		ug/l	H2
S76304-1220	N	Phenanthrene	0.0750	0.0640 U H H3	0.0640 UJ		ug/l	H2
S76304-1220	N	Pyrene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220D	FD	1,4-Dioxane (p-Dioxane)	0.310	0.210 U H H3	0.210 UJ		ug/l	H2
S76304-1220D	FD	1-Methylnaphthalene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	2-Methylnaphthalene	0.0730	0.0630 U H H3	0.0630 UJ		ug/l	H2
S76304-1220D	FD	Acenaphthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Acenaphthylene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
		,						

Qualified Results associated with the Prep Hold Time for BNASIM

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
S76304-1220D	FD	Anthracene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Benzo(a)anthracene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Benzo(a)pyrene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Benzo(b)fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Benzo(g,h,i)perylene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Benzo(k)fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Chrysene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Dibenz(a,h)anthracene	0.0730	0.0630 U H H3	0.0630 UJ	ug/l	H2
S76304-1220D	FD	Fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Fluorene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Indeno(1,2,3-c,d)pyrene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2
S76304-1220D	FD	Naphthalene	0.0730	0.0630 U H H3	0.0630 UJ	ug/l	H2
S76304-1220D	FD	Phenanthrene	0.0730	0.0630 U H H3	0.0630 UJ	ug/l	H2
S76304-1220D	FD	Pyrene	0.0520	0.0310 U H H3	0.0310 UJ	ug/l	H2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method BNASIM, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW044D-1220 (N)/ 410-24516-2	Benzo(a)pyrene- d12	24.00	26 - 137	10 - 200	percent	J/UJ	I	
S70627-1220 (N)/ 410-24516-4	Benzo(a)pyrene- d12	25.00	26 - 137	10 - 200	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044D-1220	N	1,4-Dioxane (p-Dioxane)	0.300	0.200 U H H3	0.200 UJ		ug/l	H2/I
CH-MW044D-1220	N	1-Methylnaphthalene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	2-Methylnaphthalene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Acenaphthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Acenaphthylene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Anthracene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)anthracene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Chrysene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Fluorene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I
CH-MW044D-1220	N	Naphthalene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Phenanthrene	0.0710	0.0600 U H H3	0.0600 UJ		ug/l	H2/I
CH-MW044D-1220	N	Pyrene	0.0500	0.0300 U H H3	0.0300 UJ		ug/l	H2/I

Qualified Results associated with the Surrogate for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S70627-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U H H3	0.210 UJ		ug/l	H2/I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method E218.6, Dissolved, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW044D-1220 (N)/ 410-24516-2		34.05	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
CH-MW044S-1220 (N)/ 410-24516-1		34.12	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
CH-MW045D-1220 (N)/ 410-24516-3		33.16	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S70627-1220 (N)/ 410-24516-4		33.06	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S76304-1220 (N)/ 410-24516-5		32.14	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL
S76304-1220D (FD)/ 410-24516-6		32.14	< 28	< 56	days	J/UJ	H1	Test Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6020B, Dissolved, Field Duplicate RPD

Field duplicate analyses are performed in order to assess sample collection/laboratory precision for each sample matrix. Summary forms were evaluated and compared to electronic data deliverables. Field duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S76304-1220 (N)/ 410-24516-6	Iron	60.00	< 50	< 50	ug/l	J/UJ	D3	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Field Duplicate RPD for SW6020B, Dissolved

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S76304-1220	N	Iron	50.0	60.0	60.0 J	ug/l	D3
S76304-1220D	FD	Iron	50.0	40.0 U	40.0 UJ	ug/l	D3

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW6020B, Total, Field Duplicate RPD

Field duplicate analyses are performed in order to assess sample collection/laboratory precision for each sample matrix. Summary forms were evaluated and compared to electronic data deliverables. Field duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S76304-1220 (N)/ 410-24516-6	Barium	35.29	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Aluminum	40.00	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Nickel	45.28	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Chromium	55.32	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Arsenic	47.62	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Cobalt	48.48	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Manganese	44.44	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Zinc	38.99	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Iron	52.43	< 30	< 30	rpd	J/UJ	D3	
S76304-1220 (N)/ 410-24516-6	Magnesium	30.63	< 30	< 30	rpd	J/UJ	D3	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

$\label{eq:Qualified Results} \textbf{Qualified Results associated with the Field Duplicate RPD for $SW6020B$, $Total}$

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220	N	Aluminum	35.0	1200	1200 J		ug/l	D3
S76304-1220	N	Arsenic	2.00	520	520 J		ug/l	D3
S76304-1220	N	Barium	2.00	1400	1400 J		ug/l	D3
S76304-1220	N	Chromium	2.00	120	120 J		ug/l	D3
S76304-1220	N	Cobalt	0.500	41.0	41.0 J		ug/l	D3
S76304-1220	N	Iron	1000	1300000 D	1300000 J		ug/l	D3
S76304-1220	N	Magnesium	250	6400	6400 J		ug/l	D3
S76304-1220	N	Manganese	20.0	33000 D	33000 J		ug/l	D3
S76304-1220	N	Nickel	1.50	130	130 J		ug/l	D3
S76304-1220	N	Zinc	300	95000 D	95000 J		ug/l	D3
S76304-1220D	FD	Aluminum	35.0	800	800 J		ug/l	D3
S76304-1220D	FD	Arsenic	2.00	320	320 J		ug/l	D3
S76304-1220D	FD	Barium	2.00	980	980 J		ug/l	D3
S76304-1220D	FD	Chromium	2.00	68.0	68.0 J		ug/l	D3
S76304-1220D	FD	Cobalt	0.500	25.0	25.0 J		ug/l	D3
S76304-1220D	FD	Iron	500	760000 D	760000 J		ug/l	D3
S76304-1220D	FD	Magnesium	250	4700	4700 J		ug/l	D3
S76304-1220D	FD	Manganese	20.0	21000 D	21000 J		ug/l	D3

Qualified Results associated with the Field Duplicate RPD for SW6020B, Total

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bi	as Units	Reason
S76304-1220D	FD	Nickel	1.50	82.0	82.0 J	ug/l	D3
S76304-1220D	FD	Zinc	150	64000 D	64000 J	ug/l	D3

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW6020B, Total, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-78994/1-A (LB)/ MB 410-78994/1-A	Manganese	0.6600	< 0.63	< 2	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8082A, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW044D-1220 (N)/ 410-24516-2		12.23	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW044D-1220 (N)/ 410-24516-2		12.23	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW044S-1220 (N)/ 410-24516-1		12.30	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW044S-1220 (N)/ 410-24516-1		12.30	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW045D-1220 (N)/ 410-24516-3		11.34	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW045D-1220 (N)/ 410-24516-3		11.34	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S70627-1220 (N)/ 410-24516-4		11.24	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S70627-1220 (N)/ 410-24516-4		11.24	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220 (N)/ 410-24516-5		10.32	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220 (N)/ 410-24516-5		10.32	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220D (FD)/ 410-24516-6		10.32	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220D (FD)/ 410-24516-6		10.32	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8270D, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW044D-1220 (N)/ 410-24516-2		11.29	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW044S-1220 (N)/ 410-24516-1		11.36	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW045D-1220 (N)/ 410-24516-3		10.40	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S70627-1220 (N)/ 410-24516-4		10.31	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220 (N)/ 410-24516-5		9.390	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S76304-1220D (FD)/ 410-24516-6		9.390	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044D-1220	N	1,4-Dichlorobenzene	5.00	1.00 U H H3	1.00 UJ		ug/l	H2
CH-MW044D-1220	N	2-Chloronaphthalene	1.00	0.810 U H H3	0.810 UJ		ug/l	H2
CH-MW044D-1220	N	2-Methylphenol (o-Cresol)	2.00	1.00 U H H3	1.00 UJ		ug/l	H2
CH-MW044D-1220	N	4-Chloro-3-methylphenol	3.50	3.20 U H H3	3.20 UJ		ug/l	H2
CH-MW044D-1220	N	4-Chloroaniline	10.0	9.10 U H H3	9.10 UJ		ug/l	H2
CH-MW044D-1220	N	4-Methylphenol (p-Cresol)	2.00	1.00 U H H3	1.00 UJ		ug/l	H2
CH-MW044D-1220	N	Benzaldehyde	10.0	9.10 U H H3	9.10 UJ		ug/l	H2
CH-MW044D-1220	N	Benzoic acid	25.0	24.0 U H H3	24.0 UJ		ug/l	H2
CH-MW044D-1220	N	Benzyl butyl phthalate	5.00	4.00 U H H3	4.00 UJ		ug/l	H2
CH-MW044D-1220	N	Biphenyl (Diphenyl)	10.0	9.10 U H H3	9.10 UJ		ug/l	H2
CH-MW044D-1220	N	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
CH-MW044D-1220	N	Caprolactam	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
CH-MW044D-1220	N	Carbazole	2.00	1.00 U H H3	1.00 UJ		ug/l	H2
CH-MW044D-1220	N	Dibenzofuran	2.00	1.00 U H H3	1.00 UJ		ug/l	H2
CH-MW044D-1220	N	Diethyl phthalate	5.00	4.00 U H H3	4.00 UJ		ug/l	H2
CH-MW044D-1220	N	Dimethyl phthalate	5.00	4.00 U H H3	4.00 UJ		ug/l	H2
CH-MW044D-1220	N	Di-n-butyl phthalate	5.00	4.00 U H H3	4.00 UJ		ug/l	H2
CH-MW044D-1220	N	di-n-Octyl phthalate	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
CH-MW044S-1220	N	1,4-Dichlorobenzene	5.50	1.10 U H H3	1.10 UJ		ug/l	H2
CH-MW044S-1220	N	2-Chloronaphthalene	1.10	0.880 U H H3	0.880 UJ		ug/l	H2
CH-MW044S-1220	N	2-Methylphenol (o-Cresol)	2.20	1.70 J H H3	1.70 J	-	ug/l	H2/TR
CH-MW044S-1220	N	4-Chloro-3-methylphenol	3.90	3.50 U H H3	3.50 UJ		ug/l	H2
CH-MW044S-1220	N	4-Chloroaniline	11.0	9.90 U H H3	9.90 UJ		ug/l	H2
CH-MW044S-1220	N	4-Methylphenol (p-Cresol)	2.20	1.10 U H H3	1.10 UJ		ug/l	H2

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-MW044S-1220	N	Benzaldehyde	11.0	9.90 U H H3	9.90 UJ	ug/l	H2
CH-MW044S-1220	N	Benzoic acid	28.0	26.0 U H H3	26.0 UJ	ug/l	H2
CH-MW044S-1220	N	Benzyl butyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Biphenyl (Diphenyl)	11.0	9.90 U H H3	9.90 UJ	ug/l	H2
CH-MW044S-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW044S-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW044S-1220	N	Carbazole	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	Dibenzofuran	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	Diethyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Dimethyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Di-n-butyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	1,4-Dichlorobenzene	5.60	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	2-Chloronaphthalene	1.10	0.890 U H H3	0.890 UJ	ug/l	H2
CH-MW045D-1220	N	2-Methylphenol (o-Cresol)	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	4-Chloro-3-methylphenol	3.90	3.60 U H H3	3.60 UJ	ug/l	H2
CH-MW045D-1220	N	4-Chloroaniline	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW045D-1220	N	4-Methylphenol (p-Cresol)	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Benzaldehyde	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW045D-1220	N	Benzoic acid	28.0	27.0 U H H3	27.0 UJ	ug/l	H2
CH-MW045D-1220	N	Benzyl butyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Biphenyl (Diphenyl)	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW045D-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	Carbazole	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Dibenzofuran	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Diethyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Dimethyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Di-n-butyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
S70627-1220	N	1,4-Dichlorobenzene	5.20	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	2-Chloronaphthalene	1.00	0.830 U H H3	0.830 UJ	ug/l	H2
S70627-1220	N	2-Methylphenol (o-Cresol)	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	4-Chloro-3-methylphenol	3.60	3.30 U H H3	3.30 UJ	ug/l	H2
S70627-1220	N	4-Chloroaniline	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	4-Methylphenol (p-Cresol)	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	Benzaldehyde	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	Benzoic acid	26.0	25.0 U H H3	25.0 UJ	ug/l	H2
S70627-1220	N	Benzyl butyl phthalate	5.20	4.10 U H H3	4.10 UJ	ug/l	H2
S70627-1220	N	Biphenyl (Diphenyl)	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
			-				

		•						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S70627-1220	N	Caprolactam	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S70627-1220	N	Carbazole	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S70627-1220	N	Dibenzofuran	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S70627-1220	N	Diethyl phthalate	5.20	4.10 U H H3	4.10 UJ		ug/l	H2
S70627-1220	N	Dimethyl phthalate	5.20	4.10 U H H3	4.10 UJ		ug/l	H2
S70627-1220	N	Di-n-butyl phthalate	5.20	4.10 U H H3	4.10 UJ		ug/l	H2
S70627-1220	N	di-n-Octyl phthalate	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S76304-1220	N	1,4-Dichlorobenzene	5.40	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	2-Chloronaphthalene	1.10	0.860 U H H3	0.860 UJ		ug/l	H2
S76304-1220	N	2-Methylphenol (o-Cresol)	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	4-Chloro-3-methylphenol	3.80	3.40 U H H3	3.40 UJ		ug/l	H2
S76304-1220	N	4-Chloroaniline	11.0	9.70 U H H3	9.70 UJ		ug/l	H2
S76304-1220	N	4-Methylphenol (p-Cresol)	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	Benzaldehyde	11.0	9.70 U H H3	9.70 UJ		ug/l	H2
S76304-1220	N	Benzoic acid	27.0	26.0 U H H3	26.0 UJ		ug/l	H2
S76304-1220	N	Benzyl butyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	Biphenyl (Diphenyl)	11.0	9.70 U H H3	9.70 UJ		ug/l	H2
S76304-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220	N	Carbazole	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	Dibenzofuran	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	Diethyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	Dimethyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	Di-n-butyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220D	FD	1,4-Dichlorobenzene	5.20	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	2-Chloronaphthalene	1.00	0.830 U H H3	0.830 UJ		ug/l	H2
S76304-1220D	FD	2-Methylphenol (o-Cresol)	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	4-Chloro-3-methylphenol	3.60	3.30 U H H3	3.30 UJ		ug/l	H2
S76304-1220D	FD	4-Chloroaniline	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	4-Methylphenol (p-Cresol)	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	Benzaldehyde	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	Benzoic acid	26.0	25.0 U H H3	25.0 UJ		ug/l	H2
S76304-1220D	FD	Benzyl butyl phthalate	5.20	4.20 U H H3	4.20 UJ		ug/l	H2
S76304-1220D	FD	Biphenyl (Diphenyl)	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S76304-1220D	FD	Caprolactam	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S76304-1220D	FD	Carbazole	2.10	1.00 U H H3	1.00 UJ		ug/l	H2

Qualified Results associated with the Prep Hold Time for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S76304-1220D	FD	Diethyl phthalate	5.20	4.20 U H H3	4.20 UJ	ug/l	H2
S76304-1220D	FD	Dimethyl phthalate	5.20	4.20 U H H3	4.20 UJ	ug/l	H2
S76304-1220D	FD	Di-n-butyl phthalate	5.20	4.20 U H H3	4.20 UJ	ug/l	H2
S76304-1220D	FD	di-n-Octyl phthalate	11.0	10.0 U M H	10.0 UJ	ug/l	H2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-MW044D-1220	N	1,4-Dioxane (p-Dioxane)	0.300	0.200 U H H3	0.200 UJ	ug/l	H2/I
CH-MW044D-1220	N	1-Methylnaphthalene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	2-Methylnaphthalene	0.0710	0.0600 U H H3	0.0600 UJ	ug/l	H2/I
CH-MW044D-1220	N	Acenaphthene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Acenaphthylene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Anthracene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)anthracene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Benzo(a)pyrene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Benzo(b)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Benzo(g,h,i)perylene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Benzo(k)fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Chrysene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Dibenz(a,h)anthracene	0.0710	0.0600 U H H3	0.0600 UJ	ug/l	H2/I
CH-MW044D-1220	N	Fluoranthene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Fluorene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Indeno(1,2,3-c,d)pyrene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044D-1220	N	Naphthalene	0.0710	0.0600 U H H3	0.0600 UJ	ug/l	H2/I
CH-MW044D-1220	N	Phenanthrene	0.0710	0.0600 U H H3	0.0600 UJ	ug/l	H2/I
CH-MW044D-1220	N	Pyrene	0.0500	0.0300 U H H3	0.0300 UJ	ug/l	H2/I
CH-MW044S-1220	N	1,4-Dioxane (p-Dioxane)	0.330	1.10 H H3	1.10 J	- ug/l	H2
CH-MW044S-1220	N	1-Methylnaphthalene	0.0550	0.0330 U H H3	0.0330 UJ	ug/l	H2
CH-MW044S-1220	N	2-Methylnaphthalene	0.0770	0.0660 U H H3	0.0660 UJ	ug/l	H2
CH-MW044S-1220	N	Acenaphthene	0.0550	0.0330 U H H3	0.0330 UJ	ug/l	H2
CH-MW044S-1220	N	Acenaphthylene	0.0550	0.0330 U H H3	0.0330 UJ	ug/l	H2
CH-MW044S-1220	N	Anthracene	0.0550	0.0330 U H H3	0.0330 UJ	ug/l	H2
CH-MW044S-1220	N	Benzo(a)anthracene	0.0550	0.0330 U H H3	0.0330 UJ	ug/l	H2

Table of All Qualified Results

Test Method: BNASIM		n Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044S-1220	N	Benzo(a)pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(b)fluoranthene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(g,h,i)perylene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Benzo(k)fluoranthene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Chrysene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Dibenz(a,h)anthracene	0.0770	0.0660 U H H3	0.0660 UJ		ug/l	H2
CH-MW044S-1220	N	Fluoranthene	0.0550	0.0110 J H H3	0.0110 J	-	ug/l	H2/TR
CH-MW044S-1220	N	Fluorene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Indeno(1,2,3-c,d)pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW044S-1220	N	Naphthalene	0.0770	0.0660 U H H3	0.0660 UJ		ug/l	H2
CH-MW044S-1220	N	Phenanthrene	0.0770	0.0380 J H H3	0.0380 J	-	ug/l	H2/TR
CH-MW044S-1220	N	Pyrene	0.0550	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	1,4-Dioxane (p-Dioxane)	0.330	0.190 J H H3	0.190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	1-Methylnaphthalene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	2-Methylnaphthalene	0.0780	0.0670 U H H3	0.0670 UJ		ug/l	H2
CH-MW045D-1220	N	Acenaphthene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Acenaphthylene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Anthracene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Benzo(a)anthracene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Benzo(a)pyrene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Benzo(b)fluoranthene	0.0560	0.0160 J H H3	0.0160 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Benzo(g,h,i)perylene	0.0560	0.0190 J H H3	0.0190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Benzo(k)fluoranthene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Chrysene	0.0560	0.0330 U H H3	0.0330 UJ		ug/l	H2
CH-MW045D-1220	N	Dibenz(a,h)anthracene	0.0780	0.0670 U H H3	0.0670 UJ		ug/l	H2
CH-MW045D-1220	N	Fluoranthene	0.0560	0.0180 J H H3	0.0180 J	-	ug/l	H2/TR
	N	Fluorene	0.0560	0.0330 U H	0.0330 UJ		ug/l	H2

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045D-1220	N	Indeno(1,2,3-c,d)pyrene	0.0560	0.0190 J H H3	0.0190 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Naphthalene	0.0780	0.0330 J H H3	0.0330 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Phenanthrene	0.0780	0.0740 J H H3	0.0740 J	-	ug/l	H2/TR
CH-MW045D-1220	N	Pyrene	0.0560	0.0210 J H H3	0.0210 J	-	ug/l	H2/TR
S70627-1220	N	1,4-Dioxane (p-Dioxane)	0.310	0.210 U H H3	0.210 UJ		ug/l	H2/I
S70627-1220	N	1-Methylnaphthalene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	2-Methylnaphthalene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Acenaphthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Acenaphthylene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Anthracene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Benzo(a)anthracene	0.0520	0.0380 J H H3	0.0380 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(a)pyrene	0.0520	0.0130 J H H3	0.0130 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(b)fluoranthene	0.0520	0.0440 J H H3	0.0440 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(g,h,i)perylene	0.0520	0.0370 J H H3	0.0370 J	-	ug/l	H2/TR
S70627-1220	N	Benzo(k)fluoranthene	0.0520	0.0460 J H H3	0.0460 J	-	ug/l	H2/TR
S70627-1220	N	Chrysene	0.0520	0.0440 J H H3	0.0440 J	-	ug/l	H2/TR
S70627-1220	N	Dibenz(a,h)anthracene	0.0720	0.0410 J H H3	0.0410 J	-	ug/l	H2/TR
S70627-1220	N	Fluoranthene	0.0520	0.0370 J H H3	0.0370 J	-	ug/l	H2/TR
S70627-1220	N	Fluorene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S70627-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0450 J H H3	0.0450 J	-	ug/l	H2/TR
S70627-1220	N	Naphthalene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Phenanthrene	0.0720	0.0620 U H H3	0.0620 UJ		ug/l	H2
S70627-1220	N	Pyrene	0.0520	0.0290 J H H3	0.0290 J	-	ug/l	H2/TR
S76304-1220	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U H H3	0.210 UJ		ug/l	H2
S76304-1220	N	1-Methylnaphthalene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	2-Methylnaphthalene	0.0750	0.0640 U H H3	0.0640 UJ		ug/l	H2
S76304-1220	N	Acenaphthene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220	N	Acenaphthylene	0.0540	0.0320 U H H3	0.0320 UJ	1	ug/l	H2
S76304-1220	N	Anthracene	0.0540	0.0320 U H H3	0.0320 UJ	ı	ug/l	H2
S76304-1220	N	Benzo(a)anthracene	0.0540	0.0320 U H H3	0.0320 UJ	1	ug/l	H2
S76304-1220	N	Benzo(a)pyrene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Benzo(b)fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ	-	ug/l	H2
S76304-1220	N	Benzo(g,h,i)perylene	0.0540	0.0320 U H H3	0.0320 UJ	-	ug/l	H2
S76304-1220	N	Benzo(k)fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ	ı	ug/l	H2
S76304-1220	N	Chrysene	0.0540	0.0320 U H H3	0.0320 UJ	-	ug/l	H2
S76304-1220	N	Dibenz(a,h)anthracene	0.0750	0.0640 U H H3	0.0640 UJ	-	ug/l	H2
S76304-1220	N	Fluoranthene	0.0540	0.0320 U H H3	0.0320 UJ	ı	ug/l	H2
S76304-1220	N	Fluorene	0.0540	0.0320 U H H3	0.0320 UJ	ı	ug/l	H2
S76304-1220	N	Indeno(1,2,3-c,d)pyrene	0.0540	0.0320 U H H3	0.0320 UJ		ug/l	H2
S76304-1220	N	Naphthalene	0.0750	0.0640 U H H3	0.0640 UJ	ı	ug/l	H2
S76304-1220	N	Phenanthrene	0.0750	0.0640 U H H3	0.0640 UJ	-	ug/l	H2
S76304-1220	N	Pyrene	0.0540	0.0320 U H H3	0.0320 UJ	-	ug/l	H2
S76304-1220D	FD	1,4-Dioxane (p-Dioxane)	0.310	0.210 U H H3	0.210 UJ		ug/l	H2
S76304-1220D	FD	1-Methylnaphthalene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	2-Methylnaphthalene	0.0730	0.0630 U H H3	0.0630 UJ	-	ug/l	H2
S76304-1220D	FD	Acenaphthene	0.0520	0.0310 U H H3	0.0310 UJ	ı	ug/l	H2
S76304-1220D	FD	Acenaphthylene	0.0520	0.0310 U H H3	0.0310 UJ	ı	ug/l	H2
S76304-1220D	FD	Anthracene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Benzo(a)anthracene	0.0520	0.0310 U H H3	0.0310 UJ	-	ug/l	H2
S76304-1220D	FD	Benzo(a)pyrene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Benzo(b)fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Benzo(g,h,i)perylene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Benzo(k)fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Chrysene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220D	FD	Dibenz(a,h)anthracene	0.0730	0.0630 U H H3	0.0630 UJ		ug/l	H2
S76304-1220D	FD	Fluoranthene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Fluorene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Indeno(1,2,3-c,d)pyrene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
S76304-1220D	FD	Naphthalene	0.0730	0.0630 U H H3	0.0630 UJ		ug/l	H2
S76304-1220D	FD	Phenanthrene	0.0730	0.0630 U H H3	0.0630 UJ		ug/l	H2
S76304-1220D	FD	Pyrene	0.0520	0.0310 U H H3	0.0310 UJ		ug/l	H2
Test Method: SW6020B	Extract	ion Method: Dissolved						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220	N	Iron	50.0	60.0	60.0 J		ug/l	D3
S76304-1220D	FD	Iron	50.0	40.0 U	40.0 UJ		ug/l	D3
Test Method: SW6020B	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220	N	Aluminum	35.0	1200	1200 J		ug/l	D3
S76304-1220	N	Arsenic	2.00	520	520 J		ug/l	D3
S76304-1220	N	Barium	2.00	1400	1400 J		ug/l	D3
S76304-1220	N	Chromium	2.00	120	120 J		ug/l	D3
S76304-1220	N	Cobalt	0.500	41.0	41.0 J		ug/l	D3
S76304-1220	N	Iron	1000	1300000 D	1300000 J		ug/l	D3
S76304-1220	N	Magnesium	250	6400	6400 J		ug/l	D3
S76304-1220	N	Manganese	20.0	33000 D	33000 J		ug/l	D3
S76304-1220	N	Nickel	1.50	130	130 J		ug/l	D3
S76304-1220	N	Zinc	300	95000 D	95000 J		ug/l	D3
S76304-1220D	FD	Aluminum	35.0	800	800 J		ug/l	D3
S76304-1220D	FD	Arsenic	2.00	320	320 J		ug/l	D3
S76304-1220D	FD	Barium	2.00	980	980 J		ug/l	D3
S76304-1220D	FD	Chromium	2.00	68.0	68.0 J		ug/l	D3
S76304-1220D	FD	Cobalt	0.500	25.0	25.0 J		ug/l	D3
S76304-1220D	FD	Iron	500	760000 D	760000 J		ug/l	D3
S76304-1220D	FD	Magnesium	250	4700	4700 J		ug/l	D3
S76304-1220D	FD	Manganese	20.0	21000 D	21000 J		ug/l	D3
S76304-1220D	FD	Nickel	1.50	82.0	82.0 J		ug/l	D3
S76304-1220D	FD	Zinc	150	64000 D	64000 J		ug/l	D3
Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044D-1220	N	1,4-Dichlorobenzene	5.00	1.00 U H H3	1.00 UJ		ug/l	H2

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-MW044D-1220	N	2-Chloronaphthalene	1.00	0.810 U H H3	0.810 UJ	ug/l	H2
CH-MW044D-1220	N	2-Methylphenol (o-Cresol)	2.00	1.00 U H H3	1.00 UJ	ug/l	H2
CH-MW044D-1220	N	4-Chloro-3-methylphenol	3.50	3.20 U H H3	3.20 UJ	ug/l	H2
CH-MW044D-1220	N	4-Chloroaniline	10.0	9.10 U H H3	9.10 UJ	ug/l	H2
CH-MW044D-1220	N	4-Methylphenol (p-Cresol)	2.00	1.00 U H H3	1.00 UJ	ug/l	H2
CH-MW044D-1220	N	Benzaldehyde	10.0	9.10 U H H3	9.10 UJ	ug/l	H2
CH-MW044D-1220	N	Benzoic acid	25.0	24.0 U H H3	24.0 UJ	ug/l	H2
CH-MW044D-1220	N	Benzyl butyl phthalate	5.00	4.00 U H H3	4.00 UJ	ug/l	H2
CH-MW044D-1220	N	Biphenyl (Diphenyl)	10.0	9.10 U H H3	9.10 UJ	ug/l	H2
CH-MW044D-1220	N	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW044D-1220	N	Caprolactam	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW044D-1220	N	Carbazole	2.00	1.00 U H H3	1.00 UJ	ug/l	H2
CH-MW044D-1220	N	Dibenzofuran	2.00	1.00 U H H3	1.00 UJ	ug/l	H2
CH-MW044D-1220	N	Diethyl phthalate	5.00	4.00 U H H3	4.00 UJ	ug/l	H2
CH-MW044D-1220	N	Dimethyl phthalate	5.00	4.00 U H H3	4.00 UJ	ug/l	H2
CH-MW044D-1220	N	Di-n-butyl phthalate	5.00	4.00 U H H3	4.00 UJ	ug/l	H2
CH-MW044D-1220	N	di-n-Octyl phthalate	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW044S-1220	N	1,4-Dichlorobenzene	5.50	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	2-Chloronaphthalene	1.10	0.880 U H H3	0.880 UJ	ug/l	H2
CH-MW044S-1220	N	2-Methylphenol (o-Cresol)	2.20	1.70 J H H3	1.70 J	- ug/l	H2/TR
CH-MW044S-1220	N	4-Chloro-3-methylphenol	3.90	3.50 U H H3	3.50 UJ	ug/l	H2
CH-MW044S-1220	N	4-Chloroaniline	11.0	9.90 U H H3	9.90 UJ	ug/l	H2
CH-MW044S-1220	N	4-Methylphenol (p-Cresol)	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	Benzaldehyde	11.0	9.90 U H H3	9.90 UJ	ug/l	H2
CH-MW044S-1220	N	Benzoic acid	28.0	26.0 U H H3	26.0 UJ	ug/l	H2
CH-MW044S-1220	N	Benzyl butyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Biphenyl (Diphenyl)	11.0	9.90 U H H3	9.90 UJ	ug/l	H2
CH-MW044S-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW044S-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW044S-1220	N	Carbazole	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	Dibenzofuran	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW044S-1220	N	Diethyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Dimethyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	Di-n-butyl phthalate	5.50	4.40 U H H3	4.40 UJ	ug/l	H2
CH-MW044S-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	1,4-Dichlorobenzene	5.60	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	2-Chloronaphthalene	1.10	0.890 U H H3	0.890 UJ	ug/l	H2
CH-MW045D-1220	N	2-Methylphenol (o-Cresol)	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	4-Chloro-3-methylphenol	3.90	3.60 U H H3	3.60 UJ	ug/l	H2
CH-MW045D-1220	N	4-Chloroaniline	11.0	10.0 U H H3		ug/l	H2

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
CH-MW045D-1220	N	4-Methylphenol (p-Cresol)	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Benzaldehyde	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW045D-1220	N	Benzoic acid	28.0	27.0 U H H3	27.0 UJ	ug/l	H2
CH-MW045D-1220	N	Benzyl butyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Biphenyl (Diphenyl)	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
CH-MW045D-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
CH-MW045D-1220	N	Carbazole	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Dibenzofuran	2.20	1.10 U H H3	1.10 UJ	ug/l	H2
CH-MW045D-1220	N	Diethyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Dimethyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	Di-n-butyl phthalate	5.60	4.50 U H H3	4.50 UJ	ug/l	H2
CH-MW045D-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ	ug/l	H2
S70627-1220	N	1,4-Dichlorobenzene	5.20	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	2-Chloronaphthalene	1.00	0.830 U H H3	0.830 UJ	ug/l	H2
S70627-1220	N	2-Methylphenol (o-Cresol)	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	4-Chloro-3-methylphenol	3.60	3.30 U H H3	3.30 UJ	ug/l	H2
S70627-1220	N	4-Chloroaniline	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	4-Methylphenol (p-Cresol)	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	Benzaldehyde	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	Benzoic acid	26.0	25.0 U H H3	25.0 UJ	ug/l	H2
S70627-1220	N	Benzyl butyl phthalate	5.20	4.10 U H H3	4.10 UJ	ug/l	H2
S70627-1220	N	Biphenyl (Diphenyl)	10.0	9.30 U H H3	9.30 UJ	ug/l	H2
S70627-1220	N	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
S70627-1220	N	Caprolactam	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
S70627-1220	N	Carbazole	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	Dibenzofuran	2.10	1.00 U H H3	1.00 UJ	ug/l	H2
S70627-1220	N	Diethyl phthalate	5.20	4.10 U H H3	4.10 UJ	ug/l	H2
S70627-1220	N	Dimethyl phthalate	5.20	4.10 U H H3	4.10 UJ	ug/l	H2
S70627-1220	N	Di-n-butyl phthalate	5.20	4.10 U H H3	4.10 UJ	ug/l	H2
S70627-1220	N	di-n-Octyl phthalate	11.0	10.0 U H H3	10.0 UJ	ug/l	H2
S76304-1220	N	1,4-Dichlorobenzene	5.40	1.10 U H H3	1.10 UJ	ug/l	H2
S76304-1220	N	2-Chloronaphthalene	1.10	0.860 U H H3	0.860 UJ	ug/l	H2
S76304-1220	N	2-Methylphenol (o-Cresol)	2.10	1.10 U H H3	1.10 UJ	ug/l	H2
S76304-1220	N	4-Chloro-3-methylphenol	3.80	3.40 U H H3	3.40 UJ	ug/l	H2
S76304-1220	N	4-Chloroaniline	11.0	9.70 U H H3	9.70 UJ	ug/l	H2
S76304-1220	N	4-Methylphenol (p-Cresol)	2.10	1.10 U H H3	1.10 UJ	ug/l	H2
S76304-1220	N	Benzaldehyde	11.0	9.70 U H H3	9.70 UJ	ug/l	H2
S76304-1220	N	Benzoic acid	27.0	26.0 U H H3	26.0 UJ	ug/l	H2
S76304-1220	N	Benzyl butyl phthalate	5.40	4.30 U H H3	4.30 UJ	ug/l	H2
S76304-1220	N	Biphenyl (Diphenyl)	11.0	9.70 U H H3	9.70 UJ	ug/l	H2

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-1220	N	Bis(2-ethylhexyl)phthalate	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220	N	Caprolactam	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220	N	Carbazole	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	Dibenzofuran	2.10	1.10 U H H3	1.10 UJ		ug/l	H2
S76304-1220	N	Diethyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	Dimethyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	Di-n-butyl phthalate	5.40	4.30 U H H3	4.30 UJ		ug/l	H2
S76304-1220	N	di-n-Octyl phthalate	12.0	11.0 U H H3	11.0 UJ		ug/l	H2
S76304-1220D	FD	1,4-Dichlorobenzene	5.20	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	2-Chloronaphthalene	1.00	0.830 U H H3	0.830 UJ		ug/l	H2
S76304-1220D	FD	2-Methylphenol (o-Cresol)	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	4-Chloro-3-methylphenol	3.60	3.30 U H H3	3.30 UJ		ug/l	H2
S76304-1220D	FD	4-Chloroaniline	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	4-Methylphenol (p-Cresol)	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	Benzaldehyde	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	Benzoic acid	26.0	25.0 U H H3	25.0 UJ		ug/l	H2
S76304-1220D	FD	Benzyl butyl phthalate	5.20	4.20 U H H3	4.20 UJ		ug/l	H2
S76304-1220D	FD	Biphenyl (Diphenyl)	10.0	9.40 U H H3	9.40 UJ		ug/l	H2
S76304-1220D	FD	Bis(2-ethylhexyl)phthalate	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S76304-1220D	FD	Caprolactam	11.0	10.0 U H H3	10.0 UJ		ug/l	H2
S76304-1220D	FD	Carbazole	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	Dibenzofuran	2.10	1.00 U H H3	1.00 UJ		ug/l	H2
S76304-1220D	FD	Diethyl phthalate	5.20	4.20 U H H3	4.20 UJ		ug/l	H2
S76304-1220D	FD	Dimethyl phthalate	5.20	4.20 U H H3	4.20 UJ		ug/l	H2
S76304-1220D	FD	Di-n-butyl phthalate	5.20	4.20 U H H3	4.20 UJ		ug/l	H2
S76304-1220D	FD	di-n-Octyl phthalate	11.0	10.0 U M H	10.0 UJ		ug/l	H2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for test	method	BNASIM					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S70627-1220	N	1-Methylnaphthalene	0.0520	0.0310 U H H3	0.0310 UJ	0.0310 UJ	H2
S70627-1220	N	2-Methylnaphthalene	0.0720	0.0620 U H H3	0.0620 UJ	0.0620 UJ	H2
S70627-1220	N	Acenaphthene	0.0520	0.0310 U H H3	0.0310 UJ	0.0310 UJ	H2
S70627-1220	N	Acenaphthylene	0.0520	0.0310 U H H3	0.0310 UJ	0.0310 UJ	H2
S70627-1220	N	Anthracene	0.0520	0.0310 U H H3	0.0310 UJ	0.0310 UJ	H2
S70627-1220	N	Benzo(a)anthracene	0.0520	0.0380 J H H3	0.0380 J	0.0380 J	H2/TR
S70627-1220	N	Benzo(a)pyrene	0.0520	0.0130 J H H3	0.0130 J	0.0130 J	H2/TR
S70627-1220	N	Benzo(b)fluoranthene	0.0520	0.0440 J H H3	0.0440 J	0.0440 J	H2/TR
S70627-1220	N	Benzo(g,h,i)perylene	0.0520	0.0370 J H H3	0.0370 J	0.0370 J	H2/TR
S70627-1220	N	Benzo(k)fluoranthene	0.0520	0.0460 J H H3	0.0460 J	0.0460 J	H2/TR
S70627-1220	N	Chrysene	0.0520	0.0440 J H H3	0.0440 J	0.0440 J	H2/TR
S70627-1220	N	Dibenz(a,h)anthracene	0.0720	0.0410 J H H3	0.0410 J	0.0410 J	H2/TR
S70627-1220	N	Fluoranthene	0.0520	0.0370 J H H3	0.0370 J	0.0370 J	H2/TR
S70627-1220	N	Fluorene	0.0520	0.0310 U H H3	0.0310 UJ	0.0310 UJ	H2
S70627-1220	N	Indeno(1,2,3-c,d)pyrene	0.0520	0.0450 J H H3	0.0450 J	0.0450 J	H2/TR
S70627-1220	N	Naphthalene	0.0720	0.0620 U H H3	0.0620 UJ	0.0620 UJ	H2
S70627-1220	N	Phenanthrene	0.0720	0.0620 U H H3	0.0620 UJ	0.0620 UJ	H2
S70627-1220	N	Pyrene	0.0520	0.0290 J H H3	0.0290 J	0.0290 J	H2/TR
Modified Qualifiers for test	method	E218.6, Dissolved					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-MW044D-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW044D-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
CH-MW044S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW044S-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
CH-MW045D-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW045D-1220	N	Chromium, Trivalent	10.0	8.70 J	8.70 J	8.70 J	TR/P
S70627-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S70627-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	Р
S76304-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S76304-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	P
	FD	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р

Table of Results with Modified Qualifiers

FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S76304-1220D	FD	Chromium, Trivalent	10.0	9.00 U	9.00 UJ	9.00 UJ	P
370304-1220D		Cilioilliuili, Tilvaleili	10.0	9.00 0	9.00 03	9.00 03	Г
Modified Qualifiers for te	st method	I E218.6					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-MW044D-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW044D-1220	N	Chromium, Trivalent	10.0	7.30 J	7.30 J	7.30 J	TR/P
CH-MW044S-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW044S-1220	N	Chromium, Trivalent	10.0	8.30 J	8.30 J	8.30 J	TR/P
CH-MW045D-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
CH-MW045D-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S70627-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S70627-1220	N	Chromium, Trivalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S76304-1220	N	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S76304-1220	N	Chromium, Trivalent	10.0	120	120	120 J	D3/P
S76304-1220D	FD	Chromium, Hexavalent	10.0	9.00 U	9.00 U	9.00 UJ	Р
S76304-1220D	FD	Chromium, Trivalent	10.0	68.0	68.0	68.0 J	D3/P
Modified Qualifiers for te	st mathor	I SW8082A					
FieldSample ID	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-MW044D-1220	N	PCB, Total	0.510	0.300 U	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1016 (Aroclor 1016)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1221 (Aroclor 1221)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1232 (Aroclor 1232)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1242 (Aroclor 1242)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1248 (Aroclor 1248)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1254 (Aroclor 1254)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1260 (Aroclor 1260)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1262 (Aroclor 1262)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044D-1220	N	PCB-1268 (Aroclor 1268)	0.510	0.300 U M	0.300 UJ	0.300 U	
CH-MW044S-1220	N	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1016 (Aroclor 1016)	0.520	0.310 U	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1232 (Aroclor 1232)	0.520	0.310 U	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1242 (Aroclor 1242)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1248 (Aroclor 1248)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1260 (Aroclor 1260)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW044S-1220	N	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-MW045D-1220	N	PCB, Total	0.560	0.340 U	0.340 UJ	0.340 U	
CH-MW045D-1220	N	PCB-1016 (Aroclor 1016)	0.560	0.340 U	0.340 UJ	0.340 U	
		7					

Table of Results with Modified Qualifiers

Modified Qualifiers for to	est method	I SW8082A				
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result Reason
CH-MW045D-1220	N	PCB-1232 (Aroclor 1232)	0.560	0.340 U	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1242 (Aroclor 1242)	0.560	0.340 U	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1248 (Aroclor 1248)	0.560	0.340 U	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1254 (Aroclor 1254)	0.560	0.340 U	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1260 (Aroclor 1260)	0.560	0.340 U M	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1262 (Aroclor 1262)	0.560	0.340 U M	0.340 UJ	0.340 U
CH-MW045D-1220	N	PCB-1268 (Aroclor 1268)	0.560	0.340 U M	0.340 UJ	0.340 U
S70627-1220	N	PCB, Total	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1016 (Aroclor 1016)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1221 (Aroclor 1221)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1232 (Aroclor 1232)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1242 (Aroclor 1242)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1248 (Aroclor 1248)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1254 (Aroclor 1254)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1260 (Aroclor 1260)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1262 (Aroclor 1262)	0.600	0.360 U	0.360 UJ	0.360 U
S70627-1220	N	PCB-1268 (Aroclor 1268)	0.600	0.360 U M	0.360 UJ	0.360 U
S76304-1220	N	PCB, Total	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1016 (Aroclor 1016)	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1221 (Aroclor 1221)	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1232 (Aroclor 1232)	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1242 (Aroclor 1242)	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1248 (Aroclor 1248)	0.600	0.360 U	0.360 UJ	0.360 U
S76304-1220	N	PCB-1254 (Aroclor 1254)	0.600	0.360 U M	0.360 UJ	0.360 U
S76304-1220	N	PCB-1260 (Aroclor 1260)	0.600	0.360 U M	0.360 UJ	0.360 U
S76304-1220	N	PCB-1262 (Aroclor 1262)	0.600	0.360 U M	0.360 UJ	0.360 U
S76304-1220	N	PCB-1268 (Aroclor 1268)	0.600	0.360 U M	0.360 UJ	0.360 U
S76304-1220D	FD	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1016 (Aroclor 1016)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1232 (Aroclor 1232)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1242 (Aroclor 1242)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1248 (Aroclor 1248)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1254 (Aroclor 1254)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1260 (Aroclor 1260)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1262 (Aroclor 1262)	0.520	0.310 U	0.310 UJ	0.310 U
S76304-1220D	FD	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
						

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
D3	Field Duplicate RPD
H1	Test Hold Time
H2	Prep Hold Time
I	Surrogate recovery outside project limits.
L	Lab Blank
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?		•		all samples missed prep hold time; coolers did not arrive to the lab on time
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		marginal low surrogate recovery for 1-methylnapthalene-d10 for sample CH-MW044D-1220 at 46% (49-115%); outlier report for surrogate benzo(a)pyrene-d12 is incorrect (CH-MW044D-1220 and S70627-1220 BAPd12 limits good); sample missed hold time due to cooler not arriving at lab on time; no modification of qualifiers
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: E218.6 (Hexavalent Chromium by EPA Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?		•		pH between 8.2 and 9; validator modified qualifiers from U to UJ; low bias; added P for reason code
Were holding times met?	•			pH between 8.2 and 9; validator modified qualifiers from U to UJ; low bias; add P for reason code
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in he data validation process?			•	

Method: SW6020B (Trace Metals by Inductively Coupled Pla		-		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		see outlier report; low detection of manganese; no results required qualification
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were the post spike recoveries within project acceptance limits?			•	
Were the serial dilution RPD values within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?		•		see outlier report; several analytes above 30% for sample S76034-1220 and duplicate
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were the post spike recoveries within project acceptance limits?			•	
Were the serial dilution RPD values within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?				
Were any data recommended for rejection (exclusion) in the data validation process?				

