
Explore gates and circuits with the 
Quantum Composer 

Category How-to 

What is it? 

IBM Quantum Composer is a graphical quantum programming tool that Lets 

you drag and drop operations to build quantum circuits and run them on real 

quantum hardware or simulators. 

What can it do? 

Visualize qubit states 

See how changes to your circuit affect the state of qubits, shown as an 

interactive q-sphere, or histograms showing measurement probabilities or 

statevector simulations. 

Run on quantum hardware 

Run your circuits on real quantum hardware to understand the effects of 

device noise. 

Automatically generate code 

Instead of writing code by hand, automatically generate OpenQASM or 

Python code that behaves the same way as the circuit you created with 

Quantum Composer. 

Tour of the interface 

IBM Quantum Composer has a customizable set of tools that allow you to 

build, visualize, and run quantum circuits on quantum systems or simulators. 



Use the More options menu on each window to access additional tools and 

actions. 
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1. Tools panels - Use the side panel to view your files or jobs, or the 

documentation. To close the side panel, click the icon for the open tab. 

2. Menu bar - Use these menus to create a new circuit, manage saved 

circuits and registers, customize your workspace, and more. 

3. Run area - Change the run settings and then run your circuit on a 

quantum system or simulator. 

4. Composer files - The circuits you create save automatically and display 

in the Composer files panel. 

5. Circuit name - Click here to name your circuit. 

6. Operations catalog - These are the building blocks of quantum circuits. 

Drag and drop these gates and other operations onto the graphical circuit 

editor. Different types of gates are grouped together by color. For 

example, classical gates are dark blue, phase gates are light blue, and 

non-unitary operations are grey. 

To learn about the available gates and operations, right-click an 

operation and select Info to read its definition. 

7. Code editor - Use the View menu to open or close the code editor, which 

allows you to view and edit the OpenQASM or Qiskit code for the circuit. 

8. Graphical circuit editor -This is where you build a circuit. Drag gates and 

other operations onto the horizontal qubit "wires" that make up your 

quantum register. 



To remove a gate from a wire, select the gate and click the trash can icon. 

To edit the parameters and settings on gates that support editing, select 

the gate on the graphical editor and click Edit. 

9. Toolbar - Access frequently used tools to undo and redo actions, change 

the gate alignment, and switch to inspect mode. Inspect mode lets you 

view a step-by-step view of the qubit states as you circuit computation 

evolves. To learn more, see Inspect your circuit, step-by-step. 

10.Phase disks -The phase of the qubit state vector in the complex plane is 

given by the line that extends from the center of the diagram to the edge 

of the gray disk (which rotates counterclockwise around the center 

point). 

Use the View menu to show or hide the phase disks. 

11.Visualizations - Visualizations characterize your circuit as you build it. 

They use a single-shot statevector simulator, which is different from the 

system specified in the Setup and run settings. Note that the 

visualizations ignore any measurement operations you add. Sign in and 

click Setup and run to get results from the specified backend instead. 

To learn about the visualizations, see Visualizations. 

Build, edit, and inspect quantum circuits 

1. Open IBM Quantum Composer 

1. (Optional) If you are not currently signed in to IBM Quantum, select Sign 

in in the upper right corner. Then, you can either sign in or Create an 

IBMid account. 

If you don't sign in, the visualizations automatically show simulated 

results for up to four qubits. If you want to run your circuit on a quantum 

system or simulator, or if you want to visualize a circuit that has more 

than four qubits, you must sign in. 

2. Open IBM Quantum Learning using the application switcher in the top 

right, and clicking Learning. 

3. Open IBM Quantum Composer by clicking the Composer in IBM 

Quantum Learning navigation. The workspace displays an untitled empty 

circuit. 

4. Name your circuit by clicking on the words Untitled circuit and typing in 

a name for your circuit. Click the checkmark to save the name. 



5. (Optional) Customize your workspace: 

- Use the View menu to change from the default theme to a monochrome 

theme. You can also select which panels to include on your workspace, 

then use the menu in the right corner of any panel to access options for 

further customization. The options to show or hide phase disks, choose 

the alignment of the qubits on your circuit, and reset the workspace to the 

default are in the View menu as well. 

