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Cascaded variational quantum eigensolver algorithm
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We present a cascaded variational quantum eigensolver algorithm that only requires the execution of a set
of quantum circuits once rather than at every iteration during the parameter optimization process, thereby
increasing the computational throughput. This algorithm uses a quantum processing unit to probe the needed
probability mass functions and a classical processing unit perform the remaining calculations, including the
energy minimization. The ansatz form does not restrict the Fock space and provides full control over the trial
state, including the implementation of symmetry and other physically motivated constraints.
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I. INTRODUCTION

Quantum computing (QC) offers inherent advantages over
classical computing for solving certain mathematical tasks
[1–8]. One of the most promising application areas is the
simulation of quantum-mechanical systems [7,9,10]. Because
the dimension of the Hilbert space that comprises the quan-
tum states of a fermionic system increases exponentially with
the system size, performing operations on this space is an
intractable task for conventional classical computers for all
but the smallest systems. A quantum computer, on the other
hand, can process such a Hilbert space by mapping it to
the Hilbert space of a quantum register—the size of which
increases exponentially with the number of qubits—and then
performing quantum gate operations on this register.

The two main algorithms for QC calculations of quantum-
mechanical systems are the quantum phase estimation algo-
rithm [11] and the variational quantum eigensolver (VQE)
algorithm [12]. By recruiting classical computers for com-
putationally efficient tasks, the latter algorithm requires
relatively few gate operations, which limits the decoherence
during the computations. As less exposure to decoherence
allows for higher computational fidelities, this algorithm has
a reduced need for quantum error correction, making it ideal
for current noisy intermediate-scale quantum computing [13].
Since its introduction, the VQE algorithm has been applied to
calculate the ground-state energy of a number of systems in
chemistry and physics [12,14–33].

One downside of the VQE algorithm is that the compu-
tational throughput is limited by the large number of needed
quantum circuit executions on the quantum processing unit
(QPU). For each energy minimization, this number is the
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product of the number of nonzero coefficients in the Pauli
expansion of the Hamiltonian that describes the system times
the number of shots in the sampling process times the number
of iterations in the optimization process times the number of
energy values needed per iteration in the chosen optimization
routine. The limitation is in part caused by the dependence
of the quantum circuits on the variational parameters, which
intertwines the sampling and optimization processes and re-
quires that the quantum circuits be executed again every time
the parameters are updated. To address this challenge, we pro-
pose the cascaded variational quantum eigensolver (CVQE)
algorithm, in which the variational parameters are exclusively
processed on the classical processing unit (CPU). The QPU is
still needed to implement and measure a guiding state to yield
probability mass functions that are then used in the optimiza-
tion process. This approach is possible because, even though
the dimension of the Hilbert space increases exponentially

FIG. 1. Schematic of an implementation of the cascaded vari-
ational quantum eigensolver algorithm. The QPU executes a set
of quantum circuits, each generating a unique quantum state
R̂Û |0〉 that when measured yield a family of occupation numbers
(n1, n2, . . . , nQ) recorded as ns. Repeating the same measurements
multiple times for different R̂ produces collections of families (nR̂

s )
that are passed on as input to the CPU. The CPU uses these samples
together with a parameter vector θk to compute derivatives of the
energy E (θ) of the trial state |�(θ)〉 at θ = θk by obtaining sample
means for ϒ(θk ), �(θk ), ∇ϒ(θk ), and ∇�(θk ) in Eqs. (14) and
(21). These derivatives are then used to generate a new parameter
vector θk+1, using some optimization method f [∇E (θk ), . . . ], and
the process is repeated until the optimization has been completed
and the sought minimum energy obtained.
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with the system size, the number of variational parameters
in any VQE algorithm can at most increase polynomially—
or else the amount of needed computing resources would
grow exponentially. Another benefit of the separation of the
quantum circuit executions on the QPU and the optimization
process on the CPU is that the optimization process in the
CVQE algorithm partly compensates for the errors introduced
during the quantum circuit executions.

As illustrated in Fig. 1, given the samples from an initial
set of measurements on the QPU, the energy minimization can
subsequently be completed on the CPU alone. By breaking the
back-and-forth between the QPU and CPU in every iteration
of the optimization process in the VQE algorithm, the CVQE
algorithm reduces the number of quantum circuit executions
by the factor of the number of energy values that needs to
be calculated during the optimization process. For instance,
consider an optimization process that estimates the gradient
using the simultaneous perturbation stochastic approximation
[34], which requires 2 energy values per iteration, and needs
250 iterations (cf. the calculations of BeH2 in Ref. [18]). The
computational throughput using the CVQE algorithm would
in this case be increased by a factor of 500. In other words, we
could now complete calculations that would previously have
taken months in a matter of hours.

II. METHOD

In order to demonstrate the method behind the CVQE
algorithm, consider a system of identical fermions described
by the Hamiltonian Ĥ and let the antisymmetric Fock space F
serve as the representation space for the quantum states of this
system. Our goal is to get an upper bound for the ground-state
energy Eg of the system by applying the variational method of
quantum mechanics, which can be stated as

Eg � min
θ

E (θ), (1)

where θ is a variational parameter vector in the parameter
space �, which is a subset of the d-dimensional real coordi-
nate space Rd , and E (θ) is the energy of the trial state |�(θ)〉
in the ansatz.