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?	•			prep hold time exceeds 7 days according to the eQAPP; EPA NFG recommends 1 year; validator modified the qualifiers
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•		-	
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			trip blank had no detections
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•		,	
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			samples arrived in good condition; temperatures of the 2 coolers were 0.4 C and 0.5 C
Were holding times met?		•		all samples missed prep hold time; coolers did not arrive at the lab on time
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Facility: C02NY0024-03, Camp Hero Event: Camp Hero February 2021

SDG: 410-30212-1_52_2a_FUDSChem

Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, **Guidance Document:**

Montauk, New York, June 2016

AECOM, Arlington, VA Prime Contractor:

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: **AECOM** Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: March 19, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH-EB-0221-01	410-30212-22	Water	Equipment Blank/EB	Х	Х		Х		Х		Χ	X	X
CH-MW044D-0221	410-30212-5	Water	Field Sample/N	Х	Х		Х		Х		Χ	Х	X
CH-MW044D-0221	410-30212-6	Water	Field Sample/N			Χ		Χ		Χ			
CH-MW044S-0221	410-30212-1	Water	Field Sample/N	Х	Χ		Χ		Χ		Χ	Х	Χ
CH-MW044S-0221	410-30212-2	Water	Field Sample/N			Х		Х		Х			
CH-MW045D-0221	410-30212-7	Water	Field Sample/N	Χ	Х		Χ		Χ		Χ	Х	Χ
CH-MW045D-0221	410-30212-8	Water	Field Sample/N			Х		Χ		Χ			
CH-MW045S-0221	410-30212-3	Water	Field Sample/N	Х	Х		Χ		Χ		Χ	Χ	Χ
CH-MW045S-0221	410-30212-4	Water	Field Sample/N			Χ		Χ		Χ			
CH-TB-0221-01	410-30212-21	Water	Trip Blank/TB									Х	
S1202-0221	410-30212-17	Water	Field Sample/N	Χ	Χ		Χ		Χ		Χ	Χ	Χ
S1202-0221	410-30212-18	Water	Field Sample/N			Х		Χ		Χ			
S19494-0221	410-30212-13	Water	Field Sample/N	Х	Х		Χ		Χ		Χ	Χ	Χ
S19494-0221	410-30212-14	Water	Field Sample/N			Χ		Χ		Χ			
S19495-0221	410-30212-15	Water	Field Sample/N	Х	Х		Х		Х		Χ	Х	Χ
S19495-0221	410-30212-16	Water	Field Sample/N			Χ		Χ		Χ			
S3599-0221	410-30212-23	Water	Field Sample/N	Х	Х		Х		Х		Χ	Х	X
S3599-0221	410-30212-24	Water	Field Sample/N			Χ		Χ		Χ			
S48579-0221	410-30212-11	Water	Field Sample/N	Х	X		Χ		Χ		Χ	Х	X
S48579-0221	410-30212-12	Water	Field Sample/N			Χ		Χ		Χ			
S58922-0221	410-30212-10	Water	Field Sample/N			Χ		Χ		Χ			

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
S58922-0221	410-30212-9	Water	Field Sample/N	X	Χ		Х		Χ		Χ	Х	X
S70627-0221	410-30212-19	Water	Field Sample/N	Х	Χ		Χ		Χ		Χ	Χ	X
S70627-0221	410-30212-20	Water	Field Sample/N			Х		Χ		Х			

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-30212-1_52_2a_FUDSChem. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative Equipment Blank Lab Blank Lab Replicate RPD

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 53 results (3.19%) out of the 1659 results (sample and field QC samples) reported are qualified based on review and 4 results (0.24%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

ample ID/ ab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
19494-0221MS (SD)/ 10-30212-13MSD	1- Methylnaphthalene	20.47	< 20	< 20	rpd	J/UJ	D	
19494-0221MS (SD)/ 10-30212-13MSD	2- Methylnaphthalene	20.93	< 20	< 20	rpd	J/UJ	D	
19494-0221MS (SD)/ 10-30212-13MSD	Acenaphthylene	20.79	< 20	< 20	rpd	J/UJ	D	
19494-0221MS (SD)/ 10-30212-13MSD	Naphthalene	22.69	< 20	< 20	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for BNASIM

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Ur	nits Reas	on
S19494-0221	N	1-Methylnaphthalene	0.0540	0.0430 U J1	0.0430 UJ	ug	μ/I D	
S19494-0221	N	2-Methylnaphthalene	0.0540	0.0430 U M J1	0.0430 UJ	ug	ı/l D	
S19494-0221	N	Acenaphthylene	0.0540	0.0320 U J1	0.0320 UJ	ug	μ/I D	
S19494-0221	N	Naphthalene	0.0760	0.0650 U M J1	0.0650 UJ	ug	ı/l D	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method E218.6, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-0221MSD (SD)/ 410-30212-13MSD	Chromium, Hexavalent	120.0	90 - 111	30 - 125	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW6020B, Dissolved, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
\$19494-0221MS (MS)/ 410-30212-14MS	Barium	80.00	86 - 114	30 - 114	percent	J/UJ	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-14MS	Manganese	155.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-14MS	Sodium	130.0	85 - 117	30 - 117	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-14MS	Calcium	150.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-14MS	Iron	250.0	87 - 118	30 - 118	percent	J/None	M	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-14MS	Magnesium	200.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-14MSD	Manganese	160.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-14MSD	Calcium	175.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-14MSD	Iron	225.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-14MSD	Magnesium	150.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW6020B, Total, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-01 (EB)/ 410-30212-22	Sodium	830.0	< 50	< 200	ug/l	U/None	V	
CH-EB-0221-01 (EB)/ 410-30212-22	Calcium	320.0	< 74	< 130	ug/l	U/None	V	
CH-EB-0221-01 (EB)/ 410-30212-22	Barium	1.000	< 0.75	< 2	ug/l	U/None	V	
CH-EB-0221-01 (EB)/ 410-30212-22	Aluminum	26.00	< 20	< 35	ug/l	U/None	V	
CH-EB-0221-01 (EB)/ 410-30212-22	Magnesium	26.00	< 10	< 50	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Equipment Blank for SW6020B, Total

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044S-0221	N	Aluminum	35.0	24.0 J	35.0 U		ug/l	V
S19495-0221	N	Aluminum	35.0	62.0	62.0 J	+	ug/l	٧
S19495-0221	N	Barium	2.00	4.80	4.80 J	+	ug/l	V
S19495-0221	N	Sodium	200	3600	3600 J	+	ug/l	V

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW6020B, Total, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-98052/1-A (LB)/ MB 410-98052/1-A	Manganese	0.9450	< 0.63	< 2	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW6020B, Total, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-0221MS (MS)/ 410-30212-13MS	Barium	220.0	86 - 114	30 - 114	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-13MS	Manganese	310.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-13MS	Sodium	195.0	85 - 117	30 - 117	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-13MS	Calcium	525.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-13MS	Iron	525.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MS (MS)/ 410-30212-13MS	Magnesium	440.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-13MSD	Barium	190.0	86 - 114	30 - 114	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-13MSD	Manganese	170.0	87 - 115	30 - 115	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-13MSD	Calcium	200.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-13MSD	Iron	400.0	87 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant
S19494-0221MSD (SD)/ 410-30212-13MSD	Magnesium	135.0	83 - 118	30 - 118	percent	J/None	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260C, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-01 (EB)/ 410-30212-22	Chloroform	0.2700	< 0.2	< 1	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8270D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-97942/2-A (BS)/ LCS 410-97942/2-A	Dimethyl phthalate	32.20	45 - 127	10 - 127	percent	J/UJ	С	
LCS 410-97942/2-A (BS)/ LCS 410-97942/2-A	Benzyl butyl phthalate	44.60	53 - 134	10 - 134	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Diethyl phthalate	51.20	56 - 125	10 - 125	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Dimethyl phthalate	16.24	45 - 127	10 - 127	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Benzyl butyl phthalate	29.60	53 - 134	10 - 134	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
CH-EB-0221-01	EB	Benzyl butyl phthalate	5.70	4.50 U Q	4.50 UJ	ug/l	С
CH-EB-0221-01	EB	Dimethyl phthalate	5.70	4.50 U Q	4.50 UJ	ug/l	С
CH-MW044D-0221	N	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
CH-MW044D-0221	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
CH-MW044S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
CH-MW044S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
CH-MW045D-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	C/I
CH-MW045D-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	C/I
CH-MW045S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
CH-MW045S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S1202-0221	N	Benzyl butyl phthalate	5.10	4.00 U Q	4.00 UJ	ug/l	С
S1202-0221	N	Dimethyl phthalate	5.10	4.00 U Q	4.00 UJ	ug/l	С
S19494-0221	N	Benzyl butyl phthalate	5.40	4.30 U J1 Q	4.30 UJ	ug/l	C/M
S19494-0221	N	Dimethyl phthalate	5.40	4.30 U J1 Q	4.30 UJ	ug/l	C/M
S19495-0221	N	Benzyl butyl phthalate	5.30	4.20 U Q	4.20 UJ	ug/l	С
S19495-0221	N	Dimethyl phthalate	5.30	4.20 U Q	4.20 UJ	ug/l	С
S3599-0221	N	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
S3599-0221	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
S48579-0221	N	Benzyl butyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S48579-0221	N	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S58922-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S58922-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S70627-0221	N	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
S70627-0221	N	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S70627-0221	N	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-0221MS (MS)/ 410-30212-13MS	Dimethyl phthalate	41.76	45 - 127	10 - 127	percent	J/UJ	М	
\$19494-0221MS (MS)/ 410-30212-13MS	Benzyl butyl phthalate	52.75	53 - 134	10 - 134	percent	J/UJ	М	
S19494-0221MS (MS)/ 410-30212-13MS	Benzoic acid	54.03	10 - 47	10 - 47	percent	J/None	М	
S19494-0221MSD (SD)/ 410-30212-13MSD	Dimethyl phthalate	37.77	45 - 127	10 - 127	percent	J/UJ	М	
S19494-0221MSD (SD)/ 410-30212-13MSD	Benzyl butyl phthalate	49.27	53 - 134	10 - 134	percent	J/UJ	М	
S19494-0221MSD (SD)/ 410-30212-13MSD	Benzoic acid	48.54	10 - 47	10 - 47	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-0221	N	Benzyl butyl phthalate	5.40	4.30 U J1 Q	4.30 UJ		ug/l	C/M
S19494-0221	N	Dimethyl phthalate	5.40	4.30 U J1 Q	4.30 UJ		ug/l	C/M

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S19494-0221MS (SD)/ 410-30212-13MSD	4-Chloroaniline	23.97	< 20	< 20	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S19494-0221	N	4-Chloroaniline	11.0	9.70 U J1	9.70 UJ	ug/l	D

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW045D-0221 (N)/ 410-30212-7		9.110	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-MW045S-0221 (N)/ 410-30212-3		9.200	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S70627-0221 (N)/ 410-30212-19		7.300	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8270D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-MW045D-0221 (N)/ 410-30212-7	2-Fluorophenol	1.000	19 - 119	10 - 119	percent	J/X	1	
CH-MW045D-0221 (N)/ 410-30212-7	Nitrobenzene-d5	25.00	44 - 120	10 - 120	percent	J/UJ	I	
CH-MW045D-0221 (N)/ 410-30212-7	2,4,6- Tribromophenol	11.00	43 - 140	10 - 140	percent	J/UJ	I	
CH-MW045D-0221 (N)/ 410-30212-7	Phenol-d5	0.4000	10 - 67	10 - 67	percent	J/X	1	
CH-MW045S-0221 (N)/ 410-30212-3	2,4,6- Tribromophenol	42.00	43 - 140	10 - 140	percent	J/UJ	1	
S70627-0221 (N)/ 410-30212-19	2-Fluorobiphenyl	41.00	44 - 119	10 - 119	percent	J/UJ	I	
S70627-0221 (N)/ 410-30212-19	2-Fluorophenol	15.00	19 - 119	10 - 119	percent	J/UJ	1	
S70627-0221 (N)/ 410-30212-19	Nitrobenzene-d5	43.00	44 - 120	10 - 120	percent	J/UJ	I	
S70627-0221 (N)/ 410-30212-19	2,4,6- Tribromophenol	35.00	43 - 140	10 - 140	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	s Units	Reason
CH-MW045D-0221	N	1,4-Dichlorobenzene	5.10	1.00 U	1.00 UJ	ug/l	1
CH-MW045D-0221	N	2-Chloronaphthalene	1.00	0.810 U	0.810 UJ	ug/l	1
CH-MW045D-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	2.00 X	ug/l	1
CH-MW045D-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	5.10 X	ug/l	1
CH-MW045D-0221	N	4-Chloroaniline	10.0	9.10 U	9.10 UJ	ug/l	1
CH-MW045D-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	2.00 X	ug/l	1
CH-MW045D-0221	N	Benzaldehyde	5.10	2.00 U	2.00 UJ	ug/l	1
CH-MW045D-0221	N	Benzoic acid	25.0	24.0 U	25.0 X	ug/l	1
CH-MW045D-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	C/I
CH-MW045D-0221	N	Biphenyl (Diphenyl)	2.00	1.00 U	1.00 UJ	ug/l	1
CH-MW045D-0221	N	Bis(2-ethylhexyl)phthalate	5.10	4.10 U	4.10 UJ	ug/l	1
CH-MW045D-0221	N	Caprolactam	7.10	6.10 U	6.10 UJ	ug/l	1
CH-MW045D-0221	N	Carbazole	2.00	1.00 U	1.00 UJ	ug/l	1
CH-MW045D-0221	N	Dibenzofuran	2.00	1.00 U	1.00 UJ	ug/l	1
CH-MW045D-0221	N	Diethyl phthalate	5.10	4.10 U	4.10 UJ	ug/l	I
CH-MW045D-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	C/I
CH-MW045D-0221	N	Di-n-butyl phthalate	5.10	4.10 U	4.10 UJ	ug/l	I
CH-MW045D-0221	N	di-n-Octyl phthalate	11.0	10.0 U	10.0 UJ	ug/l	1
CH-MW045S-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	1.00 UJ	ug/l	1
CH-MW045S-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	2.00 UJ	ug/l	ī

Qualified Results associated with the Surrogate for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S19494-0221	N	1-Methylnaphthalene	0.0540	0.0430 U J1	0.0430 UJ		ug/l	D
S19494-0221	N	2-Methylnaphthalene	0.0540	0.0430 U M J1	0.0430 UJ		ug/l	D
S19494-0221	N	Acenaphthylene	0.0540	0.0320 U J1	0.0320 UJ		ug/l	D
S19494-0221	N	Naphthalene	0.0760	0.0650 U M J1	0.0650 UJ		ug/l	D
Test Method: SW6020B	Extract	ion Method: Total						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW044S-0221	N	Aluminum	35.0	24.0 J	35.0 U		ug/l	V
S19495-0221	N	Aluminum	35.0	62.0	62.0 J	+	ug/l	V
S19495-0221	N	Barium	2.00	4.80	4.80 J	+	ug/l	V
S19495-0221	N	Sodium	200	3600	3600 J	+	ug/l	V
Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-EB-0221-01	EB	Benzyl butyl phthalate	5.70	4.50 U Q	4.50 UJ		ug/l	С
CH-EB-0221-01	EB	Dimethyl phthalate	5.70	4.50 U Q	4.50 UJ		ug/l	С
CH-MW044D-0221	N	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
CH-MW044D-0221	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
CH-MW044S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
CH-MW044S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
CH-MW045D-0221	N	1,4-Dichlorobenzene	5.10	1.00 U	1.00 UJ		ug/l	Ī
CH-MW045D-0221	N	2-Chloronaphthalene	1.00	0.810 U	0.810 UJ		ug/l	I
CH-MW045D-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	2.00 X		ug/l	Į
CH-MW045D-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	5.10 X		ug/l	Į
CH-MW045D-0221	N	4-Chloroaniline	10.0	9.10 U	9.10 UJ		ug/l	ı
CH-MW045D-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	2.00 X		ug/l	l
CH-MW045D-0221	N	Benzaldehyde	5.10	2.00 U	2.00 UJ		ug/l	
CH-MW045D-0221	N	Benzoic acid	25.0	24.0 U	25.0 X		ug/l	ı
CH-MW045D-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	C/I
CH-MW045D-0221	N	Biphenyl (Diphenyl)	2.00	1.00 U	1.00 UJ		ug/l	I
CH-MW045D-0221	N	Bis(2-ethylhexyl)phthalate	5.10	4.10 U	4.10 UJ		ug/l	
CH-MW045D-0221	N	Caprolactam	7.10	6.10 U	6.10 UJ		ug/l	ı
CH-MW045D-0221	N	Carbazole	2.00	1.00 U	1.00 UJ		ug/l	I
CH-MW045D-0221	N	Dibenzofuran	2.00	1.00 U	1.00 UJ		ug/l	ı
CH-MW045D-0221	N	Diethyl phthalate	5.10	4.10 U	4.10 UJ		ug/l	l
CH-MW045D-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	C/I
CH-MW045D-0221	N	Di-n-butyl phthalate	5.10	4.10 U	4.10 UJ		ug/l	I
CH-MW045D-0221	N	di-n-Octyl phthalate	11.0	10.0 U	10.0 UJ		ug/l	ı
CH-MW045S-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	ı
CH-MW045S-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	2.00 UJ		ug/l	ı
CH-MW045S-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	1.00 UJ		ug/l	ı
CH-MW045S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-MW045S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S1202-0221	N	Benzyl butyl phthalate	5.10	4.00 U Q	4.00 UJ		ug/l	С
S1202-0221	N	Dimethyl phthalate	5.10	4.00 U Q	4.00 UJ		ug/l	С
S19494-0221	N	4-Chloroaniline	11.0	9.70 U J1	9.70 UJ		ug/l	D
S19494-0221	N	Benzyl butyl phthalate	5.40	4.30 U J1 Q	4.30 UJ		ug/l	C/M
S19494-0221	N	Dimethyl phthalate	5.40	4.30 U J1 Q	4.30 UJ		ug/l	C/M
S19495-0221	N	Benzyl butyl phthalate	5.30	4.20 U Q	4.20 UJ		ug/l	С
S19495-0221	N	Dimethyl phthalate	5.30	4.20 U Q	4.20 UJ		ug/l	С
S3599-0221	N	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
S3599-0221	N	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
S48579-0221	N	Benzyl butyl phthalate	5.40	4.30 U Q	4.30 UJ		ug/l	С
S48579-0221	N	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ		ug/l	С
S58922-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S58922-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S70627-0221	N	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S70627-0221	N	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S70627-0221	N	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

FieldSample ID	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S19494-0221	N	PCB-1016 (Aroclor 1016)	0.540	0.320 U J1	0.540 X	0.320 U	
Modified Qualifiers for to	est method	I SW8270D					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-MW045D-0221	N	1,4-Dichlorobenzene	5.10	1.00 U	5.10 X	1.00 UJ	I
CH-MW045D-0221	N	2-Chloronaphthalene	1.00	0.810 U	1.00 X	0.810 UJ	I
CH-MW045D-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	2.00 X	2.00 X	I
CH-MW045D-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	5.10 X	5.10 X	I
CH-MW045D-0221	N	4-Chloroaniline	10.0	9.10 U	10.0 X	9.10 UJ	I
CH-MW045D-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	2.00 X	2.00 X	I
CH-MW045D-0221	N	Benzaldehyde	5.10	2.00 U	5.10 X	2.00 UJ	I
CH-MW045D-0221	N	Benzoic acid	25.0	24.0 U	25.0 X	25.0 X	1
CH-MW045D-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	5.10 X	4.10 UJ	C/I
CH-MW045D-0221	N	Biphenyl (Diphenyl)	2.00	1.00 U	2.00 X	1.00 UJ	1
CH-MW045D-0221	N	Bis(2-ethylhexyl)phthalate	5.10	4.10 U	5.10 X	4.10 UJ	I
CH-MW045D-0221	N	Caprolactam	7.10	6.10 U	7.10 X	6.10 UJ	I
CH-MW045D-0221	N	Carbazole	2.00	1.00 U	2.00 X	1.00 UJ	I
CH-MW045D-0221	N	Dibenzofuran	2.00	1.00 U	2.00 X	1.00 UJ	I
CH-MW045D-0221	N	Diethyl phthalate	5.10	4.10 U	5.10 X	4.10 UJ	I
CH-MW045D-0221	N	Dimethyl phthalate	5.10	4.10 U Q	5.10 X	4.10 UJ	C/I
CH-MW045D-0221	N	Di-n-butyl phthalate	5.10	4.10 U	5.10 X	4.10 UJ	I
CH-MW045D-0221	N	di-n-Octyl phthalate	11.0	10.0 U	11.0 X	10.0 UJ	I
CH-MW045S-0221	N	1,4-Dichlorobenzene	5.10	1.00 U	1.00 UJ	1.00 U	
CH-MW045S-0221	N	2-Chloronaphthalene	1.00	0.810 U	0.810 UJ	0.810 U	
CH-MW045S-0221	N	2-Methylphenol (o-Cresol)	2.00	1.00 U	1.00 UJ	1.00 UJ	I
CH-MW045S-0221	N	4-Chloro-3-methylphenol	5.10	2.00 U	2.00 UJ	2.00 UJ	I
CH-MW045S-0221	N	4-Chloroaniline	10.0	9.20 U	9.20 UJ	9.20 U	
CH-MW045S-0221	N	4-Methylphenol (p-Cresol)	2.00	1.00 U	1.00 UJ	1.00 UJ	I
CH-MW045S-0221	N	Benzaldehyde	5.10	2.00 U	2.00 UJ	2.00 U	
CH-MW045S-0221	N	Benzoic acid	25.0	24.0 U	24.0 UJ	24.0 U	
CH-MW045S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	4.10 UJ	С
CH-MW045S-0221	N	Biphenyl (Diphenyl)	2.00	1.00 U	1.00 UJ	1.00 U	
CH-MW045S-0221	N	Bis(2-ethylhexyl)phthalate	5.10	4.10 U	4.10 UJ	4.10 U	
CH-MW045S-0221	N	Caprolactam	7.10	6.10 U	6.10 UJ	6.10 U	
CH-MW045S-0221	N	Carbazole	2.00	1.00 U	1.00 UJ	1.00 U	
CH-MW045S-0221	N	Dibenzofuran	2.00	1.00 U	1.00 UJ	1.00 U	
CH-MW045S-0221	N	Diethyl phthalate	5.10	4.10 U	4.10 UJ	4.10 U	
CH-MW045S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	4.10 UJ	С
CH-MW045S-0221	N	Di-n-butyl phthalate	5.10	4.10 U	4.10 UJ	4.10 U	
CH-MW045S-0221	N	di-n-Octyl phthalate	11.0	10.0 U	10.0 UJ	10.0 U	
S70627-0221	N	1,4-Dichlorobenzene	5.50	1.10 U	1.10 UJ	1.10 U	

Table of Results with Modified Qualifiers

Modified Qualifiers fo	r test method	SW8270D					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
S70627-0221	N	2-Chloronaphthalene	1.10	0.880 U	0.880 UJ	0.880 U	
S70627-0221	N	2-Methylphenol (o-Cresol)	2.20	1.10 U	1.10 UJ	1.10 U	
S70627-0221	N	4-Chloro-3-methylphenol	5.50	2.20 U	2.20 UJ	2.20 U	
S70627-0221	N	4-Chloroaniline	11.0	9.90 U	9.90 UJ	9.90 U	
S70627-0221	N	4-Methylphenol (p-Cresol)	2.20	1.10 U	1.10 UJ	1.10 U	
S70627-0221	N	Benzaldehyde	5.50	2.20 U	2.20 UJ	2.20 U	
S70627-0221	N	Benzoic acid	28.0	27.0 U	27.0 UJ	27.0 U	
S70627-0221	N	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ	4.40 UJ	С
S70627-0221	N	Biphenyl (Diphenyl)	2.20	1.10 U	1.10 UJ	1.10 U	
S70627-0221	N	Bis(2-ethylhexyl)phthalate	5.50	4.40 U	4.40 UJ	4.40 U	
S70627-0221	N	Caprolactam	7.70	6.60 U	6.60 UJ	6.60 U	
S70627-0221	N	Carbazole	2.20	1.10 U	1.10 UJ	1.10 U	
S70627-0221	N	Dibenzofuran	2.20	1.10 U	1.10 UJ	1.10 U	
S70627-0221	N	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ	4.40 UJ	С
S70627-0221	N	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ	4.40 UJ	С
S70627-0221	N	Di-n-butyl phthalate	5.50	4.40 U	4.40 UJ	4.40 U	
S70627-0221	N	di-n-Octyl phthalate	12.0	11.0 U	11.0 UJ	11.0 U	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

D	0-1-	D - C - 141
Reason	Code	Definitions

Code	Definition
С	LCS Recovery
D	MS RPD
H2	Prep Hold Time
I	Surrogate recovery outside project limits.
L	Lab Blank
M	MS Recovery
TR	Trace Level Detect
V	Equipment Blank

Flag Code and Definitions

Flag	Definition
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.

Х

The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Bias The result may be biased low The result may be biased high Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

eQAPP Version: eQAPP_USNAE-C02NY0024-03-RIFS.063341 ENV.ADR June 14, 2021

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			cooler temperature receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance imits?	•			
Was the MS/MSD RPD within project acceptance limits?		•		<20% RPD for 1-methylnaphthalene, acenaphthylene, 2-methylnaphthalene, naphthalene
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	-		
Were samples preserved properly and received in good condition?	•			temperature of cooler receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		see outlier report
Was the MS/MSD RPD within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of cooler receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each patch?	•			
Vere target analytes in the method blank less than MDL?		•		see outlier report
Were target analytes in the field blank less than MDL?		•		see outlier report
Nas an LCS/LCSD pair prepared and analyzed with each patch?	•			
Vere LCS/LCSD recoveries within project acceptance mits?	•			
Vas the LCS/LCSD RPD within project acceptance mits?	•			
Vas a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance imits?		•		see outlier report
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance imits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?	•			
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Vere QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Nere DoD QSM corrective actions followed if deviations were noted?			•	
Vere any data recommended for rejection (exclusion) in he data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of cooler receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance imits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Were the post spike recoveries within project acceptance imits?	•			
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			cooler temperature receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			eQAPP states 7-day prep hold time; EPA states 365 days HT; validator modified qualifiers
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			0% MS recovery in 1016 but LCS and MSD recovery good; lab misidentified the aroclor in the MS and the lab revised the SDG and reloaded it
Was the MS/MSD RPD within project acceptance limits?	•			RPD criteria met now that the Aroclor is corrected
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			CCV associated with batch 410-98151 recovered above the upper control limit for Tetrachloro-m-xylene on column 1 at 26%. Surrogate %R within acceptance criteria and the data have been reported. The associated samples are: CH-MW045D-0221, S58922-0221, S48579-0221, S19494-0221, S19495-0221, S1202-0221, S70627-0221, CH-EB-0221-01 and S3599-0221. If Stage 2b were performed (i.e., results would not be qualified since all of the results were nondetect)
Were DoD QSM corrective actions followed if deviations were noted?		•		
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Method: SW8260C (Volatile Organic Compounds by GC/MS Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	100	•		S70627-0221 (410-30212-19). The COC lists 13 containers, only 10 were received. Found missing vials left behind
Were samples preserved properly and received in good condition?	•			cooler temperature receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?		•		see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			coolers temperature receipt 0.3°C, 0.7°C, 1.4°C, 1.8°C, 3.0°C and 3.7°C
Were holding times met?		•		see surrogate recovery comments
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		samples CH-MW045S-0221 and CH-MW045D-0221 (see outlier report); samples were reprepped outside hold time; first set of results were reported (only acid compounds were qualified in -45S; for -45D (acid surrogates were low below 10% and low recoveries were confirmed in the second set of results)possible matrix interference; validator flagged X to all acid compounds results; and S76027-0221 (second analytical run) had surrogate recovery outside control limits - see outlier report. first set of results were reported
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS recovery failed low for dimethyl phthalate and benzyl butyl phthalate; lab reported with comment\narration
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		MS recovery failed low for dimethyl phthalate and benzyl butyl phthalate for S19494-0221
Was the MS/MSD RPD within project acceptance limits?		•		high RPD for 4-chloroaniline
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Facility: C02NY0024-03, Camp Hero Event: Camp Hero February 2021

SDG: 410-30714-1_52_2a_FUDSChem

Guidance Document: Quality Assurance Project Plan, Remedial Investigation Former Camp Hero,

Montauk, New York, June 2016

Prime Contractor: AECOM, Arlington, VA

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: AECOM

Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: March 18, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH-EB-0221-02	410-30714-9	Water	Equipment Blank/EB	Х	Х		Х		Х		Х	Х	Х
CH-EB-0221-03	410-30714-10	Water	Equipment Blank/EB	Х	Х		Х		Χ		Χ	Х	X
CH-EB-0221-04	410-30714-11	Water	Equipment Blank/EB	Χ	Х		Х		Х		Χ	Х	Χ
CH-TB-0221-02	410-30714-12	Water	Trip Blank/TB									Х	
S17231S-0221	410-30714-1	Water	Field Sample/N	Х	Х		Х		Χ		Χ	Х	X
S17231S-0221	410-30714-2	Water	Field Sample/N			Х		Χ		Χ			
S17231S-0221D	410-30714-3	Water	Field Duplicate/FD	Х	Х		Х		Χ		Χ	Х	X
S17231S-0221D	410-30714-4	Water	Field Duplicate/FD			Х		Χ		Χ			
S79269-0221	410-30714-5	Water	Field Sample/N	Χ	Х		Х		Χ		Χ	Х	X
S79269-0221	410-30714-6	Water	Field Sample/N			Х		Χ		Χ			
S79269-0221D	410-30714-7	Water	Field Duplicate/FD	X	Χ		Χ		Χ		Χ	Χ	Χ
S79269-0221D	410-30714-8	Water	Field Duplicate/FD			Χ		Χ		Χ			

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-30714-1_52_2a_FUDSChem. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Equipment Blank
Extracted Internal Standard
Field Duplicate RPD
Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate
Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 45 results (4.87%) out of the 924 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, Field Duplicate RPD

Field duplicate analyses are performed in order to assess sample collection/laboratory precision for each sample matrix. Summary forms were evaluated and compared to electronic data deliverables. Field duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
S17231S-0221 (N)/ 410-30714-3	Pyrene	0.06800	< 0.051	< 0.051	ug/l	J/UJ	D3	
S17231S-0221 (N)/ 410-30714-3	Phenanthrene	0.1100	< 0.072	< 0.072	ug/l	J/UJ	D3	
S17231S-0221 (N)/ 410-30714-3	Fluoranthene	0.1400	< 0.051	< 0.051	ug/l	J/UJ	D3	
S79269-0221 (N)/ 410-30714-7	Naphthalene	0.1100	< 0.075	< 0.075	ug/l	J/UJ	D3	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Field Duplicate RPD for BNASIM

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S17231S-0221	N	Fluoranthene	0.0510	0.0310 U	0.0310 UJ		ug/l	D3
S17231S-0221	N	Phenanthrene	0.0720	0.0610 U	0.0610 UJ		ug/l	D3
S17231S-0221	N	Pyrene	0.0510	0.0310 U	0.0310 UJ		ug/l	D3
S17231S-0221D	FD	Fluoranthene	0.0550	0.140 M	0.140 J	-	ug/l	D3/I
S17231S-0221D	FD	Phenanthrene	0.0770	0.110	0.110 J	-	ug/l	D3/I
S17231S-0221D	FD	Pyrene	0.0550	0.0680	0.0680 J	-	ug/l	D3/I
S79269-0221	N	Naphthalene	0.0750	0.110 M B	0.110 J	-	ug/l	D3
S79269-0221D	FD	Naphthalene	0.0710	0.0600 U	0.0600 UJ		ug/l	D3

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method BNASIM, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-99295/1-A (LB)/ MB 410-99295/1-A	Naphthalene	0.03940	< 0.03	< 0.07	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method BNASIM, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-03 (EB)/ 410-30714-10		7.570	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-EB-0221-04 (EB)/ 410-30714-11		7.560	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S17231S-0221D (FD)/ 410-30714-3		8.550	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221 (N)/ 410-30714-5		10.91	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW6020B, Total, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-03 (EB)/ 410-30714-10	Magnesium	13.00	< 10	< 50	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW6020B, Total, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-98331/1-A (LB)/ MB 410-98331/1-A	Barium	1.850	< 0.75	< 2	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8082A, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-02 (EB)/ 410-30714-9	PCB-1260 (Aroclor 1260)	0.8600	< 0.1	< 0.52	ug/l	U/None	V	
CH-EB-0221-03 (EB)/ 410-30714-10	PCB-1260 (Aroclor 1260)	0.5700	< 0.11	< 0.54	ug/l	U/None	V	
CH-EB-0221-04 (EB)/ 410-30714-11	PCB-1260 (Aroclor 1260)	0.2900	< 0.11	< 0.53	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8082A, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-02 (EB)/ 410-30714-9		7.010	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-EB-0221-02 (EB)/ 410-30714-9		7.010	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
\$17231\$-0221 (N)/ 410-30714-1		7.290	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
\$17231\$-0221 (N)/ 410-30714-1		7.290	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
\$17231\$-0221D (FD)/ 410-30714-3		7.290	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
\$17231\$-0221D (FD)/ 410-30714-3		7.290	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221 (N)/ 410-30714-5		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221 (N)/ 410-30714-5		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221D (FD)/ 410-30714-7		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221D (FD)/ 410-30714-7		7.230	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260C, Equipment Blank

The purpose of equipment blanks is to determine the existence and magnitude of cross-contamination problems resulting from the process during sampling. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in equipment blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-02 (EB)/ 410-30714-9	Acetone	1.800	< 0.7	< 20	ug/l	U/None	V	
CH-EB-0221-03 (EB)/ 410-30714-10	Chloroform	0.2300	< 0.2	< 1	ug/l	U/None	V	
CH-EB-0221-04 (EB)/ 410-30714-11	Chloroform	0.2000	< 0.2	< 1	ug/l	U/None	V	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8270D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Dimethyl phthalate	16.24	45 - 127	10 - 127	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Benzyl butyl phthalate	29.60	53 - 134	10 - 134	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Diethyl phthalate	51.20	56 - 125	10 - 125	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
CH-EB-0221-02	EB	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
CH-EB-0221-02	EB	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
CH-EB-0221-02	EB	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
CH-EB-0221-03	EB	Benzyl butyl phthalate	5.30	4.20 U Q	4.20 UJ	ug/l	С
CH-EB-0221-03	EB	Diethyl phthalate	5.30	4.20 U Q	4.20 UJ	ug/l	С
CH-EB-0221-03	EB	Dimethyl phthalate	5.30	4.20 U Q	4.20 UJ	ug/l	С
CH-EB-0221-04	EB	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
CH-EB-0221-04	EB	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
CH-EB-0221-04	EB	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
S17231S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S17231S-0221	N	Diethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S17231S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S17231S-0221D	FD	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
S17231S-0221D	FD	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
S17231S-0221D	FD	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ	ug/l	С
S79269-0221	N	Benzyl butyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S79269-0221	N	Diethyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S79269-0221	N	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ	ug/l	С
S79269-0221D	FD	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
S79269-0221D	FD	Diethyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С
S79269-0221D	FD	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ	ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8270D, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CH-EB-0221-02 (EB)/ 410-30714-9		7.580	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-EB-0221-03 (EB)/ 410-30714-10		7.570	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
CH-EB-0221-04 (EB)/ 410-30714-11		7.560	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S17231S-0221 (N)/ 410-30714-1		8.550	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S17231S-0221D (FD)/ 410-30714-3		8.550	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221 (N)/ 410-30714-5		8.490	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL
S79269-0221D (FD)/ 410-30714-7		8.490	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8270D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
\$17231\$-0221 (N)/ 410-30714-1	2,4,6- Tribromophenol	28.00	43 - 140	10 - 140	percent	J/UJ	I	
S17231S-0221D (FD)/ 410-30714-3	2,4,6- Tribromophenol	23.00	43 - 140	10 - 140	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Table of All Qualified Results

Test Method: BNASIM	Extraction	on Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S17231S-0221	N	Fluoranthene	0.0510	0.0310 U	0.0310 UJ		ug/l	D3
S17231S-0221	N	Phenanthrene	0.0720	0.0610 U	0.0610 UJ		ug/l	D3
S17231S-0221	N	Pyrene	0.0510	0.0310 U	0.0310 UJ		ug/l	D3
S17231S-0221D	FD	Fluoranthene	0.0550	0.140 M	0.140 J	-	ug/l	D3/I
S17231S-0221D	FD	Phenanthrene	0.0770	0.110	0.110 J	-	ug/l	D3/I
S17231S-0221D	FD	Pyrene	0.0550	0.0680	0.0680 J	-	ug/l	D3/I
S79269-0221	N	Naphthalene	0.0750	0.110 M B	0.110 J	-	ug/l	D3
S79269-0221D	FD	Naphthalene	0.0710	0.0600 U	0.0600 UJ		ug/l	D3
Test Method: SW8270D	Extract	ion Method: SW3510C						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
CH-EB-0221-02	EB	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
CH-EB-0221-02	EB	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
CH-EB-0221-02	EB	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
CH-EB-0221-03	EB	Benzyl butyl phthalate	5.30	4.20 U Q	4.20 UJ		ug/l	С
CH-EB-0221-03	EB	Diethyl phthalate	5.30	4.20 U Q	4.20 UJ		ug/l	С
CH-EB-0221-03	EB	Dimethyl phthalate	5.30	4.20 U Q	4.20 UJ		ug/l	С
CH-EB-0221-04	EB	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
CH-EB-0221-04	EB	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
CH-EB-0221-04	EB	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S17231S-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S17231S-0221	N	Diethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S17231S-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S17231S-0221D	FD	Benzyl butyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S17231S-0221D	FD	Diethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S17231S-0221D	FD	Dimethyl phthalate	5.50	4.40 U Q	4.40 UJ		ug/l	С
S79269-0221	N	Benzyl butyl phthalate	5.40	4.30 U Q	4.30 UJ		ug/l	С
S79269-0221	N	Diethyl phthalate	5.40	4.30 U Q	4.30 UJ		ug/l	С
S79269-0221	N	Dimethyl phthalate	5.40	4.30 U Q	4.30 UJ		ug/l	С
S79269-0221D	FD	Benzyl butyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
S79269-0221D	FD	Diethyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
S79269-0221D	FD	Dimethyl phthalate	5.00	4.00 U Q	4.00 UJ		ug/l	С
		-						

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for	test method	I BNASIM					
FieldSample ID	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-EB-0221-03	EB	1,4-Dioxane (p-Dioxane)	0.340	0.230 U	0.230 UJ	0.230 U	
CH-EB-0221-03	EB	1-Methylnaphthalene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-03	EB	2-Methylnaphthalene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-03	EB	Acenaphthene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Acenaphthylene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Anthracene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Benzo(a)anthracene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Benzo(a)pyrene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Benzo(b)fluoranthene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Benzo(g,h,i)perylene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Benzo(k)fluoranthene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Chrysene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Dibenz(a,h)anthracene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-03	EB	Fluoranthene	0.0570	0.0340 U M	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Fluorene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-03	EB	Indeno(1,2,3-c,d)pyrene	0.0570	0.0450 U M	0.0450 UJ	0.0450 U	
CH-EB-0221-03	EB	Naphthalene	0.0790	0.0680 U	0.0680 UJ	0.0680 U	
CH-EB-0221-03	EB	Phenanthrene	0.0790	0.0680 U	0.0680 UJ	0.0680 U	
CH-EB-0221-03	EB	Pyrene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	1,4-Dioxane (p-Dioxane)	0.340	0.230 U	0.230 UJ	0.230 U	
CH-EB-0221-04	EB	1-Methylnaphthalene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-04	EB	2-Methylnaphthalene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-04	EB	Acenaphthene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Acenaphthylene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Anthracene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Benzo(a)anthracene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Benzo(a)pyrene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Benzo(b)fluoranthene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Benzo(g,h,i)perylene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Benzo(k)fluoranthene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Chrysene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Dibenz(a,h)anthracene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-04	EB	Fluoranthene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Fluorene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
CH-EB-0221-04	EB	Indeno(1,2,3-c,d)pyrene	0.0570	0.0450 U	0.0450 UJ	0.0450 U	
CH-EB-0221-04	EB	Naphthalene	0.0790	0.0680 U	0.0680 UJ	0.0680 U	
CH-EB-0221-04	EB	Phenanthrene	0.0790	0.0680 U	0.0680 UJ	0.0680 U	
CH-EB-0221-04	EB	Pyrene	0.0570	0.0340 U	0.0340 UJ	0.0340 U	
S17231S-0221D	FD	1,4-Dioxane (p-Dioxane)	0.330	0.220 U	0.220 UJ	0.220 UJ	1
S17231S-0221D	FD	1-Methylnaphthalene	0.0550	0.0440 U M	0.0440 UJ	0.0440 UJ	1
S17231S-0221D	FD	2-Methylnaphthalene	0.0550	0.0440 U M	0.0440 UJ	0.0440 UJ	1

Table of Results with Modified Qualifiers

Modified Qualifiers for test		-					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	-
S17231S-0221D	FD	Acenaphthene	0.0550	0.0290 J M	0.0290 J	0.0290 J	I/TR
S17231S-0221D	FD	Acenaphthylene	0.0550	0.0330 U	0.0330 UJ	0.0330 UJ	1
S17231S-0221D	FD	Anthracene	0.0550	0.0330 U M	0.0330 UJ	0.0330 UJ	1
S17231S-0221D	FD	Benzo(a)anthracene	0.0550	0.0290 J	0.0290 J	0.0290 J	I/TR
S17231S-0221D	FD	Benzo(a)pyrene	0.0550	0.0250 J M	0.0250 J	0.0250 J	I/TR
S17231S-0221D	FD	Benzo(b)fluoranthene	0.0550	0.0470 J	0.0470 J	0.0470 J	I/TR
S17231S-0221D	FD	Benzo(g,h,i)perylene	0.0550	0.0330 U M	0.0330 UJ	0.0330 UJ	1
S17231S-0221D	FD	Benzo(k)fluoranthene	0.0550	0.0170 J	0.0170 J	0.0170 J	I/TR
S17231S-0221D	FD	Chrysene	0.0550	0.0220 J M	0.0220 J	0.0220 J	I/TR
S17231S-0221D	FD	Dibenz(a,h)anthracene	0.0550	0.0440 U	0.0440 UJ	0.0440 UJ	1
S17231S-0221D	FD	Fluoranthene	0.0550	0.140 M	0.140 J	0.140 J	D3/I
S17231S-0221D	FD	Fluorene	0.0550	0.0280 J	0.0280 J	0.0280 J	I/TR
S17231S-0221D	FD	Indeno(1,2,3-c,d)pyrene	0.0550	0.0440 U M	0.0440 UJ	0.0440 UJ	1
S17231S-0221D	FD	Naphthalene	0.0770	0.0660 U M	0.0660 UJ	0.0660 UJ	1
S17231S-0221D	FD	Phenanthrene	0.0770	0.110	0.110 J	0.110 J	D3/I
S17231S-0221D	FD	Pyrene	0.0550	0.0680	0.0680 J	0.0680 J	D3/I
S79269-0221	N	1,4-Dioxane (p-Dioxane)	0.320	0.210 U	0.210 UJ	0.210 U	
S79269-0221	N	1-Methylnaphthalene	0.0540	0.0430 U	0.0430 UJ	0.0430 U	
S79269-0221	N	2-Methylnaphthalene	0.0540	0.0240 J M	0.0240 J	0.0240 J	TR
S79269-0221	N	Acenaphthene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Acenaphthylene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Anthracene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Benzo(a)anthracene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Benzo(a)pyrene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Benzo(b)fluoranthene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Benzo(g,h,i)perylene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Benzo(k)fluoranthene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Chrysene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Dibenz(a,h)anthracene	0.0540	0.0430 U	0.0430 UJ	0.0430 U	
S79269-0221	N	Fluoranthene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Fluorene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
S79269-0221	N	Indeno(1,2,3-c,d)pyrene	0.0540	0.0430 U	0.0430 UJ	0.0430 U	
S79269-0221	N	Naphthalene	0.0750	0.110 M B	0.110 J	0.110 J	D3
S79269-0221	N	Phenanthrene	0.0750	0.0640 U	0.0640 UJ	0.0640 U	
S79269-0221	N	Pyrene	0.0540	0.0320 U	0.0320 UJ	0.0320 U	
Modified Qualifiers for test	method	I SW8082A					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-EB-0221-02	EB	PCB, Total	0.520	0.860	0.860 J	0.860	
CH-EB-0221-02	EB	PCB-1016 (Aroclor 1016)	0.520	0.310 U M	0.310 UJ	0.310 U	
CH-EB-0221-02	EB	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U	
CH-EB-0221-02	EB	PCB-1232 (Aroclor 1232)	0.520	0.310 U M	0.310 UJ	0.310 U	
511 EB 0221 02		. 55 1252 (1100101 1252)	0.020	3.010 O W	3.010 00	0.010 0	

Table of Results with Modified Qualifiers

Modified Qualifiers for	tost method	3 0110002A				
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result Reason
CH-EB-0221-02	EB	PCB-1242 (Aroclor 1242)	0.520	0.310 U M	0.310 UJ	0.310 U
CH-EB-0221-02	EB	PCB-1248 (Aroclor 1248)	0.520	0.310 U M	0.310 UJ	0.310 U
CH-EB-0221-02	EB	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U
CH-EB-0221-02	EB	PCB-1260 (Aroclor 1260)	0.520	0.860	0.860 J	0.860
CH-EB-0221-02	EB	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U
CH-EB-0221-02	EB	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221	N	PCB, Total	0.510	0.300 U	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1016 (Aroclor 1016)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1221 (Aroclor 1221)	0.510	0.300 U	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1232 (Aroclor 1232)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1242 (Aroclor 1242)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1248 (Aroclor 1248)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1254 (Aroclor 1254)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1260 (Aroclor 1260)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1262 (Aroclor 1262)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221	N	PCB-1268 (Aroclor 1268)	0.510	0.300 U M	0.300 UJ	0.300 U
S17231S-0221D	FD	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1016 (Aroclor 1016)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1232 (Aroclor 1232)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1242 (Aroclor 1242)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1248 (Aroclor 1248)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1260 (Aroclor 1260)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U
S17231S-0221D	FD	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB, Total	0.520	0.310 U	0.310 UJ	0.310 U
S79269-0221	N	PCB-1016 (Aroclor 1016)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1221 (Aroclor 1221)	0.520	0.310 U	0.310 UJ	0.310 U
S79269-0221	N	PCB-1232 (Aroclor 1232)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1242 (Aroclor 1242)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1248 (Aroclor 1248)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1254 (Aroclor 1254)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1260 (Aroclor 1260)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1262 (Aroclor 1262)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221	N	PCB-1268 (Aroclor 1268)	0.520	0.310 U M	0.310 UJ	0.310 U
S79269-0221D	FD	PCB, Total	0.530	0.320 U	0.320 UJ	0.320 U
S79269-0221D	FD	PCB-1016 (Aroclor 1016)	0.530	0.320 U M	0.320 UJ	0.320 U
S79269-0221D	FD	PCB-1221 (Aroclor 1221)	0.530	0.320 U M	0.320 UJ	0.320 U
S79269-0221D	FD	PCB-1232 (Aroclor 1232)	0.530	0.320 U M	0.320 UJ	0.320 U
S79269-0221D	FD	PCB-1242 (Aroclor 1242)	0.530	0.320 U M	0.320 UJ	0.320 U

Table of Results with Modified Qualifiers

Modified Qualifiers for test method SW8082A									
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result Reason			
S79269-0221D	FD	PCB-1248 (Aroclor 1248)	0.530	0.320 U M	0.320 UJ	0.320 U			
S79269-0221D	FD	PCB-1254 (Aroclor 1254)	0.530	0.320 U M	0.320 UJ	0.320 U			
S79269-0221D	FD	PCB-1260 (Aroclor 1260)	0.530	0.320 U M	0.320 UJ	0.320 U			
S79269-0221D	FD	PCB-1262 (Aroclor 1262)	0.530	0.320 U M	0.320 UJ	0.320 U			
S79269-0221D	FD	PCB-1268 (Aroclor 1268)	0.530	0.320 U M	0.320 UJ	0.320 U			

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
D3	Field Duplicate RPD
H2	Prep Hold Time
I	Surrogate recovery outside project limits.
L	Lab Blank
TR	Trace Level Detect
V	Equipment Blank

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Method: BNASIM (GC/MS-SIM Analysis by SW8270)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			samples missed prep hold time for CH-EB-0221-03, CH-EB-0221-04 according to ADR but was recommended HT not be assessed on a date within 7 days of collection data; validator modified the qualifiers
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?		•		S17231S-0221D surrogate fluoranthene-d10 at 49% (65-129%) and 1-methylnapthalene-d10 at 39% (49-115%); sample was re-prepped outside hold with acceptable recoveries; initial results reported and flagged
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		naphthalene was detected at 0.0394 ug/L in batch 410-99295; all affected samples were reextracted outside holding time with acceptable results; results reported from initial extraction
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?		•		see outlier report for sample S17231S-0221/D and S79629-0221/D
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: E218.6 (Hexavalent Chromium by EPA Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•		,	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?				3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		see outlier report
Were target analytes in the field blank less than MDL?		•		see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were the post spike recoveries within project acceptance limits?			•	
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW7470A (Mercury in Water (Manual Cold-Vapor 1	echnique))		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were the post spike recoveries within project acceptance limits?			•	
Were the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			eQAPP states 7-day prep hold time; EPA states 365 days HT; validator modified qualifiers
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?		•		see outlier report; PCB-1260 was detected in the EBs but not in the samples
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			data for S70627-0221 is reported in SDG J30712 (VOC vials were left behind and shipped out a couple days later)
Were samples preserved properly and received in good condition?	•			3 coolers at receipt time were 1.8°C, 2.5°C and 3.3°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?		•		see outlier report
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			response for vinyl chloride in the CCV marginally exceeds the DoD acceptance criteria, biased low, on analytical batch 410-99306; (not part of Stage 2a, if Stage 2b were performed (results for vinyl chloride in associated samples would be qualified J-/UJ
Were DoD QSM corrective actions followed if deviations were noted?		•		results were reported without valid CCVs (vinyl chloride results were 20.5%-marginally out)
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?		•		LCS 99300/2-A recovery outside control limits for dimethyl phthalate at 16% (45-127%), benzy butyl phthalate at 29% (53-134%) and diethyl phthalate at 51% (56-125); samples were reprepped outside hold time with similar recovery; initial results reported
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS 99300/2-A recovery outside control limits for dimethyl phthalate at 16% (45-127%), benzyl butyl phthalate at 29% (53-134%) and diethyl phthalate at 51% (56-125); samples were reprepped outside hold time with similar recovery; initial results were flagged and reason code "C"
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Facility: C02NY0024-03, Camp Hero Event: Camp Hero February 2021

SDG: 410-30726-1_52_2a_FUDSChem

Guidance Document: Quality Assurance Project Plan, Remedial Investigation Former Camp Hero,

Montauk, New York, June 2016

Prime Contractor: AECOM, Arlington, VA

Project Manager: Mark MacEwan

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: AECOM
Data Review Level: S2AVEM

Primary Data Reviewer: Devon Chicoine, Project Chemist

Date Submitted: March 16, 2021

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	BNASIM	E218.6	E218.6 - Dissolved	SW6020B	SW6020B - Dissolved	SW7470A	SW7470A - Dissolved	SW8082A	SW8260C	SW8270D
CH-TB-0221-03	410-30726-3	Water	Trip Blank/TB									Χ	
S76304-0221	410-30726-1	Water	Field Sample/N	Χ	Х		Х		Х		Χ	Х	Χ
S76304-0221	410-30726-2	Water	Field Sample/N			Χ		Х		Χ			

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at S2AVEM data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Remedial Investigation Former Camp Hero, Montauk, New York, June 2016 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by AECOM, Arlington, VA; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 410-30726-1_52_2a_FUDSChem. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Extracted Internal Standard
Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate
Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 43 results (24.29%) out of the 177 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
BNASIM	No additional comments; see Checklist for detail.
E218.6	No additional comments; see Checklist for detail.
SW6020B	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8082A	No additional comments; see Checklist for detail.
SW8260C	No additional comments; see Checklist for detail.
SW8270D	No additional comments; see Checklist for detail.