- Open your account settings to switch between dark and Light workspace 

themes. 

- If you are signed in, the Files panel displays by default. You can close it by 

clicking the Files icon. 

To build a circuit, you can either drag and drop operations, or you can enter 

OpenQASM code into the code editor. Your circuit is automatically saved 

every time you make a change. 

2. Build your circuit with drag-and-drop 

Operations catalog 

Drag and drop operations from the operations catalog onto the quantum and 

classical registers. Start typing in the search window to quickly find an 

operation. 

Collapse and expand the operations catalog by clicking the icon in the upper 

right corner of the operations panel. You can also switch between an 

expanded or condensed view of the operations by using the icons next to the 

search window. 

Right-click an operation icon and select Info to view the definition of an 

operation. along with its QASM reference. 

To undo or redo, use the curved arrows in the toolbar. 

Alignment 

Choose Freeform alignment to place operations anywhere on the circuit. For 

a more compact view of your circuit, choose Left alignment. To see the order 

in which operations will execute, choose Layers alignment, which will apply 

left alignment and add column delineators that indicate the execution order, 

from left to right and top to bottom. 



Once operations are placed on your circuit, you can continue to drag and 
drop them to new positions. 

Capy and paste 

Click an operation and use the icons in the contextual menu to copy and 
paste it. 

Select multlple operations 

You can select several operations to copy and paste them, drag them to a 
new location, or group them into a aistom unitary operation that displays in 
your operations catalog and functions as a single gate. 

To select more than one operation, place your cursor just outside one of the 
operations, then click and drag across the area to select. Shift-click 
individual operations to select or deselect them. A dashed line outlines the 
set of operations you are selecting, and each operation that is actually part 
of the selection is outlined in blue. 

For example, in the following image, the Hadamard gate on q1 and the ex 
gate are selected. The Hadamard gate on qO is not selected. 
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Select Copy from the contextual menu to copy the group. 
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To paste the group of operations, right-click in the circuit and select Paste. 

Build a custom op1ratlon usfng the group feature 

To group several operations together and save them as a custom operation, 
first select the operations as described above, then select Group from the 
contextual menu. You are prompted to name the custom operation or you 
can accept the default name. Click OK, and the custom operation will be 
represented by a single box, both in your circuit and in the operations 
catalog. 

You can now drag and drop the new operation throughout your circuit. Note 
that the operation is saved to this circuit but does not appear in the 
operations catalog for other circuits. 

You can also build a custom operation directly in the OpenQASM code editor; 
see Create a custom operation in OpenQASM for more information. 

unaroup a custom or predeftned operation 

To ungroup the gates within a custom or predefined operation, click the 
operation on the Composer and select Ungroup from the contextual menu. 
You can now move the separate operations individually. When you ungroup 
an operation, each element in the former group executes independently, 
which may mean they execute in a different order from when they were 
grouped together. 

Expand an operation'• definition 



To view the operations that constitute a custom or predefined operation 

without ungrouping them. click Expand definition from the contextual menu 

to see the defining gates. Click the icon again to collapse the definition. 

Rename or delete a custom operation 

To rename or delete a custom operation, right-click the operation in the 

operations catalog and select Rename or Delete. Deleting a custom 

operation from the operations catalog also deletes any instances of it on 

your circuit; however. deleting a custom operation from the circuit does not 

delete it from the operations catalog. 

Add or remove registers 

To add or remove quantum or classical registers. click Edit-+ Manage 

registers. You can increase or decrease the number of qubits or bits in your 

circuit and rename the registers. Click Ok to apply the changes. You can also 

simply click the register name (e.g.. q [0] ) and use the options in the 

contextual menu to quickly add or delete registers or qubits. 

Add a conditional 



To add a conditional to a gate, drag the if operation to the gate and set 

the parameters in the Edit operation panel that automatically opens. You can 

also double-click a gate to access the Edit operation panel, and set the 

conditional parameters that way. 