We construct the trial state |�(θ)〉 from the normalized
guiding state

|�0〉 = Û |0〉 , (2)

where Û is a unitary operator and |0〉 is the vacuum state
in F , that we prepare on the QPU for sampling. In contrast
to the unitary operators applied on the QPU in the com-
monly used unitary coupled cluster ansatz [12,14,15,35–49],
the hardware-efficient ansatz [18,50–57], and those used in
various adaptive or trainable VQE algorithms [58–66], we
require that Û be independent of θ. Instead, we introduce the
dependence on θ through the operator eiλ̂(θ) that transforms
|�0〉 to our trial state

|�(θ)〉 = eiλ̂(θ) |�0〉 , (3)

where λ̂(θ) is an operator. Consequently, the energy of |�(θ)〉
is of the form

E (θ) = ϒ(θ)

�(θ)
, (4)

ϕ [deg]0 90

0

1

E
[u

ni
ts

of
U

]

(a) |Ψ1

|Ψ2

|Ψ0

|Ψ(ϕ, φ)

1
23

45

1 2 345

(b)

FIG. 2. The energy E (ϕ, φ) of the singlet two-electron trial
state |�(ϕ, φ)〉 of the two-site Hubbard model with the Hamil-
tonian Ĥ = t

∑
σ (c†

0σ c1σ + H.c.) + U
∑

i c†
i↑c†

i↓ci↓ci↑, where t and
U are coefficients and i ∈ {0, 1} and σ ∈ {↑,↓} are site and spin
indices, respectively, so that all index pairs are elements in the
one-electron index set (0↑, 0↓, 1↑, 1↓). The parameter space has
been restricted by letting λn → i∞ for all families n of occupa-
tion numbers, except for those associated with two electrons with
a zero z component of the total spin. Permutation symmetry re-
quires that singlet states transform as A1g in the point group D∞h,
which means that |�(ϕ, φ)〉 is a linear combination of |�1〉 =
(|0110〉 + |1001〉)/

√
2 and |�2〉 = (|0011〉 + |1100〉)/

√
2. This re-

quirement is imposed by the symmetry constraints λ0110 =λ1001 =
λ and λ0011 =λ1100 =−λ. The parametric equation λ = λ(ϕ, φ) =
φ/2 − i ln tan ( π

4 + ϕ

2 )/2 is defined on the parameter space {(ϕ, φ) :
ϕ∈ (−π/2, π/2), φ∈ (−π, π ]}, where ϕ and φ represent the latitude
and longitude, respectively, on a sphere. The energy E (ϕ, φ) for
t/U = −0.158 is shown in color in (a) with the colorbar in (b).
The red curves trace the gradient-descent path along φ = 0 from the
initial guiding state |�0〉 = (|�1〉 + |�2〉)/

√
2 to the ground state at

ϕ ≈ 1 rad.

with the expectation values

ϒ(θ) = 〈�0|e−iλ̂†(θ)Ĥeiλ̂(θ)|�0〉 , (5a)

�(θ) = 〈�0|e−iλ̂†(θ)eiλ̂(θ)|�0〉 . (5b)

To make further progress, we need a basis for the Fock
space F . First, however, we introduce the totally ordered in-
dex set Q for the basis (|ψq〉)q∈Q for the one-fermion Hilbert
space H. The cardinality Q of this set (i.e., the dimension of
H) is herein our measure of the system size. Each q ∈ Q has
an occupation number nq in {0, 1} that is zero if |ψq〉 is unoc-
cupied and one if it is occupied. Each family of occupation
numbers n = (nq)q∈Q in the Cartesian power N = {0, 1}Q

identifies the associated operator,

C†
n =

∏
q∈Q

(c†
q )nq , (6)

on F , where c†
q is the fermionic creation operator for each

q in Q. Using these operators, we generate the Fock states
|n〉 = C†

n |0〉, for all n ∈ N , and then select the set of all Fock
states {|n〉} to be our basis for F .

We choose the operator λ̂(θ) be diagonal in this basis, so
that

λ̂(θ) =
∑
n∈N

λn(θ) |n〉〈n| , (7)
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TABLE I. The coefficients hl , operators C†
n+

l
Cn−

l
, families n±

l , subsets Q̇l and �Ql , and subfamilies ṅ±
l and �n±

l for each interaction in the
two-site Hubbard model with the Hamiltonian Ĥ = t

∑
σ (c†

0σ c1σ + H.c.) + U
∑

i c†
i↑c†

i↓ci↓ci↑, where t and U are coefficients and i ∈ {0, 1}
and σ ∈ {↑,↓} are site and spin indices, respectively, so that all index pairs are elements in Q = (0↑, 0↓, 1↑, 1↓).

hl C†
n+

l
Cn−

l
n+

l n−
l Q̇l �Ql ṅ+

l �n+
l ṅ−

l �n−
l

t c†
0↑c1↑ (1, 0, 0, 0) (0, 0, 1, 0) (0↑, 1↑) (0↓, 1↓) (1, 0) (0, 0) (0, 1) (0, 0)

t c†
1↑c0↑ (0, 0, 1, 0) (1, 0, 0, 0) (0↑, 1↑) (0↓, 1↓) (0, 1) (0, 0) (1, 0) (0, 0)

t c†
0↓c1↓ (0, 1, 0, 0) (0, 0, 0, 1) (0↓, 1↓) (0↑, 1↑) (1, 0) (0, 0) (0, 1) (0, 0)

t c†
1↓c0↓ (0, 0,0, 1) (0, 1, 0, 0) (0↓, 1↓) (0↑, 1↑) (0, 1) (0, 0) (1, 0) (0, 0)

U c†
0↑c†

0↓c0↓c0↑ (1, 1, 0, 0) (1, 1, 0, 0) ( ) (0↑, 0↓, 1↑, 1↓) ( ) (1, 1, 0, 0) ( ) (1, 1, 0, 0)