Reviewed by Devon Chicoine, Project Chemist, AECOM

As the Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

Quality Control Outliers for test method BNASIM, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-99295/1-A (LB)/ MB 410-99295/1-A	Naphthalene	0.03940	< 0.03	< 0.07	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6020B, Total, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB 410-98331/1-A (LB)/ MB 410-98331/1-A	Barium	1.850	< 0.75	< 2	ug/l	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8270D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Dimethyl phthalate	16.24	45 - 127	10 - 127	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Benzyl butyl phthalate	29.60	53 - 134	10 - 134	percent	J/UJ	С	
LCS 410-99300/2-A (BS)/ LCS 410-99300/2-A	Diethyl phthalate	51.20	56 - 125	10 - 125	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8270D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
S76304-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S76304-0221	N	Diethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С
S76304-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ		ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: SW8270D	Extract	ion Method: SW3510C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
S76304-0221	N	Benzyl butyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S76304-0221	N	Diethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С
S76304-0221	N	Dimethyl phthalate	5.10	4.10 U Q	4.10 UJ	ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

=							_
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	
CH-TB-0221-03	ТВ	1,1,1,2-Tetrachloroethane	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,1,1-Trichloroethane	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,1,2,2-Tetrachloroethane	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,1,2-Trichloro-1,2,2- trifluoroethane	10.0	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,1,2-Trichloroethane	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	TB	1,1-Dichloroethane	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,1-Dichloroethene	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	1,2,3-Trichlorobenzene	5.00	1.00 U	1.00 U	1.00 UJ	Р
CH-TB-0221-03	ТВ	1,2,4-Trimethylbenzene	5.00	2.00 U	2.00 U	2.00 UJ	Р
CH-TB-0221-03	ТВ	1,3,5-Trimethylbenzene	5.00	1.00 U	1.00 U	1.00 UJ	Р
CH-TB-0221-03	ТВ	1,4-Dioxane (p-Dioxane)	250	100 U	100 U	100 UJ	Р
CH-TB-0221-03	ТВ	2-Butanone (MEK)	10.0	1.00 U	1.00 U	1.00 UJ	Р
CH-TB-0221-03	ТВ	4-Methyl-2-pentanone (MIBK)	10.0	1.00 U	1.00 U	1.00 UJ	Р
CH-TB-0221-03	ТВ	Acetone	20.0	2.00 U	2.00 U	2.00 UJ	Р
CH-TB-0221-03	ТВ	Benzene	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Carbon disulfide	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Carbon tetrachloride	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Chloroethane	1.00	0.500 U	0.500 U	0.500 UJ	P
CH-TB-0221-03	ТВ	Chloroform	1.00	0.500 U	0.500 U	0.500 UJ	P
CH-TB-0221-03	ТВ	cis-1,2-Dichloroethene	1.00	0.500 U	0.500 U	0.500 UJ	P
CH-TB-0221-03	ТВ	Cyclohexane	5.00	2.00 U	2.00 U	2.00 UJ	P
CH-TB-0221-03	ТВ	Ethylbenzene	1.00	0.800 U	0.800 U	0.800 UJ	Р
CH-TB-0221-03	ТВ	Isopropylbenzene (Cumene)	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	m,p-Xylene	5.00	2.00 U	2.00 U	2.00 UJ	P
CH-TB-0221-03	ТВ	Methyl acetate	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Methyl tert-butyl ether (MTBE)	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Methylcyclohexane	5.00	1.00 U	1.00 U	1.00 UJ	Р
CH-TB-0221-03	ТВ	Methylene chloride	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	n-Butylbenzene	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	n-Propylbenzene	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	o-Xylene	1.00	0.800 U	0.800 U	0.800 UJ	Р
CH-TB-0221-03	ТВ	p-Cymene (p- Isopropyltoluene)	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	sec-Butylbenzene	5.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	tert-Butylbenzene	5.00	1.00 U	1.00 U	1.00 UJ	P
CH-TB-0221-03	ТВ	Tetrachloroethene (PCE)	1.00	0.500 U	0.500 U	0.500 UJ	Р
CH-TB-0221-03	ТВ	Toluene	1.00	0.500 U	0.500 U	0.500 UJ	P
CH-TB-0221-03	ТВ	trans-1,2-Dichloroethene	1.00	0.500 U	0.500 U	0.500 UJ	P
CH-TB-0221-03	ТВ	Trichloroethene (TCE)	1.00	0.500 U	0.500 U	0.500 UJ	P

Table of Results with Modified Qualifiers

Modified Qualifiers for test method SW8260C							
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
CH-TB-0221-03	ТВ	Vinyl chloride	1.00	0.500 U Q	0.500 U	0.500 UJ	Р
CH-TB-0221-03	TB	Xylenes, Total	6.00	2.80 U	2.80 U	2.80 UJ	Р

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
L	Lab Blank
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect
Flag Cod	e and Definitions
Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.
Х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		see outlier report
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•		,	
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•		,	
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Method: SW6020B (Trace Metals by Inductively Coupled Plasma/Mass Spectrometry)						
Review Questions	Yes	No	NA	Comment		
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•					
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C		
Were holding times met?	•					
Were all requested target analytes reported?	•					
Was a method blank prepared and analyzed with each batch?	•					
Were target analytes in the method blank less than MDL?		•		see outlier report		
Were target analytes in the field blank less than MDL?			•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•					
Were LCS/LCSD recoveries within project acceptance limits?	•					
Was the LCS/LCSD RPD within project acceptance limits?	•		,			
Was a MS/MSD pair prepared with each batch?			•			
Were MS/MSD recoveries within project acceptance limits?			•			
Was the MS/MSD RPD within project acceptance limits?			•			
Were the post spike recoveries within project acceptance limits?			•			
Were the serial dilution RPD values within project acceptance limits?	•					
Was the laboratory duplicate RPD within project acceptance limits?			•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•			
Were QAPP specified laboratory PQLs achieved?	•					
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•					
Were DoD QSM corrective actions followed if deviations were noted?			•			
Were any data recommended for rejection (exclusion) in the data validation process?			•			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each patch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each patch?	•			
Nere LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Nere MS/MSD recoveries within project acceptance imits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were the post spike recoveries within project acceptance imits?			•	
Nere the serial dilution RPD values within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings peen addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in he data validation process?			•	

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance imits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
Were surrogate recoveries within project acceptance limits?	•			
Was the laboratory duplicate RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			Three total containers were listed on COC but four total containers were received for CH-TB-0221-03
Were samples preserved properly and received in good condition?	•			CH-TB-0221-03 received with headspace; validator qualified sample results J/UJ with P reason code for preservation
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			The response for vinyl chloride in the CCV marginally exceeds the DoD acceptance criteria biased low, on analytical batch 410-99306; data is reported
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			temperature of the cooler at receipt time was 0.4°C
Were holding times met?	•			
Were all requested target analytes reported?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS recovery low in batch 410-99300 for butyl benzyl phthalate, diethyl phthalate, and dimethyl phthalate; sample S76304-0221 was re-prepped within hold time with similar recoveries; initial results were reported and flagged
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	
Were MS/MSD recoveries within project acceptance limits?			•	
Was the MS/MSD RPD within project acceptance limits?			•	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?			•	
Were any data recommended for rejection (exclusion) in the data validation process?			•	

Appendix D3 GeoTesting Express Laboratory Report

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geocomp.com

 Transmi	ttal						
TO:							
Brendan McG	Guinness		DATE: 1/20/2021	GTX NO: 312957			
AECOM			RE: Camp Hero RI				
3101 Wilson	Blvd., Suite 900						
Arlington, VA	22201						
		_					
COPIES	DATE		DESCRIPTION				
	1/20/2021	January 2021 Laboratory Test	Report				
REMARKS:							
		SIGNED:	Marty Molin	a			
CC:			Marty Molino, Labora	tory Manager			
		APPROVED BY :	goe f				

Joe Tomei, Director of Testing Services

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

January 20, 2021

Brendan McGuinness AECOM 3101 Wilson Blvd., Suite 900 Arlington, VA 22201

RE: Camp Hero RI, Montauk, NY (GTX-312957)

Dear Brendan:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received 24 samples from you on 12/12/2020. Please refer to your attached test request for sample identifications.

GTX performed the following tests on these samples:

24 ASTM D2216 - Moisture Content 24 ASTM D6913/D7928 - Grain Size Analysis - Sieve and Hydrometer

A copy of your test request is attached.

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

Marty Molino

Laboratory Manager

GeoTesting Express, Inc. 125 Nagog Park Acton, MA 01720 Toll Free 800 434 1062 Fax 978 635 0266

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geocomp.com

Geotechnical Test Report

1/20/2021

GTX-312957 Camp Hero RI

Montauk, NY

Client Project No.: 60443903

Prepared for:

AECOM

Boring ID: --- Sample Type: --- Tested By: twh
Sample ID: --- Test Date: 01/04/21 Checked By: MCM

Project No:

GTX-312957

Depth: --- Test Id: 318342

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
CH-MW044	CH- MW044D-SB-14-15	14-15	Moist, brown clayey sand	13.2
CH-MW044	CH- MW044D-SB-27-29	27-29	Moist, grayish brown clayey sand	10.8
CH-MW044	CH- MW044D-SB-37-39	37-39	Moist, gray clayey sand	10.3
CH-MW044	CH- MW044D-SB-46-47	46-47	Moist, gray clayey sand	10.9
CH-MW044	CH- MW044D-SB-58-59	58-59	Moist, gray clayey sand	10.0
CH-MW044	CH- MW044D-SB-63-64	63-64	Moist, gray clayey sand	11.9
CH-MW044	CH- MW044D-SB-70-72	70-72	Moist, grayish brown silty sand	10.6
CH-MW044	CH- MW044D-SB-85-86	85-86	Moist, gray clay with sand	23.7
CH-MW044	CH- MW044D-SB-96-97	96-97	Moist, dark gray clay	24.9
CH-MW044	CH- 1W044D-SB-108-10	108-109	Moist, gray clay with sand	21.3

Notes: Temperature of Drying : 110° Celsius

Boring ID: --- Sample Type: --- Tested By: twh
Sample ID: --- Test Date: 01/04/21 Checked By: MCM

Project No:

GTX-312957

Depth: --- Test Id: 318346

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
CH-MW044	CH- 1W044D-SB-115-11	115-116	Moist, gray sand with silt	17.1
CH-MW044	CH- 1W044D-SB-123-12	123-125	Moist, gray sand	15.4
CH-MW044	CH- 1W044D-SB-136-13	136-138	Moist, grayish brown sand with silt and gravel	6.9
CH-MW044	CH- 1W044D-SB-157-15	157-159	Moist, gray sand with silt	13.2

Notes: Temperature of Drying : 110° Celsius

Boring ID: --- Sample Type: --- Tested By: twh
Sample ID: --- Test Date: 01/04/21 Checked By: MCM

Project No:

GTX-312957

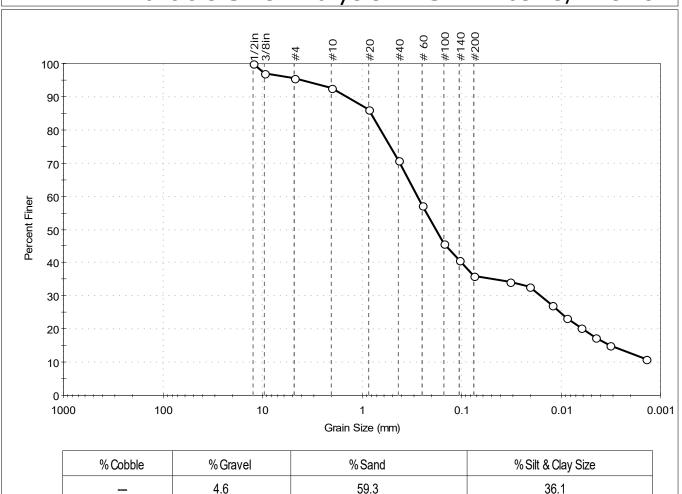
Depth: --- Test Id: 318356

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
CH-MW045D	CH- MW045D-SB-00-10	00-10	Moist, dark yellowish brown clayey sand with gravel	12.2
CH-MW045D	CH- MW045D-SB-10-30	10-30	Moist, dark gray clayey sand	10.8
CH-MW045D	CH- MW045D-SB-30-50	30-50	Moist, gray clayey sand	10.0
CH-MW045D	CH- MW045D-SB-40-50	40-50	Moist, grayish brown silty sand	10.7
CH-MW045D	CH- MW045D-SB-50-60	50-60	Moist, grayish brown sandy clay	20.7
CH-MW045D	CH- MW045D-SB-60-70	60-70	Moist, grayish brown sandy silt	27.4
CH-MW045D	CH- MW045D-SB-72-80	72-80	Moist, dark grayish brown clay	23.9
CH-MW045D	CH- MW045D-SB-80-85	80-85	Moist, grayish brown sandy clay	22.5
CH-MW045D	CH- vlW045D-SB-90-100	90-100	Moist, gray sand with silt	16.4
CH-MW045D	CH- 1W045D-SB-132-13	132-134	Moist, grayish brown sand with silt	18.1

Notes: Temperature of Drying : 110° Celsius

Location:Montauk, NYProject No:GTX-312957Boring ID:CH-MW044Sample Type:bagTested By:twhSample ID:CH-MW044D-SB-14-15Test Date:01/05/21Checked By:MCM


Depth: 14-15 Test Id: 318357

Test Comment: ---

Visual Description: Moist, brown clayey sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2in	12.50	100		
3/8in	9.50	97		
#4	4.75	95		
#10	2.00	93		
#20	0.85	86		
#40	0.42	71		
# 60	0.25	57		
#100	0.15	46		
#140	0.11	41		
#200	0.075	36		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0328	34		
	0.0207	33		
	0.0122	27		
	0.0088	23		
	0.0063	20		
	0.0045	17		
	0.0032	15		
	0.0014	11		

<u>Coefficients</u>				
$D_{85} = 0.8025 \text{ mm}$	$D_{30} = 0.0159 \text{ mm}$			
$D_{60} = 0.2791 \text{ mm}$	$D_{15} = 0.0031 \text{ mm}$			
$D_{50} = 0.1813 \text{ mm}$	$D_{10} = N/A$			
$C_u = N/A$	$C_c = N/A$			

ASTM N/A Classification

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ANGULAR

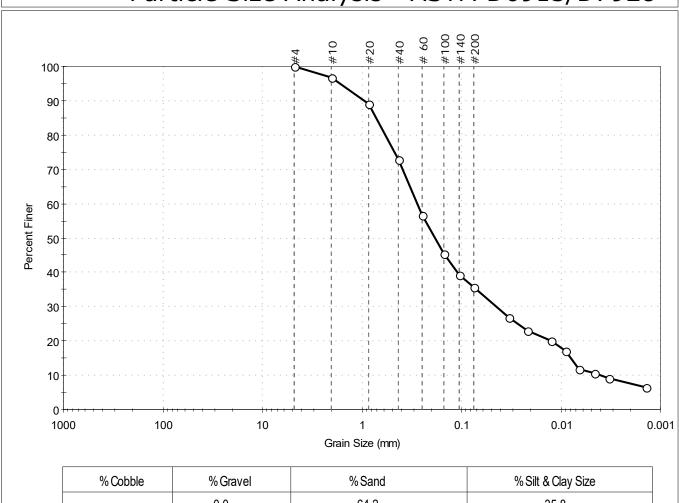
Sand/Gravel Hardness : HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

Project No: GTX-312957 Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-27-29 Checked By: Test Date: 01/05/21 MCM


Depth: 27-29 Test Id: 318358

Test Comment:

Visual Description: Moist, grayish brown clayey sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	64.2	35.8

0. 1.	h: 0:		la	• "
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	97		
#20	0.85	89		
#40	0.42	73		
# 60	0.25	57		
#100	0.15	45		
#140	0.11	39		
#200	0.075	36		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0333	27		
	0.0216	23		
	0.0125	20		
	0.0090	17		
	0.0065	12		
	0.0046	11		
	0.0033	9		
	0.0014	7		

<u>Coefficients</u>				
D ₈₅ = 0.7140 mm	$D_{30} = 0.0447 \text{ mm}$			
D ₆₀ = 0.2787 mm	$D_{15} = 0.0080 \text{ mm}$			
D ₅₀ = 0.1851 mm	$D_{10} = 0.0040 \text{ mm}$			
C _u =69.675	$C_c = 1.792$			

Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

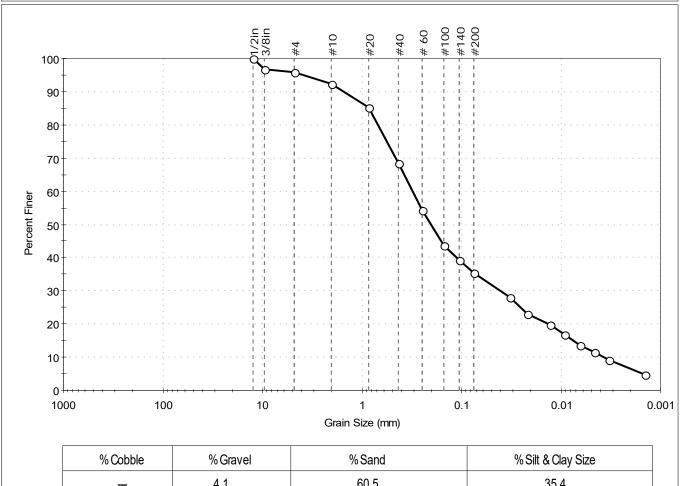
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65 Separation of Sample: #200 Sieve

Project No: GTX-312957 Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-37-39 Test Date: Checked By: 01/05/21 MCM


318359 Depth: 37-39 Test Id:

Test Comment:

Visual Description: Moist, gray clayey sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	4.1	60.5	35.4

L				
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2in	12.50	100		
3/8in	9.50	97		
#4	4.75	96		
#10	2.00	92		
#20	0.85	85		
#40	0.42	68		
# 60	0.25	54		
#100	0.15	44		
#140	0.11	39		
#200	0.075	35		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0324	28		
	0.0220	23		
	0.0127	20		
	0.0091	17		
	0.0065	13		
	0.0046	11		
	0.0033	9		
	0.0014	5		

<u>Coefficients</u>				
D ₈₅ = 0.8379 mm	$D_{30} = 0.0410 \text{ mm}$			
$D_{60} = 0.3099 \text{ mm}$	$D_{15} = 0.0076 \text{ mm}$			
D ₅₀ = 0.2031 mm	$D_{10} = 0.0038 \text{ mm}$			
Cu =81.553	$C_c = 1.427$			

Classification <u>ASTM</u> N/A <u>AASHTO</u> Silty Soils (A-4 (0))

Sample/Test Description Sand/Gravel Particle Shape: ANGULAR

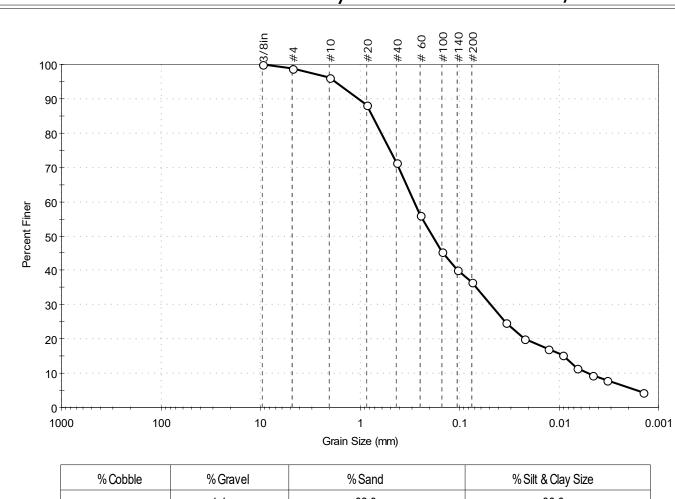
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

Project No: Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-46-47 Checked By: Test Date: 01/05/21 MCM


Depth: 46-47 Test Id: 318360

Test Comment:

Visual Description: Moist, gray clayey sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	%Sand	% Silt & Clay Size
_	1.1	62.3	36.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	99		
#10	2.00	96		
#20	0.85	88		
#40	0.42	71		
# 60	0.25	56		
#100	0.15	45		
#140	0.11	40		
#200	0.075	37		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0339	25		
	0.0221	20		
	0.0128	17		
	0.0091	15		
	0.0065	12		
	0.0046	10		
	0.0033	8		
	0.0014	5		

<u>Coefficients</u>				
D ₈₅ = 0.7465 mm	$D_{30} = 0.0482 \text{ mm}$			
D ₆₀ = 0.2874 mm	$D_{15} = 0.0088 \text{ mm}$			
D ₅₀ = 0.1875 mm	$D_{10} = 0.0050 \text{ mm}$			
Cu =57.480	$C_c = 1.617$			

GTX-312957

Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

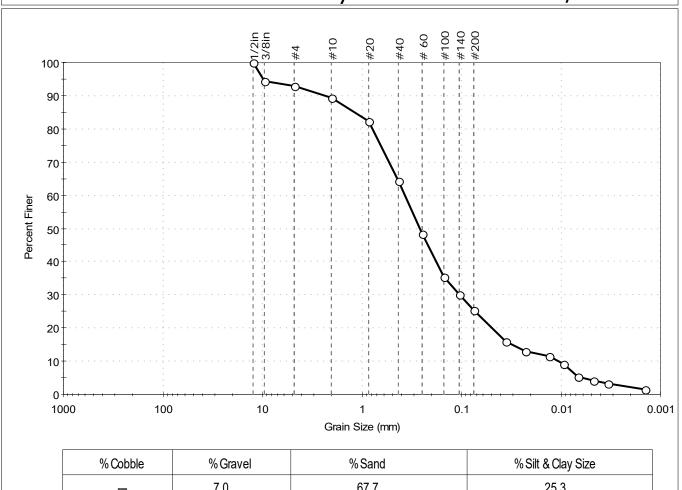
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65 Separation of Sample: #200 Sieve

Project No: GTX-312957 Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-58-59 Test Date: 01/05/21 Checked By: MCM


Depth: 58-59 Test Id: 318361

Test Comment:

Visual Description: Moist, gray clayey sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

// CODDIC			70 Glavei		/0 Oanu		70 Oill & Olay Oize		
		_		7.0		67.7			25.3
ĺ	Sieve Name	Sieve Size, mm	Percent Fin	er Spec. Percent	Complies]		Coeffi	
							$D_{85} = 1.16$	94 mm	$D_{30} = 0.1062 \text{ mm}$
	1/2in	12.50	100	5			$D_{60} = 0.36$	70 mm	$D_{15} = 0.0310 \text{ mm}$
	2/0in	0.50	0.4			1	200 0.00	, 0 111111	D ₁₃ 0.0010111111

#4	4.75	93			$D_{50} = 0.2$:627 mn	1	$D_{10} = 0.0107 \text{ m}$	ım
#10	2.00	89			$C_{u} = 34.$	299		$C_c = 2.872$	
#20	0.85	82		1 '	-				
							01if		
#40	0.42	64			ASTM	N/A	Classif	cation	
# 60	0.25	49			ASTIVI	IN/ A			
#100	0.15	25		1					

Complies

<u>AASHTO</u> Silty Gravel and Sand (A-2-4 (0))

0.0356 16 Sample/Test Description 0.0228 13 Sand/Gravel Particle Shape: ANGULAR 0.0131 Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

3/8in

#140

#200

Hydromete

9.50

0.11

0.075

Particle Size (mm

0.0093

0.0067

0.0047

0.0033

0.0014

30

25 Percent Finer

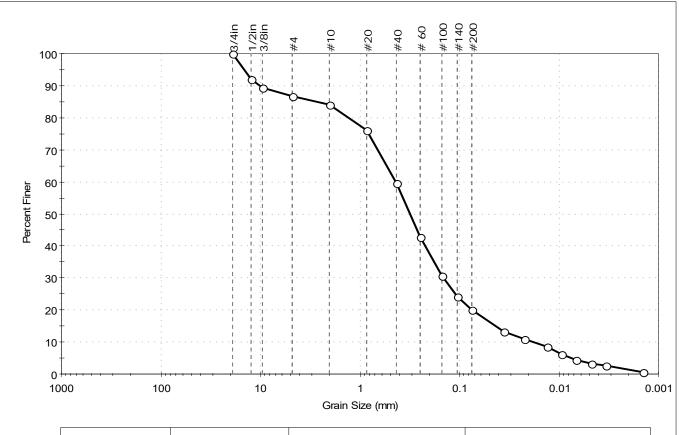
Q

5

4

Spec. Percent

Location:Montauk, NYProject No:GTX-312957Boring ID:CH-MW044Sample Type:bagTested By:twhSample ID:CH-MW044D-SB-63-64Test Date:01/05/21Checked By:MCM


Depth: 63-64 Test Id: 318362

Test Comment: ---

Visual Description: Moist, gray clayey sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
-	13.2	66.7	20.1	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/4in	19.00	100		
1/2in	12.50	92		
3/8in	9.50	89		
#4	4.75	87		
#10	2.00	84		
#20	0.85	76		
#40	0.42	60		
# 60	0.25	43		
#100	0.15	31		
#140	0.11	24		
#200	0.075	20		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0360	13		
	0.0224	11		
	0.0132	8		
	0.0094	6		
	0.0067	5		
	0.0047	3		
	0.0034	3		
	0.0014	1		

<u>Coefficients</u>				
$D_{85} = 2.7608 \text{ mm}$	$D_{30} = 0.1451 \text{ mm}$			
$D_{60} = 0.4332 \text{ mm}$	$D_{15} = 0.0438 \text{ mm}$			
$D_{50} = 0.3140 \text{ mm}$	$D_{10} = 0.0187 \text{ mm}$			
C., =23 166	$C_{c_0} = 2.599$			

Classification
ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

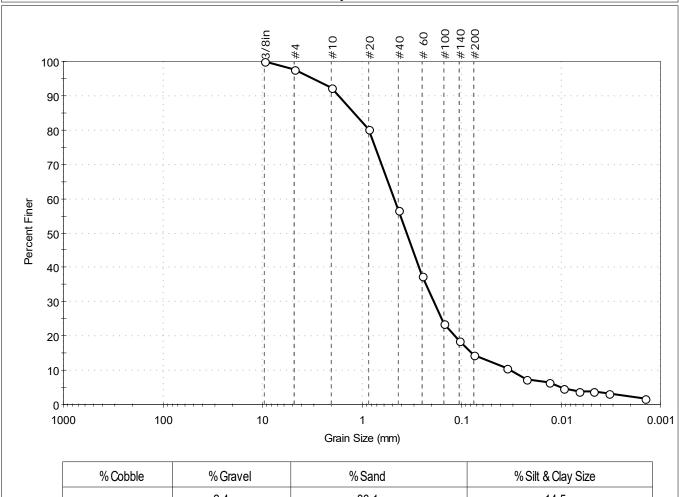
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

Project No: GTX-312957 Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-70-72 Checked By: Test Date: 01/05/21 MCM


Depth: 70-72 Test Id: 318363

Test Comment:

Visual Description: Moist, grayish brown silty sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
	2.4	83.1	14.5	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	98		
#10	2.00	92		
#20	0.85	80		
#40	0.42	57		
# 60	0.25	38		
#100	0.15	24		
#140	0.11	19		
#200	0.075	14		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0346	11		
	0.0221	7		
	0.0131	7		
	0.0094	5		
	0.0066	4		
	0.0047	4		
	0.0033	3		
	0.0014	2		

<u>Coefficients</u>				
D ₈₅ = 1.1886 mm	$D_{30} = 0.1893 \text{ mm}$			
D ₆₀ = 0.4702 mm	$D_{15} = 0.0786 \text{ mm}$			
D ₅₀ = 0.3539 mm	$D_{10} = 0.0317 \text{ mm}$			
C ₁₁ =14.833	$C_c = 2.404$			

Classification N/A <u>ASTM</u> AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR

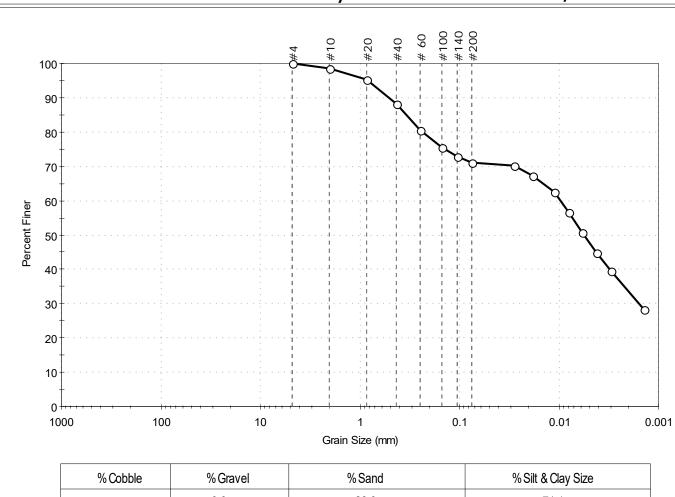
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Separation of Sample: #200 Sieve

Project No: GTX-312957 Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-85-86 Checked By: Test Date: 01/06/21 MCM


Depth: 85-86 Test Id: 318364

Test Comment:

Visual Description: Moist, gray clay with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	28.9	71.1

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	95		
#40	0.42	88		
# 60	0.25	81		
#100	0.15	75		
#140	0.11	73		
#200	0.075	71		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0280	70		
	0.0184	67		
	0.0111	62		
	0.0080	57		
	0.0058	51		
	0.0042	45		
	0.0030	39		
	0.0014	28		

<u>Coefficients</u>				
D ₈₅ = 0.3419 mm	$D_{30} = 0.0016 \text{ mm}$			
D ₆₀ = 0.0097 mm	$D_{15} = N/A$			
D ₅₀ = 0.0056 mm	$D_{10} = N/A$			
$C_u = N/A$	$C_c = N/A$			

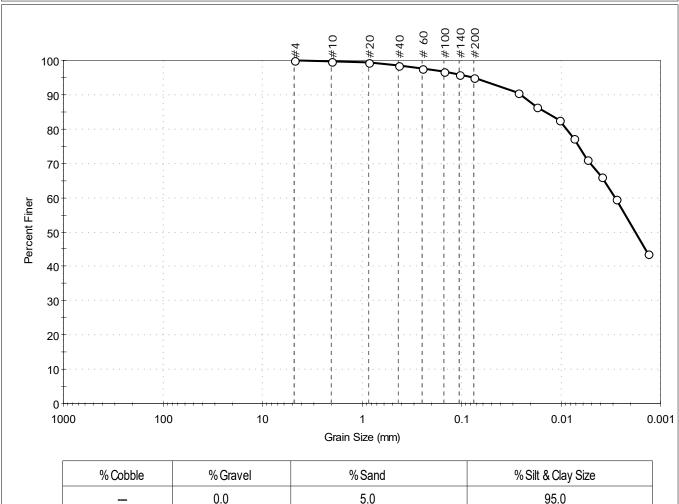
Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Location:Montauk, NYProject No:GTX-312957Boring ID:CH-MW044Sample Type:bagTested By:twhSample ID:CH-MW044D-SB-96-97Test Date:01/06/21Checked By:MCM


Depth: 96-97 Test Id: 318365

Test Comment: ---

Visual Description: Moist, dark gray clay

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	99		
#40	0.42	99		
# 60	0.25	98		
#100	0.15	97		
#140	0.11	96		
#200	0.075	95		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0267	91		
	0.0175	87		
	0.0103	82		
	0.0074	77		
	0.0054	71		
	0.0039	66		
	0.0028	59		
	0.0013	44		

<u>Coefficients</u>				
$D_{85} = 0.0144 \text{ mm}$	$D_{30} = N/A$			
$D_{60} = 0.0029 \text{ mm}$	$D_{15} = N/A$			
$D_{50} = 0.0018 \text{ mm}$	$D_{10} = N/A$			
$C_u = N/A$	$C_C = N/A$			

ASTM N/A

AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness : ---

Salid/Graver Hardriess . ---

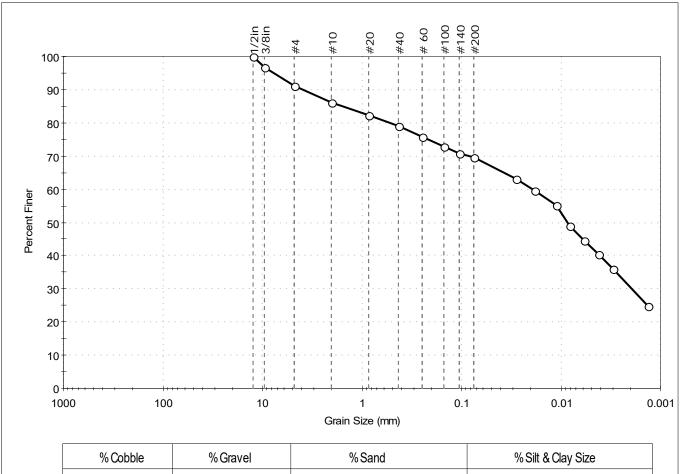
 $\label{eq:Dispersion Device} \mbox{ Dispersion Device}: \mbox{ Apparatus A - Mech Mixer}$

Client: AECOM Project: Camp Hero RI

Location: Montauk, NY Project No:

GTX-312957

Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-108-109 Test Date: Checked By: 01/05/21 MCM


108-109 318366 Depth: Test Id:

Test Comment:

Visual Description: Moist, gray clay with sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size	
-	8.9	21.6	69.5	

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1/2in	12.50	100		
3/8in	9.50	97		
#4	4.75	91		
#10	2.00	86		
#20	0.85	82		
#40	0.42	79		
# 60	0.25	76		
#100	0.15	73		
#140	0.11	71		
#200	0.075	70		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0283	63		
	0.0185	60		
	0.0111	55		
	0.0081	49		
	0.0058	44		
	0.0042	40		
	0.0030	36		
	0.0013	25		

	<u>Coefficients</u>				
D ₈₅ = 1.5312 mm		$D_{30} = 0.0019 \text{ mm}$			
	D ₆₀ = 0.0194 mm	$D_{15} = N/A$			
	D ₅₀ = 0.0086 mm	$D_{10} = N/A$			
	$C_u = N/A$	$C_c = N/A$			

Classification N/A <u>ASTM</u> <u>AASHTO</u> Silty Soils (A-4 (0))

Sample/Test Description Sand/Gravel Particle Shape: ANGULAR

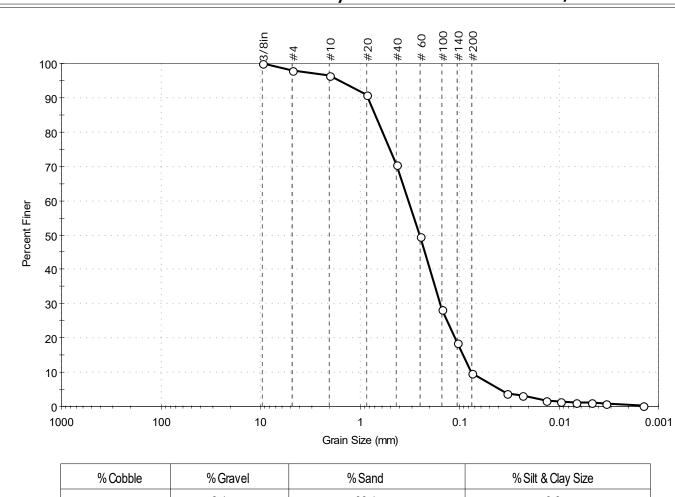
Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Boring ID: CH-MW044 Sample Type: bag

Tested By: Sample ID: CH-MW044D-SB-115-116 Test Date: Checked By: 01/05/21


Depth: 115-116 Test Id: 318367

Test Comment:

Visual Description: Moist, gray sand with silt

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	2.1	88.1	9.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	98		
#10	2.00	97		
#20	0.85	91		
#40	0.42	71		
# 60	0.25	50		
#100	0.15	28		
#140	0.11	19		
#200	0.075	9.8		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0333	4		
	0.0233	3		
	0.0135	2		
	0.0096	1		
	0.0068	1		
	0.0048	1		
	0.0034	1		
	0.0014	0		

	<u>Coefficients</u>		
D ₈₅ = 0.6944 mm		$D_{30} = 0.1565 \text{ mm}$	
	D ₆₀ = 0.3250 mm	$D_{15} = 0.0919 \text{ mm}$	
	D ₅₀ = 0.2520 mm	$D_{10} = 0.0755 \text{ mm}$	
	$C_{u} = 4.305$	$C_c = 0.998$	

Project No:

GTX-312957

twh

MCM

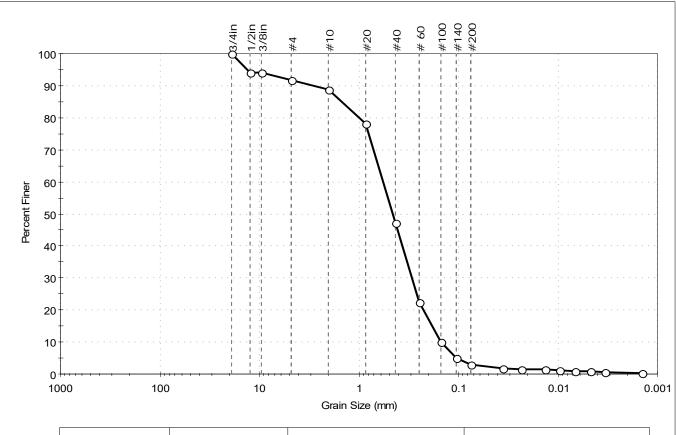
Classification N/A <u>ASTM</u> AASHTO Fine Sand (A-3 (1))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Location:Montauk, NYProject No:GTX-312957Boring ID:CH-MW044Sample Type:bagTested By:twhSample ID:CH-MW044D-SB-123-125 Test Date:01/05/21Checked By:MCM


Depth: 123-125 Test Id: 318368

Test Comment: ---

Visual Description: Moist, gray sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	8.3	88.8	2.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/4in	19.00	100		
1/2in	12.50	94		
3/8in	9.50	94		
#4	4.75	92		
#10	2.00	89		
#20	0.85	78		
#40	0.42	47		
# 60	0.25	22		
#100	0.15	10		
#140	0.11	5		
#200	0.075	2.9		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0358	2		
	0.0236	2		
	0.0136	1		
	0.0095	1		
	0.0068	1		
	0.0048	1		
	0.0034	1		
	0.0014	0		

<u>Coefficients</u>				
D ₈₅ = 1.4628 mm	$D_{30} = 0.2946 \text{ mm}$			
$D_{60} = 0.5655 \text{ mm}$	$D_{15} = 0.1840 \text{ mm}$			
D ₅₀ = 0.4520 mm	$D_{10} = 0.1485 \text{ mm}$			
C., =3.808	$C_{2} = 1.033$			

<u>ASTM</u>	Classification Poorly graded SAND (SP)
<u>AASHTO</u>	Stone Fragments, Gravel and Sand

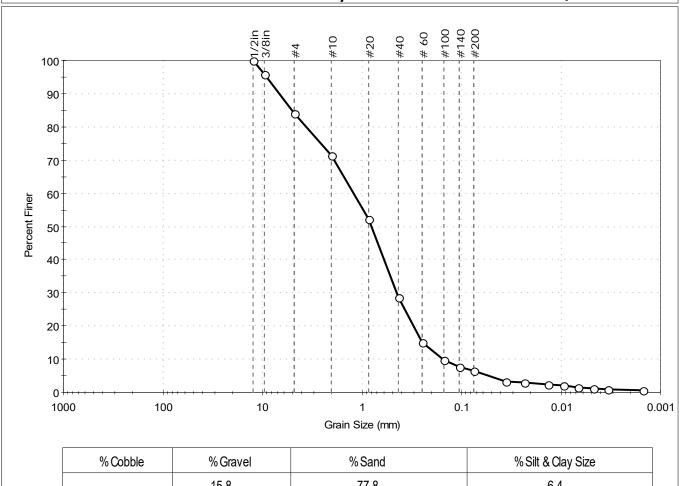
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

GTX-312957 Project No: Boring ID: CH-MW044 Sample Type: bag Tested By: twh Sample ID: CH-MW044D-SB-136-138 Test Date: Checked By: 01/06/21 MCM


318369 Depth: 136-138 Test Id:

Test Comment:

Moist, grayish brown sand with silt and gravel Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	15.8	77.8	6.4

Sieve Size, mm	Percent Finer	Spec. Percent	Complies
12.50	100		
9.50	96		
4.75	84		
2.00	71		
0.85	52		
0.42	29		
0.25	15		
0.15	10		
0.11	8		
0.075	6.4		
Particle Size (mm)	Percent Finer	Spec. Percent	Complies
0.0355	3		
0.0232	3		
0.0134	2		
0.0095	2		
0.0067	1		
0.0048	1		
0.0034	1		
0.0015	1		
	12.50 9.50 4.75 2.00 0.85 0.42 0.25 0.15 0.11 0.075 Particle Size (mm) 0.0355 0.0232 0.0134 0.0095 0.0067 0.0048 0.0034	12.50 100 9.50 96 4.75 84 2.00 71 0.85 52 0.42 29 0.25 15 0.15 10 0.11 8 0.075 6.4 Particle Size (mm) Percent Finer 0.0355 3 0.0232 3 0.0134 2 0.0095 2 0.0067 1 0.0048 1	12.50 100 9.50 96 4.75 84 2.00 71 0.85 52 0.42 29 0.25 15 0.15 10 0.11 8 0.075 6.4 Particle Size (mm) Percent Finer Spec. Percent 0.0355 3 0.0232 3 0.0134 2 0.0095 2 0.0067 1 0.0048 1 0.0034 1

<u>Coefficients</u>				
$D_{85} = 4.9821 \text{ mm}$	$D_{30} = 0.4429 \text{ mm}$			
$D_{60} = 1.2046 \text{ mm}$	$D_{15} = 0.2505 \text{ mm}$			
D ₅₀ = 0.7982 mm	$D_{10} = 0.1556 \text{ mm}$			
$C_u = 7.742$	$C_c = 1.047$			

Classification N/A

<u>ASTM</u>

AASHTO Stone Fragments, Gravel and Sand (A-1-b(1))

Sample/Test Description

Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

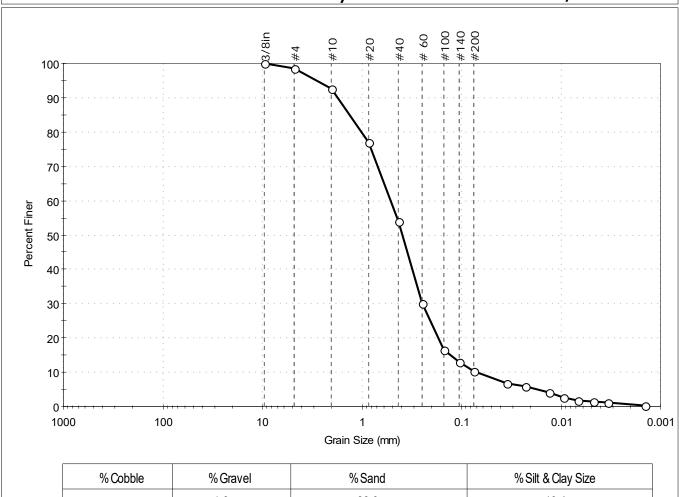
Boring ID: CH-MW044 Sample Type: bag Sample ID: CH-MW044D-SB-157-159 Test Date:

Tested By: Checked By: 01/05/21

Project No:

twh MCM

GTX-312957


157-159 Depth: Test Id: 318370

Test Comment:

Visual Description: Moist, gray sand with silt

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	1.6	88.0	10.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	98		
#10	2.00	93		
#20	0.85	77		
#40	0.42	54		
# 60	0.25	30		
#100	0.15	17		
#140	0.11	13		
#200	0.075	10		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0347	7		
	0.0229	6		
	0.0133	4		
	0.0095	3		
	0.0067	2		
	0.0047	1		
	0.0034	1		
	0.0014	0		

<u>Coefficients</u>		
D ₈₅ = 1.3213 mm	$D_{30} = 0.2484 \text{ mm}$	
D ₆₀ = 0.5114 mm	$D_{15} = 0.1290 \text{ mm}$	
D ₅₀ = 0.3899 mm	$D_{10} = 0.0689 \text{ mm}$	
$C_{u} = 7.422$	$C_c = 1.751$	