Add a control modifier 

A control modifier yields a gate whose original operation is now contingent 

on the state of the control qubit. For more details, right-click the control 

modifier symbol in the operations catalog, then click Info. 

Drag the control modifier to a gate in order to add a control to it. A dot 

appears on the control qubit and a line connects it to the target qubit. To edit 

which qubit is the control or target, click the gate and select the Edit 

operation icon (or double-click the gate) to open the Edit operation panel, 

then specify your parameters. From the Edit operation panel, you can also 

remove a control from a qubit by clicking the x next to the qubit name. 
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Visualize with phase disks throughout your circuit 

To visualize the state of all qubits at any point in your circuit, drag the phase 

disk icon from the operations catalog and place it anywhere in your circuit. A 



column of barrier operations and a column of phase disks are added (one 

barrier operation and phase disk per qubit). Hover over each phase disk to 

read the state of the qubit at that point in the circuit. Note that adding the 

phase disks does not alter your circuit; they are merely a visualization tool. 

Read more about the phase disk visualization here. 

Export a circuit image 

To export an image of your circuit, select File-+ Export. The Export options 

window opens, where you can choose a theme (light, dark, white on black, 

or black on white), a format (.svg or .png), and whether you want to apply a 

line wrap. After you've chosen your options, click Export. 

Conditional reset 

Several hardware systems can now perform conditional reset. If you have 

access to these systems, you can now initialize (or re-initialize) qubits in the 

IO) state, through measurement followed by a conditional X gate. 

Conditional reset will be rolled out to more systems, including open-access 

systems, over time. 

3. Build your circuit with OpenQASM code 

Note IBM Quantum Composer currently supports OpenQASM 2.0. 

- To open the code editor, click View-+ Panels -+ Code Editor. 

- See the Composer operations glossary for OpenQASM references to gates 

and other operations. 

- You can define your own custom operations; see 

Create a custom operation in OpenQASM. 

- For more information on using the OpenQASM language, including sample 

lines of code, see the original research paper, 

Open Quantum Assembly Language. The table of OpenQASM language 

statements from the paper is reproduced below. The OpenQASM grammar 

can be found in Appendix A of the paper. 

Statement 

OPENQASM 2.e; 

Description 

Denotes a file in 
OpenQASM format 
(see [a]) 

Example 

OPENQASM 2.e; 



Statement 

qreg name[size]; 

creg name[size]; 

include "filename"; 

gate name(params) 
qargs 

opaque name(params) 
qargs; 

II comment text 

U(theta,phi,lambda) 
qubitlqreg; 

ex 
qubitlqreg,qubitlqreg; 

measure qubitlqreg -> 
bitlcreg; 

reset qubitlqreg; 

gatename(params) 
qargs; 

if(creg==int) qop; 

barrier qargs; 

Description 

Declare a named 
register of qubits 

Declare a named 
register of bits 

Open and parse 
another source file 

Declare a unitary 
gate 

Declare an opaque 
gate 

Comment a line of 
text 

Apply built-in 
single-qubit gate(s) 
(see [b]) 

Apply built-in 
CNOT gate(s) 

Make 
measurement(s) in 

Z basis 

Prepare qubit(s) in 

IO) 

Apply a user­
defined unitary 
gate 

Conditionally apply 
quantum operation 

Prevent 
transformations 
across this source 
line 

Example 

qreg q[S]; 

creg c[S]; 

include 
"qelib1.inc"; 

(see text of paper) 

(see text of paper) 

II oops! 

U(pil2,2\*pi/3,0) 
q [0]; 

ex q[0],q[1l; 

measure q -> c; 

reset q[0]; 

crz(pil2) 
q [1] , q [0] ; 

if(c==S) ex 
q [0] , q [1] ; 

barrier 
q [0] , q [1] ; 

[a] This must appear as the first non-comment line of the file. 

[b] The parameters theta, phi, and lambda are given by parameter 

expressions; for more information, see page 5 of the paper and Appendix A. 