U c†
1↑c†

1↓c1↓c1↑ (0, 0, 1, 1) (0, 0, 1, 1) ( ) (0↑, 0↓, 1↑, 1↓) ( ) (0, 0, 1, 1) ( ) (0, 0, 1, 1)

where λn(θ) ∈ C are complex parametric equations. Our trial
state in Eq. (3) can thus be expressed as

|�(θ)〉 =
∑
n∈N

eiλn (θ)�0n |n〉 , (8)

where �0n is the component of |�0〉 associated with |n〉. This
form is both general and intuitive. It is general because if
we choose our set of parametric equations {λn(θ)} to be a
surjective map of � onto C2Q

and our components �0n to
be nonzero, for all n ∈ N , then the ansatz covers the entire
Fock space. It is intuitive because each λn(θ) is associated
with a Fock state |n〉, which allows us to both exclude spe-
cific Fock states by letting λn(θ)→ i∞ and impose symmetry
constraints provided in terms of Fock states on our set {λn(θ)}.
An example of a set of parametric equations that both ex-
clude states and impose symmetry constraints is provided
in the caption of Fig. 2 and in Appendix A, for a singlet
two-electron trial state of the two-site Hubbard model. We
can even choose our ansatz to depend on number operators as
in the recent implementation [67] of the Jastrow-Gutzwiller
ansatz [68,69] within the CVQE algorithm, where λn(θ) =∑

qq′∈Q iθqq′nqnq′ . Last, through the implementation of the
guiding state |�0〉 on the QPU, we could create ansatzes closer
to the ground state than could be achieved by classical meth-
ods such as the Hartree-Fock method and variational Monte
Carlo.

Because the dimension of F increases exponentially
with the system size, we cannot generally diagonalize
e−iλ̂†(θ)Ĥeiλ̂(θ) on a CPU for large Q. Instead, we note that the
expectation value of an operator is a linear function, which
allows us to expand the expectation value in Eq. (5a) and diag-
onalize the operator in each expectation value independently.
Before doing so, however, we express the Hamiltonian, using
the operators in Eq. (6), in the form of

Ĥ =
∑
l∈L

hl C†
n+

l
Cn−

l
, (9)

where the set L contains all indices, for which the coefficients
hl ∈ C are nonzero, and the families n±

l = (n±
lq )q∈Q in N are

defined by the terms

n+
lq =

{
1, if c†

q is present,

0, if c†
q is not present,

(10a)

n−
lq =

{
1, if cq is present,

0, if cq is not present.
(10b)

As an example, the coefficients and families for the two-site
Hubbard model have been provided in Table I.

We assume that each l ∈ L only affects a subset of the one-
fermion states, which we identify by the index set Q̇l ⊂ Q,
and that the number of these states Q̇l (which is no more
than two for one-fermion interactions, four for two-fermion
interactions, etc.) does not increase with system size Q. We
also define the complementary set �Ql ⊂ Q, which contains
the indices of the states that are unaffected by the interac-
tion, and unlike the former, the number of these latter states
�Ql = Q − Q̇l does increase with system size. Note that the

dot and arrow accents herein refer to “a few specific” and
“all the many other” indices in Q, respectively. By affected
states, we mean states with either an associated creation c†

q
or annihilation operator cq in the Hamiltonian term—but not
both, as a number operator n̂q = c†

qcq could then be formed,
which except for a scalar leaves the states intact. Thus, the
complementary index sets can be expressed as

Q̇l = (q ∈ Q : n+
lq �= n−

lq ),

�Ql = (q ∈ Q : n+
lq = n−

lq ). (11)

Using these sets, we split the families n with the map

n �→ ṅ�n (12)
into pairs of subfamilies ṅ and �n of n, for all n ∈ N , where by
definition the occupation numbers are matched so that

ṅq = nq, for all q ∈ Q̇l ,

�nq = nq, for all q ∈ �Ql . (13)

As Appendix B shows, this separation allows us to expand
each term in the Hamiltonian in Eq. (9) using a complete
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set of 2Q̇l Hermitian operators, all of which we diagonalize
analytically using a set of unitary operators {R̂lm} indexed
by Ml = {x, y}Q̇l . After this diagonalization, we find that the
expectation values in Eq. (5) can be expressed as

ϒ(θ) =
∑
l∈L

∑
m∈Ml

∑
n∈N

υlmne
−iλ∗

ṅ+
l �n(θ)

e
iλṅ−

l �n(θ)| 〈�0|R̂†
lm|n〉 |2,

(14a)

�(θ) =
∑
n∈N

e−2 Im λn(θ)| 〈�0|n〉 |2, (14b)

where the complex coefficients are

υlmn = πl hl

2Q̇l
NlnVlmZln, (15)

where πl ∈ {±1} is given by the permutation that separates
the fermionic operators indexed by Q̇l and �Ql , and the fac-
tors Nln, Vlm, and Zln are provided in Eqs. (B13), (B18), and
(B25), respectively. See Appendix A and B for an application
and derivation of Eq. (14), respectively, and the origin and
meaning of each factor in Eq. (15).

As the guiding state |�0〉 is prepared on the QPU, we
need a map from the Fock space to the Hilbert space of
quantum states of the QPU qubit register. Because qubits
are distinguishable, the Hilbert space for a qubit register is a
tensor power of the two-dimensional one-qubit Hilbert space
H. For there to be an isomorphism between the Fock space and
this tensor power, we need a register that comprises exactly
Q qubits, so that dim H⊗Q equals dim F . We let {|0〉 , |1〉}
be our basis for each qubit space H and define the isomor-
phism F → H⊗Q by mapping the Fock states |n〉 to the tensor
products

|n〉 =
⊗
q∈Q

|nq〉 (16)

for all n ∈ N . This Jordan-Wigner mapping [10] transforms
the guiding state |�0〉 to itself and thus preserves all its
components �0n. This makes it straightforward to construct
a quantum circuit for Û that uses –X– gates to generate the
ground state |n∗〉 of some model of the system within the in-
dependent fermion approximation, for which the components
are �0n∗ , and from there introduce weights associated with
other Fock states by adding additional gates.