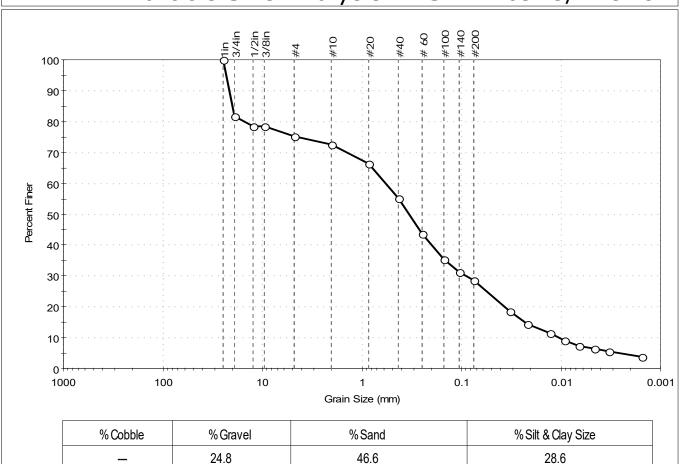
Classification N/A <u>ASTM</u> AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

GTX-312957 Project No: Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-00-10 Checked By: Test Date: 12/30/20 MCM


318371 Depth: 00-10 Test Id:

Test Comment:

Moist, dark yellowish brown clayey sand with gravel Visual Description:

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	24.8	46.6	28.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1in	25.00	100		
3/4in	19.00	82		
1/2in	12.50	79		
3/8in	9.50	79		
#4	4.75	75		
#10	2.00	73		
#20	0.85	66		
#40	0.42	55		
# 60	0.25	44		
#100	0.15	35		
#140	0.11	31		
#200	0.075	29		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0328	19		
	0.0218	14		
	0.0127	12		
	0.0091	9		
	0.0065	7		
	0.0046	6		
	0.0033	6		
	0.0015	4		

<u>Coefficients</u>				
D ₈₅ = 19.9310 mm	$D_{30} = 0.0894 \text{ mm}$			
D ₆₀ = 0.5722 mm	$D_{15} = 0.0231 \text{ mm}$			
D ₅₀ = 0.3348 mm	$D_{10} = 0.0101 \text{ mm}$			
C56 653	C1 393			

Classification <u>ASTM</u> N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

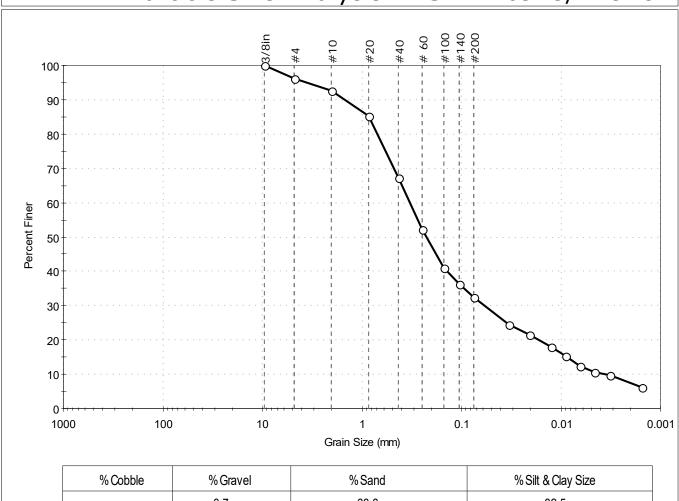
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Dispersion Device: Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Sand/Gravel Hardness: HARD

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-10-30 12/30/20 Checked By: MCM Test Date:


Depth: 10-30 Test Id: 318372

Test Comment:

Visual Description: Moist, dark gray clayey sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	3.7	63.8	32.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	96		
#10	2.00	93		
#20	0.85	85		
#40	0.42	67		
# 60	0.25	52		
#100	0.15	41		
#140	0.11	36		
#200	0.075	32		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0331	24		
	0.0208	21		
	0.0125	18		
	0.0089	15		
	0.0064	12		
	0.0046	11		
	0.0032	10		
	0.0015	6		

<u>Coefficients</u>		
D ₈₅ = 0.8405 mm	$D_{30} = 0.0584 \text{ mm}$	
D ₆₀ = 0.3284 mm	$D_{15} = 0.0085 \text{ mm}$	
D ₅₀ = 0.2248 mm	$D_{10} = 0.0036 \text{ mm}$	
C _u =91.222	$C_c = 2.885$	

Classification N/A <u>ASTM</u>

AASHTO Silty Gravel and Sand (A-2-4 (0))

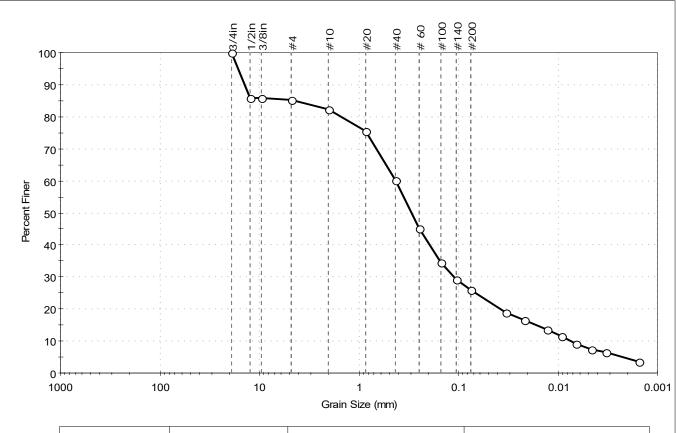
Sample/Test Description
Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Location:Montauk, NYProject No:GTX-312957Boring ID:CH-MW045DSample Type:bagTested By:twhSample ID:CH-MW045D-SB-30-50Test Date:12/30/20Checked By:MCM


Depth: 30-50 Test Id: 318373

Test Comment: ---

Visual Description: Moist, gray clayey sand

Sample Comment: ---

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	14.9	59.3	25.8

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/4in	19.00	100		
1/2in	12.50	86		
3/8in	9.50	86		
#4	4.75	85		
#10	2.00	82		
#20	0.85	75		
#40	0.42	60		
# 60	0.25	45		
#100	0.15	35		
#140	0.11	29		
#200	0.075	26		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0336	19		
	0.0219	17		
	0.0128	14		
	0.0091	11		
	0.0065	9		
	0.0046	7		
	0.0033	6		
	0.0015	4		

	<u>Coefficients</u>		
D ₈₅ = 4.5450 mm		$D_{30} = 0.1118 \text{ mm}$	
	D ₆₀ = 0.4221 mm	$D_{15} = 0.0164 \text{ mm}$	
D ₅₀ = 0.2972 mm		$D_{10} = 0.0074 \text{ mm}$	
	C., =57 041	$C_0 = 4.002$	

Classification
ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

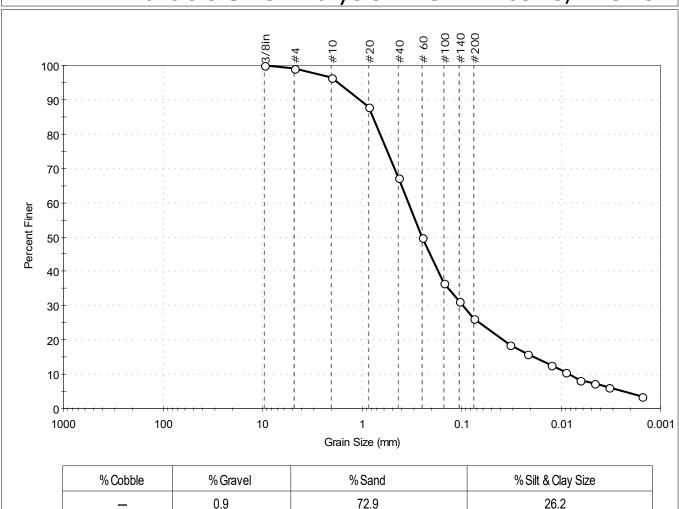
<u>Sample/Test Description</u> Sand/Gravel Particle Shape: ANGULAR

Sand/Gravel Hardness: HARD

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-40-50 12/30/20 Checked By: Test Date: MCM


40-50 Depth: Test Id: 318374

Test Comment:

Visual Description: Moist, grayish brown silty sand

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	99		
#10	2.00	96		
#20	0.85	88		
#40	0.42	67		
# 60	0.25	50		
#100	0.15	37		
#140	0.11	31		
#200	0.075	26		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0326	19		
	0.0215	16		
	0.0126	13		
	0.0090	11		
	0.0065	8		
	0.0046	7		
	0.0033	6		
	0.0015	3		

	<u>Coefficients</u>				
D ₈₅ = 0.7731 mm		$D_{30} = 0.0979 \text{ mm}$			
	D ₆₀ = 0.3404 mm	$D_{15} = 0.0186 \text{ mm}$			
	D ₅₀ = 0.2509 mm	$D_{10} = 0.0081 \text{ mm}$			
	C _u =42.025	$C_c = 3.476$			

Classification N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

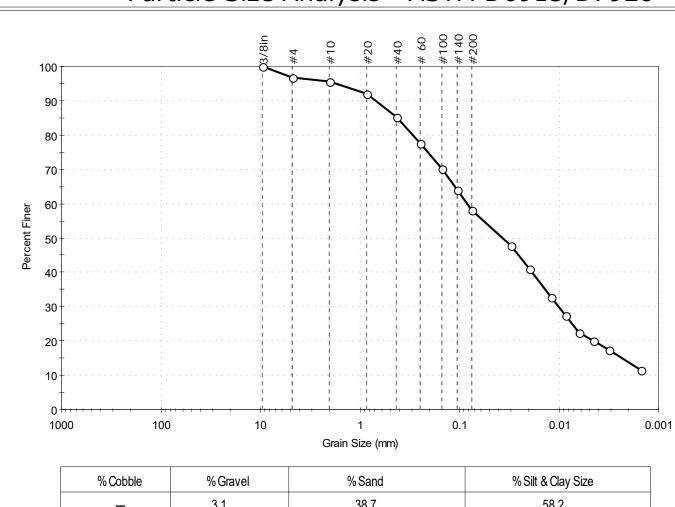
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

<u>ASTM</u>

Dispersion Device : Apparatus A - Mech Mixer

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-50-60 Test Date: 12/30/20 Checked By: MCM


Depth: 50-60 Test Id: 318375

Test Comment:

Visual Description: Moist, grayish brown sandy clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	3.1	38.7	58.2

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	97		
#10	2.00	96		
#20	0.85	92		
#40	0.42	85		
# 60	0.25	78		
#100	0.15	70		
#140	0.11	64		
#200	0.075	58		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0306	48		
	0.0196	41		
	0.0119	33		
	0.0086	28		
	0.0062	22		
	0.0044	20		
	0.0032	17		
	0.0015	11		

	<u>Coefficients</u>				
D ₈₅ = 0.4169 mm		$D_{30} = 0.0100 \text{ mm}$			
	D ₆₀ = 0.0836 mm	$D_{15} = 0.0024 \text{ mm}$			
	D ₅₀ = 0.0374 mm	$D_{10} = N/A$			
	$C_u = N/A$	$C_C = N/A$			

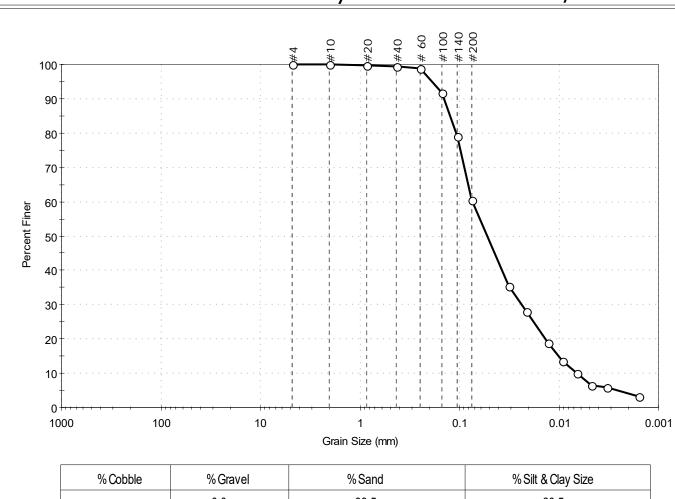
Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-60-70 Test Date: 12/30/20 Checked By: MCM


Depth: 60-70 Test Id: 318376

Test Comment:

Visual Description: Moist, grayish brown sandy silt

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	39.5	60.5

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
# 60	0.25	99		
#100	0.15	92		
#140	0.11	79		
#200	0.075	60		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0315	35		
	0.0210	28		
	0.0127	19		
	0.0091	14		
	0.0066	10		
	0.0047	6		
	0.0033	6		
	0.0016	3		

Coeffic	<u>cients</u>	
D ₈₅ = 0.1250 mm	$D_{30} = 0.0232 \text{ mm}$	
D ₆₀ = 0.0737 mm	$D_{15} = 0.0100 \text{ mm}$	
D ₅₀ = 0.0521 mm	$D_{10} = 0.0065 \text{ mm}$	
C _u =11.338	$C_{c} = 1.124$	

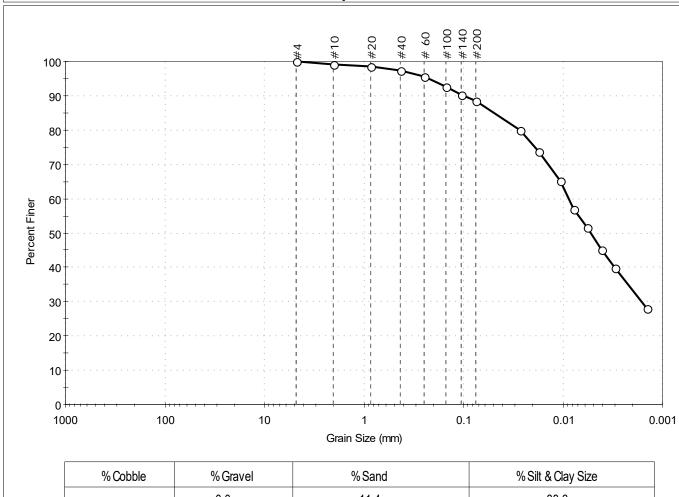
Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-72-80 Test Date: 12/30/20 Checked By: MCM


Depth: 72-80 Test Id: 318377

Test Comment:

Visual Description: Moist, dark grayish brown clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	11.4	88.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	99		
#40	0.42	97		
# 60	0.25	96		
#100	0.15	93		
#140	0.11	90		
#200	0.075	89		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0267	80		
	0.0177	74		
	0.0107	65		
	0.0079	57		
	0.0057	52		
	0.0041	45		
	0.0030	40		
	0.0014	28		

<u>Coefficients</u>					
D ₈₅ = 0.0485 mm	$D_{30} = 0.0016 \text{ mm}$				
D ₆₀ = 0.0088 mm	$D_{15} = N/A$				
D ₅₀ = 0.0053 mm	$D_{10} = N/A$				
C _u =N/A	$C_C = N/A$				

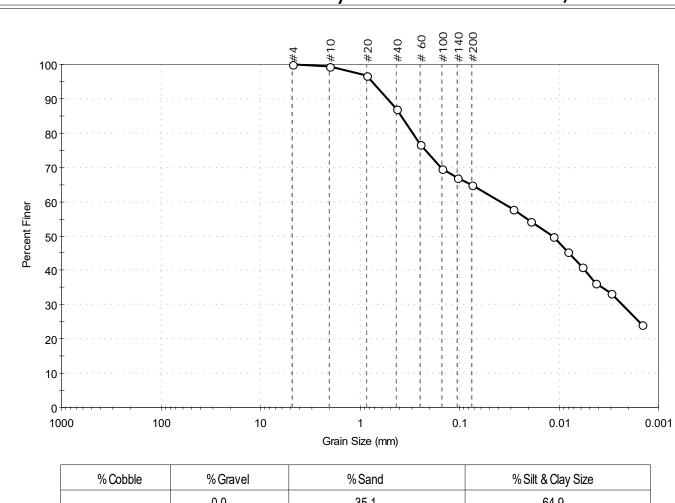
Classification N/A <u>ASTM</u> AASHTO Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-80-85 12/30/20 Checked By: Test Date: MCM


80-85 Depth: Test Id: 318378

Test Comment:

Visual Description: Moist, grayish brown sandy clay

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
_	0.0	35.1	64.9

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	99		
#20	0.85	97		
#40	0.42	87		
# 60	0.25	77		
#100	0.15	69		
#140	0.11	67		
#200	0.075	65		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0291	58		
	0.0193	54		
	0.0114	50		
	0.0082	45		
	0.0059	41		
	0.0043	36		
	0.0030	33		
	0.0015	24		

Coeffic	<u>cients</u>
D ₈₅ = 0.3838 mm	$D_{30} = 0.0023 \text{ mm}$
D ₆₀ = 0.0391 mm	$D_{15} = N/A$
D ₅₀ = 0.0117 mm	$D_{10} = N/A$
Cu =N/A	$C_C = N/A$

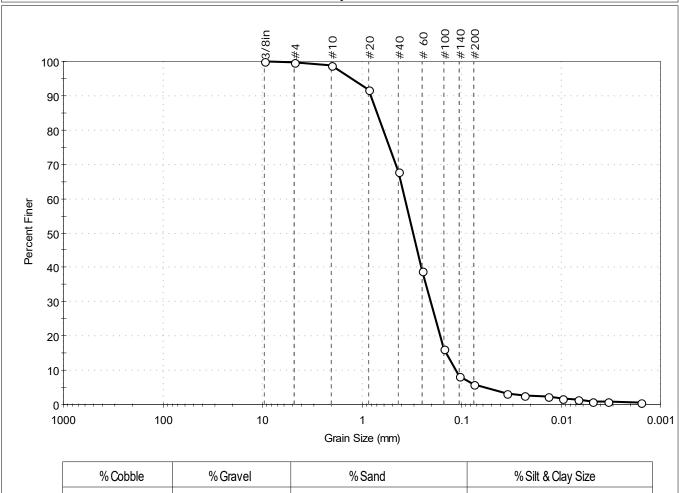
<u>ASTM</u>	Classification N/A
<u>AASHTO</u>	Silty Soils (A-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Project No: GTX-312957 Boring ID: CH-MW045D Sample Type: bag Tested By: twh Sample ID: CH-MW045D-SB-90-100 Test Date: 12/30/20 Checked By: MCM


90-100 Depth: Test Id: 318379

Test Comment:

Visual Description: Moist, gray sand with silt

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.3	93.7	6.0

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
3/8in	9.50	100		
#4	4.75	100		
#10	2.00	99		
#20	0.85	92		
#40	0.42	68		
# 60	0.25	39		
#100	0.15	16		
#140	0.11	8		
#200	0.075	6.0		
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0353	3		
	0.0235	3		
	0.0135	2		
	0.0095	2		
	0.0068	1		
	0.0048	1		
	0.0034	1		
	0.0016	1		

Coeffic	<u>cients</u>	
D ₈₅ = 0.7013 mm	$D_{30} = 0.2044 \text{ mm}$	
D ₆₀ = 0.3680 mm	$D_{15} = 0.1426 \text{ mm}$	
D ₅₀ = 0.3061 mm	$D_{10} = 0.1147 \text{ mm}$	
C _u =3.208	$C_c = 0.990$	

Classification N/A <u>ASTM</u> AASHTO Fine Sand (A-3 (1))

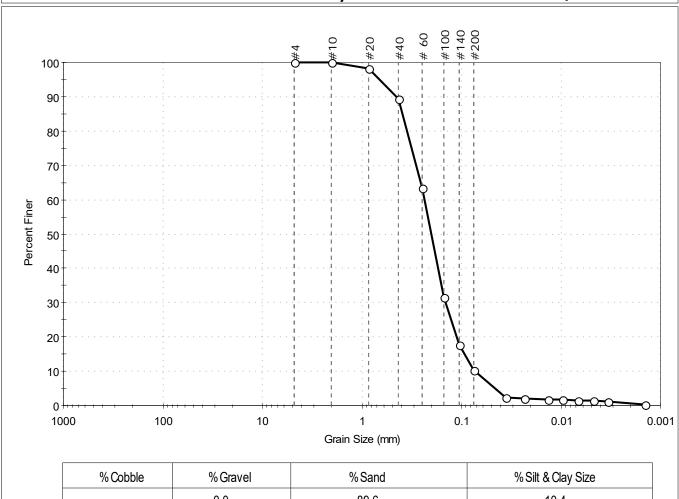
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

Dispersion Device : Apparatus A - Mech Mixer

Sample Type: bag

Boring ID: CH-MW045D Tested By: twh Sample ID: CH-MW045D-SB-132-134 Test Date: 01/05/21 Checked By: MCM


132-134 Depth: Test Id: 318380

Test Comment:

Visual Description: Moist, grayish brown sand with silt

Sample Comment:

Particle Size Analysis - ASTM D6913/D7928

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.0	89.6	10.4

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies		
#4	4.75	100				
#10	2.00	100				
#20	0.85	98				
#40	0.42	89				
# 60	0.25	63				
#100	0.15	32				
#140	0.11	18				
#200	0.075	10				
Hydrometer	Particle Size (mm)	Percent Finer	Spec. Percent	Complies		
	0.0361	2				
	0.0235	2				
	0.0134	2				
	0.0095	2				
	0.0067	1				
	0.0048	1				
	0.0034	1				
	0.0014	0				

Coeffic	<u>cients</u>
D ₈₅ = 0.3886 mm	$D_{30} = 0.1441 \text{ mm}$
D ₆₀ = 0.2364 mm	$D_{15} = 0.0933 \text{ mm}$
D ₅₀ = 0.2014 mm	$D_{10} = 0.0723 \text{ mm}$
$C_u = 3.270$	$C_c = 1.215$

Project No:

GTX-312957

Classification N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness: ---

<u>ASTM</u>

Dispersion Device : Apparatus A - Mech Mixer

Dispersion Period: 1 minute Est. Specific Gravity: 2.65

SOIL CHAIN OF CUSTODY & TEST REQUEST

INVOICE (complete if different from Client)

8

marking arm 02216

(Sieve & Mydramoby)

Coursin ASTM D'6913 and 7928

GeoTesting Express, Inc.

125 Nagog Park Acton, MA 01720 800 434 1062 Toll Free 978 635 0266 Fax

2358 Perimeter Park Drive, Suite 320 Atlanta, GA 30341 770 645 6575 Tel 770 545 6570 Fax

www.geotesting.com

Phone: 703-682-1564 6 | 8 2280

E-mail: Brendan.McGuinness@aecom.com

On-site Contact: Brendan McGuinness

Project Location: Montauk, NY Project Name: Camp Hero RI

Requested Turnaround: Standard

Purchase Order#:

Client Project #: 60443903

GTX Sales Order #:

Phone: Cell:

City, State, Zip:

Phone: 703-682-9069 Cell:

E-mail: Devon.Chicoine@aecom.com

City, State, Zip: Arlington, VA 22201

Contact: Devon Chicoine

Address: 3101 Wilson Blvd

Company: AECOM

Address Contact: E-mail: PROJECT

Company:

CLIENT

	T		I	1	Т	T	1		ŤΤ	Т			
Other:													
Эфф.													
Unconfined Compression (ASTM D 2166)													
Please circle one				-						\dashv			
Permeability! Hydraulic Conductivity* (Fixed Wall – ASTM D 2434) (Flexible Wall – ASTM D 5084)								-				<u></u>	
noremental Consolidation* (3504 D MTSA)		****										is	Ò
Triaxial Shear* (UV – RSTM D 2850) (CO – RSTM D 4781) (CO – RSTM TO 4781)												nal Loads, Test Confining Stresses, etc.): Grain size by sieve analysis only	IN SOUNDIE ID
Direct Shear' (ASTM D 3080)											}	ieve.	Q Q
* oilse Bearing Ratio * (E881 D MT2A)												र्व	≧. 21.
Proctor Compaction (Standard – ASTM D 698) (Modified – ASTM D 1557) please circle one												in size	Definition to the
Electrical Resistivity (vs D MT8A)												\$	古
Specific Gravity (ASTM D 854)										.		es, etc.	5=10
Hq (STEP O MTSA)												Stress	8 Ati
Organic Content (ASTM D 2974)												onfining	ſ <u>~</u>
Moisture Content (ASTM D 2216)	 	>	7	1/2	\	\	>	>	>	>		Test C	77
(766S O M5AA) (85ST O M78A) 910 Sircle one												I Loads,	4
P. C. H. Z. H. Z. P. C. C. Sin Size (Sath D MYZA) 2018 (Sin O sure) (S	7	>	>	/	1/	,	>	>	<u> </u>	>		Fest Norma	5173
USCS – Classification (T843 D 2487)												sture,	Ā
atimilg biedietiA (8164 O MT2A)												and mo	SIS.
tree	01-00	30	5%	-40-5C	09-05-	St-09	3-75-C	-80-85	-96-100	1325134		nolded, Density	Grain Size Na ASTA D6913
SOIL	01-00-63-02-00-10-	CH-MUSTSD-SG-10-30	CH-MUDOUSD-58-30-50	05-04-95-0540WM-H)	09-05-185-CTS40CMV-HJ	F-09-95-CShOM-H)	0 - 24 - 95 - 0 Shopmy - H J	(H-UWO48D-SQ-80-85)	001-01-916-CASHOCM-HO	KZ1-CZ1-B3-CZNCWM-H)		*Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Norm	15 x 15 15
O C C C C C C C C C C C C C C C C C C C	Color S. T.							and the second		シ		*Specify Test Co	

Incoming Sample Inspection Performed

Adverse conditions:

DATE: 12/4/120

PRINT NAME: JACK HOLLINGS, DOLLA

AUTHORIZE BY SIGN

SIGNATURE

For GTX Use Only

9/2/2

DATE: TIME:

Received By: $\mathcal{M}_{\mathcal{M}}$

3pm

のこのかりれ

Received By:

DATE: 12/4/20

TIME: 160

DATE: (2 / 6/20

Relinquished By:

Mm

Relinquished By

TIME: /

DATE: TIME:

SOIL CHAIN OF CUSTODY & TEST REQUEST

Requested Turnaround: Standard Phone:703-682-1564 INVOICE (complete if different from Client) Purchase Order#: Phone: Cell: E-mail: Brendan.McGuinness@aecom.com Client Project #: 60443903 GTX Sales Order #: Address: City, State, Zip: Contact: Company: E-mail: PROJECT Phone: 703-682-9069 Celli CLIENT On-site Contact: Brendan McGuinness E-mail: Devon.Chicoine@aecom.com Address: 3101 Wilson Blvd City, State, Zip: Arlington, VA 22201 Project Location: Montauk, NY Project Name: Camp Hero RI Contact: Devon Chicoine Company: AECOM

GeoTesting Express, Inc.
125 Nagog Park
Acton, MA 01720
800 434 1062 Toll Free
978 635 0266 Fax

2358 Perimeter Park Drive, Suite 320 Atlanta. GA 30341 770 645 6575 Tel 770 645 6570 Fax

www.geotesting.com

														·				
Other:															!			
Ойлет:														- Pe			3,	
noiesergmod benifinoonU (Bars G MT2A)														Only Derfo			0000	
Permeability! Hydraulic Conductivity' (Fixed Wall – ASTM D 5084) 1084) Please Circle one												<u>₹</u>		For GTX Use Only	incolling sample inspected Adverse conditions:		DATE: 12/ TIME:	DATE: TIME:
fnoremental Consolidation* (ASAM O 2435)			-									825	0	5	verse co		<u> </u>	
Triaxial Shear* (UU – ASTM D 2850) (CU – ASTM D 4767) (CD – ASTM D 4767)					J. S.							TO A	7		Ad			
Direct Shear* (ASTA D 3080)										-		by sieve 7)7.913	Sair					
California Bearing Ratio *												6 P	, 'Z	()	2			
Proctor Compaction (Standard - ASTM D 698) (Modified - ASTM D 1557) please circle one												Stain size	nounbers		DATE: 12/16/12		1	
Electrical Resistivity (Ta D MT2A)												3 €			ATE:		7	
Specific Gravity (ASA D MT2A)												ing Stresses, etc.):	+ 500		٥	-	12	
Hq (STE# G MT2A)												Stress(last.				d By:	d By:
Organic Content (AYES G MT2A)												Sonfining	Tooths= last	,	250		Received By:	Received By:
Molsture Content (AFSE D MT2A)	/	/		>	<i>\</i>	Ş	>	>	>	^	>	ts, Test Confin	3	$\ $,	35/2/			
(7692 O MT2A) Visian D (AST O MT2A) Please circle one												I Loads	<i>Y</i>		He			97.0
SST Y & LIPS) Solve of MTSS) (Steed MTSS) Space Challed (Space & Lydrometer) Area of chose of	Š	>	/	1	1	//	1/	1	1//	1	>	est Norma			Jack		22 22	2/4/20
USCS - Classification (TSA)												sture, T			NAME:		DATE: (DATE: TIME:
etimi J gradrattA (8164 G MT2A)												ind mois			PRINT NAME:			
Depth	<u>\\</u>	2-7g	-37-39	チャーンゲーのS-Chrown MIE	35-8	19-79-88-100mm	25-04-08-04-W	78-58-	£5-95	1 (0%-109	911-511-95	*Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Normal Loads, Test Confining Stresses, etc.): Grain Size ** ** ******************************		Transfer				
	ソードーのソーファカンバック・ドン	P-42-88-07-80-17-19		-5B-	74-X1-00-40-513-51-50	1.88	7-5.9	1	5	× 58	0	or Rem		9			The state of the s	The state of the s
	707	すって	S-01-002-12	34-50	F 05	5	77.40	らない	とこと	2 - CT-CC-2-5	MWENY!	listurbed	ر_	AUTHORIZE BY SIGNING AND DATING				1
SOIL	20,12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	001×) (X) W	1 X X	30 TA	3	JEBYC M-H	いかのいて	3	1 X	ons (Und	345 1 st 2	NING AF	THE STATE OF THE S	J	R	1
	1 H- A		12] <u>-</u>	1 T	=		之	13	2	Conditic	- مسسر ۱	BY SIG	#	+	A BA	d By:
	20.00						i i				-,1	fy Test	4	ORIZE	SIGNATURE:		Relinquished	Relinguished By:
Boring ID	ケナング・アード ノ	-				 					 	*Specif	** No.	AUTH	SIGNA		Relin	Relip

SOIL CHAIN OF CUSTODY & TEST REQUEST

www.geotesting.com 770 645 6570 Fax Requested Turnaround: Standard Phone:703-682-1564 INVOICE (complete if different from Client) Purchase Order#: Phone: Cell: E-mail: Brendan.McGuinness@aecom.com Client Project #: 60443903 Address: City, State, Zip: GTX Sales Order #: Company: Contact: E-mail: PROJECT Phone: 703-682-9069 Cell: CLIENT On-site Contact: Brendan McGuinness E-mail: Devon.Chicoine@aecom.com Address: 3101 Wilson Blvd City, State, Zip: Arlington, VA 22201 Project Location: Montauk, NY Project Name: Camp Hero RI Contact: Devon Chicoine Company: AECOM

ß

	Suite 320	Geolesting Express, Inc. 125 Nagog Park Acton, MA 01720 800 434 1062 Toll Free 078 434 2044 Eark 125 Nagot Eark	VD - 0000 000 000	2358 Perimeter Park Drive, Suite 320	Atlanta, GA 30341	770 645 6575 Tel
,7,	ite 320	ess, inc.	<	ark Drive, Su	,	

iher:	10													
her:	ю		.,,		 									med 🗆
nconfined Compression STM D 2166)	ıU A)				 									Only n Perfori
oillusibyl lydicaulio ylydioubno bed Wall – BSAD D 2434) G MT2A – IlsW blaible (ps) (ps)	ゴ) (ド (ド 50	-									Ápt			For GTX Use Only Incoming Sample Inspection Performed Adverse conditions:
cremental Consolidation*					 						is o	23	[oming S
**************************************	o) o) n)										analys	トナル	0	Inc
rect Shear* STM D 3080)			:								ieve	52 13	3/2/2	
* oiteR enins Beinotile STM D 1863)											神	_	Samol	02/9
octor Compaction fandard – ASM D 698) loditied – RSM D 1557) ease circle one	N) S)										.oads, Test Confining Stresses, etc.): Grain size by sieve analysis only	マグラし	S 02.1	21
ectrical Resistivity STM G GT)											ਲੋਂ ∵		H	DATE:
oecific Gravity STM D 854)											ses, etc	るご	3	
† (STEA 0 MTS	[{] q A}										y Stress	D.	2	4
ganic Content (97es G MTS											onfining	%	11	33/
osture Content STM D 2216)		>	>								Test	A Section	7	
(7893 D 2937) TM D 7863) Sase circle one	A)				,					7	Loads,			writing and
TF & CHV Sire (MTSA) exist nis (VinO eve) (14 Semonbyt & eve (16 one)	ב(S) S)	`>	\	7			1 1 1				est Norma			1201
noiteathcation (7842 D MT2.	aU A)				`	J	7	3			sture, T			VAME:
stimid Limits (B1EA D 4318)	1A A)							X	de se de se	 	nd mois			PRINT NAME:
	Depth	シージング	120-138	PS1451		1					nolded, Density a			
Tios	Sample ID	CH-MUOHCH - NWOUND - SR - 173-175	ストングラコロンの一元の一元の	CH-MUD44D-18-157159						The state of the s	Specify Test Conditions (Undisturbed or Remolded, Density and moisture, Test Normal L	2 to C	<i>t</i>	AUTHORIZE BY SIGNINGIAND DATING SIGNATURE:
	Boring ID	CH-MWO#HC	3	J							*Specify Test Cond	78 6 85%		AUTHORIZE BY SI SIGNATURE:

22

DATE: TIME: DATE: TIME:

Received By:

Received By:

DATE: 17/6/120 TIME: 1360 DATE: 12/9/120

Relinquished By://

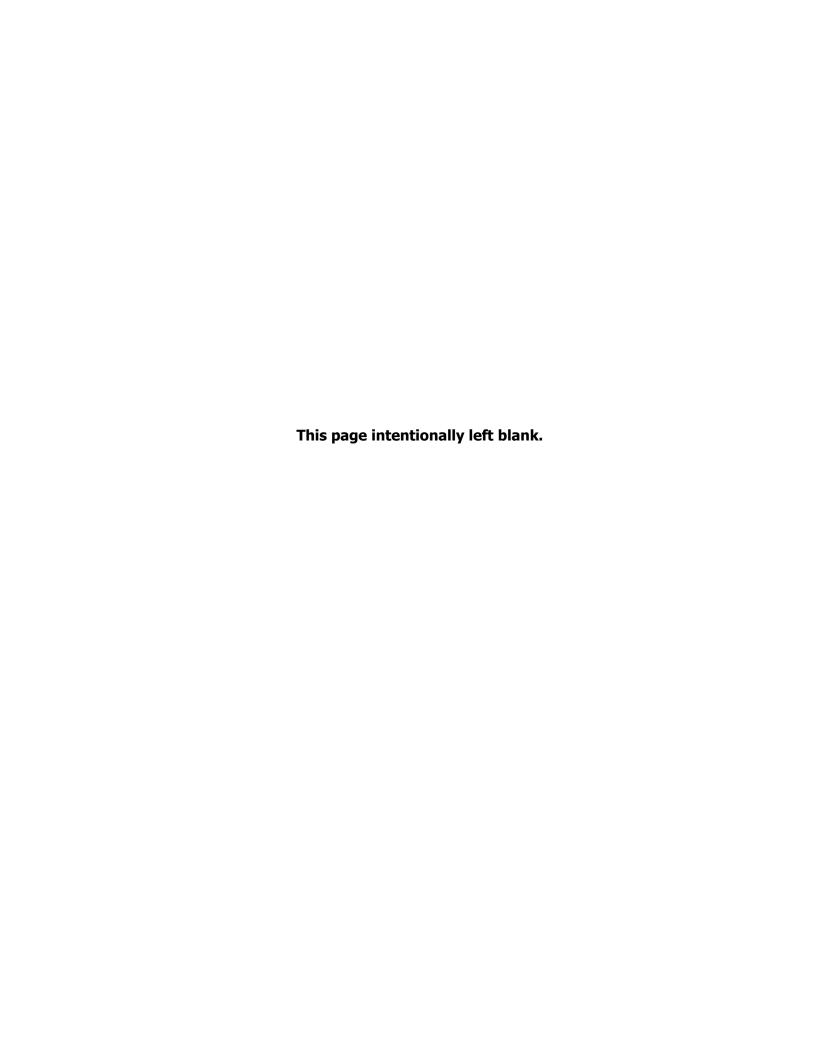
Relinguished By:

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.


Commonly Used Symbols

A	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	T	tomporoturo
В	pore pressure parameter for $\Delta \sigma_3$		temperature time
CIU	isotropically consolidated undrained triaxial shear test	t H HC	
CR	compression ratio for one dimensional consolidation	U, UC	unconfined compression test
C _c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	UU, Q	unconsolidated undrained triaxial test
C _u	coefficient of uniformity, D_{60}/D_{10}	u_a	pore gas pressure
	compression index for one dimensional consolidation	u_e	excess pore water pressure
C_c	coefficient of secondary compression	u, u_w	pore water pressure
C_{α}	, 1	V	total volume
$c_{\rm v}$	coefficient of consolidation	V_{g}	volume of gas
c	cohesion intercept for total stresses	$V_{\rm s}$	volume of solids
c'	cohesion intercept for effective stresses	$V_{\rm v}$	volume of voids
D	diameter of specimen	V_{w}	volume of water
D_{10}	diameter at which 10% of soil is finer	V_{o}	initial volume
D_{15}	diameter at which 15% of soil is finer	v	velocity
D_{30}	diameter at which 30% of soil is finer	W	total weight
D_{50}	diameter at which 50% of soil is finer	\mathbf{W}_{s}	weight of solids
D_{60}	diameter at which 60% of soil is finer	\mathbf{W}_{w}	weight of water
D_{85}	diameter at which 85% of soil is finer	w	water content
d_{50}	displacement for 50% consolidation	\mathbf{w}_{c}	water content at consolidation
d_{90}	displacement for 90% consolidation	\mathbf{w}_{f}	final water content
d_{100}	displacement for 100% consolidation	$\mathbf{w}_{\mathbf{l}}$	liquid limit
E	Young's modulus	$\mathbf{w}_{\mathbf{n}}$	natural water content
e	void ratio	W_p	plastic limit
e_c	void ratio after consolidation	$\mathbf{w}_{\mathbf{s}}$	shrinkage limit
e_{o}	initial void ratio	W_0, W_i	initial water content
G	shear modulus	α	slope of q_f versus p_f
G_s	specific gravity of soil particles	α'	slope of q _f versus p _f '
Н	height of specimen	$\gamma_{\rm t}$	total unit weight
PI	plasticity index	γd	dry unit weight
i	gradient	$\gamma_{\rm s}$	unit weight of solids
K_{o}	lateral stress ratio for one dimensional strain	$\gamma_{\rm w}$	unit weight of water
k	permeability	 E	strain
LI	Liquidity Index	$\epsilon_{ m vol}$	volume strain
$m_{\rm v}$	coefficient of volume change	$\varepsilon_{\rm h},\varepsilon_{\rm v}$	horizontal strain, vertical strain
n	porosity	μ	Poisson's ratio, also viscosity
PI	plasticity index	σ	normal stress
P_c	preconsolidation pressure	σ'	effective normal stress
p	$(\sigma_1 + \sigma_3) / 2, (\sigma_v + \sigma_h) / 2$	σ_{c}, σ'_{c}	consolidation stress in isotropic stress system
p'	$(\sigma'_1 + \sigma'_3) / 2$, $(\sigma'_v + \sigma'_h) / 2$	σ_h, σ'_h	horizontal normal stress
p'c	p' at consolidation	σ_{v}, σ'_{v}	vertical normal stress
Q	quantity of flow	σ_1	major principal stress
q	$(\sigma_{1} - \sigma_{3}) / 2$	σ_2	intermediate principal stress
q_f	q at failure	σ_3	minor principal stress
q_0, q_i	initial q	τ	shear stress
q _c	q at consolidation		friction angle based on total stresses
S	degree of saturation	φ φ'	friction angle based on effective stresses
SL	shrinkage limit	φ φ' _r	residual friction angle
Su	undrained shear strength	Ψr Φult	φ for ultimate strength
T	time factor for consolidation	Ψιιτ	ψ for aramate suchgain

Appendix E Evaluation of Analytical Data

Appendix E Evaluation of Analytical Data

TABLE OF CONTENTS

Revision Number: 0

Revision Date: July 2021

1.0	INTRO	DDUCTION Evaluation of Analytical Data Organization	
2.0		HANDLING AND EVALUATION	2-1 2-1
3.0	SUMM	ARY STATISTICS	3-1
4.0	PAH/F 4.1 4.2 4.3	CB TOTALS CALCULATION RESULTS Polycyclic Aromatic Hydrocarbon Summation Concentrations Polychlorinated Biphenyl Summation Concentrations Summations Using Kaplan-Meier Method	4-1 4-2
5.0	HAND	LING OF SPECIATED CHROMIUM RESULTS	
7.0	2021 6.1 6.2 6.3 STATI	STICAL COMPARISON BETWEEN THE DECEMBER 2020 AND FEBRUARY EVENTS	6-1 6-1 7-1 7-1 7-1 7-2 7-2
		LIST OF ATTACHMENTS	
Δttac	hment A		
	hment B		
	hment C	,	
	hment D) and
Attac	hment E	Summary of Hypothesis Testing Results to Compare Onsite and of Iron and Manganese	Offsite Data

ACRONYMS AND ABBREIVATIONS

Revision Number: 0

Revision Date: July 2021

% percent

ATSDR Agency for Toxic Substances and Disease Registry

BaP benzo(a)pyrene
Cr³⁺ trivalent chromium
Cr⁶⁺ hexavalent chromium

HHSE Human Health Screening Evaluation

HMW high molecular weight

KM Kaplan-Meier

LMW low molecular weight
LOD limit of detection
LOQ limit of quantitation

MCL maximum contaminant level

MDL method detection limit

ND non-detect

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl
PAST Paleontological STatistics
RI remedial investigation

SVOC semivolatile organic compound
TEF toxicity equivalence factors

TEQ toxicity equivalence
UCL upper confidence limit

µg/L microgram per liter
UGA Upper Glacial Aquifer

USEPA United States Environmental Protection Agency

VOC volatile organic compound

1.0 INTRODUCTION

This appendix documents the significant components of the analytical data evaluation conducted as part of the Camp Hero Phase IV Remedial Investigation (RI). The purposes of conducting the data evaluation were to summarize the groundwater data collected at the site in December 2020 and February 2021 and to support various aspects of Human Health Screening Evaluation (HHSE) for the Phase IV RI.

Revision Number: 0

Revision Date: July 2021

1.1 Evaluation of Analytical Data Organization

This appendix is organized into the following sections:

- **Section 1.0**: Introduction Describes the purpose, scope, and objectives of the evaluation of analytical data.
- **Section 2.0**: Data Handling and Evaluation Describes the datasets and how they were used in subsequent statistical evaluations.
- Section 3.0: Summary Statistics Calculates summary statistics of the Phase IV groundwater analytical results.
- Section 4.0: Polycyclic aromatic hydrocarbon (PAH)/polychlorinated biphenyl (PCB) Totals
 Calculation Results Describes how PAH/PCB totals were calculated for the purpose of the
 HHSE.
- **Section 5.0**: Handling of Speciated Chromium Results Discusses how speciated chromium concentrations were calculated and the rationale.
- **Section 6.0**: Statistical Comparison between the December 2020 and February 2021 Events Discusses whether data from the two sampling events could be combined based on a statistical paired analysis. A brief discussion of the statistical comparison results is also included.
- **Section 7.0**: Statistical Comparison of Iron and Manganese Concentrations between Offsite and Onsite Wells Describes how the hypothesis testing was performed to compare the iron and manganese concentrations between the groups of offsite and onsite wells. A brief discussion of the statistical comparison results is also included.

The following attachments are included in this appendix:

- **Attachment A** contains the references for the Evaluation of Analytical Data appendix.
- Attachment B contains the summary statistics of the groundwater data.
- Attachment C contains the PAH/PCB totals calculation results.
- Attachment D contains the summary of the paired analysis results to compare December 2020 and February 2021 data.

• **Attachment E** contains the summary of the hypothesis testing results to compare offsite and onsite data of iron and manganese.

Revision Number: 0

Revision Date: July 2021

2.0 DATA HANDLING AND EVALUATION

This section describes the Phase IV RI groundwater datasets and how they were handled for the subsequent data and statistical evaluation.

Revision Number: 0

Revision Date: July 2021

2.1 Phase IV RI Groundwater Datasets

As part of the Phase IV RI field investigation, two rounds (December 2020 and February 2021) of groundwater samples were collected from a total of 14 Upper Glacial Aquifer (UGA) wells: seven onsite UGA wells, including the four newly-installed permanent monitoring wells, and seven offsite UGA wells, as summarized on **Table 2-5** in **Appendix B**. **Figure 2-1** in **Appendix A** displays the locations of the groundwater wells.

The Phase IV activities are documented in Field Documentation (**Appendix C**), and the laboratory analytical data reports are provided in Analytical Results and Validation (**Appendix D**). Groundwater samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), PCBs, and metals, including hexavalent chromium (Cr⁶⁺) and mercury. Both total (unfiltered) and dissolved (filtered) samples were collected for metals (including Cr⁶⁺ and mercury). The full analytical results of the groundwater samples are provided in **Appendix B2**.

2.2 Data Evaluation and Handling

Groundwater samples were analyzed using the following United States Environmental Protection Agency (USEPA) methods:

- SW6020B (all other metals), SW7470A (mercury), and E218.6 (Cr⁶⁺), for both filtered (dissolved) and unfiltered (total) fractions
- SW8260C (VOCs)
- BNASIM (PAHs) and SW8270D (all other SVOCs)
- SW8082A (PCBs)

All validated, qualified data were considered usable for this study, and there were no unusable or rejected ("R" qualified) samples.

The limit of quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias. The LOQ is typically larger than the limit of detection (LOD) but may be equal to the LOD, depending upon the acceptance limits for precision and bias; therefore, the following is true:

Method Detection Limit (MDL) < LOD ≤ LOQ

Quantitative results can only be achieved at or above the LOQ. Measurements between the MDL and the LOQ assure the presence of the analyte with confidence, but their numeric values are estimates

("J" qualified). Data reported as non-detects (NDs) (i.e., "U" qualified) are considered censored data below the LOD.

Revision Number: 0

Revision Date: July 2021

No "B" qualified results (blank contamination) were identified in the background datasets. However, "J" qualified results (estimated values) were identified and carried forward as detected results.

When a sample consisted of a normal/duplicate pair, the following data processing was performed to ensure reasonable data independence:

- When both normal and duplicate pairs were detected, the average of the pairs was taken.
- When both normal and duplicate pairs were NDs, the sample with the lower LOD was taken.
- When of the normal and duplicate pairs was ND and the other was detected, the detected result
 was taken.

3.0 Summary Statistics

Attachment B presents the summary statistics for the groundwater samples collected from both rounds of sampling. The summary statistics include number of samples, detection rate, mean, standard deviation, minimum and maximum detected values, and the minimum and maximum of the LOD of NDs. The summary statistics are grouped by Location Group (i.e., Offsite "Local Conditions") and Onsite) and by analyte.

Revision Number: 0

Revision Date: July 2021

Many of the metals were detected in one of more samples, except Cr⁶⁺ (further discussed in **Section 5.0**). For the onsite wells, the following metals were 100 percent (%) NDs for both total and dissolved fractions: beryllium, cadmium, selenium, and thallium; for the offsite wells, these metals were detected in either or both total and dissolved fractions.