Create a custom operation in OpenQASM 



You can define new unitary operations in the code editor (see the figure 

below for an example). The operations are applied using the statement 

name(params) qargs; just like the built-in operations. The parentheses are 

optional if there are no parameters. 

To define a custom operation, enter it in the OpenQASM code editor using 

this format: gatename (params) qargs; . If you click +Add in the operations 

list, you will be prompted to enter a name for your custom operation, which 

you can then build in the code editor. 

Once you have defined your custom operation, drag it onto the graphical 

editor and use the edit icon to tine-tune the parameters. 

a) The gates to be included in the custom operation: 

b) The code for the new operation: 

gate nG0 a , b, c { 

h a ; 

} 

ex a , lb ; 

z b; 

ex b , c ; 

c) The new operation in the graphical editor: 



4. Inspect your circuit, step-by-step 

The Circuit Inspector de-mystifies the inner workings of the circuits you 

create. It steps through a simulation of your circuit, one layer at a time, so 

that you can see the state of the qubits as the computation evolves. 
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- In the View menu, select the panels for the visualizations that you want to 

use. 

- Click the Inspect toggle in the toolbar. Note that once the Circuit 

Inspector is toggled on, you cannot add any more operations until it is 

turned off again. 

- If you built your circuit with the Freeform alignment turned on, note that 

the Circuit Inspector automatically turns on the Left alignment. 



- To move step-by-step through visualizations of your circuit's components, 

control the movement of the Circuit Inspector using the forward and 

rewind buttons. 

I< < IJio > >II 

Inspector controls, in order: jump to the beginning of a circuit, step 

backward, play from one break point to the next, step forward, jump to the 

end of a circuit. 

- To inspect only some operations, click the operations you want to be 

inspected, and a colored overlay appears over each that indicates they will 

be included when you run the Circuit Inspector. To unselect an operation, 

click on it again, and the overlay disappears. 

- To learn more about interpreting visualizations, see the Visualizations 

topic. 

- To close the Inspector and return to editing your circuit, click the Inspect 

toggle in the toolbar. 

Randomness in the simulator The simulator creates randomness by 

generating results based on a seed. The seed is the initial value 

introduced into the algorithm that generates pseudorandom numbers. 

You can see the seed number in a box above Quantum Composer. You 

can also set the seed yourself by changing the value in the box. 

Run circuits and view results 

Follow the steps below to run quantum circuits on IBM Quantum systems or 

simulators, and view the results. 

Choose your job settings 

Click Setup and run in the upper right corner. In the window that opens, 

select an available system or simulator. Systems send the circuit to real 

quantum hardware, and simulators have the word 'simulator' in the name. 



Next, you can choose your provider and set the number of shots (executions) 

of your circuit that the backend will perform. 

You can optionally name the job and add tags in this panel as well. This will 

not change the name of the circuit. 

If you have an open access account and choose a physical system, you will 

see the remaining number of jobs that you can have in the queue at any one 

time. This will not apply if you have a premium access account. Once a job 

has finished, the job limit will replenish. See more information in 

Fair-share queueing. 

Run Settings ~ '%'.Hf ''fl 
Backend: 20q - backend1 v Provider: defaultHub/defaultGroup/defaultProject v Shots (max 8192) : 1 Job limit: 100 remaining 

Note When you run a circuit, it is automatically sent to the least busy 

system, unless you change the system in the Run settings. If you run 

the same circuit again, the system selection window will default to your 

previous choice. 

Click 11 Run on xxxxx 11 

You can view the job's progress by clicking the Jobs icon. 

View results 

Once your job completes, the details are updated in the Jobs panel. You can 

also see more information by clicking See more details. 

The Jobs results page displays run details, diagrams of the original and the 

transpiled circuit, a histogram of the results, and OpenQASM and Qiskit tabs 

to view both original and transpiled circuits in OpenQASM or Qiskit. 

You can download the circuits and the histogram by clicking the menu in the 

upper right corner of each diagram, then selecting a format for the download 

(PNG, PDF, or SVG; additionally, you can export the histogram as a CSV file). 