The unitary operators used in the diagonalization are rep-
resented by

R̂lm = π̂l

⊗
q∈Q̇l

R̂
δmqx
y R̂

δmqy
x

⊗
q∈ �Ql

Î, (17)

on H⊗Q for all families m = (mq)q∈Q̇l
in Ml , where the op-

erator π̂l is defined such that it permutes the operators on
the individual Hilbert spaces H in H⊗Q to the order given by
Q (cf. Appendix B), R̂x and R̂y are operators that describe
one-qubit rotations around the x and y axes by π/2 and −π/2,
respectively, and Î is the identity operator on H. The rotation
operators R̂x and R̂y can be implemented in a circuit using the
gate sequences –

√
X – and –X−H– (or –H−Z–), respectively.

III. SAMPLING

In our sampling on the QPU, we use the fact that the prob-
ability that a measurement in the basis {|n〉} for H⊗Q would
collapse the state R̂ |�0〉, for any unitary operator R̂, to the
state |n〉 associated with a particular outcome n in the sample
space N is given by the probability mass function

P[R̂�0 �→n] = | 〈�0|R̂†|n〉 |2. (18)

By performing S identical measurements of R̂ |�0〉 and
recording the outcome ns of each shot s in some set S , we
obtain a collection of families (nR̂

s )s∈S . Given this sample,
we can then apply the law of the unconscious statistician and
approximate the expectation value of a function g(n) with the
arithmetic mean, which yields∑

n∈N
g(n) P[R̂�0 �→n] ≈ 1

S

∑
s∈S

g
(
nR̂

s

)
, (19)

where the sample size S is chosen such that the desired statis-
tical accuracy is attained.

Depending on the particular ansatz of interest—which re-
markably could even depend on the sampling itself through
the parametric equations—there is not necessarily a unique
approach to calculate the expectation values in Eq. (14). One
approach that is guaranteed to work is to collect samples for
all the unitary operators R̂lm (and the identity operator if it has
not already been included). We find that the number of these
samples equals the number of nonzero coefficients in the Pauli
expansion of the Hamiltonian in the VQE algorithm. After
applying Eqs. (18) and (19), the number of terms in Eq. (14)
only increase polynomially with the system size. Thus, we can
then calculate the energy E (θ) in Eq. (4), for any variational
parameter vector θ in �, using the CPU. Consequently, by
reusing the collected samples, we perform the optimization
entirely on a CPU. The total number of quantum circuit ex-
ecutions in CVQE is in the most general case given by the
number of samples times the number of shots. As mentioned
above, the number of quantum circuit executions in CVQE has
as a result, compared to VQE, been reduced by the factor of
the number of energy values that needs to be calculated during
the optimization process.

IV. OPTIMIZATION

Because the energy minimization in the CVQE algorithm
is efficient on a CPU, many optimization methods and imple-
mentations become available. One approach is to calculate the
energy gradient

∇E (θ) = �(θ)∇ϒ(θ) − ϒ(θ)∇�(θ)

�2(θ)
, (20)

using the gradients

∇ϒ(θ) =
∑
l∈L

∑
m∈Ml

∑
n∈N

υlmne
−iλ∗

ṅ+
l �n(θ)

e
iλṅ−

l �n(θ)

× [−i∇λ∗
ṅ+

l �n(θ) + i∇λṅ−
l �n(θ)]|〈�0|R̂†

lm|n〉 |2,
(21a)

∇�(θ) =
∑
n∈N

e−2 Im λn(θ)[−2∇ Im λn(θ)]| 〈�0|n〉 |2, (21b)
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using the collected samples and analytical derivatives for the
gradients of the parametric equations. The energy gradient,
along with higher derivatives, if needed, can be used in any
iterative optimization method in the form of

θk+1 = θk + f [∇E (θk ), . . . ], (22)

where each k = 0, 1, 2, . . . successively generates a new pa-
rameter vector, starting from the initial trial vector θ0, and
f [∇E (θk ), . . . ] is a functional that defines the method. One
method of this form is gradient descent f [∇E (θk ), . . . ] =
−γk∇E (θk ), which we used for the optimization in Fig. 2 with
the step size γk = 1 (for more details, see Appendix A). If
converged, then the solution vector θ∗ minimizes E (θ), and
the energy E (θ∗) is the sought upper bound for the ground-
state energy.
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APPENDIX A

To test the closed-form expression of the energy E (θ) in
Eq. (4) given by Eq. (14), let us consider an electronic system
described by a two-site Hubbard model, for which we can
obtain the energy directly by calculating the expectation value
analytically for all θ in the parameter space �.

If we denote the site i ∈ {0, 1} and the spins σ ∈ {↑,↓},
then the Hamiltonian for this system can then be expressed as

Ĥ = t
∑

σ

(c†
0σ c1σ + H.c.) + U

∑
i

n̂i↑n̂i↓, (A1)

where t and U are the model hopping and Hubbard-U pa-
rameters, respectively. Following the approach in the main
text, we introduce the basis {|ψiσ 〉} for the four-dimensional,
one-electron Hilbert space formed by the four states |ψiσ 〉 =
c†

iσ |0〉 indexed by the site-spin set Q = {0↑, 0↓, 1↑, 1↓}. We
construct the basis {|n〉} for the Fock space F from the Fock
states |n〉 = C†

n |0〉, which are labeled by the families n =
(niσ ), where niσ is the number of electrons in |ψiσ 〉. From
Eq. (6), which in this example is given by

C†
n =

∏
iσ

(c†
iσ )niσ , (A2)

we find that the Fock state |1001〉 = c†
0↑c†

1↓ |0〉, say, can be
identified by the family that has one electron in |ψ0↑〉, zero
electrons in |ψ0↓〉, zero electrons in |ψ1↑〉, and one electron in
|ψ1↓〉.