PCBs were 100% NDs for the onsite wells, but they were detected in the form of Aroclor 1260 in two samples from the offsite wells.

SVOCs and VOCs were mostly NDs or 100% NDs for both onsite and offsite wells, with the exception of these four SVOCs: 1,4-dioxane, fluoranthene, phenanthrene, and pyrene, as well as five VOCs: 2-butanone (methyl ethyl ketone, acetone, carbon disulfide, chloroform, and *o*-xylene, where three or more samples from the onsite wells were reported to have detected results.

This page intentionally left blank.

Revision Number: 0

Revision Date: July 2021

4.0 PAH/PCB Totals Calculation Results

Total PAH, total benzo(a)pyrene (BaP) toxicity equivalence (TEQ), and total PCB concentrations were derived for each sample to support the HHSE.

Revision Number: 0

Revision Date: July 2021

4.1 Polycyclic Aromatic Hydrocarbon Summation Concentrations

PAHs constitute a class of organic substances made up of carbon and hydrogen atoms grouped into at least two condensed aromatic ring structures. The low molecular weight (LMW) PAHs are composed of fewer than four rings, and the high molecular weight (HMW) PAHs are composed of four or more rings. The bioavailability of PAHs in soil is influenced by organic carbon quality and quantity, aging and weather, microbial action, methylation/hydroxylation, adsorption/desorption hysteresis, and ultraviolet light interaction (Fairbrother, 2005). The USEPA has grouped the PAHs into LMW and HMW categories as a means to address the differences in physical and chemical properties of individual PAHs that influence toxicity and environmental fate (USEPA, 2007). The following table presents the LMW and HMW PAHs categories and the molecular weight of each individual PAH.

LMW PAHs	CAS No.	Molecular Weight	HMW PAHs	CAS No.	Molecular Weight
1-Methylnaphthalene	90-12-0	142.2	Benzo(a)anthracene	56-55-3	228.3
2-Methylnaphthalene	91-57-6	142.2	Benzo(a)pyrene	50-32-8	252.3
Acenaphthene	83-32-9	154.2	Benzo(b)fluoranthene	205-99-2	252.3
Acenaphthylene	208-96-8	152.2	Benzo(g,h,i)perylene	191-24-2	276.3
Anthracene	120-12-7	178.2	Benzo(k)fluoranthene	207-08-9	252.3
Fluoranthene	206-44-0	202.3	Chrysene	218-01-9	228.3
Fluorene	86-73-7	166.2	Dibenz(a,h)anthracene	53-70-3	278.4
Naphthalene	91-20-3	128.2	Indeno(1,2,3-cd)pyrene	193-39-5	276.3
Phenanthrene	85-01-8	178.2	Pyrene	129-00-0	202.3

No. = number

Source: USEPA, 2007 and Agency for Toxic Substances and Disease Registry (ATSDR), 1995

To derive the total PAH concentration, the concentrations of all PAHs listed above were summed for each sample. For data sets with NDs, the LOD was applied, and the concentration values were summed using the Kaplan-Meier (KM) method (Helsel, 2009). This approach addressed the issue of summing a data set containing NDs (i.e., censored values). The KM method required at least two distinct detected results; if this condition was not met (i.e., only one distinct detected result or all

results were NDs), a simple sum of detected result and LOD of NDs was used to represent the total concentration. Thus, each sample had representative total PAH concentration values.

Revision Number: 0 Revision Date: July 2021

BaP TEQ concentrations were also derived for each sample to support the HHSE. Carcinogenic PAHs exhibit similar toxicological properties but differ from BaP in the degree of toxicity. TEQ factors (TEFs) were applied to adjust the measured concentration of the carcinogenic PAHs in relation to BaP, which is the most toxic. The following table presents the carcinogenic PAHs and their corresponding TEFs (USEPA, 1993).

Carcinogenic PAHs	TEFs
Benzo(a)anthracene	0.1
Benzo(a)pyrene	1
Benzo(b)fluoranthene	0.1
Benzo(k)fluoranthene	0.01
Chrysene	0.001
Dibenz(a,h)anthracene	1
Indeno(1,2,3-cd)pyrene	0.1

Source: USEPA, 1993

The individual carcinogenic PAH concentrations were multiplied by the TEF, then the TEF-multiplied concentrations were summed for each sample. When one or more of the carcinogenic PAHs were NDs, similar to the total PAH summation, the LOD was applied, and the TEF-multiplied concentrations were summed using the KM method (Helsel, 2009). The PAH summation results of each sample are provided in **Attachment C**.

4.2 Polychlorinated Biphenyl Summation Concentrations

Similar to the total PAH concentrations, the summation of aroclor concentrations (Aroclor 1016, Aroclor 1221, Aroclor 1232, Aroclor 1242, Aroclor 1248, Aroclor 1254, Aroclor 1260, Aroclor 1262, and Aroclor 1268) was also performed to represent the total PCB concentration of each sample for the HHSE. The KM method (Helsel, 2009) was also used for the summation process, when feasible. The PCB summation results of each sample are provided in **Attachment C**.

4.3 Summations Using Kaplan-Meier Method

The KM method is a non-parametric statistical method and does not require assumptions of normality (Kaplan and Meier, 1958). The KM method is currently the recommended method used in USEPA ProUCL software (USEPA, 2016) for calculating the 95% upper confidence limit (UCL) for data sets with one or more censored results (Singh and Maichle, 2015a; Singh and Singh, 2015b). In the

application of summing a group of related compounds, the KM mean was estimated from a set data (consisting of detected and ND values) coming from a given sample. This KM mean was then multiplied by the number of compounds (mean \times n) to compute the sum for the sample.

Revision Number: 0

Revision Date: July 2021

In this calculation process, the KM method (as encoded in the ProUCL software) was used to sum the total PAH and PCB concentrations and calculate the weighted sum of BaP TEQ, with the incorporation of the Efron's bias correction; the minimum result (if it is a censored value) was recoded as a detected result (USEPA, 2010). This bias correction has been implemented by the latest version of the ProUCL software (Version 5.1.002). The KM method was used with the ProUCL software whenever feasible (i.e., when there were five or more components to the sum and at least two distinct detected results). To safeguard against a potential biased-high estimate of the KM mean, if the KM summation result in a total concentration was greater than a simple summation (or weighted-summation) of detected concentrations and full censoring concentrations (i.e., LOD) of the ND data, the simple sum was used to establish an upper bound of the total concentration value.

This page intentionally left blank.

Revision Number: 0

5.0 Handling of Speciated Chromium Results

The original laboratory calculated the concentration for trivalent chromium (Cr^{3+}) by subtracting Cr^{6+} concentration from total chromium concentration. If the Cr^{6+} results were suspect because the LOD was not sensitive enough to capture Cr^{6+} detections (i.e., LOD exceeded the risk-based screening criteria), then both sets of speciated chromium results (Cr^{3+} and Cr^{6+}) were suspect and had a high level of uncertainty associated with them.

Revision Number: 0

Revision Date: July 2021

During the second round of sampling (February 2021), in addition to the original laboratory, groundwater samples were also sent to a second laboratory (non-Department of Defense), where Cr⁶⁺ was able to be analyzed using a lower LOD to correct for the results from the first round of sampling. In place of the Cr³⁺ concentrations reported by the laboratory in the first and second rounds, Cr³⁺ concentrations were calculated by taking the difference between total chromium and Cr⁶⁺ concentrations (February 2021 event only). If both the total chromium and Cr⁶⁺ results were NDs, the difference between the LODs was used for the risk calculation of Cr³⁺.

To verify that such data handling of speciated chromium results was reasonable, the data collected from the second round of sampling were used to generate ratios of Cr⁶⁺ to total chromium, similar to what was presented in the *Final Remedial Investigation Report* (AECOM-Tidewater JV, 2019), as follows:

$$\text{Ratio (unitless)} = \frac{\textit{Cr}^{6+} \textit{Concentration} \left(^{\textit{ug}}/_{\textit{L}} \right) \textit{from the second lab} }{\textit{Total Cr Concentration} \left(^{\textit{ug}}/_{\textit{L}} \right) \textit{from the original lab} }$$

Only samples where detected results were reported for Cr⁶⁺ (from the second laboratory) were used to calculate this ratio. The average ratio, based on 17 pairs of samples, was 0.24, which is in line with the average ratio of 0.3 calculated for the *Final Remedial Investigation Report* (AECOM-Tidewater JV, 2019).

This page intentionally left blank.

Revision Number: 0

6.0 Statistical Comparison between the December 2020 and February 2021 Events

Revision Number: 0

Revision Date: July 2021

6.1 Purpose of Event Comparison

Tw0 samples were collected from each groundwater well during two separate sampling events that occurred approximately 3 months apart (December 2020 and February 2021). The datasets for each event were evaluated, on a chemical-by-chemical basis, to determine if they were statistically similar enough to combine into a larger and more robust dataset, rather than keeping them separate for the purpose of HHSE. The increase in the sample size would benefit the efficiency and reliability of the HHSE's screening and risk calculation. The objectives of assessing the similarities between the two events were to determine whether or not there were substantial seasonal effects or differences in concentrations of each chemical collected and to determine if the overall event-to-event concentrations were statistically similar (i.e., no systematic bias between the two events).

6.2 Approach and Methodology

The statistical comparison of two paired datasets was used for this evaluation. Typically, this method is used to compare two datasets where each data point could be "paired" with another data point. In this context, the reported concentration value from a given well and a given chemical for the December 2020 event was "paired" with the concentration value from the same well and same chemical from the February 2021 event. The paired differences were then calculated and statistically tested to determine whether they were significantly above or below zero, at the 95% confidence level. The statistical test was conducted separately for each chemical, with the following conditions:

- The test was not conducted for chemicals where both events were 100% NDs.
- For metals, the test was conducted for dissolved fraction only.
- The test was conducted for both actual concentration differences (absolute differences), as well as for percentage concentration differences.
- The parametric *t*-test and the non-parametric Wilcoxon Signed-Rank test, 2-sided was used (USEPA, 2006).

6.3 Event Comparison Results

Attachment D summarizes the results of statistical comparison between the two events. Of the 112 chemicals under this statistical evaluation, 61 chemicals were 100% NDs for both events. Of the remainder of 51 chemicals, only dissolved nickel showed significant differences between the two events, where the February 2021 event consistently showed lower concentrations across the 14 wells sampled. The average dissolved nickel concentrations for the December 2020 and February 2021 events were 3.82 micrograms per liter (μ g/L) and 1.34 μ g/L, respectively, and it appeared that the magnitude of differences (i.e., practical differences) was not large.

Based on this statistical evaluation, data from these two events were assessed to be similar, with no systematic, consistent differences. As such, it is reasonable to combine the data from these two events for the HHSE.

Revision Number: 0

7.0 Statistical Comparison of Iron and Manganese Concentrations between Offsite and Onsite Wells

Revision Number: 0

Revision Date: July 2021

7.1 Purpose of Iron and Manganese Population Comparison

Two heavy metals, iron and manganese consistently exceeded New York State drinking water maximum contaminant levels (MCLs) in groundwater during the Phase IV RI; a federal MCL has not been established for these two constituents, as they are considered essential nutrients. As a result, the HHSE identified iron and manganese as onsite groundwater chemicals of concern in the UGA because both inorganics contributed to target organ endpoint hazard indices that were above the USEPA cumulative non-cancer threshold of 1 and were detected above New York State MCLs. Therefore, iron and manganese were selected for additional statistical evaluation due to their elevated number of detections and concentrations compared to other detected constituents. Both compounds have commercial uses, but it is highly unlikely that iron and manganese found in deep groundwater originated from Camp Hero Formerly Used Defense Site activities.

This subsection describes the statistical methodology used to compare the offsite ("local condition") and onsite population concentrations for iron and manganese. The main objective of this statistical analysis was to assess whether iron and manganese detected in groundwater from onsite wells had a site concentration significantly higher than the offsite concentration. The statistical population comparison was performed to support the HHSE.

7.2 Approach and Methodology

The comparison of two independent datasets was used for this evaluation. Typically, this method was used to compare the investigation area (i.e., onsite wells) to the corresponding offsite area as part of the evaluation to determine if iron and manganese concentrations were present at levels significantly greater than the local condition levels. This population-to-population comparison evaluated whether the mean site values were statistically greater than the mean local condition values. This statistical analysis was performed separately for each of the sampling events.

7.2.1 Methods of Hypothesis Testing

Hypothesis testing refers to a category of statistical analysis methods used to choose between two competing statements or hypotheses. One is called the null hypothesis, denoted by H_0 , and the other is called the alternative hypothesis, denoted by H_A . The null hypothesis is the baseline condition that is assumed to be true in the absence of any data. If the data provide sufficiently strong evidence contrary to the null hypothesis, the null hypothesis is rejected, and the alternative hypothesis is accepted. If the data do not provide sufficiently strong evidence, the null hypothesis cannot be rejected.

For this study, the hypothesis testing methods used were those described in the USEPA guidance document *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*

(USEPA, 2002) and those recommended by environmental statistics expert Dr. Dennis Helsel (Helsel, 2017). For the comparison between the onsite and offsite UGA groundwater, the hypothesis testing was conducted as follows:

Null hypothesis, H_0 : The mean concentration in the onsite wells is less than or equal to the mean concentration in the offsite wells.

Revision Number: 0 Revision Date: July 2021

Alternative hypothesis, H_A : The mean concentration in the onsite wells is greater than the mean concentration in the offsite wells.

The next section describes the sequence of tests used and the use of test results to draw valid conclusions. This decision process was applied to each of the chemicals to be evaluated for a given sampling event between the onsite and offsite wells.

7.2.2 Selection of the Appropriate Statistical Tests

The first consideration for selecting the appropriate statistical test for the population comparison was based on the percentages of NDs and distributional assumptions within the given pair of datasets. If all values in both datasets for a given chemical were detects, the Shapiro-Wilk W test was used to evaluate the distribution of values (i.e., to determine if normally distributed). If both datasets fit a normal distribution, then the *t*-test was used for the evaluation. Depending on the calculated variances of the datasets, either the form for unequal variances or equal variances was used to compare the two datasets. If one or both datasets were not normally distributed, or if NDs were present in one or both datasets, then the non-parametric permutation test was performed for the comparison.

The statistical comparison tests were performed at 5% significance level (i.e., 95% confidence level), one-sided. If the resulting p-value from the test was less than 0.05, then evidence was sufficient to reject the null hypothesis (onsite is not higher than offsite), and the alternative hypothesis would be accepted (onsite is higher than offsite).

The Paleontological STatistics (PAST) Version 3.13 data analysis software (Hammer et al., 2001; Hammer, 2016) was used to compare means for the Student's t-test or the permutation test (Monte Carlo, n = 9,999).

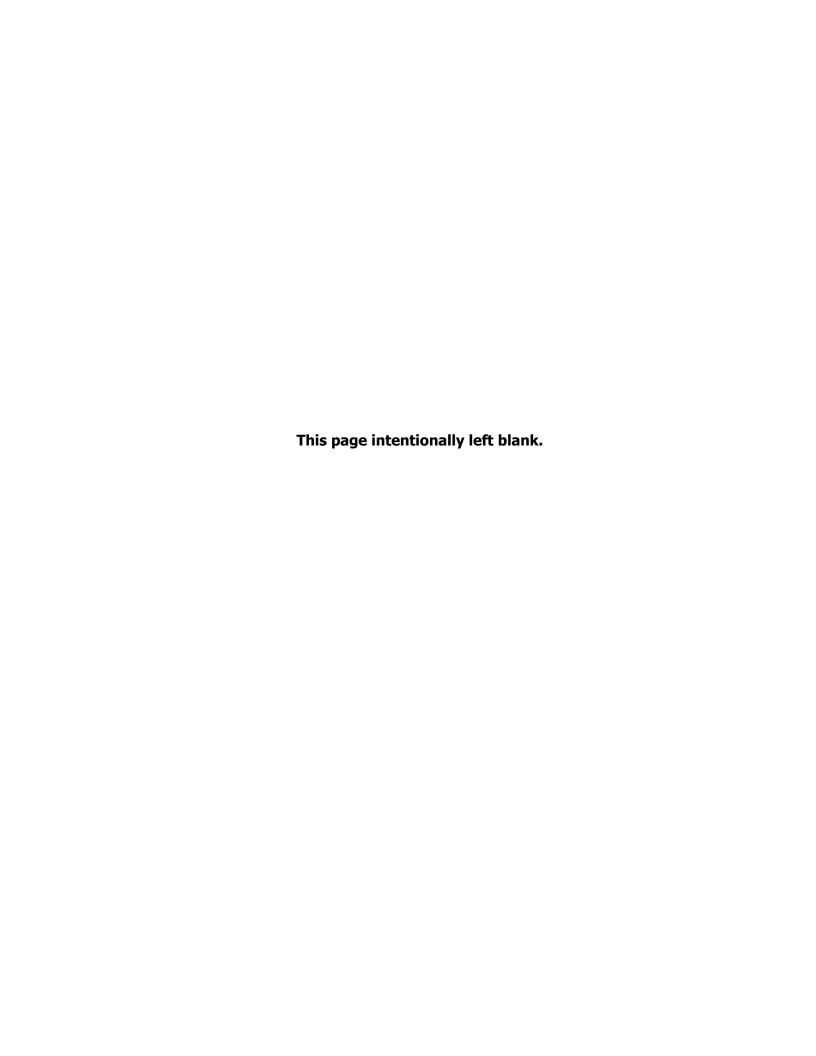
7.3 Iron and Manganese Population Comparison Results

The detailed statistical results are summarized in **Attachment E**.

7.3.1 Iron

Both total and dissolved iron were not found to be significantly higher in the onsite wells compared to the offsite wells, and this conclusion was true for both the December 2020 and February 2021 events.

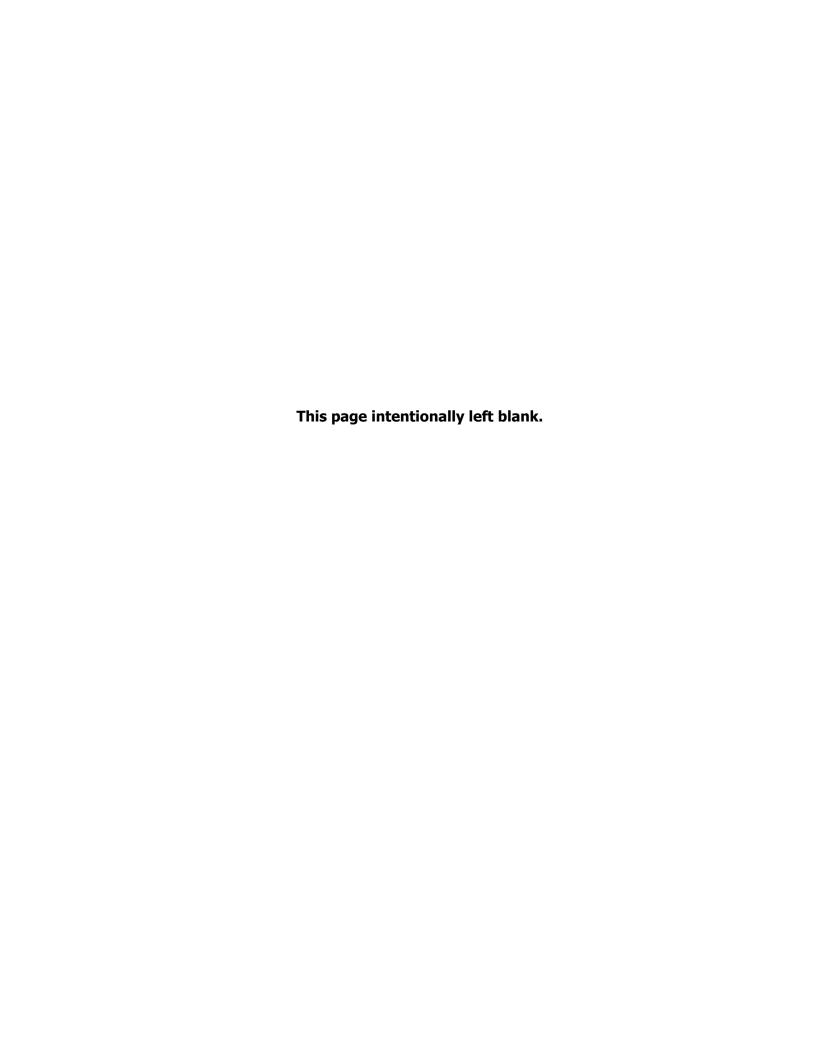
7.3.2 Manganese

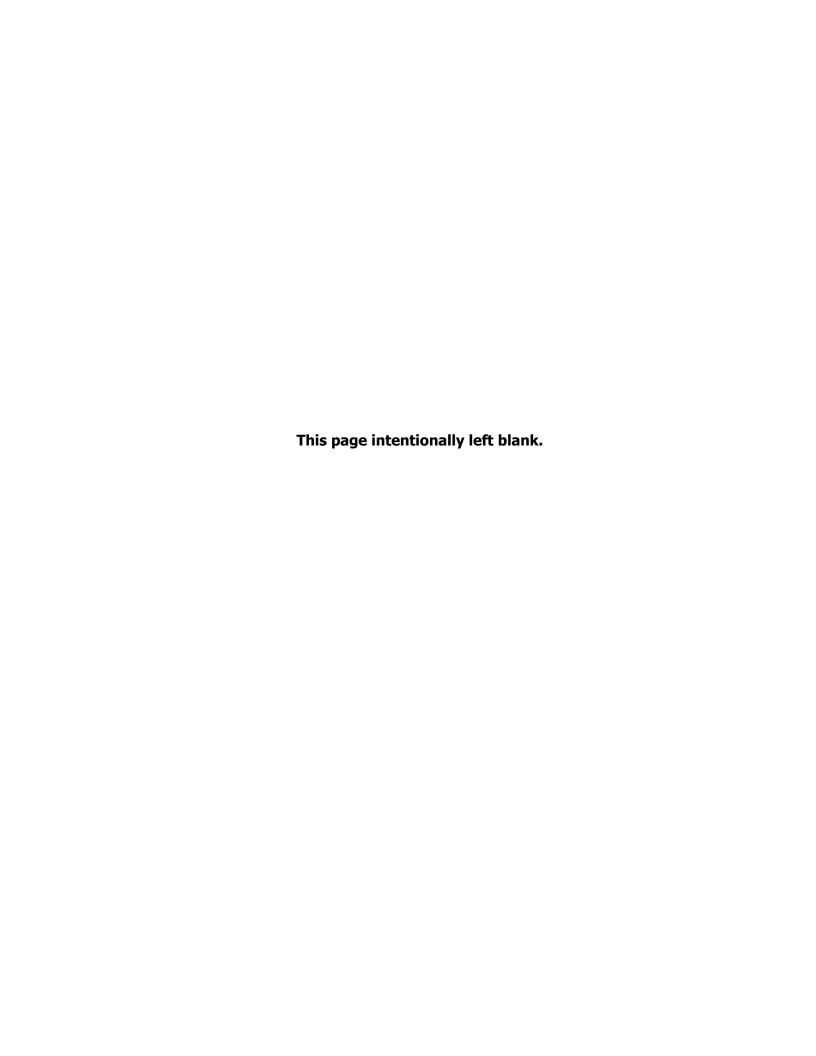

Total manganese from the December 2020 event was not found to be significantly higher in the onsite wells compared to the offsite wells. However, dissolved manganese from the December 2020 event, as well as total and dissolved manganese from the February 2021 event, were found to be significantly higher in the onsite wells compared to the offsite wells.

Revision Number: 0

This page intentionally left blank.

Revision Number: 0


Attachment A: References

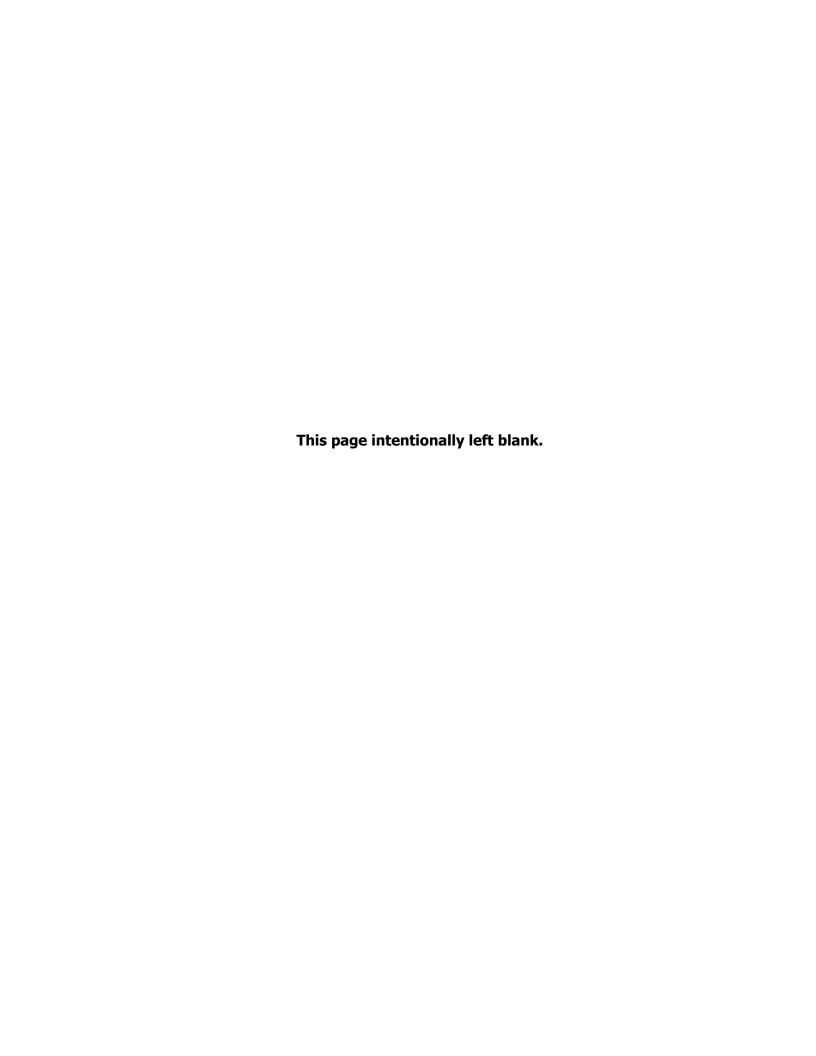

References

- AECOM-Tidewater JV, 2019. *Final Remedial Investigation Report.* Former Camp Hero, Montauk, New York. January.
- Agency for Toxic Substances and Disease Registry (ATSDR), 2007. *Public Health Statement for Arsenic*. Accessed at https://www.atsdr.cdc.gov/phs/phs.asp?id=18&tid=3. August
- Fairbrother, A., 2005. *Application of Equilibrium Partitioning Theory to Soil PAH Contamination.* NCEA-C-1668. ERASC-012. Report for the Ecological Risk Assessment Support Center. Office of Research and Development. August 2005.
- Hammer, Ø., D.A.T. Harper, and P.D. Ryan, 2001. PAST: *Paleontological statistics software package for education and data analysis*. Palaeontologia Electronica 4(1): 9pp.
- Hammer, Ø., 2016. *Paleontological Statistics, Version 3.13*. Reference Manual and Statistical Software. Natural History Museum, University of Oslo, ohammer@nhm.uio.no, 1999-2016.
- Helsel, D.R., 2009. Summing Nondetects: Incorporating Low-Level Contaminants in Risk Assessment. Integrated Environmental Assessment and Management. Volume 6, Number 3: 361-366.
- Helsel, D.R., 2017. Practical Stats. http://www.practicalstats.com.
- Kaplan, E.L., and P. Meier, 1958. Nonparametric Estimator from Incomplete Observations. Journal of the American Statistical Association. Volume 53: 457-481.
- Singh, A., and R. Maichle, 2015a. *ProUCL Version 5.1 User Guide*. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC. Report No. EPA/600/R-07/041.
- Singh, A., and A.K. Singh, 2015b. *ProUCL Version 5.1 Technical Guide*. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC. Report No. EPA/600/R-07/041.
- United States Environmental Protection Agency (USEPA), 1993. *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons.* EPA/600/R-93/089. July.
- USEPA, 2002. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA.
- USEPA, 2007. *Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs),* Interim Final. OSWER Directive 9285.7-78. June.

- USEPA, 2010. Calculation of Total Dioxin TEQs with Nondetect and Rejected Congeners. Deana Crumbing, U.S. Environmental Protection Agency. Draft. September 8.
- USEPA, 2016. *ProUCL Version 5.1.002 (Software)*. Retrieved from http://www.epa.gov/osp/hstl/tsc/software.htm. May.

Attachment B: Summary Statistics of Groundwater Data

Location Group	Analyte Group	Analyte	No. of Samples	Detection Rate	Mean	Std Dev	Min Detected Value	Max Detected Value	Min LOD of NDs	Max LOD of NDs
Offsite "Local Conditions"	CR (ug/L)	Chromium, Hexavalent	14	0%	-	-	-	-	9	9
Offsite "Local Conditions" Offsite "Local Conditions"	CR (ug/L) CR (ug/L)	Chromium, Hexavalent (Dissolved) Chromium, Trivalent	14 14	0% 14%	- 15.1	22.7	10	- 94	9	9
Offsite "Local Conditions"	CR (ug/L)	Chromium, Trivalent (Dissolved)	14	0%	-	-	-	-	9	9
Offsite "Local Conditions"	HG (ug/L)	Mercury	14	14%	0.207	0.075	0.12	0.36	0.16	0.3
Offsite "Local Conditions"	HG (ug/L)	Mercury (Dissolved)	14	14%	0.186	0.069	0.08	0.1	0.16	0.3
Offsite "Local Conditions"	METAL (ug/L)	Aluminum	14	36%	294	660	49	2400	30	35
Offsite "Local Conditions"	METAL (ug/L)	Aluminum (Dissolved)	14	0%	1 20	-	-	-	30	31
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Antimony Antimony (Dissolved)	14 14	7% 7%	1.38 0.837	2.16 0.076	8.9 1.1	8.9 1.1	0.8	0.8 0.82
Offsite "Local Conditions"	METAL (ug/L)	Arsenic	14	29%	31.6	111.8	1	420	1.6	1.6
Offsite "Local Conditions"	METAL (ug/L)	Arsenic (Dissolved)	14	29%	1.56	0.46	0.75	2.8	1.6	1.6
Offsite "Local Conditions"	METAL (ug/L)	Barium	14	100%	149	302	20	1190	-	-
Offsite "Local Conditions"	METAL (ug/L)	Barium (Dissolved)	14	100%	62.2	34.3	20	150	-	-
Offsite "Local Conditions"	METAL (ug/L)	Beryllium	14	14%	0.236	0.037	0.13	0.17	0.25	0.25
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Beryllium (Dissolved) Cadmium	14 14	0% 14%	1.71	4.98	0.2	- 19	0.25 0.4	0.26 0.4
Offsite "Local Conditions"	METAL (ug/L)	Cadmium (Dissolved)	14	7%	0.394	0.059	0.19	0.19	0.4	0.41
Offsite "Local Conditions"	METAL (ug/L)	Calcium	14	100%	18171	8182	6200	32000	-	-
Offsite "Local Conditions"	METAL (ug/L)	Calcium (Dissolved)	14	100%	16564	7648	5800	31000	-	-
Offsite "Local Conditions"	METAL (ug/L)	Chromium	14	64%	8.71	24.67	0.33	94	0.8	2
Offsite "Local Conditions"	METAL (ug/L)	Chromium (Dissolved)	14	7%	1.17	0.58	1.9	1.9	0.8	2.1
Offsite "Local Conditions"	METAL (ug/L)	Cobalt (Dissalved)	14	21%	2.87	8.68	1	33	0.4	0.4
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L)	Cobalt (Dissolved)	14 14	14% 79%	0.461 61.9	0.141 116.5	0.64 0.85	0.9 400	0.4	0.41 0.8
Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Copper Copper (Dissolved)	14	57%	41.3	101.3	0.83	380	0.82	0.82
Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Iron	14	86%	76453	274509	30	1030000	40	40
Offsite "Local Conditions"		_	14	71%	1884	5000	23	18000	41	41
Offsite "Local Conditions"	METAL (ug/L)	Lead	14	93%	57.7	195.3	0.21	735	0.25	0.25
Offsite "Local Conditions"	METAL (ug/L)	Lead (Dissolved)	14	79%	0.678	1.090	0.074	3.7	0.25	0.26
Offsite "Local Conditions"	METAL (ug/L)	Magnesium	14	100%	10746	5366	3100	19000	1	-
Offsite "Local Conditions"	METAL (ug/L)	Magnesium (Dissolved)	14	100%	10054	5480	1250	18000	-	-
Offsite "Local Conditions"	METAL (ug/L)	Manganese Manganese (Dissolved)	14 14	93% 93%	2052 118	7182 139	1.7	27000 390	1.6	1.6 1.6
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Nickel	14	64%	10.8	27.7	1.1 0.65	106	1.6 1	1.5
Offsite "Local Conditions"	METAL (ug/L)	Nickel (Dissolved)	14	71%	2.74	2.85	0.03	9.3	1	1
Offsite "Local Conditions"	METAL (ug/L)	Potassium	14	100%	2757	847	1700	4300	-	-
Offsite "Local Conditions"	METAL (ug/L)	Potassium (Dissolved)	14	100%	2554	678	1600	3400	-	-
Offsite "Local Conditions"	METAL (ug/L)	Selenium	14	36%	0.703	0.182	0.32	0.78	0.8	0.8
Offsite "Local Conditions"	METAL (ug/L)	Selenium (Dissolved)	14	36%	0.722	0.192	0.36	0.94	0.8	0.82
Offsite "Local Conditions"	METAL (ug/L)	Silver (Disselved)	14	7%	0.406	0.024	0.49	0.49	0.4	0.4
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L) METAL (ug/L)	Silver (Dissolved) Sodium	14 14	0% 100%	- 45679	18354	22000	75000	0.4	0.41
Offsite "Local Conditions"	METAL (ug/L)	Sodium (Dissolved)	14	100%	42643	17589	20000	67000	_	
Offsite "Local Conditions"	METAL (ug/L)	Thallium	14	7%	0.398	0.008	0.37	0.37	0.4	0.4
Offsite "Local Conditions"	METAL (ug/L)	Thallium (Dissolved)	14	0%	-	-	-	-	0.4	0.41
Offsite "Local Conditions"	METAL (ug/L)	Vanadium	14	21%	2.11	1.43	1	5.8	1.6	1.6
Offsite "Local Conditions"	METAL (ug/L)	Vanadium (Dissolved)	14	0%	-	-	-	-	1.6	1.6
Offsite "Local Conditions"	METAL (ug/L)	Zinc	14	57%	5760	21225	11	79500	10	10
Offsite "Local Conditions" Offsite "Local Conditions"	METAL (ug/L) PCB (ug/L)	Zinc (Dissolved) PCB, Total	14 14	57% 14%	79.6 0.332	159.7 0.103	6.4 0.21	600 0.67	10 0.3	10 0.36
Offsite "Local Conditions"	PCB (ug/L) PCB (ug/L)	PCB-1016 (Aroclor 1016)	14	0%	-	- 0.103	-	-	0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	PCB-1221 (Aroclor 1221)	14	0%	-	-	-	-	0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	PCB-1232 (Aroclor 1232)	14	0%					0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	PCB-1242 (Aroclor 1242)	14	0%	-	-	-	-	0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	PCB-1248 (Aroclor 1248)	14	0%	-	-	-	-	0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	PCB-1254 (Aroclor 1254)	14	0%	- 0.222	0.102	- 0.21	- 0.67	0.3	0.36
Offsite "Local Conditions" Offsite "Local Conditions"	PCB (ug/L) PCB (ug/L)	PCB-1260 (Aroclor 1260) PCB-1262 (Aroclor 1262)	14 14	14% 0%	0.332	0.103	0.21	0.67	0.3	0.36 0.36
Offsite "Local Conditions"	PCB (ug/L) PCB (ug/L)	PCB-1262 (Alociol 1262) PCB-1268 (Aroclor 1268)	14	0%	_	_	_	_	0.3	0.36
Offsite "Local Conditions"	PCB (ug/L)	Total PCBs Calculated	14	14%	2.84	0.19	2.61	3.15	2.7	3.24
Offsite "Local Conditions"	SVOC (ug/L)	1,4-Dichlorobenzene	14	0%					1	1.1
Offsite "Local Conditions"	SVOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	14%	0.198	0.030	0.11	0.15	0.2	0.22
Offsite "Local Conditions"	SVOC (ug/L)	1-Methylnaphthalene	14	0%	-	-	-	-	0.03	0.043
Offsite "Local Conditions"	SVOC (ug/L)	2-Chloronaphthalene	14	0%	- 0.0504	- 0.0131	- 0.024	- 0.024	0.8	0.88
Offsite "Local Conditions" Offsite "Local Conditions"	SVOC (ug/L) SVOC (ug/L)	2-Methylnaphthalene 2-Methylphenol (o-Cresol)	14 14	7% 0%	0.0504	0.0131	0.024	0.024	0.04	0.064 1.1
Offsite "Local Conditions"	SVOC (ug/L)	4-Chloro-3-methylphenol	14	0%	-	-	-	-	2	3.4
Offsite "Local Conditions"	SVOC (ug/L)	4-Chloroaniline	14	0%	-	-	-	-	9.1	9.9
Offsite "Local Conditions"	SVOC (ug/L)	4-Methylphenol (p-Cresol)	14	0%	-	-	-	-	1	1.1
Offsite "Local Conditions"	SVOC (ug/L)	Acenaphthene	14	0%	-	-	-	-	0.03	0.032
- cc	SVOC (ug/L)	Acenaphthylene	14	0%	-	-	-	-	0.03	0.032
Offsite "Local Conditions"		' '								
Offsite "Local Conditions"	SVOC (ug/L)	Anthracene	14	0%	-	-	-	-	0.03	0.032
		Anthracene Benzaldehyde Benzo(a)anthracene	14 14 14	0% 0% 7%	- - 0.0314	- - 0.0020	- - 0.038	- - 0.038	0.03 2 0.03	0.032 9.6 0.032


Location Group	Analyte Group	Analyte	No. of Samples	Detection Rate	Mean	Std Dev	Min Detected Value	Max Detected Value	Min LOD of NDs	Max LOD of NDs
Offsite "Local Conditions" Offsite "Local Conditions"	SVOC (ug/L) SVOC (ug/L)	Benzo(a)pyrene Benzo(b)fluoranthene	14 14	7% 7%	0.0296 0.0318	0.0048 0.0036	0.013 0.044	0.013 0.044	0.03 0.03	0.032 0.032
Offsite "Local Conditions"	SVOC (ug/L)	Benzo(g,h,i)perylene	14	7%	0.0313	0.0018	0.037	0.037	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Benzo(k)fluoranthene	14	7%	0.0319	0.0041	0.046	0.046	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Benzoic acid	14	0%	-	-	-	-	24	27
Offsite "Local Conditions"	SVOC (ug/L)	Benzyl butyl phthalate	14	0%	-	-	-	-	4	4.4
Offsite "Local Conditions"	SVOC (ug/L)	Biphenyl (Diphenyl)	14	0%	-	-	-	-	1	9.6
Offsite "Local Conditions"	SVOC (ug/L)	Bis(2-ethylhexyl)phthalate	14	0%	-	-	-	-	4	11
Offsite "Local Conditions"	SVOC (ug/L)	Caprolactam	14	0%	-	-	-	-	6	11
Offsite "Local Conditions"	SVOC (ug/L)	Carbazole	14	0%	-	-	-	- 0.044	1	1.1
Offsite "Local Conditions"	SVOC (ug/L)	Chrysene	14	7%	0.0318	0.0036	0.044	0.044	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Dibenz(a,h)anthracene	14	7%	0.0501	0.0111	0.041	0.041	0.04	0.064
Offsite "Local Conditions"	SVOC (ug/L)	Dibenzofuran	14	0% 0%	-	-	-	-	4	1.1
Offsite "Local Conditions" Offsite "Local Conditions"	SVOC (ug/L) SVOC (ug/L)	Diethyl phthalate Dimethyl phthalate	14 14	0%	-		-		4	4.4 4.4
Offsite "Local Conditions"	SVOC (ug/L)	Dirnethyl phthalate Di-n-butyl phthalate	14	0%	_				4	4.4
Offsite "Local Conditions"	SVOC (ug/L)	di-n-Octyl phthalate	14	0%	_		_		10	11
Offsite "Local Conditions"	SVOC (ug/L)	Fluoranthene	14	14%	0.0299	0.0057	0.011	0.037	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Fluorene	14	0%	-	-	-	-	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Indeno(1,2,3-c,d)pyrene	14	7%	0.0369	0.0055	0.045	0.045	0.03	0.043
Offsite "Local Conditions"	SVOC (ug/L)	Naphthalene	14	14%	0.0664	0.0129	0.072	0.11	0.06	0.065
Offsite "Local Conditions"	SVOC (ug/L)	Phenanthrene	14	0%	-	-	-	-	0.06	0.065
Offsite "Local Conditions"	SVOC (ug/L)	Pyrene	14	7%	0.0307	0.0008	0.029	0.029	0.03	0.032
Offsite "Local Conditions"	SVOC (ug/L)	Total BaP TEQ Calculated	14	7%	0.0900	0.0124	0.0672	0.0672	0.08033	0.10595
Offsite "Local Conditions"	SVOC (ug/L)	Total PAHs Calculated	14	29%	0.652	0.050	0.5184	0.652	0.642	0.704
Offsite "Local Conditions"	VOC (ug/L)	1,1,1,2-Tetrachloroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,1,1-Trichloroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"		1,1,2,2-Tetrachloroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,1,2-Trichloro-1,2,2-trifluoroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,1,2-Trichloroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,1-Dichloroethane	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,1-Dichloroethene	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	1,2,3-Trichlorobenzene	14	0%	-	-	-	-	1	1
Offsite "Local Conditions"	VOC (ug/L)	1,2,4-Trimethylbenzene	14	0%	-	1	-	1	2	2
Offsite "Local Conditions"	VOC (ug/L)	1,3,5-Trimethylbenzene	14	0%	-	-	-	-	1	1
Offsite "Local Conditions"	VOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	0%	-	-	-	-	100	100
Offsite "Local Conditions"	VOC (ug/L)	2-Butanone (MEK)	14	7%	0.964	0.136	0.49	0.49	1	1
Offsite "Local Conditions"	VOC (ug/L)	4-Methyl-2-pentanone (MIBK)	14	0%	-	-	-	-	1	1
Offsite "Local Conditions"	VOC (ug/L)	Acetone	14	7%	1.92	0.29	0.9	0.9	2	2
Offsite "Local Conditions"	VOC (ug/L)	Benzene Carlana dia 16 da	14	0%	- 0.546	- 0.174	- 1.15	- 1 1 5	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Carbon disulfide	14	7%	0.546	0.174	1.15	1.15	0.5	0.5
Offsite "Local Conditions" Offsite "Local Conditions"	VOC (ug/L)	Carbon tetrachloride Chloroethane	14 14	0% 0%	-	-	-	-	0.5 0.5	0.5 0.5
Offsite "Local Conditions"	VOC (ug/L) VOC (ug/L)	Chloroform	14	7%	0.499	0.005	0.48	0.48	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	cis-1,2-Dichloroethene	14	0%	0.733	0.003	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Cyclohexane	14	0%	_	_	_	_	2	2
Offsite "Local Conditions"	VOC (ug/L)	Ethylbenzene	14	0%	_	_	_		0.8	0.8
Offsite "Local Conditions"	VOC (ug/L)	Isopropylbenzene (Cumene)	14	0%	_	_	_		0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	m,p-Xylene	14	0%	_	_	_		2	2
Offsite "Local Conditions"	VOC (ug/L)	Methyl acetate	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Methyl tert-butyl ether (MTBE)	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Methylcyclohexane	14	0%	-	-	-	_	1	1
Offsite "Local Conditions"	VOC (ug/L)	Methylene chloride	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	n-Butylbenzene	14	0%	-	-	-	_	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	n-Propylbenzene	14	0%	-	1	-		0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	o-Xylene	14	0%	-	-	-	-	0.8	0.8
Offsite "Local Conditions"	VOC (ug/L)	p-Cymene (p-Isopropyltoluene)	14	0%	-	-	-	_	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	sec-Butylbenzene	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	tert-Butylbenzene	14	0%	-	-	-	-	1	1
Offsite "Local Conditions"	VOC (ug/L)	Tetrachloroethene (PCE)	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Toluene	14	7%	0.502	0.008	0.53	0.53	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	trans-1,2-Dichloroethene	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Trichloroethene (TCE)	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Vinyl chloride	14	0%	-	-	-	-	0.5	0.5
Offsite "Local Conditions"	VOC (ug/L)	Xylenes, Total Chromium, Hexavalent	14 14	0% 0%	-	-	-	-	2.8 9	2.8 9
Onsite Onsite	CR (ug/L)	Chromium, Hexavalent (Dissolved)	14	0%	-	-	-	-	9	9
Onsite	CR (ug/L)	Chromium, Hexavalent (Dissolved) Chromium, Trivalent	14	14%	8.83	0.48	7.3	8.3	9	9
Onsite	CR (ug/L)	Chromium, Trivalent (Dissolved)	14	7%	8.83	0.48	8.7	8.3	9	9
Onsite	CR (ug/L)	Mercury	14	29%	0.168	0.08	0.083	0.15	0.16	0.3
Onsite	HG (ug/L) HG (ug/L)	Mercury (Dissolved)	14	29% 7%	0.168	0.065	0.083	0.15	0.16	0.3
	METAL (ug/L)	Aluminum	14	57%	232	493	24.5	1800	30	35
Oncito		Alullillulli	74	J/ 7/0	232	せづつ	۷٦.۵	TOOU	JU	
Onsite Onsite			14	140%	33 	17 5	22	76	30	21
Onsite Onsite Onsite	METAL (ug/L) METAL (ug/L)	Aluminum (Dissolved) Antimony	14 14	14% 0%	33.4	12.5	22	76 -	30 0.8	31 0.8