You can open the OpenQASM circuits directly in Composer, and you can 

open the Qiskit circuits directly in Quantum Lab. 



Visualizations 

The live visualizations in IBM Quantum Composer show you different views 

of how quantum circuits affect the state of a collection of qubits. Each type 

of live visualization is explained in detail below. 

Randomness in the simulator The live visualizations come from a 

single-shot statevector simulator. which is different from the system 

specified in the Run settings. which can have multiple shots. The 

simulator creates randomness by generating results based on a seed. 

The seed is the initial value introduced into the algorithm that generates 

pseudorandom numbers and simulates quantum randomness. Because 

the seed is fixed during your circuit session. your live visualizations will 

be repeatable. However. when you close your circuit and re-open it. the 

seed will have a new value. so you may see a different visualization. You 

can set the seed yourself by changing the value in the box (up to four 

digits) after the words Visualizations seed above the Composer. and 

observe how the live visualizations for your circuit change. 

View visualizations 

The live visualizations are shown in windows at the bottom of the Quantum 

Composer workspace (except the phase disk. which appears at the end of 

each qubit wire). You can choose any combination of statevector. 

probabilities. and q-sphere visualizations to appear at the bottom of the 

workspace. Select or unselect visualizations in the View menu. 

Download visualizations 

Download one of the visualizations at the bottom of the Quantum Composer 

workspace by clicking the More options menu in the visualization window. 

You can download visualizations as an SVG. a PNG. or a CSV of the 

underlying data. You can also download the visualization images of the 

measurement probabilities and statevector histograms as a PDF. 

Phase disk 

A single-qubit state can be represented as 



where pis the probability that the qubit is in the I 1) state, and <pis the 

quantum phase.pis strongly analogous to a classical probabilistic bit. For 

p = 0, the qubit is in the IO) state, for p = 1 the qubit is in the I 1) state, 

and for p = 1/2 the qubit is a 50/50 mixture. We call this a superposition 

as, unlike classical bits, this mixture can have a quantum phase. The phase 

disk visualizes this state. 

The phase disk at the terminus of each qubit in IBM Quantum Composer 

gives the local state of each qubit at the end of the computation. The 

components of the phase disk are described below. 

Probability the qubit is in the 11) state 

The probability that the qubit is in the I 1) state is represented by the blue 

disk fill. 
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Quantum phase 

The quantum phase of the qubit state is given by the line that extends from 

the center of the diagram to the edge of the gray disk (which rotates 

counterclockwise around the center point). 
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Example: phase disks for two different qubits 
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Two examples of the phase disk visualization. The first example is a I 1) state 

and the second shows the (IO) - 11) )/.../2 state with a nonzero relative 

phase. 

Connection to the Bloch sphere 

The phase disk, which contains all the information in the Bloch sphere, is a 

two-dimensional representation of a qubit. To convert to the Bloch sphere 

representation: x == 2Jp(l - p)Re[ei'P], y == 2Jp(l - p)Im[ei'P], and 

z == 1 - 2p. 

N-qubit states: maximum 15 qubits 

An N-qubit quantum state takes the form 

2N-1 

1'¢) == Jl=P10 ... o) + L ei'PkJPklk), 
k=l 

where Pk is the probability that the qubits are in the state lk) with quantum 

phase 'Pk with respect to the I0 ... 0) state. p == L:ki=O Pk is the probability 

that the qubits are not in the ground state I0 ... 0). Here it is simple to see 

that for an N-qubit quantum state there are 2N - 1 probabilities and 2N -
1 phases. The phase disk fails to represent this state, as N-qubit phase disks 

would only contain N probabilities and N phases; this is because most 

states are entangled and are not separable into independent single-qubit 

quantum states. To represent that full information is not contained in this 

visualization, we introduce the reduced purity as a component in the phase 

disk. 