For our test demonstration, we choose our guiding state
|�0〉 in Eq. (2) to be defined by

Û =
⊗
q∈Q

|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|√
2

, (A3)

so that we can calculate the probability mass functions in
Eq. (18) analytically. This allows us to also calculate the

energy using Eqs. (4) and (14) analytically and verify the
result against the expectation value of the Hamiltonian in the
trial state |�(θ)〉. If one instead were to perform the sampling
of the guiding state

|�0〉 = 1

4

∑
n∈N

|n〉 (A4)

on the QPU following the CVQE algorithm as illustrated
in Fig. 1, then the operator Û would be implemented by a
quantum circuit that executes a Hadamard gate –H–, for each
qubit in the register.

We are specifically interested in the two-electron, spin-
singlet ground state. In our basis {|n〉} for F , there are six
two-electron Fock states, four of which with the z component
of the total spin being zero. These states are |0011〉, |0110〉,
|1001〉, and |1100〉. We also note that the two-site Hubbard
model has point group symmetry D∞h and the relevant sym-
metry operation with respect to the mentioned four Fock
states is the inversion operator. Our goal is to form symmetry-
adapted states, which are either symmetric or antisymmetric
under inversion. Because electrons are fermions, the states
must be antisymmetric with respect to the exchange of the
two electrons. As spin-singlet states are antisymmetric under
this exchange, our spatial symmetry-adapted states must be
symmetric with respect to the electron exchange. This requires
that the ground state transforms as the irreducible representa-
tion A1g of D∞h. There are two such symmetry-adapted states
that can be formed by the basis states |0011〉 , |0110〉, |1001〉,
and |1100〉. They are

|�1〉 = 1√
2

(|0110〉 + |1001〉), (A5a)

|�2〉 = 1√
2

(|0011〉 + |1100〉). (A5b)

It can easily be verified that both |�1〉 and |�2〉 are symmetric
under inversion, which in the two-site Hubbard model ex-
changes the sites 0 and 1. To impose this required symmetry,
we choose λ0110 = λ1001 = λ and λ0011 = λ1100 = −λ, and
λn → i∞ for all families n not in {0011, 0110, 1001, 1100},
where

λ(ϕ, φ) = φ

2
− i

2
ln tan

(
π

4
+ ϕ

2

)
, (A6)

is defined on the parameter space � = {(ϕ, φ) :ϕ∈
(−π/2, π/2), φ∈ (−π, π ]}. This form of λ(ϕ, φ)
conveniently represents the normalized trial state

|�(ϕ, φ)〉 = sin

(
π

4
+ ϕ

2

)
eiφ/2 |�1〉

+ cos

(
π

4
+ ϕ

2

)
e−iφ/2 |�2〉 (A7)

on the Bloch sphere, where ϕ and φ are the latitude and
longitude, respectively, and |�1〉 and |�2〉 are the north and
south pole, respectively (cf. Fig. 2).

For our choice of Û , the probability mass function for a
measurement of the guiding state |�0〉 is

P[�0 �→n] = 1

16
. (A8)
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After some algebra, one finds that the energy denominator in
Eq. (14b) for this model is

�(ϕ, φ) = 1

4 cos ϕ
. (A9)

Before we can calculate the corresponding energy numer-
ator in Eq. (14a), we need to identify the coefficients hl and
families n±

l in Eq. (9) for the Hamiltonian in Eq. (A1). This is
straightforward as the coefficients hl are directly given and
the families n+

l and n−
l merely identify which index pairs

iσ ∈ {0↑, 0↓, 1↑, 1↓} have creation and annihilation opera-
tors, respectively, in the term l . For example, the first term
in Eq. (A1), t c†

0↑c1↑, corresponds to h1 = t , n+
1 = (1, 0, 0, 0),

and n−
1 = (0, 0, 1, 0) in Eq. (9). For a full list of the identified

coefficients and families, see Table I.
For each interaction l ∈ L, we also need to identify the

affected index pairs iσ ∈ Q, which form the subset Q̇l . This
and its complementary subset are given by Eq. (11) and also
provided in Table I. Note that the index pairs for number
operators are not considered affected, and therefore, the subset
Q̇l is empty for the two-electron terms. Once the affected
and unaffected subsets have been defined, we split the family
of occupation numbers in n±

l into a collection of occupation
numbers affected ṅ±

l and unaffected �n±
l by each interaction, in

accordance with Eqs. (12) and (13). The resulting collections
are also provided in Table I.

Next, we need to identify the coefficients in Eq. (15). The
sign πl can be negative only for interactions that contain
creation, annihilation, and number operators; permutations of
creation or annihilation operators ordered by Eq. (6) may then
be necessary for the number operators to form. As this is not
the case for any of the interactions in the Hubbard model, we
have πl = +1 for all l ∈ L.