Location Group	Analyte Group	Analyte	No. of Samples	Detection Rate	Mean	Std Dev	Min Detected Value	Max Detected Value	Min LOD of NDs	Max LOD of NDs
Onsite	METAL (ug/L)	Arsenic	14	71%	1.71	0.92	0.71	4.1	1.6	1.6
Onsite	METAL (ug/L)	Arsenic (Dissolved)	14	36%	1.50	0.31	0.83	1.9	1.6	1.6
Onsite	METAL (ug/L)	Barium (Disashed)	14	100%	99.5	115.6	4.8	470	-	-
Onsite Onsite	METAL (ug/L)	Barium (Dissolved) Beryllium	14 14	100% 0%	92.2	107.3	3.7	430	0.25	0.25
Onsite	METAL (ug/L) METAL (ug/L)	Beryllium (Dissolved)	14	0%	<u> </u>			_	0.25	0.25
Onsite	METAL (ug/L)	Cadmium	14	0%	_	_	_	_	0.23	0.20
Onsite	METAL (ug/L)	Cadmium (Dissolved)	14	0%	-	-	_	-	0.4	0.41
Onsite	METAL (ug/L)	Calcium	14	100%	20014	9975	9200	42000	-	-
Onsite	METAL (ug/L)	Calcium (Dissolved)	14	100%	19443	9753	8700	42000	-	-
Onsite	METAL (ug/L)	Chromium	14	64%	2.27	2.58	0.5	8.3	0.8	2
Onsite	METAL (ug/L)	Chromium (Dissolved)	14	14%	1.49	2.11	2.3	8.7	0.8	0.82
Onsite	METAL (ug/L)	Cobalt	14	100%	0.595	0.511	0.17	2	-	-
Onsite	METAL (ug/L)	Cobalt (Dissolved)	14	71%	0.481	0.527	0.16	2.2	0.41	0.41
Onsite	METAL (ug/L)	Copper	14	64%	3.68	6.01	0.52	20	0.8	0.8
Onsite	METAL (ug/L)	Copper (Dissolved)	14	43%	2.26	5.12	0.44	20	0.8	0.82
Onsite Onsite	METAL (ug/L) METAL (ug/L)	Iron Iron (Dissolved)	14 14	100% 100%	9814 7416	12001 11647	2000 50	45000 40000		 -
Onsite	METAL (ug/L)	Lead	14	64%	6.36	11.12	0.087	34	0.25	0.25
Onsite	METAL (ug/L)	Lead (Dissolved)	14	29%	0.584	0.886	0.11	3.5	0.25	0.26
Onsite	METAL (ug/L)	Magnesium	14	100%	11664	12714	990	44000	-	-
Onsite	METAL (ug/L)	Magnesium (Dissolved)	14	100%	11139	12074	950	42000	-	_
Onsite	METAL (ug/L)	Manganese	14	100%	571	350	130	1400	-	-
Onsite	METAL (ug/L)	Manganese (Dissolved)	14	100%	527	329	110	1300	-	-
Onsite	METAL (ug/L)	Nickel	14	71%	2.48	2.48	0.67	9.4	1	1
Onsite	METAL (ug/L)	Nickel (Dissolved)	14	50%	2.45	4.06	0.76	16	1	1.5
Onsite	METAL (ug/L)	Potassium	14	100%	4371	3209	570	11000	-	-
Onsite	METAL (ug/L)	Potassium (Dissolved)	14	100%	4139	3063	540	11000	-	-
Onsite	METAL (ug/L)	Selenium	14	0%	-	-	-	-	0.8	0.8
Onsite	METAL (ug/L)	Selenium (Dissolved)	14	0%	-	-	-	-	0.8	0.82
Onsite	METAL (ug/L)	Silver	14	21%	0.688	1.185	0.21	4.8	0.4	0.4
Onsite	METAL (ug/L)	Silver (Dissolved)	14	7%	2.59	8.18 157267	31	31	0.4	0.41
Onsite	METAL (ug/L) METAL (ug/L)	Sodium Sodium (Dissolved)	14 14	100% 100%	101250 95971	148692	3600 3300	500000 460000	-	
Onsite Onsite	METAL (ug/L)	Thallium	14	0%	959/1	140092	3300	460000	0.4	0.4
Onsite	METAL (ug/L)	Thallium (Dissolved)	14	0%		_	_		0.4	0.41
Onsite	METAL (ug/L)	Vanadium	14	14%	1.82	0.57	2.9	3.4	1.6	1.6
Onsite	METAL (ug/L)	Vanadium (Dissolved)	14	0%	-	-	-	-	1.6	1.6
Onsite	METAL (ug/L)	Zinc	14	50%	25.7	30.3	8.35	120	10	10
Onsite	METAL (ug/L)	Zinc (Dissolved)	14	29%	12.9	9.1	6.9	41	10	10
Onsite	PCB (ug/L)	PCB, Total	14	0%	-	-	-	-	0.3	0.34
Onsite	PCB (ug/L)	PCB-1016 (Aroclor 1016)	14	0%	-	-	-	-	0.3	0.34
Onsite	PCB (ug/L)	PCB-1221 (Aroclor 1221)	14	0%	-	-	-	-	0.3	0.34
Onsite	PCB (ug/L)	PCB-1232 (Aroclor 1232)	14	0%	-	-	-	-	0.3	0.34
Onsite	PCB (ug/L)	PCB-1242 (Aroclor 1242)	14	0%	-	-	-	-	0.3	0.34
Onsite Onsite	PCB (ug/L) PCB (ug/L)	PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)	14 14	0% 0%	-	-	-	-	0.3	0.34 0.34
Onsite	PCB (ug/L)	PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	14	0%	-		_		0.3	0.34
Onsite	PCB (ug/L)	PCB-1262 (Aroclor 1262)	14	0%	_	_	_	_	0.3	0.34
Onsite	PCB (ug/L)	PCB-1268 (Aroclor 1268)	14	0%	-	-	-	-	0.3	0.34
Onsite	PCB (ug/L)	Total PCBs Calculated	14	0%	-	-	-	-	2.7	3.06
Onsite	SVOC (ug/L)	1,4-Dichlorobenzene	14	0%	_	_	_	_	1	1.1
Onsite	SVOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	21%	0.267	0.240	0.18	1.1	0.2	0.22
Onsite	SVOC (ug/L)	1-Methylnaphthalene	14	0%	-	-	-	-	0.03	0.043
Onsite	SVOC (ug/L)	2-Chloronaphthalene	14	0%	-	-	-	-	0.8	0.89
Onsite	SVOC (ug/L)	2-Methylnaphthalene	14	0%	-	-	-	-	0.04	0.067
Onsite	SVOC (ug/L)	2-Methylphenol (o-Cresol)	14	7%	1.09	0.18	1.7	1.7	1	1.1
Onsite	SVOC (ug/L)	4-Chloro-3-methylphenol 4-Chloroaniline	14 14	0% 0%		_	<u>-</u>	-	2 9	3.6 10
Onsite Onsite	SVOC (ug/L) SVOC (ug/L)	4-Chioroaniline 4-Methylphenol (p-Cresol)	14	14%	1.34	1.11	0.89	5.2	1	1.1
Onsite	SVOC (ug/L)	Acenaphthene	14	7%	0.0312	0.0014	0.029	0.029	0.03	0.033
Onsite	SVOC (ug/L)	Acenaphthene	14	0%	-	-	-	-	0.03	0.033
Onsite	SVOC (ug/L)	Anthracene	14	0%	-	-	_	-	0.03	0.033
Onsite	SVOC (ug/L)	Benzaldehyde	14	0%	-	-	-	-	2	10
Onsite	SVOC (ug/L)	Benzo(a)anthracene	14	7%	0.0312	0.0014	0.029	0.029	0.03	0.033
Onsite	SVOC (ug/L)	Benzo(a)pyrene	14	7%	0.0309	0.0021	0.025	0.025	0.03	0.033
	SVOC (ug/L)	Benzo(b)fluoranthene	14	14%	0.0313	0.0062	0.016	0.047	0.03	0.033
Onsite		5 / 1 13	14	7%	0.0304	0.0035	0.019	0.019	0.03	0.033
Onsite	SVOC (ug/L)	Benzo(g,h,i)perylene								0.000
Onsite Onsite	SVOC (ug/L) SVOC (ug/L)	Benzo(k)fluoranthene	14	7%	0.0304	0.0040	0.017	0.017	0.03	0.033
Onsite Onsite Onsite	SVOC (ug/L) SVOC (ug/L) SVOC (ug/L)	Benzo(k)fluoranthene Benzoic acid	14 14	0%	-	-	-	0.01/	24	27
Onsite Onsite Onsite Onsite	SVOC (ug/L) SVOC (ug/L) SVOC (ug/L) SVOC (ug/L)	Benzo(k)fluoranthene Benzoic acid Benzyl butyl phthalate	14 14 14	0% 0%	-	0.0040 - -	-	-	24 4	27 4.5
Onsite Onsite Onsite Onsite Onsite Onsite	SVOC (ug/L) SVOC (ug/L) SVOC (ug/L) SVOC (ug/L) SVOC (ug/L)	Benzo(k)fluoranthene Benzoic acid Benzyl butyl phthalate Biphenyl (Diphenyl)	14 14 14 14	0% 0% 0%	- - -	- - -	- - -		24 4 1	27 4.5 10
Onsite Onsite Onsite Onsite	SVOC (ug/L) SVOC (ug/L) SVOC (ug/L) SVOC (ug/L)	Benzo(k)fluoranthene Benzoic acid Benzyl butyl phthalate	14 14 14	0% 0%	-	-	-		24 4	27 4.5

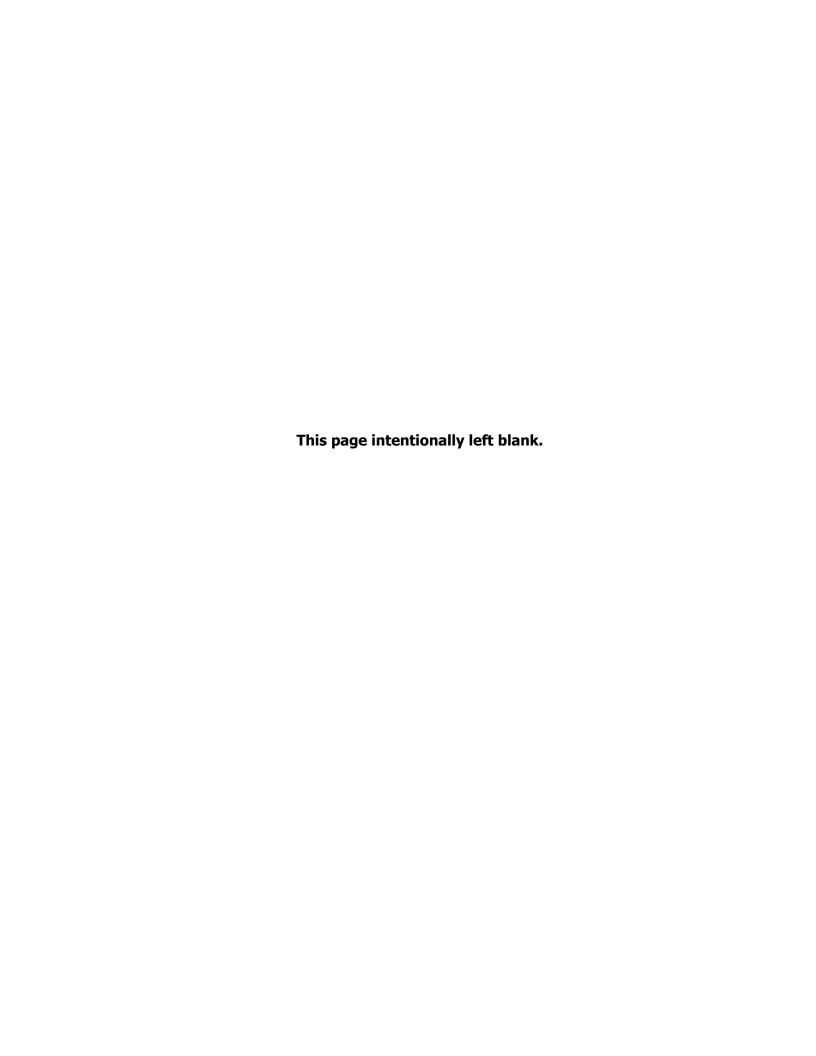
Appendix E- Evaluation of Analytical Data, Attachment B

Location Group	Analyte Group	Analyte	No. of Samples	Detection Rate	Mean	Std Dev	Min Detected Value	Max Detected Value	Min LOD of NDs	Max LOD of NDs
Onsite	SVOC (ug/L)	Chrysene	14	7%	0.0307	0.0028	0.022	0.022	0.03	0.033
Onsite	SVOC (ug/L)	Dibenz(a,h)anthracene	14	0%	-	-	-	-	0.04	0.067
Onsite	SVOC (ug/L)	Dibenzofuran	14	0%	-	-	-	-	1	1.1
Onsite	SVOC (ug/L)	Diethyl phthalate	14	0%	-	-	-	-	4	4.5
Onsite	SVOC (ug/L)	Dimethyl phthalate	14	0%	-	-	-	-	4	4.5
Onsite	SVOC (ug/L)	Di-n-butyl phthalate	14	0%	-	-	-	-	4	4.5
Onsite	SVOC (ug/L)	di-n-Octyl phthalate	14	0%	-	-	-	-	10	11
Onsite	SVOC (ug/L)	Fluoranthene	14	43%	0.0326	0.0322	0.011	0.14	0.03	0.033
Onsite	SVOC (ug/L)	Fluorene	14	7%	0.0311	0.0015	0.028	0.028	0.03	0.033
Onsite	SVOC (ug/L)	Indeno(1,2,3-c,d)pyrene	14	7%	0.0355	0.0068	0.019	0.019	0.03	0.043
Onsite	SVOC (ug/L)	Naphthalene	14	7%	0.0602	0.0081	0.033	0.033	0.06	0.066
Onsite	SVOC (ug/L)	Phenanthrene	14	36%	0.0622	0.0171	0.036	0.11	0.06	0.065
Onsite	SVOC (ug/L)	Pyrene	14	21%	0.0321	0.0114	0.016	0.068	0.03	0.033
Onsite	SVOC (ug/L)	Total BaP TEQ Calculated	14	14%	0.0835	0.0287	0.00624	0.03948	0.08033	0.10926
Onsite	SVOC (ug/L)	Total PAHs Calculated	14	43%	0.568	0.182	0.2304	0.7164	0.64	0.722
Onsite	VOC (ug/L)	1,1,1,2-Tetrachloroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1,1-Trichloroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1,2,2-Tetrachloroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1,2-Trichloro-1,2,2-trifluoroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1,2-Trichloroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1-Dichloroethane	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,1-Dichloroethene	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	1,2,3-Trichlorobenzene	14	0%	-	-	-	-	1	1
Onsite	VOC (ug/L)	1,2,4-Trimethylbenzene	14	0%	-	-	-	-	2	2
Onsite	VOC (ug/L)	1,3,5-Trimethylbenzene	14	0%	-	-	-	-	1	1
Onsite	VOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	0%	-	-	_	-	100	100
Onsite	VOC (ug/L)	2-Butanone (MEK)	14	43%	7.84	25.95	0.5	98	1	1
Onsite	VOC (ug/L)	4-Methyl-2-pentanone (MIBK)	14	0%	-	-	-	-	1	1
Onsite	VOC (ug/L)	Acetone	14	57%	5.29	8.18	0.71	28	2	20
Onsite	VOC (ug/L)	Benzene	14	14%	0.472	0.075	0.24	0.37	0.5	0.5
Onsite	VOC (ug/L)	Carbon disulfide	14	36%	2.32	6.02	0.21	23	0.5	0.5
Onsite	VOC (ug/L)	Carbon tetrachloride	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	Chloroethane	14	0%	_	_	_	_	0.5	0.5
Onsite	VOC (ug/L)	Chloroform	14	29%	0.622	0.426	0.5	2.1	0.5	0.5
Onsite	VOC (ug/L)	cis-1,2-Dichloroethene	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	Cyclohexane	14	0%	_	_	_	_	2	2
Onsite	VOC (ug/L)	Ethylbenzene	14	0%	_	_	_	_	0.8	0.8
Onsite	VOC (ug/L)	Isopropylbenzene (Cumene)	14	0%			_		0.5	0.5
Onsite	VOC (ug/L)	m,p-Xylene	14	0%		_	_		2	2
Onsite	VOC (ug/L)	Methyl acetate	14	0%			_		0.5	0.5
Onsite	VOC (ug/L)	Methyl tert-butyl ether (MTBE)	14	14%	0.600	0.254	1.2	1.2	0.5	0.5
Onsite	VOC (ug/L)	Methylcyclohexane	14	0%	0.000	0.254	-	-	1	1
Onsite	VOC (ug/L)	Methylene chloride	14	0%					0.5	0.5
		n-Butylbenzene	14	0%			_		0.5	0.5
Onsite	VOC (ug/L)	•			-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	n-Propylbenzene	14	0% 36%	0.741	0.002	0.62	0.66		
Onsite	VOC (ug/L)	o-Xylene	14	36%	0.741	0.082	0.62	0.66	0.8	0.8
Onsite	VOC (ug/L)	p-Cymene (p-Isopropyltoluene)	14	0%	-	_	-	-		
Onsite	VOC (ug/L)	sec-Butylbenzene	14	0%	-	_	-	-	0.5	0.5
Onsite	VOC (ug/L)	tert-Butylbenzene	14	0%	-	-	-	-	1	1
Onsite	VOC (ug/L)	Tetrachloroethene (PCE)	14	0%	- 0.401	- 0.000	- 0.24	- 0.24	0.5	0.5
Onsite	VOC (ug/L)	Toluene	14	7%	0.481	0.069	0.24	0.24	0.5	0.5
Onsite	VOC (ug/L)	trans-1,2-Dichloroethene	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	Trichloroethene (TCE)	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	Vinyl chloride	14	0%	-	-	-	-	0.5	0.5
Onsite	VOC (ug/L)	Xylenes, Total	14	0%	-	-	-	-	2.8	2.8

Attachment C: PAH/PCB Totals Calculation Results

Appendix E- Evaluation of Analytical Data, Attachment C

Analyte Name (Total)	Client Sample ID	Result (ug/L)
Total BaP TEQ Calculated	CH-MW044D-0221	0.08033
Total BaP TEQ Calculated	CH-MW044D-1220	0.09933
Total BaP TEQ Calculated	CH-MW044S-0221	0.08033
Total BaP TEQ Calculated	CH-MW044S-1220	0.109263
Total BaP TEQ Calculated	CH-MW045D-0221	0.08143
Total BaP TEQ Calculated	CH-MW045D-1220	0.0062405
Total BaP TEQ Calculated	CH-MW045S-0221	0.082641
Total BaP TEQ Calculated	CH-MW045S-1220	0.104952
Total BaP TEQ Calculated	S1202-0221	0.08033
Total BaP TEQ Calculated	S1202-1220	0.09933
Total BaP TEQ Calculated	S17231S-0221	0.082641
Total BaP TEQ Calculated	S17231S-0221D	0.03948
Total BaP TEQ Calculated	S17231S-1220	0.105952
Total BaP TEQ Calculated	S19494-0221	0.086052
Total BaP TEQ Calculated	S19494-1220	0.09933
Total BaP TEQ Calculated	S19495-0221	0.084952
Total BaP TEQ Calculated	S19495-1220	0.108263
Total BaP TEQ Calculated	S3599-0221	0.08033
Total BaP TEQ Calculated	S3599-1220	0.103641
Total BaP TEQ Calculated	S48579-0221	0.086052
Total BaP TEQ Calculated	S48579-1220	0.102641
Total BaP TEQ Calculated	S58922-0221	0.082641
Total BaP TEQ Calculated	S58922-1220	0.102641
Total BaP TEQ Calculated	S70627-0221	0.082641
Total BaP TEQ Calculated	S70627-1220	0.067204
Total BaP TEQ Calculated	S76304-0221	0.082641
Total BaP TEQ Calculated	S76304-1220	0.105952
Total BaP TEQ Calculated	S76304-1220D	0.103641
Total BaP TEQ Calculated	S79269-0221	0.086052
Total BaP TEQ Calculated	S79269-0221D	0.08033
Total BaP TEQ Calculated	S79269-1220	0.105952
Total BaP TEQ Calculated	S79269-1220D	0.106952
Total PAHs Calculated	CH-MW044D-0221	0.621
Total PAHs Calculated	CH-MW044D-1220	0.66
Total PAHs Calculated	CH-MW044S-0221	0.64
Total PAHs Calculated	CH-MW044S-1220	0.2304
Total PAHs Calculated	CH-MW045D-0221	0.3204
Total PAHs Calculated	CH-MW045D-1220	0.4068
Total PAHs Calculated	CH-MW045S-0221	0.658
Total PAHs Calculated	CH-MW045S-1220	0.2448
Total PAHs Calculated	S1202-0221	0.642
Total PAHs Calculated	S1202-1220	0.66
Total PAHs Calculated	S17231S-0221	0.658
Total PAHs Calculated	S17231S-0221D	0.7164
Total PAHs Calculated	S17231S-1220	0.704
Total PAHs Calculated	S19494-0221	0.686


Appendix E- Evaluation of Analytical Data, Attachment C

Analyte Name (Total)	Client Sample ID	Result (ug/L)
Total PAHs Calculated	S19494-1220	0.66
Total PAHs Calculated	S19495-0221	0.68
Total PAHs Calculated	S19495-1220	0.722
Total PAHs Calculated	S3599-0221	0.652
Total PAHs Calculated	S3599-1220	0.686
Total PAHs Calculated	S48579-0221	0.686
Total PAHs Calculated	S48579-1220	0.682
Total PAHs Calculated	S58922-0221	0.64
Total PAHs Calculated	S58922-1220	0.682
Total PAHs Calculated	S70627-0221	0.66
Total PAHs Calculated	S70627-1220	0.5742
Total PAHs Calculated	S76304-0221	0.66
Total PAHs Calculated	S76304-1220	0.704
Total PAHs Calculated	S76304-1220D	0.686
Total PAHs Calculated	S79269-0221	0.5184
Total PAHs Calculated	S79269-0221D	0.64
Total PAHs Calculated	S79269-1220	0.704
Total PAHs Calculated	S79269-1220D	0.708
Total PCBs Calculated	CH-MW044D-0221	2.7
Total PCBs Calculated	CH-MW044D-1220	2.7
Total PCBs Calculated	CH-MW044S-0221	2.7
Total PCBs Calculated	CH-MW044S-1220	2.79
Total PCBs Calculated	CH-MW045D-0221	2.79
Total PCBs Calculated	CH-MW045D-1220	3.06
Total PCBs Calculated	CH-MW045S-0221	2.79
Total PCBs Calculated	CH-MW045S-1220	2.79
Total PCBs Calculated	S1202-0221	2.7
Total PCBs Calculated	S1202-1220	2.61
Total PCBs Calculated	S17231S-0221	2.7
Total PCBs Calculated	S17231S-0221D	2.79
Total PCBs Calculated	S17231S-1220	2.7
Total PCBs Calculated	S19494-0221	2.88
Total PCBs Calculated	S19494-1220	2.97
Total PCBs Calculated	S19495-0221	2.88
Total PCBs Calculated	S19495-1220	2.79
Total PCBs Calculated	S3599-0221	2.79
Total PCBs Calculated	S3599-1220	2.7
Total PCBs Calculated	S48579-0221	2.88
Total PCBs Calculated	S48579-1220	2.7
Total PCBs Calculated	S58922-0221	2.7
Total PCBs Calculated	S58922-1220	2.79
Total PCBs Calculated	S70627-0221	3.06
Total PCBs Calculated	S70627-1220	3.24
Total PCBs Calculated	S76304-0221	3.15
Total PCBs Calculated	S76304-1220	3.24
Total PCBs Calculated	S76304-1220D	2.79

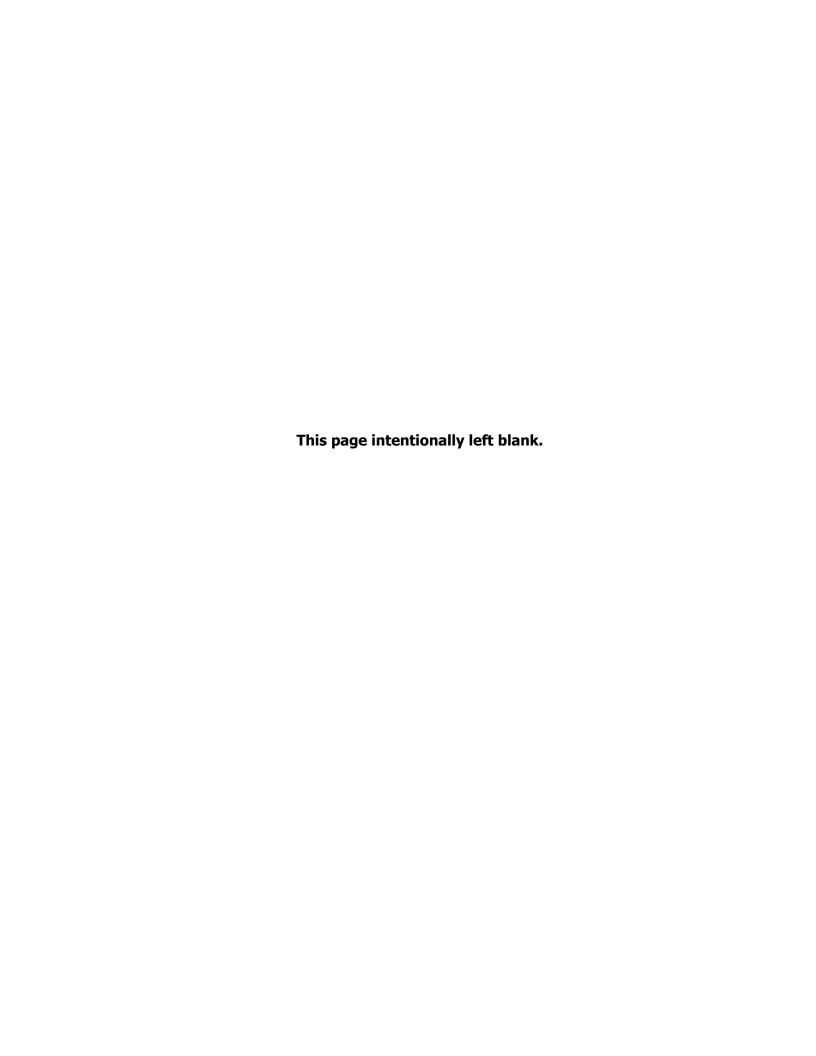
Appendix E- Evaluation of Analytical Data, Attachment C

Analyte Name (Total)	Client Sample ID	Result (ug/L)
Total PCBs Calculated	S79269-0221	2.79
Total PCBs Calculated	S79269-0221D	2.88
Total PCBs Calculated	S79269-1220	2.79
Total PCBs Calculated	S79269-1220D	2.79

Attachment D: Summary of Paired Analysis Results to Compare December 2020 and February 2021 Data

Appendix E- Evaluation of Analytical Data, Attachment D

		No. of S	Samples	Detecti	on Rate	Mean Con	centration			Paired	Test (Actual I	Difference), 2-sided	Paired '	Test (Percent	Difference), 2-sided
Analyte Group	Analyte	Dec 2020	Feb 2021	Dec 2020	Feb 2021	Dec 2020	Feb 2021	Average Actual Difference	Average Percent Difference	t-Test p- value	Wilcoxon Signed- Rank Test p- value	Conclusion	t-Test p- value	Wilcoxon Signed- Rank Test po value	Conclusion
CR (ug/L)	Chromium, Hexavalent (Dissolved)	14	14	0%	0%	-	1	-	-	-	-	-	•	-	-
CR (ug/L)	Chromium, Trivalent (Dissolved)	14	14	7%	0%	8.98	9.00	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
HG (ug/L)	Mercury (Dissolved)	14	14	18%	0%	0.180	0.160	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
METAL (ug/L)	Aluminum (Dissolved)	14	14	7%	7%	33.9	30.4	-3.21	-6.0%	0.336	1.000	No Difference	0.336	1.000	No Difference
METAL (ug/L)	Antimony (Dissolved)	14	14	14%	4%	0.825	0.806	-0.0200	-2.1%	0.336	1.000	No Difference	0.336	1.000	No Difference
METAL (ug/L)	Arsenic (Dissolved)	14	14	14%	50%	1.54	1.53	0.131	6.8%	0.182	0.125	No Difference	0.146	0.125	No Difference
METAL (ug/L)	Barium (Dissolved)	14	14	100%	100%	69.9	84.4	14.6	2.4%	0.458	1.000	No Difference	0.842	0.787	No Difference
METAL (ug/L)	Beryllium (Dissolved)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
METAL (ug/L)	Cadmium (Dissolved)	14	14	7%	0%	0.391	0.410	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
METAL (ug/L)	Calcium (Dissolved)	14	14	100%	100%	18200	17807	-393	-0.2%	0.823	0.611	No Difference	0.980	0.682	No Difference
METAL (ug/L)	Chromium (Dissolved)	14	14	7%	14%	1.38	1.00	-0.380	0.6%	0.531	1.000	No Difference	0.968	1.000	No Difference
METAL (ug/L)	Cobalt (Dissolved)	14	14	50%	36%	0.574	0.369	-0.219	-26.4%	0.157	0.094	No Difference	0.095	0.156	No Difference
METAL (ug/L)	Copper (Dissolved)	14	14	54%	43%	33.2	10.4	-22.8	-19.4%	0.364	0.844	No Difference	0.343	0.742	No Difference
METAL (ug/L)	Iron (Dissolved)	14	14	82%	86%	2904	6396	3489	40.7%	0.140	0.148	No Difference	0.168	0.206	No Difference
METAL (ug/L)	Lead (Dissolved)	14	14	64%	43%	0.483	0.779	0.271	18.1%	0.409	0.563	No Difference	0.376	0.438	No Difference
METAL (ug/L)	Magnesium (Dissolved)	14	14	100%	100%	11036	10157	-854	8.0%	0.520	0.987	No Difference	0.618	0.960	No Difference
METAL (ug/L)	Manganese (Dissolved)	14	14	100%	93%	293	352	58.3	7.2%	0.322	0.405	No Difference	0.670	0.636	No Difference
METAL (ug/L)	Nickel (Dissolved)	14	14	79%	43%	3.82	1.34	-2.49	-51.7%	0.048	0.016	Significant Difference	0.009	0.014	Significant Difference
METAL (ug/L)	Potassium (Dissolved)	14	14	100%	100%	3501	3192	-301	-10.4%	0.136	0.153	No Difference	0.036	0.078	No Difference
METAL (ug/L)	Selenium (Dissolved)	14	14	21%	14%	0.758	0.780	-0.0179	-2.2%	0.336	1.000	No Difference	0.336	1.000	No Difference
METAL (ug/L)	Silver (Dissolved)	14	14	7%	0%	2.59	0.41	-2.19	-13.9%	0.336	1.000	No Difference	0.336	1.000	No Difference
METAL (ug/L)	Sodium (Dissolved)	14	14	100%	100%	72736	65879	-6893	-16.3%	0.462	0.292	No Difference	0.104	0.092	No Difference
METAL (ug/L)	Thallium (Dissolved)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
METAL (ug/L)	Vanadium (Dissolved)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
METAL (ug/L)	Zinc (Dissolved)	14	14	46%	36%	63.9	28.6	-35.4	-12.2%	0.321	0.375	No Difference	0.448	0.375	No Difference
PCB (ug/L)	PCB, Total	14	14	7%	7%	0.309	0.337	0.0221	4.3%	0.336	1.000	No Difference	0.336	1.000	No Difference
PCB (ug/L)	PCB-1016 (Aroclor 1016)	14	14	0%	0%	i	ı	-	-	-	-	-	1	-	-
PCB (ug/L)	PCB-1221 (Aroclor 1221)	14	14	0%	0%	ı	ı	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1232 (Aroclor 1232)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1242 (Aroclor 1242)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1248 (Aroclor 1248)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1254 (Aroclor 1254)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1260 (Aroclor 1260)	14	14	7%	7%	0.309	0.337	0.0221	4.3%	0.336	1.000	No Difference	0.336	1.000	No Difference
PCB (ug/L)	PCB-1262 (Aroclor 1262)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
PCB (ug/L)	PCB-1268 (Aroclor 1268)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	1,4-Dichlorobenzene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	14	21%	14%	0.265	0.202	-0.0657	-10.3%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	1-Methylnaphthalene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	2-Chloronaphthalene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	2-Methylnaphthalene	14	14	0%	4%	0.0630	0.0405	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	2-Methylphenol (o-Cresol)	14	14	7%	7%	1.09	1.04	-0.0500	-3.7%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	4-Chloro-3-methylphenol	14	14	0%	7%	3.36	2.08	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	4-Chloroaniline	14	14	0%	0%	-	-	-	-		-	-			-
SVOC (ug/L)	4-Methylphenol (p-Cresol)	14	14	7%	14%	1.03	1.33	0.336	10.4%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Acenaphthene	14	14	0%	4%	0.0315	0.0308	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	Acenaphthylene	14	14	0%	0%	-	-	-	-	-	-	-	_	-	-


Appendix E- Evaluation of Analytical Data, Attachment D

SVOC (ug/L)	Anthracene	14	14	0%	0%	<u> </u>	_	<u> </u>	-	_	<u> </u>	-	_	- I	_
SVOC (ug/L)	Benzaldehyde	14	14	0%	0%	_	_	_	_	_	_	_	_	_	-
SVOC (ug/L)	Benzo(a)anthracene	14	14	7%	4%	0.0320	0.0308	-0.000500	-1.4%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Benzo(a)pyrene	14	14	7%	4%	0.0302	0.0306	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	Benzo(b)fluoranthene	14	14	14%	4%	0.0312	0.0314	-0.000929	-2.5%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Benzo(g,h,i)perylene	14	14	14%	0%	0.0309	0.0309	-0.000429	-1.3%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Benzo(k)fluoranthene	14	14	7%	4%	0.0325	0.0304	-0.00107	-2.8%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Benzoic acid	14	14	0%	7%	25.3	24.9	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	Benzyl butyl phthalate	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	Biphenyl (Diphenyl)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	Bis(2-ethylhexyl)phthalate	14	14	0%	0%	_	_	-	-	-	-	-	-	-	-
SVOC (ug/L)	Caprolactam	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	Carbazole	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
SVOC (ug/L)	Chrysene	14	14	7%	4%	0.0324	0.0305	-0.000929	-2.5%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Dibenz(a,h)anthracene	14	14	7%	0%	0.0615	0.0412	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	Dibenzofuran	14	14	0%	0%	-	-	- 1	-	-	-	-	-	-	-
SVOC (ug/L)	Diethyl phthalate	14	14	0%	0%	-	_	- 1	-	-	-	-	-	-	-
SVOC (ug/L)	Dimethyl phthalate	14	14	0%	0%	-	-	- 1	-	-	-	-	-	-	-
SVOC (ug/L)	Di-n-butyl phthalate	14	14	0%	0%	-	_	- 1	-	-	-	-	-	-	-
SVOC (ug/L)	di-n-Octyl phthalate	14	14	0%	0%	-	-	- 1	-	-	-	-	-	-	-
SVOC (ug/L)	Fluoranthene	14	14	29%	25%	0.0278	0.0309	-0.000643	-2.6%	0.189	0.500	No Difference	0.165	0.500	No Difference
SVOC (ug/L)	Fluorene	14	14	0%	4%	0.0315	0.0308	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
SVOC (ug/L)	Indeno(1,2,3-c,d)pyrene	14	14	14%	0%	0.0315	0.0412	-0.000286	-0.7%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Naphthalene	14	14	7%	11%	0.0606	0.0645	0.00229	2.8%	0.206	0.500	No Difference	0.189	0.500	No Difference
SVOC (ug/L)	Phenanthrene	14	14	21%	11%	0.0596	0.0631	-0.00143	-2.2%	0.336	1.000	No Difference	0.336	1.000	No Difference
SVOC (ug/L)	Pyrene	14	14	14%	11%	0.0305	0.0312	-0.000357	-1.9%	0.336	1.000	No Difference	0.336	1.000	No Difference
VOC (ug/L)	1,1,1,2-Tetrachloroethane	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,1,1-Trichloroethane	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,1,2,2-Tetrachloroethane	14	14	0%	0%	-	-	-	-	ı	-	-	-	-	-
VOC (ug/L)	1,1,2-Trichloro-1,2,2-trifluoroethane	14	14	0%	0%	-	-	-	-	ı	-	-	-	-	-
VOC (ug/L)	1,1,2-Trichloroethane	14	14	0%	0%	-	-	-	-	1	-	-	-	-	-
VOC (ug/L)	1,1-Dichloroethane	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,1-Dichloroethene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,2,3-Trichlorobenzene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,2,4-Trimethylbenzene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,3,5-Trimethylbenzene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	1,4-Dioxane (p-Dioxane)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	2-Butanone (MEK)	14	14	43%	7%	7.84	0.96	-6.94	-14.7%	0.335	0.500	No Difference	0.312	0.500	No Difference
VOC (ug/L)	4-Methyl-2-pentanone (MIBK)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Acetone	14	14	39%	21%	4.21	1.75	-2.42	-29.8%	0.229	0.125	No Difference	0.092	0.125	No Difference
VOC (ug/L)	Benzene	14	14	14%	0%	0.472	0.500	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
VOC (ug/L)	Carbon disulfide	14	14	14%	29%	0.526	2.341	1.79	19.6%	0.286	0.375	No Difference	0.312	0.375	No Difference
VOC (ug/L)	Carbon tetrachloride	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Chloroethane	14	14	0%	0%	- 0.622	- 0.400	-	-	- 0.000	- 0.250		- 0.262	- 0.250	- N. D.W.
VOC (ug/L)	Chloroform	14	14	29%	7%	0.622	0.499	-0.122	-10.3%	0.303	0.250	No Difference	0.263	0.250	No Difference
VOC (ug/L)	cis-1,2-Dichloroethene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Cyclohexane	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Ethylbenzene (C	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Isopropylbenzene (Cumene)	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	m,p-Xylene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Methyl acetate	14	14	0%	0%	-	-	- 1	-	_	-	-	<u> </u>	-	-

Appendix E- Evaluation of Analytical Data, Attachment D

VOC (ug/L)	Methyl tert-butyl ether (MTBE)	14	14	7%	7%	0.550	0.550	0	0.0%	1.000	1.000	No Difference	1.000	1.000	No Difference
VOC (ug/L)	Methylcyclohexane	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	Methylene chloride	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	n-Butylbenzene	14	14	0%	0%	i	-	-	-	-	-	-	-	ı	-
VOC (ug/L)	n-Propylbenzene	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-
VOC (ug/L)	o-Xylene	14	14	29%	7%	0.753	0.789	0.000714	0.1%	0.336	1.000	No Difference	0.336	1.000	No Difference
VOC (ug/L)	p-Cymene (p-Isopropyltoluene)	14	14	0%	0%	İ	-	-	-	-	-	-	-	ı	-
VOC (ug/L)	sec-Butylbenzene	14	14	0%	0%	i	-	-	-	-	-	-	-	ı	-
VOC (ug/L)	tert-Butylbenzene	14	14	0%	0%	İ	1	-	-	-	-	-	-	ı	-
VOC (ug/L)	Tetrachloroethene (PCE)	14	14	0%	0%	İ	-	-	-	-	-	-	-	ı	-
VOC (ug/L)	Toluene	14	14	7%	7%	0.481	0.502	0.00214	0.4%	0.336	1.000	No Difference	0.336	1.000	No Difference
VOC (ug/L)	trans-1,2-Dichloroethene	14	14	0%	0%	i	-	-	-	-	-	-	-	ı	-
VOC (ug/L)	Trichloroethene (TCE)	14	14	0%	0%	İ	1	-	-	-	-	-	-	ı	-
VOC (ug/L)	Vinyl chloride	14	14	0%	0%	-	-	-	-	-		-	-	-	
VOC (ug/L)	Xylenes, Total	14	14	0%	0%	-	-	-	-	-	-	-	-	-	-

Attachment E: Summary of Hypothesis Testing Results to Compare Onsite and Offsite Data of Iron and Manganese

Appendix E- Evaluation of Analytical Data, Attachment E

						Min May						Goodness-of Fit Test	Hypoth	esis Testing	
Analyte Group	Analyte	Location Group	Event	No. of Samples	Detection Rate	Mean	Std Dev	Min Detected Value	Max Detected Value	Min LOD of NDs	Max LOD of NDs	Distribution	Statistical Test	p-value (1- sided)	Onsite Higher Than Offsite?
METAL (ug/L)	Iron	Offsite "Local Conditions"	Dec 2020 Event	7	100%	149215	388403	30	1030000	-	-	Not Normal	Permutation Test	0.536	No
METAL (ug/L)	Iron	Onsite	Dec 2020 Event	7	100%	7029	6743	2000	20000	-	-	Not Normal	Permutation rest	0.550	INO
METAL (ug/L)	Iron	Offsite "Local Conditions"	Feb 2021 Event	7	71%	3691	7707	170	21000	40	40	-	Dormutation Tost	0.099	No
METAL (ug/L)	Iron	Onsite	Feb 2021 Event	7	100%	12600	15763	2900	45000	-	-	Not Normal	Permutation Test	0.099	INO
METAL (ug/L)	Iron (Dissolved)	Offsite "Local Conditions"	Dec 2020 Event	7	71%	1117	2642	23	7100	41	41	-	Dormutation Tost	0.102	No
METAL (ug/L)	Iron (Dissolved)	Onsite	Dec 2020 Event	7	100%	4691	7563	50	20000	-	-	Not Normal	Permutation Test	0.102	INO
METAL (ug/L)	Iron (Dissolved)	Offsite "Local Conditions"	Feb 2021 Event	7	71%	2651	6768	61	18000	41	41	-	Permutation Test	0.094	No
METAL (ug/L)	Iron (Dissolved)	Onsite	Feb 2021 Event	7	100%	10140	14813	170	40000	-	-	Not Normal	Permutation rest	0.094	INO
METAL (ug/L)	Manganese	Offsite "Local Conditions"	Dec 2020 Event	7	100%	3967	10158	2.1	27000	-	-	Not Normal	Dormutation Tost	0.501	No
METAL (ug/L)	Manganese	Onsite	Dec 2020 Event	7	100%	523	222	240	940	-	-	Normal	Permutation Test	0.501	INO
METAL (ug/L)	Manganese	Offsite "Local Conditions"	Feb 2021 Event	7	86%	138	149	1.7	350	1.6	1.6	-	Dormutation Tost	0.007	Yes
METAL (ug/L)	Manganese	Onsite	Feb 2021 Event	7	100%	620	459	130	1400	-	-	Normal	Permutation Test	0.007	res
METAL (ug/L)	Manganese (Dissolved)	Offsite "Local Conditions"	Dec 2020 Event	7	100%	105	146	1.2	390	-	-	Not Normal	Downsutation Tost	0.002	Vas
METAL (ug/L)	Manganese (Dissolved)	Onsite	Dec 2020 Event	7	100%	481	231	180	910	-	-	Normal	Permutation Test	0.002	Yes
METAL (ug/L)	Manganese (Dissolved)	Offsite "Local Conditions"	Feb 2021 Event	7	86%	131	142	1.1	330	1.6	1.6	-	Dormutation Tost	0.009	Vos
METAL (ug/L)	Manganese (Dissolved)	Onsite	Feb 2021 Event	7	100%	573	421	110	1300	-	_	Normal	Permutation Test	0.009	Yes

Appendix F Human Health Screening Evaluation Tables

Table 1 Phase IV Remedial Investigation Groundwater Analytical Results Camp Hero, Montauk, New York

Chemical CASPN Pecidential Pecidential Maximum and Operational State Detault S			Woll Decription:	CHIV	/IW044 De	220		1W044D-02 VIW044 De			1W044S-1: W044 Sha	
USEPA USEPA USEPA NYS Technical New York Default S			Well Description:	CH-IV	//VVU44 DE	εþ	CH-I	VIVVU44 DE	:eh	CH-IVI	WU44 311a	IIOW
Chemical CASPN Posidential Posidential Maximum and Operational State Detault S	Selected	Screening										
	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
Tanwater Tanwater Non Contaminant Guidance Department Residential L	o l	Source (1)	Sample Date:		2/11/2020		2	2/22/2021		1	2/11/2020	
Cancer SL Cancer SL Levels Series, 1.1.1. of Health	Lover (1)	Jource (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds (VOCs)			Offics	Nesult	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,1,1,2-Tetrachloroethane 630-20-6 5.70E-01 4.80E+01 No MCL 5.00E+00 No MCL 3.71E+00	0.57	RSL_C	ug/L	0.5	ш	0.5	0.5	U	0.5	0.5	IJ	0.5
1,1,1-Trichloroethane 71-55-6 No SL 8.00E+02 2.00E+02 5.00E+00 No MCL 7.42E+02		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane 79-34-5 7.60E-02 3.60E+01 No MCL 5.00E+00 No MCL 3.23E+00	0.076	RSL_C	ug/L	0.5	IJ	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane 79-00-5 2.80E-01 4.10E-02 5.00E+00 1.00E+00 No MCL 6.19E-01	0.070	RSL_NC	ug/L	0.5	IJ	0.5	0.5	U	0.5	0.5	IJ	0.5
1,1-Dichloroethane 75-34-3 2.80E+00 3.80E+02 No MCL 5.00E+00 No MCL 7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene 75-35-4 No SL 2.80E+01 7.00E+00 5.00E+00 No MCL 1.95E+01		TOGS 1.1.1	ug/L	0.5	II	0.5	0.5	U	0.5	0.5	IJ	0.5
1,2,3-Trichlorobenzene 87-61-6 No SL 7.00E-01 No MCL 5.00E+00 No MCL No SL	0.7	RSL_NC	ug/L ug/L	1	IJ	1	0.0 1	U	1	1	IJ	1
1,2,4-Trimethylbenzene 95-63-6 No SL 5.60E+00 No MCL 5.00E+00 No MCL 2.48E+01		TOGS 1.1.1	ug/L ug/L	2	IJ	2	2	U	2	2	U	2
		TOGS 1.1.1	9	1	II	1	1		1	1	IJ	1
1,3,5-Trimethylbenzene 108-67-8 No SL 6.00E+00 No MCL 5.00E+00 No MCL 1.75E+01 1,4-Dioxane 123-91-1 4.60E-01 5.70E+00 No MCL No MCL 1.00E+00 2.86E+03	0.46	RSL_C	ug/L ug/L	100	IJ	100	100	U	100	100	IJ	100
		TOGS 1.1.1	9	0.61	U	100	100		100	0.57	U	100
			ug/L		J II	٥٢	l O F	U	٥٢		J	
4-Isopropyltoluene 99-87-6 No SL 4.50E+01 No MCL 5.00E+00 No MCL 8.87E+01		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK) 108-10-1 No SL 6.30E+02 No MCL No MCL 5.55E+04	630	RSL_NC	ug/L	1.0	U	1	0.00	U	<u> </u>	Γ.4	U	2
Acetone 67-64-1 No SL 1.40E+03 No MCL 5.00E+01 No MCL 2.25E+06		TOGS 1.1.1	ug/L	4.2	J	2	0.82	J	Z	5.4	J	
Benzene 71-43-2 4.60E-01 3.30E+00 5.00E+00 1.00E+00 No MCL 1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.37	J	0.5
Carbon Disulfide 75-15-0 No SL 8.10E+01 No MCL 6.00E+01 No MCL 1.24E+02		TOGS 1.1.1	ug/L	0.5	U	0.5	23		0.5	0.5	U	0.5
Carbon Tetrachloride 56-23-5 4.60E-01 4.90E+00 5.00E+00 5.00E+00 No MCL 4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane 75-00-3 No SL 2.10E+03 No MCL 5.00E+00 No MCL 2.30E+03		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform 67-66-3 2.20E-01 9.70E+00 8.00E+01 7.00E+00 No MCL 8.14E-01	0.22	RSL_C	ug/L	2.1		0.5	0.5	U	0.5	0.59	J	0.5
cis-1,2-Dichloroethene 156-59-2 No SL 3.60E+00 7.00E+01 5.00E+00 No MCL No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane 110-82-7 No SL 1.30E+03 No MCL No MCL No MCL No MCL 1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene 100-41-4 1.50E+00 8.10E+01 7.00E+02 5.00E+00 No MCL 3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene 98-82-8 No SL 4.50E+01 No MCL 5.00E+00 No MCL 8.87E+01		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate 79-20-9 No SL 2.00E+03 No MCL No MCL No MCL No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane 108-87-2 No SL 1.30E+03 No MCL No MCL No MCL 1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE 1634-04-4 1.40E+01 6.30E+02 No MCL 1.00E+01 1.00E+01 4.50E+02		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride 75-09-2 1.10E+01 1.10E+01 5.00E+00 5.00E+00 No MCL 4.71E+02		Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene 108-38-3/106-42-3 No SL 1.90E+01 No MCL No MCL No MCL 3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene 104-51-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No SL		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene 103-65-1 No SL 6.60E+01 No MCL 5.00E+00 No MCL 2.43E+02		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene 95-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 4.92E+01		TOGS 1.1.1	ug/L	0.62	J	0.8	0.8	U	0.8	0.66	J	0.8
sec-Butylbenzene 135-98-8 No SL 2.00E+02 No MCL 5.00E+00 No MCL No MCL		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene 98-06-6 No SL 6.90E+01 No MCL 5.00E+00 No MCL No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene 127-18-4 1.10E+01 4.10E+00 5.00E+00 5.00E+00 No MCL 5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene 108-88-3 No SL 1.10E+02 1.00E+03 5.00E+00 No MCL 1.92E+03		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene 156-60-5 No SL 6.80E+00 1.00E+02 5.00E+00 No MCL 1.09E+01		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride 75-01-4 1.90E-02 4.40E+00 2.00E+00 2.00E+00 2.00E+00 1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total) 1330-20-7 No SL 1.90E+01 1.00E+04 No MCL No MCL 3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compounds (SVOCs)												