Reduced purity of the qubit state 

The radius of the black ring represents the reduced purity of the qubit state, 

which for qubit j in an N-qubit state 1'¢) is given by Tr [Trii:j [1'¢) ( '¢ IJ 2
]. 



The reduced purity for a single qubit is in the range [0.5, 1 ]; a value of one 

indicates that the qubit is not entangled with any other party. In contrast, a 

reduced purity of 0.5 shows that the qubit is left in the completely mixed 

state, and has some level of entanglement over the remaining N - 1 qubits, 

and possibly even the environment. 
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Probabilities view 

8-qubit limit 

This view visualizes the probabilities of the quantum state as a bar graph. 

The horizontal axis labels the computational basis states. The vertical axis 

measures the probabilities in terms of percentages. In this view the 

quantum phases are not represented, and is therefore an incomplete 

representation. However, it is useful for predicting the outcomes if each 

qubit is measured and the value stored in its own classical bit. 

Consider the following quantum circuit and its probabilities view: 

cl 
0 

A circuit consisting of a column of Hadamards that creates an equal 

superposition of the computational basis states, followed by a two-qubit 

controlled-Z (CZ) gate. 
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A quantum circuit and its probabilities view. 

The circuit puts the two qubits into the state 1'¢) = (IOO) + IOl) + 110) -
Ill) )/2. The computational basis states are IOO), 110), IOl), and Ill). The 

probabilities for each of the computational states is 1/4. 

Q-sphere view 

5-qubit limit 

The q-sphere represents the state of a system of one or more qubits by 

associating each computational basis state with a point on the surface of a 

sphere. A node is visible at each point. Each node's radius is proportional to 

the probability (pk) of its basis state, whereas the node color indicates the 

quantum phase (cpk). 

The nodes are laid out on the q-sphere so that the basis state with all zeros 

(e.g., IOOO)) is at its north pole, and the basis state with all ones (e.g., 1111)) 
is at its south pole. Basis states with the same number of zeros (or ones) lie 

on a shared latitude of the q-sphere (e.g., IOOl), 1010), I 100)). Beginning at 

the north pole of the q-sphere and progressing southward, each successive 

latitude has basis states with a greater number of ones; the latitude of a 

basis state is determined by its Hamming distance from the zero state. The 

q-sphere contains complete information about the quantum state in a 

compact representation. 

Consider the following quantum circuit and its q-sphere: 
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A quantum circuit and the q-sphere representing the state the circuit 

creates. 

You can select, hold, and drag to rotate the q-sphere. To return the q-sphere 

to its default orientation, select the rewind-arrow button to the top right of 

the q-sphere. 

What is the difference between a Bloch sphere and a q-sphere? It is 

important to highlight that the q-sphere is not the same as the Bloch 

sphere, even for a single qubit. Indeed, like the phase disk, the Bloch 

sphere gives a local view of the quantum state, where each qubit is 

viewed on its own. When trying to understand how registers of qubits 

(multi-qubit states) behave upon the application of quantum circuits, it 

is more insightful to take a global view and look at the quantum state in 

its entirety. The q-sphere provides a visual representation of the 

quantum state, and thus this global viewpoint. Therefore, when 

exploring quantum applications and algorithms on small numbers of 

qubits, the q-sphere should be the primary visualization method. 



Statevector view 

6-qubit limit 

It is common to call ...[iikeicpk the quantum amplitude. This view visualizes 

the quantum amplitudes as a bar graph. The horizontal axis labels the 

computational basis states. The vertical axis measures the magnitude of the 

amplitudes Cy!PiJ associated with each computational basis state. The color 

of each bar represents the quantum phase (<pk). 

Consider the following quantum circuit and its statevector view: 
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The statevector at the terminus of the above circuit. The color wheel maps 

phase angle to color. The output state is expressed as a list of complex 

numbers. 

The circuit puts the two qubits into the state 17/J) = (IOO) + IOl) + 110) -
Ill) )/2. The computational basis states are IOO), 110), IOl), and Ill). The 

magnitudes of the amplitudes are 1/2, and the quantum phases with 

respect to the ground state are 0 for IOl) and 110), and 7r for Ill). 