The coefficients Nln in Eq. (B13) incorporate a Kronecker
delta function for each number operator in the interaction,
which ensures that an electron occupies each spin orbital that
has a number operator. These coefficients are unity for all
one-electron terms in the Hamiltonian and δni↑1δni↓1 for the
two-electron terms identified by the site i. Thus, only when
there are two electrons on site i does the corresponding two-
electron term contribute to the energy. The coefficients Vlm

in Eq. (B18) contain the phase factors that result from the
expansion of the interaction terms represented on the qubit
register Hilbert space. They are listed for each interaction in
the Hubbard model in Table II .

To determinate the probability mass function for measure-
ments of the state R̂lm |�0〉, we first note that the guiding state
in Eq. (A4) is represented by the tensor power

|�0〉 = |+〉⊗Q , (A10)

on H⊗Q, where |+〉 = (|0〉 + |1〉)/
√

2. From the maps

R̂x |+〉 = e−iπ/4 |+〉 , (A11a)

R̂y |+〉 = |0〉 , (A11b)

then follow the probability mass function

P[R̂lm�0 �→n] = 1

2 �Ql

∏
q∈Q̇l

(
δ

δmqx

nq0 + 2−δmqy

)
. (A12)

TABLE II. Applicable expansion coefficients Vlm for each inter-
action identified by C†

n+
l
Cn−

l
and the expansion index m.

C†
n+

l
Cn−

l
Vl () Vl (x,x) Vl (x,y) Vl (y,x) Vl (y,y)

c†
0↑c1↑ +1 +i −i +1

c†
1↑c0↑ +1 −i +i +1

c†
0↓c1↓ +1 +i −i +1

c†
1↓c0↓ +1 −i +i +1

c†
0↑c†

0↓c0↓c0↑ +1

c†
1↑c†

1↓c1↓c1↑ +1

Using this probability mass function, the numerator in
Eq. (14a) can be expressed as

ϒ(ϕ, φ) = t

2
cos[2 Re λ(ϕ, φ)] + U

8
e2 Im λ(ϕ,φ), (A13)

where we have used
1

2Q̇l

∑
m∈Ml

∑
ṅ∈Ṅ

VlmZln P[R̂lm�0 �→n] = 1

16
, (A14)

for all interactions l ∈ L, where Ṅ = {0, 1}Q̇l . Inserting
Eq. (A6) into Eq. (A13) and dividing by Eq. (A9), finally
yields the energy

E (ϕ, φ) = 2t cos ϕ cos φ + U

2

(
1 − sin ϕ

)
. (A15)

To verify the above result, we find the Hamiltonian matrix
elements

〈�1|Ĥ |�1〉 = 0,

〈�1|Ĥ |�2〉 = 2t,

〈�2|Ĥ |�1〉 = 2t,

〈�2|Ĥ |�2〉 = U, (A16)

and apply these to calculate the expectation value

E (ϕ, φ) = 〈�(ϕ, φ)|Ĥ |�(ϕ, φ)〉 . (A17)

of the Hamiltonian in the trial state in Eq. (A7). As ex-
pected, we find the same expression for the energy shown in
Eq. (A15). Note that this direct calculation is of course not
generally available as the dimension of the space that the trial
state and Hamiltonian is represented on increases exponen-
tially with the system size. As shown herein, however, the
energy in Eq. (4) can still be obtained with CPU resources that
only increases polynomially with system size by calculating
Eq. (14), provided that measurements samples have first been
collected on the QPU so that the sample mean in Eq. (19) can
be applied. The gradient of the energy is

∇E (ϕ, φ) = −
(

2t sin ϕ cos φ + U

2
cos ϕ

)
eϕ − 2t sin φ eφ,

(A18)
where eϕ and eφ are the standard basis vectors for a spherical
coordinate system with a constant radius. Using the same
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TABLE III. Optimization of the parameter ϕ in the ansatz for the
two-site Hubbard model (t/U = −0.158) and the associated energy
E (ϕk, 0).

ϕk (deg.) E (ϕk, 0) (units of U )

0 0.1840
35.1077 −0.0461
47.5575 −0.0822
53.0757 −0.0896
55.5872 −0.0911
56.7362 −0.0914
57.2624 −0.0915
57.5034 −0.0915
57.6138 −0.0915
57.6644 −0.0915
57.6875 −0.0915
57.6981 −0.0915
57.7030 −0.0915
57.7052 −0.0915
57.7063 −0.0915
57.7067 −0.0915
57.7069 −0.0915
57.7070 −0.0915
57.7071 −0.0915
57.7071 −0.0915

basis vectors, the parameter vector is

θ = ϕ eϕ + φ eφ. (A19)

Starting from the initial trial vector θ0 = 0, the new parameter
vectors in gradient descent are given by

θk+1 = θk − ∇E (θk ), (A20)

for k = 0, 1, 2, . . . , where we have chosen the step-size pa-
rameter γk = 1 in Eq. (22). In coordinate form, we have

ϕk+1 = ϕk + 2t sin ϕk cos φk + U

2
cos ϕk, (A21a)

φk+1 = φk + 2t sin φk . (A21b)

As φ0 = 0, we find from the latter equation that
φk = 0, for all k. For negative t , we find that ∂2E/∂φ2(ϕ, 0) >

0, for ϕ ∈ (−π/2, π/2), and thus φ = 0 is a minimum in
the direction eφ . The optimization in the direction eϕ is
given by Eq. (A21a) with cos φk = 1. The first 20 param-
eters ϕk are shown in Table III. The minimized solution is
(ϕ∗, φ∗) ≈ (57.7071◦, 0) and the associated minimized en-
ergy E (ϕ∗, φ∗) ≈ −0.0915U .

APPENDIX B

A critical component of the CVQE algorithm is the closed-
form expression for the energy E (θ) in Eq. (4) given by
Eq. (14) that can be calculated efficiently on the CPU for any
parameter vector θ in the parameter space � using Eq. (19)
with the measurement samples collected priorly on the QPU.
Below, we provide more details on how Eq. (14) was derived
from the expectation values in Eq. (5).