Detection above Selected Sc	reenina Level	Result						o, Montaux		Sample Location:	Cl	H-MW044[)	CI	H-MW044[<u> </u>	C	H-MW044	<u> </u>
Detected Result	rooming Lover	Result								Sample Name:		/W044D-1			ЛW044D-0			ЛW044S-1	
										Well Description:		MW044 De			MW044 De			W044 Sha	
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				110112000117110111	· · · ·		, op	0		- · ·	0		
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
		Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	1	2/11/2020			2/22/2021		1	2/11/2020)
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	, ,	, ,	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	UJ	1	1	U	1	1.1	UJ	1.1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.2	UJ	0.2	0.2	U	0.2	1.1	J	0.22
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.81	UJ	0.81	0.81	U	0.81	0.88	UJ	0.88
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	UJ	1	1	U	1	1.7	J	1.1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	3.2	UJ	3.2	2	U	2	3.5	UJ	3.5
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.1	UJ	9.1	9.1	U	9.1	9.9	UJ	9.9
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	UJ	1	1	U	1	1.1	UJ	1.1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	9.1	UJ	9.1	2	U	2	9.9	UJ	9.9
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	24	UJ	24	24	U	24	26	UJ	26
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	9.1	UJ	9.1	1	U	1	9.9	UJ	9.9
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	10	UJ	10	4	U	4	11	UJ	11
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4	UJ	4	4	UJ	4	4.4	UJ	4.4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	10	UJ	10	6.1	U	6.1	11	UJ	11
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	0.03	UJ	0.03	1	U	1	1.1	UJ	1.1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	UJ	1	1	U	1	1.1	UJ	1.1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4	4	U	4	4.4	UJ	4.4
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4	4	UJ	4	4.4	UJ	4.4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4	4	U	4	4.4	UJ	4.4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	UJ	10	10	U	10	11	UJ	11
Polycyclic Aromatic Hydroca	arbons																		
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.09933		0.09933	0.08033		0.08033	0.109263		0.109263
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.66		0.66	0.621			0.2304		
Polychlorinated Biphenyls (F	PCBs)																		
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.7		2.7	2.7		2.7	2.79		2.79
Total Metals (TMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	61		30	30	U	30	780		30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.9	J	1.6	0.77	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	110		1.6	72		1.6	59		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	29000		120	16000		120	25000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				1.38					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.93		0.4	0.24	J	0.4	0.69		0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.52	J	0.8	0.8	U	0.8	3.2		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	2000		400	3800		40	2900		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.14	J	0.25	0.25	U	0.25	0.5		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	20000		25	6600		25	6500		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	620		1.6	610		1.6	470		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.11	J	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	5.1		1	1	U	1	4.2		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Datastian above Calcated Co		Desult	1				'	o, mornaun,		Camania Lagatian	CI	1 1 1 1 1 1 0 1 1 1		l cı	11.11.11.0.1.1.0.1.1.1	`	I o	L N N N / O / A / C	
Detection above Selected So	creening Level	Result								Sample Location:		H-MW044E			H-MW044[H-MW044S	
Detected Result		Result]							Sample Name:		1W044D-1			ЛW044D-0			1W044S-12	
		DOL O	DOL NO	In I I I I I I I I I I I I I I I I I I	T000444	NIVO MOL				Well Description:	CH-I	MW044 D€	eep	CH-	MW044 De	eep	CH-M	W044 Sha	llow
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA												
	OACDN	USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening	0 11 10 55 11		0 "			0 "			0 "	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:	1	Onsite		_	Onsite		_	Onsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/11/2020			2/22/2021	1.00		2/11/2020	1.00
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	6300		160	4600		160	4500		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	4.8		0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	160000		1600	57000		160	27000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	2.9	J	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	10	U	10	25		10
Dissolved Metals (DMET)								_											
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	31	U	31	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.8	J	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	100		1.6	69		1.6	41		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	29000		120	16000		120	22000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.8					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.86		0.4	0.41	U	0.41	0.18	J	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	1100		40	2400		41	50		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.25	U	0.25	0.26	U	0.26	0.25	U	0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	19000		25	6400		26	6000		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	600		1.6	580		1.6	380		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.09	J	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	5.2		1	1	U	1	1	J	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	6000		160	4300		160	4300		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.82	U	0.82	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	160000	_	1600	49000	_	330	26000	-	160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	10	U	10	10	U	10
Notes	7 1 10 00 0	140 OL	0.000102	THO WICE	2.002100	0.00E100	TVOC VOIGITIC	500	NOL_NO	ugri	10	J	10	10		1 10	10	5	10

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sc Detected Result	creening Level	Result Result					r r	, wortaak,		Sample Location: Sample Name: Well Description:	CH-N	1-MW044S 1W044S-02 W044 Shal	221	CH-M	H-MW045D //W045D-1 //W045 De	220	CH-N	1-MW045D 1W045D-0 1W045 De	221
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	1/101 110EDA			Well Description.	OT I-IVI	WOTT Sliai	IOVV	OI I-I	VIVVOTO DO	,cp	OTT	WWW TO DO	СР
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	/22/2021		1	2/12/2020		4	2/22/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL			Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds	s (VOCs)											-							
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	0.5	J	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2	2.1	J	2	2	U	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.24	J	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.37	J	0.5	0.5	U	0.5	3.8	J	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.52	J	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	7
Methyl tert-Butyl Ether (MTBE		1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	10	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	<u></u> 2	2	U	2
n-Butylbenzene	104-51-8 103-65-1	No SL No SL	1.00E+02 6.60E+01	No MCL No MCL	5.00E+00 5.00E+00	No MCL No MCL	No SL 2.43E+02	<u> </u>	TOGS 1.1.1 TOGS 1.1.1	ug/L	0.5 0.5	U	0.5 0.5	0.5 0.5	U	0.5 0.5	0.5 0.5	U	0.5 0.5
n-Propylbenzene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00 5.00E+00	No MCL	4.92E+01		TOGS 1.1.1	ug/L	0.5	U U	0.5		U	0.5	0.5	U	
o-Xylene sec-Butylbenzene	95-47-6 135-98-8	No SL	2.00E+01	No MCL	5.00E+00 5.00E+00	No MCL	4.92E+01 No SL	<u> </u>	TOGS 1.1.1	ug/L ug/L	0.8	U	0.8	0.8 0.5	U	0.8	0.8	U	0.8
tert-Butylbenzene	98-06-6	No SL	6.90E+02	No MCL	5.00E+00 5.00E+00	No MCL	No SL No SL	<u> </u>	TOGS 1.1.1	ug/L ug/L	0.0 1	U	0.5 1	0.0 1	U	0.5 1	0.0 1	U	0.0 1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00 5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	127-18-4	No SL	4.10E+00 1.10E+02	1.00E+00	5.00E+00 5.00E+00	No MCL	1.92E+03	4. I	TOGS 1.1.1	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+03 1.00E+02	5.00E+00 5.00E+00	No MCL	1.92E+03 1.09E+01	<u> </u>	TOGS 1.1.1	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+02	5.00E+00 5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	79-01-0	4.90E-01 No SL	1.00E+03	No MCL	5.00E+00 5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	76-13-1 75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+00	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Comp		INU JL	1.700+01	1.00E+04	INU IVICE	INUIVICE	J.05E+01	17	NOL_NO	ug/L	۷.0	U	۷.0	۷.0	l U	2.0	2.0	U	2.0
John Volatile Organic Comp	(3 V O C S)																		

Detection above Selected Sc Detected Result	reening Level	Result Result					r r	o, Moritaux,		Sample Location: Sample Name:		1-MW044S 1W044S-02			H-MW045D 1W045D-1			H-MW045D	
Detected Result		Result	J							Well Description:		W044 Sha			MW045 De			/W045De	
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				Well bescription.	OTTW	WOTT SHO	iiow	0111	WWW TO DO	СÞ	OIII	WIVIO TO DO	Ю
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
Grieffinger	<i>57</i> 151 111	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	2/22/2021		1	2/12/2020			2/22/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	2010. (.)	334.33 (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	U	1	1.1	UJ	1.1	1	UJ	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.18	J	0.2	0.19	J	0.22	0.2	U	0.2
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.81	U	0.81	0.89	UJ	0.89	0.81	UJ	0.81
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1.1	UJ	1.1			
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	2	U	2	3.6	UJ	3.6			
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.1	U	9.1	10	UJ	10	9.1	UJ	9.1
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1.1	UJ	1.1			
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	2	U	2	10	UJ	10	2	UJ	2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	24	U	24	27	UJ	27			
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	1	U	1	10	UJ	10	1	UJ	1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	4.1	U	4.1	11	UJ	11	4.1	UJ	4.1
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.1	UJ	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	6.1	U	6.1	11	UJ	11	6.1	UJ	6.1
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	1	U	1	0.033	UJ	0.033	1	UJ	1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	U	1	1.1	UJ	1.1	1	UJ	1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	UJ	4.1	4.5	UJ	4.5	4.1	UJ	4.1
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.5	UJ	4.5	4.1	UJ	4.1
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10	11	UJ	11	10	UJ	10
Polycyclic Aromatic Hydroca	arbons																		
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.08033		0.08033	0.0062405			0.08143		0.08143
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.64	-	0.64	0.4068			0.3204		
Polychlorinated Biphenyls (F	PCBs)																		
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.7		2.7	3.06		3.06	2.79		2.79
Total Metals (TMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	30	U	30	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	8.0	U	8.0	8.0	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.4	J	1.6	1.6	U	1.6	1.2	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	59		1.6	180		1.6	470		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	16000		120	42000		120	38000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.012	J	0.04				0.02	U	0.04
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.788						0.69		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.33	J	0.4	2		0.4	0.42	J	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.8	U	8.0	2.9		0.8	0.8	U	8.0
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	4800		40	2300		400	45000		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.087	J	0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	6300		25	44000		25	35000		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	670		1.6	940		1.6	1400		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.083	J	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.4	J	11	9.4		1	0.67	J	1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected S	crooning Lovel	Result	1						NOW TOTAL	Sample Location:	C	H-MW0445		CI	H-MW045[)	CI	H-MW045E)
Detected Result	creening Level	Result								Sample Name:		л-титио443 ЛW044S-0			7-10100045L /IW045D-1			1-10100043L 1W045D-0	
Detected Nesult		Result	1							Well Description:		1W0443-0			MW045D-1			лw043D-0. ЛW045 De	
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:		<u> </u>		Well Description.	CI I-IV	10044 3110	IIOVV	CHI	VIVVU43 DC	c p	Cit-i	VIVVU43 DC	:ch
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
Gridinida	O/ IO/III	Tapwater	Tapwater Non-	Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:		2/22/2021		1	2/12/2020			2/22/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	20101(1)	000100 (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3400	, 4	160	11000	, ,	160	11000	, ,	160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.22	J	0.4	0.21	J	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	27000	-	160	420000	-	1600	500000	-	3200
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	37		10	10	U	10
Dissolved Metals (DMET)	· L	•	•		•		•		_	J		1				l			l
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	76		30	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82	0.8	U	0.8	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	0.97	J	1.6	1.6	U	1.6	0.83	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	59		1.6	180		1.6	430		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	15000		120	42000		120	36000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.02	U	0.04				0.02	U	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.8						0.8		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.28	J	0.41	2.2		0.4	0.17	J	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.82	U	0.82	20		0.8	0.5	J	0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	4500		41	9700		40	40000		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.26	U	0.26	0.78		0.25	0.26	U	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	6100		26	42000		25	33000		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	660		1.6	910		1.6	1300		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.2	J	1	16		1	1	U	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3200		160	10000		160	11000		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.82	U	0.82	0.8	U	8.0	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	31		0.4	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	25000		160	410000		1600	460000		1600
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	41		10	10	U	10
Notes	•								_										

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sc Detected Result	creening Level	Result Result					r. P	o, Moritauk,		Sample Location: Sample Name:	CH-N	1-MW045S 1W045S-12	220	CH-N	H-MW045S	221	S	S 1202 1202-1220	
	l I	DCI C.	DCI NC.	Fodoral MCL.	TOCC 1 1 1.	NIVE MCL.				Well Description:	CH-M	W045 Shal	low	CH-M	W045 Sha	IIIOW	Lighthouse W	•	nop Potable
		RSL_C: USEPA	RSL_NC: USEPA	Federal MCL: USEPA	TOGS 1.1.1: NYS Technical	NYS MCL: New York	VISL: USEPA	Selected	Corooning									Well)	
Chamical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Screening Level	Onsite/Offsite:		Onsite			Onsite			Offsite	
Chemical	CASKIN	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	1	2/9/2020		,	2/22/2021			12/9/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	Level (1)	30urce (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds	c (VOCs)	Caricer 3L	Caricei 3L	Levels	361163, 1.1.1.	Orricaltii				UIIIIS	Result	VQ	LUD	Result	VQ	LOD	Resuit	VQ	LOD
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+01	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.070	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	IJ	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	IJ	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1.1	J	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2	0.71	J	2	2	IJ	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	Ü	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5	0.6	J	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	Ü	0.5	0.5	IJ	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	J	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	Ü	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	Ü	1	1	U	1
Methyl tert-Butyl Ether (MTBE		1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Comp	oounds (SVOCs)						•			Ĭ					-	•			
	•									•									

Detection above Selected Sc	reening Level	Result]				Camp Here	- ,		Sample Location:	CH	I-MW045S	<u> </u>	CI	H-MW0455	<u> </u>		S 1202	
Detected Result	<u> </u>	Result								Sample Name:	CH-N	IW045S-1	220	CH-N	/IW045S-0	221		1202-1220)
			ı							Well Description:	CH-M\	W045 Sha	llow		W045 Sha		Lighthouse W		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:					· · · · · ·							Well)	
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening									,	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Offsite	
		Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	1	2/9/2020			2/22/2021		1	2/9/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	` '	` ,	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1.1	U	1.1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.21	UJ	0.21	0.2	U	0.2	0.11	J	0.2
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.85	U	0.85	0.81	U	0.81	0.81	U	0.81
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1.1	U	1.1	1	UJ	1	1	U	1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	3.4	U	3.4	2	UJ	2	3.2	U	3.2
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.5	U	9.5	9.2	U	9.2	9.1	U	9.1
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1.1	U	1.1	1	UJ	1	1	U	1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	9.5	U	9.5	2	U	2	9.1	U	9.1
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	25	U	25	24	U	24	24	U	24
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	9.5	U	9.5	1	U	1	9.1	U	9.1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	11	U	11	4.1	U	4.1	10	U	10
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.2	U	4.2	4.1	UJ	4.1	4	U	4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	11	U	11	6.1	U	6.1	10	U	10
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	0.032	UJ	0.032	1	U	1	0.03	UJ	0.03
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1.1	U	1.1	1	U	1	1	U	1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	U	4.2	4.1	U	4.1	4	U	4
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	U	4.2	4.1	UJ	4.1	4	U	4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	U	4.2	4.1	U	4.1	4	U	4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	11	U	11	10	U	10	10	U	10
Polycyclic Aromatic Hydroca	arbons																		
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.104952		0.104952	0.082641		0.082641	0.09933		0.09933
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.2448			0.658		0.658	0.66		0.66
Polychlorinated Biphenyls (F	PCBs)																		
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.79		2.79	2.79		2.79	2.61		
Total Metals (TMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	1800		30	210		30	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	8.0	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.1	J	1.6	2.7		1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	84		1.6	48		1.6	81		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	19000		120	19000		120	18000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				1.58					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	1.2		0.4	0.32	J	0.4	0.4	U	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	2.9		0.8	0.82	J	0.8	400		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	2200		40	5200		40	30	J	40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.92		0.25	0.18	J	0.25	3.3		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	6200		25	6500		25	16000		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	510		1.6	1000		1.6	2.3		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	4.2	J	1	1	U	1	9.9		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected So	creening Level	Result								Sample Location:	CH	H-MW045S	5	CH	H-MW045S	;		S 1202	
Detected Result		Result								Sample Name:	CH-N	1W045S-12	220	CH-N	/IW045S-02	221	S	1202-1220	
			_							Well Description:	CH-M	W045 Shal	llow	CH-M	W045 Sha	llow	Lighthouse W	ell (Gift Sh	nop Potable
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA											Well)	
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:	1	12/9/2020		2	2/22/2021		-	12/9/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL			Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	4200		160	2800		160	2800		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.8	U	8.0	0.42	J	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	52000		160	41000		160	71000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	3.4	J	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	15		10	10	U	10	680		10
Dissolved Metals (DMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.9	J	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	68		1.6	42		1.6	77		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	18000		120	19000		120	17000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				2.28		-			
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.48	J	0.41	0.16	J	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	1.4		0.82	0.86	J	0.82	380		0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	100		41	3100		41	41	U	41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.11	J	0.26	0.26	U	0.26	2.6		0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	5500		26	6000		26	15000		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	470		1.6	860		1.6	1.5	J	1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1	U	1	0.76	J	1	9.1		1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3400		160	2600		160	2500		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.39	J	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	48000		160	35000		160	64000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	8	J	10	10	U	10	600		10
Notes										<u>-</u>									

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sci	rooning Lovel	Docult	1					, Mortiaux,		Sample Location:		S 1202			S 17231S		Ι .	S 17231S	
Detected Result	reening Lever	Result Result								Sample Name:	C.	3 1202 1202-0221			3 172313 7231S-122	ın		S-0221 - (CMD
Detected Result		Resuit	J							•			on Dotable						
		DCI C	DCI NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				Well Description:	Lighthouse w		iop Potable	Former USAF		reli in Pump	Former USAF		reii in Pump
		RSL_C: USEPA	RSL_NC: USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening			Well)			House			House	
Chamical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Offsite			Onsite			Onsite	
Chemical	CASKIN	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	-	2/24/2021		1	2/10/2020		,	2/25/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	Level (1)	30uice (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds	· (\(\OCc\)	Caricer 3L	Caricei 3L	Level3	361163, 1.1.1.	Of Fleatiff				UIIIIS	Resuit	VQ	LOD	Result	VQ	LOD	Resuit	VQ	LOD
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	11	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+01	2.00E+02	5.00E+00	No MCL	7.42E+02	0.5 <i>1</i>	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+02	No MCL	5.00E+00 5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-34-3 79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.078	RSL_NC	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	79-00-5 75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_NC RSL_C	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
									TOGS 1.1.1	J		IJ							
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5		ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene	87-61-6 95-63-6	No SL No SL	7.00E-01 5.60E+00	No MCL No MCL	5.00E+00 5.00E+00	No MCL No MCL	No SL 2.48E+01	0.7 5	RSL_NC TOGS 1.1.1	ug/L ug/L	2	U	2	2	U	2	2	U U	2
	95-63-6 108-67-8			No MCL	5.00E+00 5.00E+00	No MCL	2.48E+01 1.75E+01		TOGS 1.1.1	J	1	U II	1	1		1	1	IJ	1
1,3,5-Trimethylbenzene 1,4-Dioxane	108-67-8	No SL 4.60E-01	6.00E+00 5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L ug/L	100	U	100	100	U	100	100	IJ	100
2-Butanone (MEK)	78-93-3	4.60E-01 No SL	5.70E+00 5.60E+02	No MCL	5.00E+01	No MCL	2.86E+03 2.24E+05	50	TOGS 1.1.1	ug/L ug/L	0.49	U	100	0.96	U	100	100	IJ	100
4-Isopropyltoluene	99-87-6	No SL	4.50E+02	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L ug/L	0.49	IJ	0.5	0.90	U	0.5	0.5	IJ	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+01	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L ug/L	0.0	U	0.0	0.0	U	0.5	0.0	IJ	0.5
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L ug/L	2	II	2	1.8	I	2	2	IJ	2
	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+01	No MCL	1.59E+00	0.46	RSL_C	ug/L ug/L	0.5	U	0.5	0.5	U J	0.5	0.5	U	0.5
Benzene Carbon Disulfide	71-43-2 75-15-0	4.60E-01 No SL	8.10E+01	No MCL	6.00E+00	No MCL	1.39E+00 1.24E+02	60	TOGS 1.1.1	ug/L ug/L	0.5	U	0.5	0.5		0.5 0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+01	5.00E+00	5.00E+01	No MCL	4.15E-01	0.415	VISL	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	IJ	0.5
Chloroethane	75-00-3	4.00E-01	2.10E+03	No MCL	5.00E+00 5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L ug/L	0.3	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	0.14E-01 No SL	3.6	RSL_NC	ug/L ug/L	0.46	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-62-7	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00 5.00E+00	No MCL	8.87E+00	1.0 5	TOGS 1.1.1	ug/L ug/L	0.6	U	0.6	0.6	U	0.6	0.6	IJ	0.6
Methylacetate	79-20-9	No SL	2.00E+01	No MCL	No MCL	No MCL	0.07E+01	2000	RSL_NC	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L ug/L	0.5	IJ	1	0.5	U	0.5	0.5	IJ	0.5
Methyl tert-Butyl Ether (MTBE	1634-04-4	1.40E+01	6.30E+03	No MCL	1.00E+01	1.00E+01	4.50E+02	102	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.40E+01 1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.50E+02 4.71E+02	۱ <u>۱</u>	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	IJ	0.5
	75-09-2 108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.90E+01 1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.64	J	0.8	0.64	I	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.53	ı	0.5	0.24	J	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compo		NO JL	1.702101	1.00L10T	INGINICL	INO INIOL	J.00E 101	17	NOL_NO	ug/L	2.0	J	2.0	2.0		2.0	2.0	J	2.0
John Volatile Organie Compe	0 1003)																		

Detection above Calcuted Co	rooming Lovel	Dooult	1					o, Mortiaux,		Comple Legation		C 1202			C 17001C			S 17231S	
Detection above Selected Sc Detected Result	reening Level	Result	1							Sample Location:	C.	S 1202 1202-0221			S 17231S 7231S-122	00		S 17231S S-0221 - (COMP
Detected Result		Result	J							Sample Name:			an Databla						
		DCI C.	DCI NC.	Fodoral MCL.	TOCC 1 1 1.	NIVE MCL.				Well Description:	Ligninouse w		iop Potable	Former USAF		reii in Pump	Former USAF		reii in Pump
		RSL_C: USEPA	RSL_NC: USEPA	Federal MCL: USEPA	TOGS 1.1.1: NYS Technical	NYS MCL: New York	VISL: USEPA	Calcatad	Corconing			Well)			House			House	
Chamiaal	CASRN	Residential	Residential	Maximum		State	Default	Selected	Screening	Onsite/Offsite:		Offsite			Onsite			Onsite	
Chemical	CASKIN				and Operational Guidance		Residential	Screening Level (1)	Level		,	2/24/2021		1	2/10/2020		,	2/25/2021	
		Tapwater Cancer SL	Tapwater Non- Cancer SL	Contaminant Levels	Series, 1.1.1.	Department of Health	VISL	Level (1)	Source (1)	Sample Date: Units			LOD			LOD			LOD
1 4 Diablaschausen	10/ 1/ 7						2.59E+00	0.40	DCI C		Result	VQ U	LUD	Result	VQ		Result	VQ	1
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL		0.48	RSL_C	ug/L	0.2	IJ	<u> </u>	1.1	U	1.1	0.21	U	l l
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.2	Ŭ	0.2	0.21	U	0.21	0.21	- 11	0.2
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.81	U	0.81	0.86	U	0.86	0.82	U	0.82
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	I	U	<u> </u>	1.1	U	1.1	l o	U	1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	2	U		3.4	U	3.4	2	U	2
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.1	U	9.1	9.6	U	9.6	9.2	U	9.2
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	0.89	J	1.1	5.2		1.05
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	2	U	2	9.6	U	9.6	2	U	2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	24	U	24	26	U	26	25	U	25
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	1	U	1	9.6	U	9.6	1	U	1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	4	U	4	11	U	11	4.1	U	4.1
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4	UJ	4	4.3	U	4.3	4.1	UJ	4.1
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	6.1	U	6.1	11	U	11	6.1	U	6.1
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1	U	1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1	U	1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	U	4	4.3	U	4.3	4.1	UJ	4.1
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4	4.3	U	4.3	4.1	UJ	4.1
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	U	4	4.3	U	4.3	4.1	U	4.1
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10	11	U	11	10	U	10
Polycyclic Aromatic Hydroca		T	T	T			1					1			1	_		ı	_
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.08033		0.08033	0.105952		0.105952	0.03948		
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.642		0.642	0.704		0.704	0.7164		
Polychlorinated Biphenyls (F	•	T	T	T			T											I	
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.7		2.7	2.7		2.7	2.7		2.7
Total Metals (TMET)		1	T	T			T								1 .			1 .	
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	55	J	30	24.5	J	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.6	U	1.6	0.895	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	77		1.6	30		1.6	70.5		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	16000		120	9200		120	16000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	1.9		0.1				0.02	U	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.5						0.78		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.4	U	0.4	0.86		0.4	0.22	J	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	29		8.0	1.3		0.8	0.82	J	0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	40	U	40	9800		40	4500		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.85		0.25	26		0.25	14		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	13000		25	990		25	8300		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	1.7	J	1.6	240		1.6	170		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	2.6		1	1.3	J] 1	1	U	1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected Sc	reening Level	Result								Sample Location:		S 1202			S 17231S			S 17231S	
Detected Result		Result								Sample Name:	S	1202-0221		S17	7231S-122	0	S17231	S-0221 - C	COMB
										Well Description:	Lighthouse W	ell (Gift Sh	nop Potable	Former USAF	Supply W	ell in Pump	Former USAF	Supply W	ell in Pump
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA					Well)			House			House	
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Offsite			Onsite			Onsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:	2	2/24/2021		1	2/10/2020		2	/25/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	2500		160	4600		160	3000		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.37	J	8.0	0.8	U	8.0	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	66000		160	38000	J	160	32500		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	77		10	31		10	8.35	J	10
Dissolved Metals (DMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.44	J	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	76		1.6	25		1.6	69.5		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	16000		120	8700		120	16500		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	1.9		0.1	1			0.054	J	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0						0.766		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.41	U	0.41	0.23	J	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	45		0.82	0.44	J	0.82	0.82	U	0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	41	U	41	1200		41	810		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.9		0.26	0.26	U	0.26	0.26	U	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	13000		26	950		26	8100		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	1.1	J	1.6	180		1.6	150		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	2.4		1	1	U	1	1	U	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	2500		160	4400		160	3000		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.39	J	0.82	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	66000		160	37000	J	160	32000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	120		10	10	U	10	10	U	10
Notes																			

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Calcated Cor	rooning Lovel	Docult	1					, Moritaux,		Comple Legation		S 19494		ı	S 19494			S 19495	
Detection above Selected Sci	reening Level	Result								Sample Location:		5 19494 9494-1220			S 19494 19494-022	1		5 19495 9495-122(`
Detected Result		Result								Sample Name:									
		DCI C.	DCL NC.	Fodoral MCL.	TOCC 1 1 1.	NIVC MCL.				Well Description:		•	d Barracks		•	id Barracks	Former A	T&T Buildi	ng vveii
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA	Calaatad	C			Building)			Building)				
Chaminal	CACDN	USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening	0.5.10.65.10		0			0!			0!	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Onsite			Onsite		,	Onsite	
		Tapwater	Tapwater Non-		Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/7/2020	1.00		2/23/2021	1.00		2/8/2020	LOD
	(1100)	Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds		5 705 04	1 1005 01	I N. MOI	5.005.00		0.745.00	0.53	501.0	,	0.5			0.5					0.5
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	1	U	1	98		1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2	2	U	2	28		2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.21	J	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE	1634-04-4	1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	1.2		0.5	1.2		0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.62	J	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.5	Ü	0.5	0.5	Ü	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	IJ	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Compo		110 JL	1.702101	1.002107	140 IVIOL	TWO IVIOL	0.00E101	17	NOL_NO	ugri	2.0	U	2.0	2.0		2.0	2.0	J	2.0
Com voiding Organic Compe	Janas (01003)																		

Detection above Selected Sc	rooning Lovel	Docult]				ошр о. с	o, Mortiaux,		Cample Location		S 19494		<u> </u>	S 19494			S 19495	
Detection above Selected Sc Detected Result	reening Lever	Result Result	1							Sample Location:		-3 19494 19494-122(n	C.	3 19494 19494-022	1	C.	3 19495 19495-122	ın
Detected Result		Result	J							Sample Name: Well Description:									
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				well bescription.		weii (Beriii Building)	IU Dallacks		weii (Beiii Building)	IU DAITACKS	ronner A	T&T Build	iiig weii
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening			Dullulliy)			bulluli ly)				
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
Chemical	CASINI	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:		12/7/2020			2/23/2021			12/8/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	LCVCI (1)	30dicc (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	U	1	1.1	U	1.1	1.1	UJ	1.1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.2	U	0.2	0.22	U	0.22	0.22	U	0.22
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.8	U	0.8	0.87	U	0.87	0.87	U	0.87
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	UJ	1	1.1	U	1.1	1.1	U	1.1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	3.2	UJ	3.2	2.2	U	2.2	3.5	IJ	3.5
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9	U	9	9.7	UJ	9.7	9.8	U	9.8
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	UJ	1	1.1	U	1.1	1.1	U	1.1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	9	U	9	2.2	Ü	2.2	9.8	U	9.8
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	24	UJ	24	26	Ü	26	26	U	26
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	9	U	9	1.1	U	1.1	9.8	Ü	9.8
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	10	U	10	4.3	U	4.3	11	U	11
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4	U	4	4.3	UJ	4.3	4.4	U	4.4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	10	U	10	6.5	U	6.5	11	U	11
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	1	U	1	1.1	U	1.1	0.033	U	0.033
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1.1	U	1.1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	U	4	4.3	U	4.3	4.4	U	4.4
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4	4.3	UJ	4.3	4.4	U	4.4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	U	4	4.3	U	4.3	4.4	U	4.4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10	11	U	11	11	U	11
Polycyclic Aromatic Hydroca	ırbons																		
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.09933		0.09933	0.086052		0.086052	0.108263		0.108263
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.66		0.66	0.686		0.686	0.722		0.722
Polychlorinated Biphenyls (F	PCBs)															_			
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.97		2.97	2.88		2.88	2.79		2.79
Total Metals (TMET)			_										_						_
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	30	U	30	66		30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	8.0	0.8	U	0.8	0.8	U	8.0
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	0.71	J	1.6	4.1		1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	99		1.6	99		1.6	7.9		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	14000		120	13000		120	12000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.1			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.48					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.29	J	0.4	0.29	J	0.4	0.37	J	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	20		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	20000		40	22000		40	10000		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	34		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	8700		25	8900		25	2700		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	350		1.6	360		1.6	530		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.085	J	0.2	0.16	U	0.16	0.15	J	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.2	J	1	1	U	1	2.5		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected Sc	creening Level	Result								Sample Location:		S 19494			S 19494			S 19495	
Detected Result		Result								Sample Name:	S1	9494-1220)	S1	9494-0221		S1	9495-1220)
			_							Well Description:	USGS Test V	Vell (Behin	d Barracks	USGS Test V	Vell (Behin	d Barracks	Former A	T&T Buildi	ng Well
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA					Building)			Building)				
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Onsite			Onsite			Onsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:	1	12/7/2020		2	2/23/2021		1	2/8/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	2300		160	2200		160	720		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	8.0	U	8.0	8.0	U	8.0	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	26000		160	27000		160	6400		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	10	U	10	120		10
Dissolved Metals (DMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	22	J	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.71	J	0.82	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	99		1.6	99		1.6	5.5		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL	-	ug/L	14000		120	13000		120	11000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.2			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.8					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.32	J	0.41	0.22	J	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	20000		41	20000		41	690		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	1.2		0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	9000		26	8800		26	2600		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	340		1.6	350		1.6	490		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.8	J	1	1	U	1	0.86	J	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	2300		160	2200		160	710		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	27000		160	26000		160	5300		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	10	U	10	6.9	J	10
Notes							•												

 $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Que

CR = Cancer Risk THQ = Target Hazard Quotient
LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sc	reening Level	Result]					J, WOITLAUK,		Sample Location:		S 19495			S 3599			S 3599	
Detected Result	5	Result								Sample Name:	S1	9495-0221		S	3599-1220		S	3599-0221	i
			4							Well Description:	Former A	T&T Buildir	ng Well	Lighthouse W	/ell (Museu	m Shower)	Lighthouse W	/ell (Museu	um Shower)
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VICL LICEDA			·			5		•	,		,	
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	2/23/2021		-	12/9/2020		2	2/24/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL			Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds	s (VOCs)			•						•					•				
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	1	J	2	2	U	2	2	U	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE		1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1		0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Comp			•	•			•			. 5									
James 2 31116	\/																		

Detection above Selected Sc	rooning Lovel	Result	1					o, wortauk		Sample Location:		S 19495			S 3599			S 3599	
Detected Result	reening Level	Result								Sample Name:		3 19495 9495-022°	1	٥	3599-1220)	ç	3 3399 3599-0221	
Detected Nesult		Result								Well Description:	Former A						Lighthouse W		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				well bescription.	runner A	I & I Dullul	ing weii	Lighthouse vi	veli (iviusei	ulli Silowei)	Lighthouse W	reli (iviuset	alli Silowei)
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Onsite			Offsite			Offsite	
Chemical	CASINI	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	/23/2021			12/9/2020		,	2/24/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	Level (1)	3001Ce (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1.1	U	1.1	1	U	1	1 1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+01 5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C RSL_C	ug/L	0.21	U	0.21	0.21	UJ	0.21	0.15	ı u	0.2
2-Chloronaphthalene	91-58-7	4.00E-01	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.21	U	0.21	0.21	U	0.21	0.15	U	0.8
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1.1	U	1.1	0.04	U	0.04	1	U	1
4-Chloro-3-methylphenol	59-50-7	No SL	9.30E+01 1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140		·	2.1	U	2.1	3.4	U	3.4	2	U	2
4-Chloroaniline				No MCL			Not Volatile	0.37	RSL_NC	ug/L	9.5	U	9.5		U	9.4	9.1	U	
	106-47-8	3.70E-01	7.60E+00		5.00E+00	No MCL			RSL_C	ug/L				9.4		9.4	9.1		9.1
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1.1	U	1.1	0.4	U	0.4	2	U	1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	2.1	U	2.1	9.4	U	9.4		U	2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	25	U	25	25	U	25	24	U	24
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	1.1	U	1.1	9.4	U	9.4	I	U	1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	4.2	U	4.2	10	U	10	4	U	4
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.2	UJ	4.2	4.2	U	4.2	4	UJ	4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	6.4	U	6.4	10	U	10	6	U	6
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	1.1	U	1.1	1	U	1	1	U	1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1.1	U	1.1	1	U	1	1	U	1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	U	4.2	4.2	U	4.2	4	U	4
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	UJ	4.2	4.2	U	4.2	4	UJ	4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	U	4.2	4.2	U	4.2	4	U	4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	11	U	11	10	U	10	10	U	10
Polycyclic Aromatic Hydroca							T		1				_		•			ı	_
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.084952		0.084952	0.103641		0.103641	0.08033		0.08033
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.68		0.68	0.686		0.686	0.652		
Polychlorinated Biphenyls (F									I				1					ı	1
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.88		2.88	2.7		2.7	2.79		2.79
Total Metals (TMET)							T		1				1					T	1
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	62	J	30	30	U	30	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	2.7		1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	4.8	J	1.6	48		1.6	59		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	12000		120	16000		120	19000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.026	J	0.1				0.093	J	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.774						0.707		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.17	J	0.4	0.4	U	0.4	0.4	U	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	15		0.8	220		0.8	100		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	2900		40	5700		40	1500		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	12		0.25	5		0.25	4.2		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	2600		25	14000		25	15000		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	130		1.6	51		1.6	53		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	0.81	J	1	1	U	1	1.5		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected Sc	reening Level	Result								Sample Location:		S 19495			S 3599			S 3599	
Detected Result		Result	1							Sample Name:	S1	9495-0221		S	3599-1220		S	3599-0221	
		-	•							Well Description:	Former A	T&T Buildii	ng Well	Lighthouse W	ell (Museu	m Shower)	Lighthouse W	ell (Museu	um Shower)
Chemical	CASRN	RSL_C: USEPA Residential Tapwater Cancer SL	RSL_NC: USEPA Residential Tapwater Non- Cancer SL	Federal MCL: USEPA Maximum Contaminant Levels	TOGS 1.1.1: NYS Technical and Operational Guidance Series, 1.1.1.	NYS MCL: New York State Department of Health	VISL: USEPA Default Residential VISL	Selected Screening Level (1)	Screening Level Source (1)	Onsite/Offsite: Sample Date: Units	Z Result	Onsite 2/23/2021 VQ	LOD	1 Result	Offsite 2/9/2020 VQ	LOD	Z Result	Offsite 2/24/2021 VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	570		160	2200		160	2200	_	160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	3600	J	160	48000		160	44000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	53		10	88		10	140		10
Dissolved Metals (DMET)		•	•	•			•					<u> </u>							•
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.1	J	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	3.7		1.6	46		1.6	56		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	12000		120	16000		120	19000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.074	J	0.1				0.044	J	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.746						0.776		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	1.9		0.82	54		0.82	89		0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	170		41	400		41	61		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	3.5		0.26	0.41	J	0.26	3.7		0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	2500		26	13000		26	15000		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	110		1.6	42		1.6	52		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1	U	1	2.5	J	1	0.9	J	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	540		160	2100		160	2200		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.82	U	0.82	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	3300		160	44000		160	42000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	25		10	150		10	150		10
Notes																			

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Datastian above Calastad Ca		Describ	1					o, Mortiaux,		Camania Lagation		C 40F70			C 40F70			C	
Detection above Selected Sc	reening Levei	Result								Sample Location:		S 48579			S 48579			S 58922	`
Detected Result		Result								Sample Name:		8579-1220			8579-022			8922-1220	
		DCI O	DCI NO	In dead Mot	TOCC 1 1 1	NIVC MOI				Well Description:	USGS Monit	U	•	USGS Monit	U	•		Monitoring	
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA	Calaataal	C !		at H	orse Ranch	1)	at H	orse Ranc	h)	(Pocc	hontas Ro	ad)
	0.4.0.0.1	USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening	0 11 10 55 11		011			0.66 11			0.66 11	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:	-	Offsite		_	Offsite			Offsite	
		Tapwater	Tapwater Non-		Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/10/2020			2/23/2021			2/9/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds			T	T	_		T												
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE	1634-04-4	1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	Ü	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-13-1 75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+00	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Comp		INU SL	1.7UE+U1	1.00E+04	INU IVICL	INU IVICE	3.03E+U1	17	R3L_IIU	uy/L	۷.0	U	2.0	۷.0	U	2.0	۷.0	U	2.0
Semi-volatile Organic Comp	ourius (3VOCS)																		

Data di anala ana Calada di Ca		Describ						J, MOHILAUK,		Completed		C 40570		1	C 40570			C	
Detection above Selected Sc	reening Levei	Result								Sample Location:		S 48579	`		S 48579	1		S 58922	2
Detected Result		Result								Sample Name:		8579-1220			18579-022			8922-122	
		DCI O	DCI NO	F. danal MOI	TOOC 1 1 1	NIVO MOI				Well Description:	USGS Monit	•	-	USGS Monit	U	•		Monitoring	•
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA	Calantan	C !		at H	orse Ranc	h)	at H	lorse Rand	ch)	(Poc	ohontas Ro	oad)
	04001	USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening	0 11 10 55 11		0 (())			0.66 11			0.00	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:	4	Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-		Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/10/2020			2/23/2021			2/9/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	U	1	1.1	U	1.1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.21	U	0.21	0.22	U	0.22	0.21	UJ	0.21
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.82	U	0.82	0.86	U	0.86	0.82	U	0.82
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1	U	1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	3.3	U	3.3	2.2	U	2.2	3.3	U	3.3
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.2	U	9.2	9.7	U	9.7	9.2	U	9.2
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1	U	1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	9.2	U	9.2	2.2	U	2.2	9.2	U	9.2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	25	U	25	26	U	26	25	U	25
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	9.2	U	9.2	1.1	U	1.1	9.2	U	9.2
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	10	U	10	4.3	U	4.3	10	U	10
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.1	U	4.1	4.3	UJ	4.3	4.1	U	4.1
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	10	U	10	6.5	U	6.5	10	U	10
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	0.031	U	0.031	1.1	U	1.1	1	U	1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	U	1	1.1	U	1.1	1	U	1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.3	U	4.3	4.1	U	4.1
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.3	UJ	4.3	4.1	U	4.1
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.3	U	4.3	4.1	U	4.1
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10	11	U	11	10	U	10
Polycyclic Aromatic Hydroca	arbons						•	•	_						•				•
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.102641		0.102641	0.086052		0.086052	0.102641		0.102641
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.682		0.682	0.686		0.686	0.682		0.682
Polychlorinated Biphenyls (F										J									
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.7		2.7	2.88		2.88	2.79		2.79
Total Metals (TMET)										- y -									
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	78	J	30	49		30	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	28		1.6	20		1.6	83		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	8200		120	6200		120	13000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.31					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.8	U	0.8	0.85	I	0.8	0.9	J	0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	8100		40	21000		40	48	Ī	40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	3.7		0.25	48		0.25	0.51	, <u>, , , , , , , , , , , , , , , , , , </u>	0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	5500		25	4200		25	7200		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	220		1.6	350		1.6	2.1		1.6
Mercury	7439-90-5	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+02	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
		No SL	3.90E+01	No MCL	1.00E+02			39		· · · · · · · · · · · · · · · · · · ·	0.65	ı	1	0.10	_	0.10	1	_	1
Nickel	7440-02-0	110 SL	3.7UE+U1	INO IVICL	1.UUE+UZ	No MCL	Not Volatile	39	RSL_NC	ug/L	0.00	J	I	<u> </u>	U		I	U	

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected So	creening Level	Result								Sample Location:		S 48579	_		S 48579			S 58922	_
Detected Result		Result								Sample Name:		48579-1220			18579-022			8922-1220	
		DOL O	DOL NO		T000444	NIVO NACI	1			Well Description:	USGS Moni	U	•	USGS Monit	U	•		Monitoring	•
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA	Calactad	C !		at F	lorse Rand	h)	at H	lorse Ranc	h)	(Poco	ohontas Ro	oad)
Ola analia al	CACDAL	USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening	0		0.00-11-			O((-!)			Official c	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:	4	Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/10/2020	1.00		2/23/2021	1.00		12/9/2020	1.00
D	7440.07.0	Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	N 137 1 111	N. CI		Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3500		160	3100		160	1700		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.8	U	0.8	0.78	J	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	43000	J	160	43000		160	23000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	11	J	10	10	U	10
Dissolved Metals (DMET)	T		T	ī	T			<u> </u>	ī	ī		1	1		1	1		1	ı
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	31	U	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	1.1	J	0.82	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	26	J	1.6	20		1.6	75		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.26	U	0.26	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	8100		120	5800		120	12000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.04			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	-			8.0					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.82	UJ	0.82	0.82	U	0.82	0.82	U	0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	7100		41	18000		41	41	U	41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.078	J	0.26	0.37	J	0.26	0.083	J	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	5500		26	3900		26	6700		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	220		1.6	330		1.6	1.2	J	1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.2	U	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	2.1	J	1	1	U	1	1	U	1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3400		160	2900		160	1600		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.36	J	0.82	0.82	U	0.82	0.94	J	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	30000	J	160	40000		160	20000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	Ü	1.6	1.6	Ü	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	10	U	10	10	Ü	10

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sc	reening Level	Result	1				Camp Here	,,		Sample Location:		S 58922			S 70627			S 70627	
Detected Result	recring Level	Result	1							Sample Name:		8922-0221			3 70027 10627-1220)		'0627-0221	1
Dottottod Headit		rtosurt	J							Well Description:		Monitoring		USGS Monit			USGS Monit		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				Won Bosonphon.		hontas Ro			Lighthous	-		Lighthous	•
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening		(1 000	nomas no	au,	liodi	Ligitations	,	11001	Ligitations	,0,
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	/23/2021		1	2/12/2020			2/24/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	, ,		Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds	s (VOCs)		•				•												
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	8.0	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE		1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	۱	U	l O F	٨٢	U	۱	١	U	۱
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03		TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene Trichloroetrifluoroethano	79-01-6	4.90E-01	2.80E-01 1.00E+03	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC TOGS 1.1.1	ug/L	0.5 0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1 75-01-4	No SL 1.90E-02		No MCL	5.00E+00	No MCL	2.42E+01	5		ug/L		U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4		4.40E+00	2.00E+00 1.00E+04	2.00E+00	2.00E+00	1.47E-01	0.019 19	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total) Semi-Volatile Organic Comp	1330-20-7	No SL	1.90E+01	1.UUE+U4	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-volatile Organic Comp	ioulius (3VOCS)																		