To calculate expectation values with the assistance of a
QPU without having to introduce extra ancillary qubits, the
operators in the expectation values must be diagonal in the
measurement basis. The challenge is that diagonalizing the
operators in Eq. (5) analytically or numerically is generally
hard as the dimension of the Fock space dim F = 2Q in-
creases exponentially with the system size Q. Fortunately,
however, the expectation value of an operator is a linear
function. Thus, if we consider the system of interest being a
collection of interactions indexed by L and described by the
Hamiltonians

Ĥl = hl C†
n+

l
Cn−

l
, (B1)

on F , for all l ∈ L, the expectation value in Eq. (5a) is the
linear combination

〈�0|e−iλ̂†(θ)Ĥeiλ̂(θ)|�0〉 =
∑
l∈L

〈�0|e−iλ̂†(θ)Ĥl e
iλ̂(θ)|�0〉 (B2)

over the individual interactions.
The order of the creation and annihilation operators in Ĥl

imposed by index set Q via Eq. (6) is generally fine, except for
those interactions with some—but not all—creation and anni-
hilation operators forming number operators. In that case, the
creation and annihilation operators might need to be reordered
to allow for all possible number operators to form. One order
that always works is given by the permutation π̂l defined such
that the mapping π̂l : Q → Q produces

π̂lQ �→ Q̇l � �Ql , (B3)

where � refers to concatenation (i.e., the order of indices in Q
is preserved except that all indices q ∈ Q̇l have been moved to
the left of all q ∈ �Ql ). To obtain this order among our creation
and annihilation operators, we apply the inverse permutation
π̂−1

l to each instance of the operator in Eq. (6), so that

π̂−1
l C†

n =
[ ∏

q∈π̂lQ
(c†

q )nq

]
, (B4)

for all n ∈ N . From the fermionic anticommutation relation
{cq, cq′ } = 0, for all qq′ ∈ Q, it then follows that

Ĥl = πl hl

[ ∏
q∈π̂lQ

(c†
q )n+

lq

][ ∏
q∈π̂lQ

(c†
q )n−

lq

]†

, (B5)

for all l ∈ L, where the sign πl ∈ {±1} depends on the fam-
ilies n±

l that, along with the coefficient hl ∈ C, specify the
interaction as described in the main text. The order of the
creation and annihilation operators given by the permutation
π̂l allows number operators n̂q = c†

qcq, for all q ∈ Q, to form
at the interface between the two products in Eq. (B5). As
[n̂q, c†

q′ ] = [n̂q, cq′ ] = 0, for all qq′ ∈ Q : q �= q′, we find that

Ĥl = πl hl Ĉl N̂l , (B6)

where

Ĉl =
[ ∏

q∈Q̇l

(c†
q )n+

lq

][ ∏
q∈Q̇l

(c†
q )n−

lq

]†

, (B7a)

N̂l =
∏

q∈ �Ql

n̂
n+

lq
q . (B7b)
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Before proceeding, let us turn to the other operator eiλ̂(θ)

in Eq. (B2). Defining the projection operator P̂n = |n〉〈n| and
using the property P̂nP̂n′ = δnn′ P̂n, for all n, n′ ∈ N , one finds
from the Taylor expansions of eiλ̂(θ) and eiλn (θ) that

eiλ̂(θ) =
∑
n∈N

eiλn (θ)P̂n. (B8)

Because P̂n is diagonal in the basis {|n〉}, it can be represented
by a product of number operators. Moreover, because these
number operators commute, we can put them in any order,
including the order given by the permutation π̂l . Using the
map in Eq. (12) that is associated with the perturbation map
in Eq. (B3), this order yields

eiλ̂(θ) =
∑

ṅ�n
eiλṅ�n(θ)P̂ṅP̂�n, (B9)

where the two projection operator factors can be
expressed as

P̂ṅ =
∏

q∈Q̇l

n̂
ṅq
q (1 − n̂q)(1−ṅq ), (B10a)

P̂�n =
∏

q∈ �Ql

n̂�nq
q (1 − n̂q)(1−�nq ). (B10b)

Again after applying Eq. (12) and the commutation prop-
erty of number operators, we can write the operator products
in Eq. (B2) as

e−iλ̂†(θ)Ĥl e
iλ̂(θ) = πl hl

∑
ṅ�nṅ′ �n′

e−iλ∗
ṅ�n(θ)eiλṅ′ �n′ (θ)P̂ṅĈl P̂ṅ′ P̂�nN̂l P̂�n′

(B11)

for all l ∈ L. From the fermionic anticommutation relation
{cq, c†

q′ } = δqq′ , for all qq′ ∈ Q, follows

P̂ṅĈl P̂ṅ′ = Ĉlδṅṅ+
l
δṅ′ṅ−

l
, (B12a)

P̂�nN̂l P̂�n′ = NlnP̂�nδ�n�n′ , (B12b)

where

Nln =
∏

q∈ �Ql

δ
n+

lq

nq1 (B13)

is the eigenvalue of the operator N̂l for the state |n〉, which
is one in the case nq = 1 for every q ∈ �Ql that has a number
operator in N̂l , and zero otherwise. Inserting Eq. (B12), the
operator in Eq. (B11) becomes

e−iλ̂†(θ)Ĥle
iλ̂(θ) = πl hl

∑
�n

Nlne
−iλ∗

ṅ+
l �n(θ)

e
iλṅ−

l �n(θ)
Ĉl P̂�n. (B14)

To achieve the shallowest possible measurement circuits
on the QPU, we want to represent the operators Ĉl and P̂�n on
the Hilbert space H⊗Q for the qubit register. As the guiding
state |�0〉 implemented on this space is the same for all
interactions, we use the global index set Q to fix the order
of the individual qubit spaces H in the register space H⊗Q. The
downside with this fixed order Q, however, is that it does not
separate the spaces that contain states that are affected and
unaffected by each interaction. To circumvent this shortcom-
ing, we work with operators on H⊗Q that are ordered by π̂lQ

and apply the permutation operator π̂l defined in Eq. (B3) to
rearrange the individual qubit operators and restore the fixed
order Q.

The isomorphism F → H⊗Q given by Eq. (16) is consis-
tent with the Jordan–Wigner transformation [70], which is
represented on H⊗Q by

c†
q = π̂l

⊗
q′∈π̂lQ

q′<q

σ̂z

⊗ σ̂x − iσ̂y

2

⊗
q′∈π̂lQ

q′>q

σ̂0, (B15)

for all q ∈ Q, where the Pauli operators σ̂x, σ̂y, and σ̂z are
represented by the associated Pauli matrices, and the identity
operator σ̂0 by the identity matrix, when the basis states |0〉
and |1〉 for H are mapped to the column vectors (1, 0)ᵀ and
(0, 1)ᵀ for the vector space C2, respectively. As the binary
relation < has been defined with respect to the elements in
πlQ rather than Q, the string operator depends on the inter-
actions. While this approach might appear to unnecessarily
complicate matters, the advantage is that the permutation in
Eq. (B3) was specifically chosen such that the representa-
tion of the operators on the right-hand side of Eq. (B14)
on H⊗Q,

Ĉl = π̂l

⊗
q∈Q̇l

(
σ̂x − iσ̂y

2

)n+
lq
(

σ̂x + iσ̂y

2

)n−
lq ⊗

q∈ �Ql

σ̂0, (B16a)

P̂�n = π̂l

⊗
q∈Q̇l

σ̂0

⊗
q∈ �Ql

σ̂0 + (−1)�nq σ̂z

2
, (B16b)

is unaffected by the string operator. Consequently, we do not
need to track the state-dependent sign that normally results
from the σ̂z operators in the string operator.

Rather than diagonalizing Eq. (B16a) directly, which
would lead to unnecessarily large measurement circuits, we
expand each operator on H in the basis {σ̂0, σ̂x, σ̂y, σ̂z}. This
expansion yields

Ĉl = 1

2Q̇l

∑
m∈Ml

VlmV̂lm, (B17)

where m = (mq)q∈Q̇l
are indexed families obtained from the

Cartesian power Ml = {x, y}Q̇l ,

Vlm =
∏

q∈Q̇l

[(−1)n+
lq i]δmqy (B18)

are expansion coefficients, and

V̂lm = π̂l

⊗
q∈Q̇l

σ̂mq

⊗
q∈ �Ql

σ̂0, (B19)

are Hermitian operators. The purpose of δmqy is to pick up
the phase factor ∓i, if and only if mq = y, where the sign is
minus (plus) for n+

lq = 1 (n+
lq = 0), i.e. the associated operator

σ̂y originates from a creation (annihilation) operator.
Each Hermitian operator V̂lm can always be transformed

such that

V̂lm = R̂†
lmD̂l R̂lm, (B20)
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where R̂lm is a unitary operator and D̂l is a real diagonal
operator. Because V̂lm is a tensor product on H⊗Q, we can
diagonalize the operator on each space H separately. Using the
rotation operators

R̂x = σ̂0 − iσ̂x√
2

, R̂y = σ̂0 + iσ̂y√
2

, (B21)

which describe one-qubit rotations around the x and y axes by
π/2 and −π/2, respectively, we find

σ̂x = R̂†
y σ̂zR̂y, σ̂y = R̂†

x σ̂zR̂x. (B22)

Thus, the solution to Eq. (B20) is

R̂lm = π̂l

⊗
q∈Q̇l

R̂
δmqx
y R̂

δmqy
x

⊗
q∈ �Ql

σ̂0, (B23a)

D̂l = π̂l

⊗
q∈Q̇l

σ̂z

⊗
q∈ �Ql

σ̂0, (B23b)

for all m ∈ Ml .
Inserting Eq. (B20) into Eq. (B17) and multiplying by

Eq. (B16b), we eventually find the map

Ĉl P̂�n = 1

2Q̇l

∑
m∈Ml

VlmR̂†
lm

( ∑
n∈N

ZnP̂n

)
R̂lm, (B24)

on H⊗Q, where the eigenvalue

Zln =
∏

q∈Q̇l

(−1)nq , (B25)

follows from the eigenvalue (−1)nq of σ̂z for the state |nq〉 on
H. Inserting Eq. (B24) into Eq. (B14) finally yields the map

e−iλ̂†(θ)Ĥle
iλ̂(θ) = πl hl

2Q̇l

∑
n∈N

e
−iλ∗

ṅ+
l �n(θ)

e
iλṅ−

l �n(θ)
NlnZln

×
∑

m∈Ml

VlmR̂†
lm |n〉〈n| R̂lm, (B26)

on H⊗Q.
As any quantum state |�0〉 ∈ F maps to |�0〉 ∈ H⊗Q, we

can now express the expectation value in Eq. (5a), using
Eqs. (B2) and (B26), as Eq. (14a) with the coefficients in
Eq. (15) given by Eqs. (B13), (B18), and (B25) for Nln, Vlm,
and Zn, respectively. As the operator in Eq. (B8) is already
diagonal, one also straightforwardly finds Eq. (14b) from this
equation.
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