Detection above Selected Sc	reenina Level	Result	1					J, WOITTAUN,		Sample Location:		S 58922			S 70627			S 70627	
Detected Result	recrining Level	Result								Sample Name:		8922-0221			70627-1220)		70627-022 [.]	1
Dotostou Nosun		rtosait	J							Well Description:		Monitoring		USGS Monit			USGS Monit		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				Well Bescription.		hontas Ro			r Lighthous	•		r Lighthous	•
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening		(1 000	nomas mo	uuj	l noai	Ligitatous	,	11001	Ligitilous	,,,
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	2	/23/2021		1	2/12/2020		2	2/24/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	, ,	, ,	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	U	1	1	UJ	1	1.1	U	1.1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.21	U	0.21	0.21	UJ	0.21	0.21	U	0.21
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.82	U	0.82	0.83	UJ	0.83	0.88	U	0.88
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1	UJ	1	1.1	U	1.1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	2.1	U	2.1	3.3	UJ	3.3	2.2	U	2.2
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.2	U	9.2	9.3	UJ	9.3	9.9	U	9.9
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1	1	UJ	1	1.1	U	1.1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	2.1	U	2.1	9.3	UJ	9.3	2.2	U	2.2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	25	U	25	25	UJ	25	27	U	27
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	1	U	1	9.3	UJ	9.3	1.1	U	1.1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	4.1	U	4.1	10	UJ	10	4.4	U	4.4
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.1	UJ	4.1	4.1	UJ	4.1	4.4	UJ	4.4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	6.2	U	6.2	10	UJ	10	6.6	U	6.6
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	1	U	1	0.031	UJ	0.031	1.1	U	1.1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1	U	1	1	UJ	1	1.1	U	1.1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.1	UJ	4.1	4.4	UJ	4.4
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	UJ	4.1	4.1	UJ	4.1	4.4	UJ	4.4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.1	U	4.1	4.1	UJ	4.1	4.4	U	4.4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10	10	UJ	10	11	U	11
Polycyclic Aromatic Hydroca	arbons																		
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.082641		0.082641	0.067204		-	0.082641		0.082641
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.64			0.5742			0.66		0.66
Polychlorinated Biphenyls (F	PCBs)																		
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.7		2.7	3.24		3.24	3.06		3.06
Total Metals (TMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	320		30	2400		30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8	0.8	U	8.0	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	1	J	1.6	1.8	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	55		1.6	170		1.6	140		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.25	U	0.25	0.13	J	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.2	J	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	11000		120	32000		120	30000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.38		0.04				0.038	J	0.04
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.03						9.962		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.4	U	0.4	1		0.4	1.8		0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	8.0	U	8.0	2.3		8.0	2.7		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	40	U	40	430		40	2900		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.25	U	0.25	2.1		0.25	3.5		0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	7900		25	19000		25	19000		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	1.6	U	1.6	460		1.6	260		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.2	U	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1	U	1	11		1	10		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected So	creening Level	Result								Sample Location:		S 58922			S 70627			S 70627	
Detected Result		Result								Sample Name:		8922-0221		S7	0627-1220)	S7	0627-022	1
										Well Description:	USGS	Monitoring	Well	USGS Monit	oring Well	(Route 27	USGS Monit		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA				(Pocc	hontas Ro	ad)	near	Lighthous	e)	near	Lighthous	se)
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:	2	2/23/2021		1	2/12/2020		2	2/24/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	1700		160	3900		160	4300		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.75	J	0.8	0.8	U	8.0	0.32	J	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	22000		160	67000		160	75000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1	J	1.6	5.1		1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	65		10	14	J	10
Dissolved Metals (DMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31	30	U	30	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82	0.8	U	8.0	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6	0.75	J	1.6	0.79	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	52		1.6	150		1.6	110		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26	0.25	U	0.25	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41	0.19	J	0.4	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	11000		120	31000		120	30000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.46		0.04			-	0.049	J	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.36						0.771		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.41	U	0.41	0.9		0.4	0.64		0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.82	U	0.82	1.2		0.8	0.82	U	0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	41	U	41	23	J	40	120		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.26	U	0.26	0.074	J	0.25	0.074	J	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	7600		26	18000		25	18000		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	1.6	U	1.6	390		1.6	210		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16	0.08	J	0.2	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1	U	1	9.3		1	3.7		1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	1600		160	3400		160	3400		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.69	J	0.82	0.8	U	0.8	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	20000		160	67000		160	67000		820
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41	0.4	U	0.4	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10	8.6	J	10	6.4	J	10
Notes							•												

 $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

CASRN = Chemical Abstract Services Registry Number
CR = Cancer Risk THQ = Target Hazard Quotient

LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Detection above Selected Sc	crooning Lovel	Result]					J, MOITIAUK,		Sample Location:		S 76304			S 76304		1	S 79269	
Detected Result	reening Level	Result	1							•		3 70304 1-1220 - C(JVID		3 70304 76304-022	1		3 79209 9-1220 - C	OMD
Detected Result		Result	J							Sample Name:									
		DCI C.	DCI NC.	Federal MCL:	TOGS 1.1.1:	NYS MCL:	1			Well Description:	Madison	Hill Well Fi	eiu # i	iviadison	Hill Well F	ieiu # i	Montauk P		Park Well
		RSL_C: USEPA	RSL_NC: USEPA	USEPA			VISL: USEPA	Colooted	Caraanina									(Potable)	
Chamiaal	CACDN				NYS Technical	New York	Default	Selected	Screening	Onoita/Offoita		Offoito			Offolto			Offolto	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:	1	Offsite		,	Offsite		_	Offsite	
		Tapwater	Tapwater Non-		Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/13/2020	1.00		2/27/2021	1.00		12/8/2020	1.00
V 1 111 0 1 0	(1100)	Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health				Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Volatile Organic Compounds		5 705 04	4.005.04	L N. MOI	5 00E 00	N. MOI	0.745.00	0.57	DOI 0	,,	0.5	1	0.5	٥٦		0.5	0.5		0.5
1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2	2	U	2	2	U	2
1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100	100	U	100	100	U	100
2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1	1	U	1	1	U	1
4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1	1	U	1	1	U	1
Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	0.9	J	2	2	U	2	2	U	2
Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	1.15	J	0.5	0.5	U	0.5	0.5	U	0.5
Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2	2	U	2	2	U	2
Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylcyclohexane	108-87-2	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	1	U	1	1	U	1	1	U	1
Methyl tert-Butyl Ether (MTBE	1634-04-4	1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
m-Xylene & p-Xylene	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2	2	U	2	2	U	2
n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5	TOGS 1.1.1	ug/L	0.8	U	0.8	0.8	U	0.8	0.8	U	0.8
sec-Butylbenzene	135-98-8	No SL	2.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	1	U	1	1	Ü	1	1	Ü	1
Tetrachloroethene	127-18-4	1.10E+01	4.10E+00	5.00E+00	5.00E+00	No MCL	5.76E+00	4.1	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Xylenes (total)	1330-20-7	No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8	2.8	U	2.8	2.8	U	2.8
Semi-Volatile Organic Comp		140 JL	1.702 FUT	1.00L F04	INO IVIOL	TVO IVIOL	3.03L TO I	17	NOL_ING	uy/L	۷.0	U	۷.0	۷.0		2.0	2.0	U	2.0
Jenni-volatile Organic Comp	Journa (31003)																		

Detection above Selected Sc	rooning Lovel	Result	Ī					o, wortauk,		Sample Location:		S 76304			S 76304			S 79269	
Detection above Selected Screening Level Result Result									Sample Name:			OMD		3 70304 76304-022	1	\$7026		OMD	
Detected Result		Nesuit								Well Description:	S76304-1220 - COMB Madison Hill Well Field #1						S76304-0221 S79269-1220 - COMB Madison Hill Well Field #1 Montauk Point State Park Wel		
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:				Well Description.	Madison Hill Well Field # I		iviauisuii mili vveii Fiel((Potable)	raik Well	
		USEPA	USEPA	USEPA	NYS Technical	New York	Ι//ΙΝΙ · ΙΙΝΕΡΔΙ		Screening									(Potable)	
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Selected Screening	Level	Onsite/Offsite:		Offsite			Offsite			Offsite	
CHemical	CASKII	Tapwater	Tapwater Non-		Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:	1	2/13/2020			2/27/2021			12/8/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	Level (1)	Source (1)	Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
1.4-Dichlorobenzene	10/ 4/ 7			7.50E+01			2.505.00	0.40	DCL C		Result		LUD	Result		LUD	1.1	VQ	1.1
	106-46-7	4.80E-01	5.70E+01		3.00E+00	No MCL	2.59E+00	0.48 0.46	RSL_C	ug/L	0.01	UJ	0.21	0.01	U	0.21	0.215		0.21
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00 7.50E+01	No MCL	No MCL	1.00E+00	2.86E+03		RSL_C TOGS 1.1.1	ug/L	0.21 0.83	UJ	0.21	0.21 0.82	U	0.21 0.82	0.213	U	0.21
2-Chloronaphthalene	91-58-7	No SL		No MCL	1.00E+01	No MCL	No SL	10		ug/L	0.83	UJ	0.83	0.82	U	0.82		U	1.1
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	UJ	2.2	2.1	U	2.1	1.1		3.4
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	3.3	UJ	3.3	2.1	U	2.1	3.45	U	
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.4	UJ	9.4	9.2	U	9.2	9.6	U	9.6
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	0.4	UJ	0.4	0.1	U	0.1	1.1	11	1.1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	9.4	UJ	9.4	2.1	U	2.1	9.6	U	9.6
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	25	UJ	25	25	U	25	26	U	26
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	9.4	UJ	9.4	4.1	U	1 1	9.6	U	9.6 11
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	10	UJ	10	4.1	U	4.1	11	U	
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3		4.3
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	10	UJ	10	6.2	U	6.2	11	U	11
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL_NC	ug/L	0.031	UJ	0.031	1	U	1	1.1	U	1.1
Dibenzofuran	132-64-9	No SL	7.90E-01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	ug/L	1.0	UJ	1.0	4.4	U	1.1	1.1	U	1.1
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3	U	4.3
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	UJ	4.2	4.1	UJ	4.1	4.3		4.3
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4.2	UJ	4.2	4.1	U	4.1	4.3	U	4.3
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	UJ	10	10	U	10	11	U	11
Polycyclic Aromatic Hydroca		0.505.00	N. CI	0.005.04	N. MOI	0.005.04	I 81 137 1 19	0.005	DCI O	//	0.1007.41		0.400744	0.0007.44	1	0.000744	0.405050	1	0.105050
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.103641		0.103641	0.082641		0.082641	0.105952		0.105952
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.686		0.686	0.66		0.66	0.704		0.704
Polychlorinated Biphenyls (F	· · ·	4.405.00		5.005.04	N. 1401	5.005.04	N 01			,,	0.70		0.70	0.45	<u> </u>		0.70	<u> </u>	0.70
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.79		2.79	3.15			2.79		2.79
Total Metals (TMET)	7400 00 5	N. O.	0.005.00		0.005.00				DOL 110	,,	1000		1 00	1 00		T 00	20	T	I 20
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	1000	J	30	30	U	30	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	8.9		0.8	0.8	U	0.8	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	420	J	1.6	2.9		1.6	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	1190	J	1.6	54		1.6	41	- 11	1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.17	J	0.25	0.25	U	0.25	0.25	U	0.25
Calaium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	19		0.4	0.4	U	0.4	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL	DCL C	ug/L	28500		600	27000		120	14500		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.03	J	0.1			
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.77					 0.4
Conner	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	33	J	0.4	0.4	U	0.4	0.4	U	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	104.5		0.8	0.8	U	0.8	2		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	1030000	J	600	170		40	195		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	735		0.25	0.27	J	0.25	0.21	J	0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	5550	J	130	3100		25	10500	<u> </u>	25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	27000	J	16	270		1.6	33.5		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.36		0.2	0.16	U	0.16	0.12	J	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	106	J	1] 1	U	1	2.55		1

Table 1
Phase IV Remedial Investigation Groundwater Analytical Results
Camp Hero, Montauk, New York

Detection above Selected Screening Level Result									Sample Location:		S 76304			S 76304			S 79269		
Detected Result	Detected Result Result									Sample Name:	S76304	4-1220 - CO	OMB	S7	6304-0221	1	S7926	9-1220 - C	OMB
			_							Well Description:	Madison	Hill Well F	ield #1	Madison	Hill Well F	ield #1	Montauk Po	oint State I	Park Well
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA											(Potable)	
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening										
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Offsite			Offsite			Offsite	
		Tapwater	Tapwater Non-	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:	1:	2/13/2020		2	2/27/2021		1	2/8/2020	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL			Units	Result	VQ	LOD	Result	VQ	LOD	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3550		160	3200		160	1950		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	8.0	U	8.0	0.8	U	0.8	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.49		0.4	0.4	U	0.4	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	51500		800	26000		160	30500		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.37	J	0.4	0.4	U	0.4	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	5.8		1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	79500	J	150	10	U	10	10	U	10
Dissolved Metals (DMET)																			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30	31	U	31	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	8.0	U	8.0	0.82	U	0.82	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.55	J	1.6	2.8		1.6	1.6	J	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	47		1.6	54		1.6	39.5		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25	0.26	U	0.26	0.26	J	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	11500		120	26000		120	14500		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L				0.02	U	0.1		-	
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L				0.8					
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	0.97	J	8.0	0.82	U	0.82	1.3		0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	60	J	40	150		41	155		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.25	U	0.25	0.26	U	0.26	0.15	J	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	1250		25	3400		26	10000		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	48.5		1.6	290		1.6	33		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.2	U	0.2	0.16	U	0.16	0.1	J	0.2
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	0.92	J	1	1	U	1	1.7		1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	3000		160	3300		160	1900		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8	0.82	U	0.82	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	50500		160	27000		160	29500		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4	0.41	U	0.41	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6	1.6	U	1.6	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	J	10	10	U	10	10	U	10
Notes							•			•									

 $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

CASRN = Chemical Abstract Services Registry Number

CR = Cancer Risk THQ = Target Hazard Quotient
LOD = Limit of Detection USEPA = United States Environmental Protection Agency

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).

Marchan Park Well Description Marchan Park Well Description Marchan Park Well Policy Marchan P	Detection above Selected Screening Level		Result								Sample Location:		S 79269	
Chemical CASRN	Detected Result		Result	1							Sample Name:	S7926	9-0221 - C	OMB
Chemical CASRN Residential Superior Control				_							Well Description:	Montauk P	oint State I	Park Well
Chemical Chemical Contents CASRN Residential and payer for Note Contents Caudance Contents Caudance Contents Caudance Contents Caudance Cander St. C			RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VICL LICEDA			1		(Potable)	
Carbon Carbon Residential Residential Residential Residential Residential Residential Residential Residential Carbon			USEPA	USEPA	USEPA	NYS Technical	New York		Selected	Screening				
Application September Carner St. Car	Chemical	CASRN	Residential	Residential	Maximum	and Operational	State		Screening	Level	Onsite/Offsite:		Offsite	
Control Cont			Tapwater	Tapwater Non-	Contaminant	Guidance	Department		Level (1)	Source (1)	Sample Date:		2/25/2021	
11.12.17.inchromothane			Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL			Units	Result	VQ	LOD
11.1.Trinforcehame	Volatile Organic Compounds	s (VOCs)												
1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.1 1.1.2.2.2.2.2.2.3.2.2.3.2.2.3.2.2.3.2.3.	1,1,1,2-Tetrachloroethane	630-20-6	5.70E-01	4.80E+01	No MCL	5.00E+00	No MCL	3.71E+00	0.57	RSL_C	ug/L	0.5	U	0.5
1.1.2-Trichiprocethane	1,1,1-Trichloroethane	71-55-6	No SL	8.00E+02	2.00E+02	5.00E+00	No MCL	7.42E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5
1.1 Dichimorethane 75-34-3 2.80E-00 3.80E-02 No MCL 5.00E-00 No MCL 7.64E-00 2.8 RSL C uglt 0.5 U 0.5	1,1,2,2-Tetrachloroethane	79-34-5	7.60E-02	3.60E+01	No MCL	5.00E+00	No MCL	3.23E+00	0.076	RSL_C	ug/L	0.5	U	0.5
1.1.Dichrioroschene 75-35-4 No St. 2.28E-01 7.00E-00 5.00E-00 No MCL 1.95E-01 5 TOCS 1.1.1 ugit. 0.5 U 0.5	1,1,2-Trichloroethane	79-00-5	2.80E-01	4.10E-02	5.00E+00	1.00E+00	No MCL	6.19E-01	0.041	RSL_NC	ug/L	0.5	U	0.5
1,2,3-Trinderhybenzene	1,1-Dichloroethane	75-34-3	2.80E+00	3.80E+02	No MCL	5.00E+00	No MCL	7.64E+00	2.8	RSL_C	ug/L	0.5	U	0.5
12.4 Firemethybenzene	1,1-Dichloroethene	75-35-4	No SL	2.80E+01	7.00E+00	5.00E+00	No MCL	1.95E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5
13.5 Firmerhyberazene 108-67-8 No. St. 6.00E-00 No. MCL 5.00E-00 No. MCL 1.75E-01 5 7.0GS 1.1.1 ug/L 1 U 1 1.4 Ebrane 1.23-91-1 4.60E-01 5.70E-00 No. MCL No. MCL 1.00E-00 2.86E-03 0.46 RSL_C ug/L 100 U 100 100 1.8 Bulanone (MRK) 78-93-3 No. St. 5.06E-00 No. MCL 5.00E-01 No. MCL 2.24E-05 50 TOGS 1.1.1 ug/L 0.5 U 0.5 1.8 Bulanone (MRK) 1.8 No. St. 4.50E-01 No. MCL 5.00E-01 No. MCL 2.24E-05 50 TOGS 1.1.1 ug/L 0.5 U 0.5 Methyley-2Pentanone (MRK) 1.8 No. St. 4.50E-01 No. MCL No. MCL No. MCL No. MCL 1.50E-01 No. MCL 1.00E-01 No. MCL	1,2,3-Trichlorobenzene	87-61-6	No SL	7.00E-01	No MCL	5.00E+00	No MCL	No SL	0.7	RSL_NC	ug/L	1	U	1
	1,2,4-Trimethylbenzene	95-63-6	No SL	5.60E+00	No MCL	5.00E+00	No MCL	2.48E+01	5	TOGS 1.1.1	ug/L	2	U	2
2-Bulanone (MEK) 78-93-3 No St. 5.60E-02 No MCL 5.00E-01 No MCL 2.24E-05 50 TOGS 1.1.1 ug/L 1 U 1 -Isopropylloluene 99-87-6 No St. 4.50E-01 No MCL 5.00E-00 No MCL 8.87E-01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 -Isopropylloluene 99-87-6 No St. 4.50E-01 No MCL 5.00E-00 No MCL 8.87E-01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 -Isopropylloluene 67-64-1 No St. 4.50E-01 No MCL 5.00E-01 No MCL 5.55E-04 630 RSL, NC ug/L 2 U 2 -Isopropylloluene 67-64-1 No St. 1.40E-03 No MCL 5.00E-01 No MCL 5.55E-04 630 RSL, NC ug/L 2 U 2 -Isopropylloluene 77-13-2 4.60E-01 3.30E-00 5.00E-00 1.00E-00 No MCL 1.59E-00 0.46 RSL, C ug/L 0.5 U 0.5 -Isopropylloluene 75-15-0 No St. 8.10E-01 No MCL 6.00E-01 No MCL 1.59E-00 0.46 RSL, C ug/L 0.5 U 0.5 -Isopropylloluene 75-15-0 No St. 8.10E-01 No MCL 6.00E-01 No MCL 1.59E-00 0.46 RSL, C ug/L 0.5 U 0.5 -Isopropylloluene 56-23-5 4.60E-01 4.90E-00 5.00E-00 5.00E-00 No MCL 4.15E-01 0.415 VISL ug/L 0.5 U 0.5 -Isopropylloluene 56-23-5 4.60E-01 4.90E-00 8.00E-01 7.00E-00 No MCL 4.15E-01 0.415 VISL ug/L 0.5 U 0.5 -Isopropylloluene 56-63-3 2.20E-01 9.70E-00 8.00E-01 7.00E-00 No MCL 8.14E-01 0.22 RSL, C ug/L 0.5 U 0.5 -Isopropylloluene 156-59-2 No SL 3.00E-00 7.00E-01 5.00E-00 No MCL No MCL 0.80E-01 VISL ug/L 0.5 U 0.5 -Isopropylloluene 156-59-2 No SL 3.00E-00 7.00E-01 5.00E-00 No MCL No MCL 0.60E-01 VISL ug/L 0.5 U 0.5 -Isopropylloluene 98-82-8 No SL 4.50E-11 No MCL No MCL No MCL No MCL No MCL 0.60E-01 Ug/L 0.5 U 0.5 -Isopropylloluene 98-82-8 No SL 4.50E-11 No MCL No MCL No MCL No MCL No MCL Ug/L 0.5 U 0.5 -Isopropylloluene 108-87-2 No SL 1.30E-03 No MCL No MCL No MCL No MCL VISL Ug/L	1,3,5-Trimethylbenzene	108-67-8	No SL	6.00E+00	No MCL	5.00E+00	No MCL	1.75E+01	5		ug/L	1	U	1
Isopropyllollene	1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	100	U	100
EMethyl-2-Pentanone (MIBK) 108-10-1 No St. 6.30E+02 No MCL No MCL 5.55E-04 6.30 RSL_NC ug/L 1 U 1	2-Butanone (MEK)	78-93-3	No SL	5.60E+02	No MCL	5.00E+01	No MCL	2.24E+05	50	TOGS 1.1.1	ug/L	1	U	1
Acctone 67-64-1	4-Isopropyltoluene	99-87-6	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5
Senzene	4-Methyl-2-Pentanone (MIBK)	108-10-1	No SL	6.30E+02	No MCL	No MCL	No MCL	5.55E+04	630	RSL_NC	ug/L	1	U	1
Carbon Disulfide 75-15-0 No SL 8.10E+01 No MCL 6.00E+01 No MCL 1.24E+02 60 TOGS 1.1.1 ug/L 0.5 U 0.5 Carbon Tetrachloride 56-23-5 4.60E-01 4.90E+00 5.00E+00 5.00E+00 No MCL 4.15E-01 0.415 VISL ug/L 0.5 U 0.5 Chloroform 75-00-3 No SL 2.10E+03 No MCL 5.00E+00 No MCL 2.30E+03 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Chloroform 67-66-3 2.20E-01 9.70E+00 8.00E+01 7.00E+00 No MCL 8.14E-01 0.22 RSL_C ug/L 0.5 U 0.5 Chloroform 176-69-2 No SL 3.60E+00 7.00E+01 5.00E+00 No MCL 8.14E-01 0.22 RSL_C ug/L 0.5 U 0.5 U 0.5 Chloroform 176-69-2 No SL 3.60E+00 7.00E+01 5.00E+00 No MCL No SL 3.6 RSL_NC ug/L 0.5 U	Acetone	67-64-1	No SL	1.40E+03	No MCL	5.00E+01	No MCL	2.25E+06	50	TOGS 1.1.1	ug/L	2	U	2
Carbon Tetrachloride 56-23-5 4.60E-01 4.90E+00 5.00E+00 5.00E+00 No MCL 4.15E-01 0.415 VISL ug/L 0.5 U 0.5	Benzene	71-43-2	4.60E-01	3.30E+00	5.00E+00	1.00E+00	No MCL	1.59E+00	0.46	RSL_C	ug/L	0.5	U	0.5
Chloroethane 75-00-3 No SL 2.10E+03 No MCL 5.00E+00 No MCL 2.30E+03 5 TOGS 1.1.1 ug/L 0.5 U 0.5	Carbon Disulfide	75-15-0	No SL	8.10E+01	No MCL	6.00E+01	No MCL	1.24E+02	60	TOGS 1.1.1	ug/L	0.5	U	0.5
Chloroform 67-66-3 2.20E-01 9.70E+00 8.00E+01 7.00E+00 No MCL 8.14E-01 0.22 RSL_C ug/L 0.5 U 0.5	Carbon Tetrachloride	56-23-5	4.60E-01	4.90E+00	5.00E+00	5.00E+00	No MCL	4.15E-01	0.415	VISL	ug/L	0.5	U	0.5
Sist_1,2-Dichloroethene 156-59-2 No SL 3.60E+00 7.00E+01 5.00E+00 No MCL No MCL No MCL 1.02E+02 102 VISL ug/L 2 U 2	Chloroethane	75-00-3	No SL	2.10E+03	No MCL	5.00E+00	No MCL	2.30E+03	5	TOGS 1.1.1	ug/L	0.5	U	0.5
Cyclohexane	Chloroform	67-66-3	2.20E-01	9.70E+00	8.00E+01	7.00E+00	No MCL	8.14E-01	0.22	RSL_C	ug/L	0.5	U	0.5
Ethylbenzene 100-41-4 1.50E+00 8.10E+01 7.00E+02 5.00E+00 No MCL 3.49E+00 1.5 RSL_C ug/L 0.8 U 0.8 sopropylbenzene 98.82-8 No SL 4.50E+01 No MCL 5.00E+00 No MCL 8.87E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Methylacetate 79-20-9 No SL 2.00E+03 No MCL No MCL No MCL No MCL No MCL Up/L 0.5 U 0.5 Methylacetate 108-87-2 No SL 1.30E+03 No MCL No MCL No MCL No MCL No MCL Up/L 1.02E+02 Ug/L 0.5 U 0.5 Methyleter-Buryl Ether (MTBE 1634-04-4 1.40E+01 6.30E+02 No MCL 1.00E+01 1.00E+01 1.00E+01 1.00E+02 10 TOGS 1.1.1 ug/L 0.5 U 0.5 Methylene Chloride 75-09-2 1.10E+01 1.10E+01 5.00E+00 No MCL No MCL No MCL Up/L 0.5 U 0.5 No MCL 0.5	cis-1,2-Dichloroethene	156-59-2	No SL	3.60E+00	7.00E+01	5.00E+00	No MCL	No SL	3.6	RSL_NC	ug/L	0.5	U	0.5
Sopropylbenzene 98-82-8 No SL 4.50E+01 No MCL 5.00E+00 No MCL 8.87E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Methylacetate 79-20-9 No SL 2.00E+03 No MCL No MCL No MCL No MCL No MCL No MCL Ug/L 0.5 U 0.5 Methylcylohexane 108-87-2 No SL 1.30E+03 No MCL No MCL No MCL No MCL 1.02E+02 102 VISL ug/L 1 U 1 Methyletr-Butyl Ether (MTBE 1634-04-4 1.40E+01 6.30E+02 No MCL 1.00E+01 1.00E+01 1.00E+01 1.00E+01 Methylene Chloride 75-09-2 1.10E+01 1.10E+01 5.00E+00 5.00E+00 No MCL 4.71E+02 5 Federal MCL ug/L 0.5 U 0.5 m-Xylene & p-Xylene 108-38-3/106-42-3 No SL 1.90E+01 No MCL No MCL No MCL No MCL No MCL Ug/L 0.5 U 0.5 m-Butylbenzene 104-51-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 103-65-1 No SL 6.60E+01 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 195-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 2.43E+02 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 2.00E+02 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 2.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 1.90E+01 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL 1.92E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Propylbenzene 135-98-8 No SL 1.00E+02 1.00E+03 5.00E+00 No MCL 5.00E+00 No MCL 5.00E+01 No	Cyclohexane	110-82-7	No SL	1.30E+03	No MCL	No MCL	No MCL	1.02E+02	102	VISL	ug/L	2	U	2
Methylacetate 79-20-9 No SL 2.00E+03 No MCL 1.00E+02 102 VISL ug/L 1 U 1 Methyler Entry (Bright (MTBE) 1634-04-4 1.40E+01 6.30E+02 No MCL 1.00E+01 1.00E+01 1.00E+01 1.00E+02 10 TOGS 1.1.1 ug/L 0.5 U 0.5 Methylene Chloride 75-09-2 1.10E+01 1.00E+01 No MCL No MCL 4.71E+02 5 Federal MCL ug/L 0.5 U 0.5 m-Xylene & p-Xylene 108-83-3/106-42-3 No SL 1.90E+01 No MCL No MCL No MCL No MCL 4.71E+02 5 Federal MCL ug/L 0.5 U 0.5 m-Rulylbenzene 104-51-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL 3.55E+01 19 RSL_NC ug/L 0.5 U 0.5	Ethylbenzene	100-41-4	1.50E+00	8.10E+01	7.00E+02	5.00E+00	No MCL	3.49E+00	1.5	RSL_C	ug/L	0.8	U	0.8
Methylcyclohexane 108-87-2 No SL 1.30E+03 No MCL No MCL No MCL 1.02E+02 102 VISL ug/L 1 U 1	Isopropylbenzene	98-82-8	No SL	4.50E+01	No MCL	5.00E+00	No MCL	8.87E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5
Methyl tert-Butyl Ether (MTBE 1634-04-4 1.40E+01 6.30E+02 No MCL 1.00E+01 1.00E+01 4.50E+02 10 TOGS 1.1.1 ug/L 0.5 U 0.5 Methylene Chloride 75-09-2 1.10E+01 1.10E+01 5.00E+00 5.00E+00 No MCL 4.71E+02 5 Federal MCL ug/L 0.5 U 0.5 m-Xylene & p-Xylene 108-38-3/106-42-3 No SL 1.90E+01 No MCL No MCL No MCL No MCL 3.55E+01 19 RSL_NC ug/L 2 U 2 n-Butylbenzene 104-51-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 P-Propylbenzene 103-65-1 No SL 6.60E+01 No MCL 5.00E+00 No MCL 2.43E+02 5 TOGS 1.1.1 ug/L 0.5 U 0.5 P-Sylene 95-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 4.92E+01 <td>Methylacetate</td> <td>79-20-9</td> <td>No SL</td> <td>2.00E+03</td> <td>No MCL</td> <td>No MCL</td> <td>No MCL</td> <td>No SL</td> <td>2000</td> <td>RSL_NC</td> <td>ug/L</td> <td>0.5</td> <td>U</td> <td>0.5</td>	Methylacetate	79-20-9	No SL	2.00E+03	No MCL	No MCL	No MCL	No SL	2000	RSL_NC	ug/L	0.5	U	0.5
Methylene Chloride 75-09-2 1.10E+01 1.10E+01 5.00E+00 5.00E+00 No MCL 4.71E+02 5 Federal MCL ug/L 0.5 U 0.5 m-Xylene & p-Xylene 108-38-3/106-42-3 No SL 1.90E+01 No MCL No MCL No MCL No MCL 3.55E+01 19 RSL_NC ug/L 2 U 2 m-Butylbenzene 104-51-8 No SL 1.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Xylene & p-Xylene 103-65-1 No SL 6.60E+01 No MCL 5.00E+00 No MCL 2.43E+02 5 TOGS 1.1.1 ug/L 0.5 U 0.5 m-Xylene 95-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.8 U 0.8 m-Xylene 95-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.8 U 0.8 m-Xylene 0.5 m-Xylene 95-47-6 No SL 1.90E+01 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.8 U 0.8 m-Xylene 0.5 m-Xylene	Methylcyclohexane		No SL			No MCL					ug/L	1	U	ı
108-38-3/106-42-3	Methyl tert-Butyl Ether (MTBE	1634-04-4	1.40E+01	6.30E+02	No MCL	1.00E+01	1.00E+01	4.50E+02	10	TOGS 1.1.1	ug/L	0.5	U	0.5
No Mathematical No St	Methylene Chloride	75-09-2	1.10E+01	1.10E+01	5.00E+00	5.00E+00	No MCL	4.71E+02	5	Federal MCL	ug/L	0.5	U	0.5
n-Propylbenzene 103-65-1 No SL 6.60E+01 No MCL 5.00E+00 No MCL 2.43E+02 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.8 U 0.8 No MCL 5.00E+00 No MCL 4.92E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5 No MCL 1.10E+01 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 1 U 1 No MCL 1.10E+01 No MCL 5.00E+00 No MCL 5.76E+00 No MCL 5.76E+00 No MCL 5.76E+00 No MCL 1.92E+03 S TOGS 1.1.1 ug/L 0.5 U 0.5 NO MCL 0.5 NO MCL 1.92E+03 S TOGS 1.1.1 ug/L 0.5 U 0.5 NO MCL 1.99E+01 S TOGS 1.1.1 ug/L 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 Ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 Ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 Ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 Ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TOGS 1.1.1 Ug/L 0.5 U 0.5 U 0.5 NO MCL 1.09E+01 S TO	m-Xylene & p-Xylene	108-38-3/106-42-3	No SL	1.90E+01	No MCL	No MCL	No MCL	3.55E+01	19	RSL_NC	ug/L	2	U	2
Description Description	n-Butylbenzene	104-51-8	No SL	1.00E+02	No MCL	5.00E+00	No MCL	No SL	5	TOGS 1.1.1	ug/L	0.5	U	0.5
Sec-Butylbenzene 135-98-8 No SL 2.00E+02 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 0.5 U 0.5	n-Propylbenzene	103-65-1	No SL	6.60E+01	No MCL	5.00E+00	No MCL	2.43E+02	5	TOGS 1.1.1	ug/L	0.5	U	0.5
ert-Butylbenzene 98-06-6 No SL 6.90E+01 No MCL 5.00E+00 No MCL No SL 5 TOGS 1.1.1 ug/L 1 U 1 Fetrachloroethene 127-18-4 1.10E+01 4.10E+00 5.00E+00 5.00E+00 No MCL 5.76E+00 4.1 RSL_NC ug/L 0.5 U 0.5 Foluene 108-88-3 No SL 1.10E+02 1.00E+03 5.00E+00 No MCL 1.92E+03 5 TOGS 1.1.1 ug/L 0.5 U 0.5 rans-1,2-Dichloroethene 156-60-5 No SL 6.80E+00 1.00E+02 5.00E+00 No MCL 1.09E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Frichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01 0.28 RSL_NC ug/L 0.5 U 0.5 Frichlorotrifluoroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 <t< td=""><td>o-Xylene</td><td>95-47-6</td><td>No SL</td><td>1.90E+01</td><td>No MCL</td><td>5.00E+00</td><td>No MCL</td><td>4.92E+01</td><td>5</td><td></td><td>ug/L</td><td></td><td>U</td><td>0.8</td></t<>	o-Xylene	95-47-6	No SL	1.90E+01	No MCL	5.00E+00	No MCL	4.92E+01	5		ug/L		U	0.8
Tetrachloroethene 127-18-4 1.10E+01 4.10E+00 5.00E+00 5.00E+00 No MCL 5.76E+00 4.1 RSL_NC ug/L 0.5 U 0.5 Foluene 108-88-3 No SL 1.10E+02 1.00E+03 5.00E+00 No MCL 1.92E+03 5 TOGS 1.1.1 ug/L 0.5 U 0.5 rans-1,2-Dichloroethene 156-60-5 No SL 6.80E+00 1.00E+02 5.00E+00 No MCL 1.09E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Frichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01 0.28 RSL_NC ug/L 0.5 U 0.5 Frichloroethene 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5	sec-Butylbenzene						No MCL				ug/L	0.5	U	0.5
Foluene 108-88-3 No SL 1.10E+02 1.00E+03 5.00E+00 No MCL 1.92E+03 5 TOGS 1.1.1 ug/L 0.5 U 0.5 rans-1,2-Dichloroethene 156-60-5 No SL 6.80E+00 1.00E+02 5.00E+00 No MCL 1.09E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Frichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01 0.28 RSL_NC ug/L 0.5 U 0.5 Frichloroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5	tert-Butylbenzene	98-06-6	No SL	6.90E+01	No MCL	5.00E+00	No MCL	No SL			ug/L	1	U	1
rans-1,2-Dichloroethene 156-60-5 No SL 6.80E+00 1.00E+02 5.00E+00 No MCL 1.09E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5 Trichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01 0.28 RSL_NC ug/L 0.5 U 0.5 Trichlorotrifluoroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5	Tetrachloroethene	127-18-4					No MCL		4.1		ug/L		U	
Frichloroethene 79-01-6 4.90E-01 2.80E-01 5.00E+00 5.00E+00 No MCL 5.18E-01 0.28 RSL_NC ug/L 0.5 U 0.5 Frichlorotrifluoroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5	Toluene	108-88-3	No SL	1.10E+02	1.00E+03	5.00E+00	No MCL	1.92E+03	5		ug/L	0.5	U	0.5
Frichlorotrifluoroethane 76-13-1 No SL 1.00E+03 No MCL 5.00E+00 No MCL 2.42E+01 5 TOGS 1.1.1 ug/L 0.5 U 0.5	trans-1,2-Dichloroethene	156-60-5	No SL	6.80E+00	1.00E+02	5.00E+00	No MCL	1.09E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5
	Trichloroethene	79-01-6	4.90E-01	2.80E-01	5.00E+00	5.00E+00	No MCL	5.18E-01	0.28	RSL_NC	ug/L	0.5	U	0.5
/invl Chloride 75-01-4 1,90E-02 4,40E+00 2,00E+00 2,00E+00 2,00E+00 1,47E-01 0.019 RSL C ua/L 0.5 U 0.5	Trichlorotrifluoroethane	76-13-1	No SL	1.00E+03	No MCL	5.00E+00	No MCL	2.42E+01	5	TOGS 1.1.1	ug/L	0.5	U	0.5
	Vinyl Chloride	75-01-4	1.90E-02	4.40E+00	2.00E+00	2.00E+00	2.00E+00	1.47E-01	0.019	RSL_C	ug/L	0.5	U	0.5
	Xylenes (total)		No SL	1.90E+01	1.00E+04	No MCL	No MCL	3.85E+01	19	RSL_NC	ug/L	2.8	U	2.8
Semi-Volatile Organic Compounds (SVOCs)	Semi-Volatile Organic Comp	ounds (SVOCs)												

Detection above Selected Screening Level		Result								Sample Location:		S 79269	
Detected Result	J	Result								Sample Name:	S7926	9-0221 - C	OMB
		•	4							Well Description:	Montauk P	oint State	Park Well
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	WIGH LIGEDA					(Potable)	
		USEPA	USEPA	USEPA	NYS Technical	New York	VISL: USEPA	Selected	Screening			(
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Default	Screening	Level	Onsite/Offsite:		Offsite	
		Tapwater		Contaminant	Guidance	Department	Residential	Level (1)	Source (1)	Sample Date:		2/25/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISL	· /	()	Units	Result	VQ	LOD
1,4-Dichlorobenzene	106-46-7	4.80E-01	5.70E+01	7.50E+01	3.00E+00	No MCL	2.59E+00	0.48	RSL_C	ug/L	1	U	1
1,4-Dioxane	123-91-1	4.60E-01	5.70E+00	No MCL	No MCL	1.00E+00	2.86E+03	0.46	RSL_C	ug/L	0.2	Ü	0.2
2-Chloronaphthalene	91-58-7	No SL	7.50E+01	No MCL	1.00E+01	No MCL	No SL	10	TOGS 1.1.1	ug/L	0.81	Ü	0.81
2-Methylphenol	95-48-7	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1
4-Chloro-3-methylphenol	59-50-7	No SL	1.40E+02	No MCL	No MCL	No MCL	Not Volatile	140	RSL_NC	ug/L	2	U	2
4-Chloroaniline	106-47-8	3.70E-01	7.60E+00	No MCL	5.00E+00	No MCL	Not Volatile	0.37	RSL_C	ug/L	9.1	IJ	9.1
4-Methylphenol	106-44-5	No SL	9.30E+01	No MCL	No MCL	No MCL	Not Volatile	93	RSL_NC	ug/L	1	U	1
Benzaldehyde	100-52-7	1.90E+01	1.90E+02	No MCL	No MCL	No MCL	No SL	19	RSL_C	ug/L	2	U	2
Benzoic acid	65-85-0	No SL	7.50E+03	No MCL	No MCL	No MCL	Not Volatile	7500	RSL_NC	ug/L	24	U	24
Biphenyl, 1,1'-	92-52-4	3.90E+00	8.30E-02	No MCL	5.00E+00	No MCL	3.31E+00	0.083	RSL_NC	ug/L	1	U	1
bis(2-Ethylhexyl) phthalate	117-81-7	5.60E+00	4.00E+01	6.00E+00	5.00E+00	6.00E+00	Not Volatile	5	TOGS 1.1.1	ug/L	<u> </u>	IJ	4
Butyl Benzyl Phthalate	85-68-7	1.60E+01	1.70E+02	No MCL	5.00E+01	No MCL	Not Volatile	16	RSL_C	ug/L	1	UJ	4
Caprolactam	105-60-2	No SL	9.90E+02	No MCL	No MCL	No MCL	Not Volatile	990	RSL_NC	ug/L	6	IJ	6
Carbazole	86-73-7	No SL	2.90E+01	No MCL	5.00E+01	No MCL	No SL	29	RSL NC	ug/L	1	U	1
Dibenzofuran	132-64-9	No SL	7.90E+01	No MCL	No MCL	No MCL	No SL	0.79	RSL_NC	· · · · · · · · · · · · · · · · · · ·	1	U	1
										ug/L	1 /	UJ	4
Diethyl Phthalate	84-66-2	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4		
Dimethyl Phthalate	131-11-3	No SL	1.50E+03	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	UJ	4
Di-n-butyl phthalate	84-74-2	No SL	9.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	50	TOGS 1.1.1	ug/L	4	U	4
di-n-Octyl Phthalate	117-84-0	No SL	2.00E+01	No MCL	5.00E+01	No MCL	Not Volatile	20	RSL_NC	ug/L	10	U	10
Polycyclic Aromatic Hydroc	1	T	T	T	T		T						
Total BaP TEQ Calculated	50-32-8	2.50E-02	No SL	2.00E-01	No MCL	2.00E-01	Not Volatile	0.025	RSL_C	ug/L	0.08033		0.08033
Total PAHs Calculated	50-32-8	No SL	6.00E-01	2.00E-01	No MCL	2.00E-01	Not Volatile	0.2	Federal MCL	ug/L	0.5184		
Polychlorinated Biphenyls (T	T	T	T		T	1				1	
Total PCBs Calculated	11097-69-1	4.40E-02	No SL	5.00E-01	No MCL	5.00E-01	No SL	0.044	RSL_C	ug/L	2.79		2.79
Total Metals (TMET)	T	T	T	ī	T		T	T		I			
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	30	U	30
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.8	U	0.8
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	42		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.25	U	0.25
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.4	U	0.4
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	15000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.16		0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.71		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.4	U	0.4
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	1.65		0.8
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	185		40
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.26	J	0.25
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	10500		25
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	28.5		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.25		1

Detection above Selected Screening Level		Result								Sample Location:		S 79269	
Detected Result		Result								Sample Name:	S7926	9-0221 - C	OMB
										Well Description:	Montauk P	oint State	Park Well
		RSL_C:	RSL_NC:	Federal MCL:	TOGS 1.1.1:	NYS MCL:	VISL: USEPA					(Potable)	
		USEPA	USEPA	USEPA	NYS Technical	New York	Default	Selected	Screening				
Chemical	CASRN	Residential	Residential	Maximum	and Operational	State	Residential	Screening	Level	Onsite/Offsite:		Offsite	
		Tapwater	Tapwater Non	Contaminant	Guidance	Department	VISL	Level (1)	Source (1)	Sample Date:		2/25/2021	
		Cancer SL	Cancer SL	Levels	Series, 1.1.1.	of Health	VISE			Units	Result	VQ	LOD
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	2000		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.8	U	0.8
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.4	U	0.4
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	29500		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.4	U	0.4
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	10	U	10
Dissolved Metals (DMET)													
Aluminum	7429-90-5	No SL	2.00E+03	No MCL	2.00E+03	No MCL	Not Volatile	2000	RSL_NC	ug/L	31	U	31
Antimony	7440-36-0	No SL	7.80E-01	6.00E+00	3.00E+00	6.00E+00	Not Volatile	0.78	RSL_NC	ug/L	0.82	U	0.82
Arsenic	7440-38-2	5.20E-02	6.00E-01	1.00E+01	2.50E+01	1.00E+01	Not Volatile	0.052	RSL_C	ug/L	1.6	U	1.6
Barium	7440-39-3	No SL	3.80E+02	2.00E+03	1.00E+03	2.00E+03	Not Volatile	380	RSL_NC	ug/L	42		1.6
Beryllium	7440-41-7	No SL	2.50E+00	4.00E+00	3.00E+00	4.00E+00	Not Volatile	2.5	RSL_NC	ug/L	0.26	U	0.26
Cadmium	7440-43-9	No SL	9.20E-01	5.00E+00	5.00E+00	5.00E+00	Not Volatile	0.92	RSL_NC	ug/L	0.41	U	0.41
Calcium	7440-70-2	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	14000		120
Chromium (VI)	18540-29-9	3.50E-02	4.40E+00	No MCL	5.00E+01	No MCL	Not Volatile	0.035	RSL_C	ug/L	0.036	J	0.1
Chromium (III)	16065-83-1	No SL	2.20E+03	1.00E+02	No MCL	No MCL	Not Volatile	100	Federal MCL	ug/L	0.784		
Cobalt	7440-48-4	No SL	6.00E-01	No MCL	5.00E+00	No MCL	Not Volatile	0.6	RSL_NC	ug/L	0.41	U	0.41
Copper	7440-50-8	No SL	8.00E+01	1.30E+03	2.00E+02	No MCL	Not Volatile	80	RSL_NC	ug/L	2.15		0.82
Iron	7439-89-6	No SL	1.40E+03	No MCL	6.00E+02	3.00E+02	Not Volatile	300	NYS MCL	ug/L	145		41
Lead	7439-92-1	No SL	1.50E+01	1.50E+01	2.50E+01	No MCL	Not Volatile	15	RSL_NC	ug/L	0.285	J	0.26
Magnesium	7439-95-4	No SL	No SL	No MCL	3.50E+04	No MCL	Not Volatile	35000	TOGS 1.1.1	ug/L	10400		26
Manganese	7439-96-5	No SL	4.30E+01	No MCL	3.00E+02	3.00E+02	Not Volatile	43	RSL_NC	ug/L	29		1.6
Mercury	7439-97-6	No SL	6.30E-02	2.00E+00	7.00E-01	2.00E+00	8.89E-02	0.063	RSL_NC	ug/L	0.16	U	0.16
Nickel	7440-02-0	No SL	3.90E+01	No MCL	1.00E+02	No MCL	Not Volatile	39	RSL_NC	ug/L	1.8		1
Potassium	7440-07-9	No SL	No SL	No MCL	No MCL	No MCL	Not Volatile	No SL		ug/L	1950		160
Selenium	7782-49-2	No SL	1.00E+01	5.00E+01	1.00E+01	5.00E+01	Not Volatile	10	RSL_NC	ug/L	0.82	U	0.82
Silver	7440-22-4	No SL	9.40E+00	No MCL	5.00E+01	1.00E+02	Not Volatile	9.4	RSL_NC	ug/L	0.41	U	0.41
Sodium	7440-23-5	No SL	No SL	No MCL	2.00E+04	No MCL	Not Volatile	20000	TOGS 1.1.1	ug/L	30000		160
Thallium	7440-28-0	No SL	2.00E-02	2.00E+00	5.00E-01	2.00E+00	Not Volatile	0.02	RSL_NC	ug/L	0.41	U	0.41
Vanadium	7440-62-2	No SL	8.60E+00	No MCL	No MCL	No MCL	Not Volatile	8.6	RSL_NC	ug/L	1.6	U	1.6
Zinc	7440-66-6	No SL	6.00E+02	No MCL	2.00E+03	5.00E+03	Not Volatile	600	RSL_NC	ug/L	8.75	J	10

Votes

(1) Selected screening level is the most conservative of the federal and state criteria.

CASRN = Chemical Abstract Services Registry Number

CR = Cancer Risk THQ = Target Hazard Quotient

SL = Screening Level VQ = Validation Qualifier

J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

U = Undetected at the limit of detection (LOD).