Composer operations glossary 

This page is a reference that defines the various classical and quantum 

operations you can use to manipulate qubits in a quantum circuit. Quantum 

operations include quantum gates, such as the Hadamard gate, as well as 

operations that are not quantum gates, such as the measurement operation. 

Each entry below provides details and the OpenQASM reference for each 

operation. See the topic on Build your circuit with OpenQASM code for more 

information. 

The q-sphere image in each gate entry below shows the state after the gate 

operates on the initial equal superposition state ~ I:7:~ 1 Ii), where n is 

the number of qubits needed to support the gate. See the q-sphere topic for 

more information on this visualization. 

You can define a custom operation to use in IBM Quantum Composer. For 

instructions, see the Create a custom operation in OpenQASM topic. 

Note The gate colors are slightly different in the light and dark themes. 

The colors from the light theme are shown here. 

Click a quantum operation below to view its definition. Operations no longer 

used in Circuit Composer are listed in the Obsolete operations section as a 

historical reference. 

Classical gates 

NOT Gate 

The NOT gate, also known as the Pauli X gate, flips the IO) state to 11), and 

vice versa. The NOT gate is equivalent to RX for the angle 7r or to 'HZH'. 

Composer 
reference 

• 

OpenQASM 
reference 

x q[8]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 '°'2n-1 1 ·) J2n" L..,,i=O i , where n 
is the number of qubits 
needed to support the 
gate. 



CNOT Gate 

The controlled-NOT gate, also known as the controlled-x (CX) gate, acts on a 

pair of qubits, with one acting as 'control' and the other as 'target'. It 

performs a NOT on the target whenever the control is in state j 1). If the 

control qubit is in a superposition, this gate creates entanglement. 

All unitary circuits can be decomposed into single qubit gates and CNOT 

gates. Because the two-qubit CNOT gate costs much more time to execute 

on real hardware than single qubit gates, circuit cost is sometimes measured 

in the number of CNOT gates. 

Composer 
reference 

.. a 

Toffoli gate 

OpenQASM 
reference 

ex q[0], 
q [1]; 

Q-Sphere 

• 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 "'2n-1 1 ·) V¥ LJi=O i , where n 
is the number of qubits 
needed to support the 
gate. 

The Toffoli gate, also known as the double controlled-NOT gate (CCX), has 

two control qubits and one target. It applies a NOT to the target only when 

both controls are in state j 1). 

The Toffoli gate with the Hadamard gate is a universal gate set for quantum 

computing. 

Composer 
reference 

II 
SWAP gate 

OpenQASM 
reference 

CCX q[0J, 
q [1]' 

q [2]; 

Q-Sphere 

• 

11101 

.9 , 

The SWAP gate swaps the states of two qubits. 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 2n-1 • 
v'2i' Li=O Ii), where n 
is the number of qubits 
needed to support the 
gate. 



Composer 
reference 

• 
Identity gate 

OpenQASM 
reference 

swap 
q [0] I 

q [1]; 

Q-Sphere 

• 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 2n-1 • 
5n Li=O Ii), where n 
is the number of qubits 
needed to support the 
gate. 

The identity gate (sometimes called the Id or the I gate) is actually the 

absence of a gate. It ensures that nothing is applied to a qubit for one unit of 

gate time. 

Composer reference Qasm reference 

• id q[0]; 

Phase gates 

Tgate 

The T gate is equivalent to RZ for the angle 7r / 4. Fault-tolerant quantum 

computers will compile all quantum programs down to just the T gate and its 

inverse, as well as the Clifford gates. 

Composer 
reference 

T 

OpenQASM 
reference 

t q[0]; 

Q-Sphere 

• 
cb 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 "'""'2n-1 1 ·) V2n L..ti=O i , where n 
is the number of qubits 
needed to support the 
gate. 



Sgate 

The S gate applies a phase of i to the I 1) state. It is equivalent to RZ for the 

angle 7r /2. Note that S=P(7r /2). 

Composer 
reference 

s 

Zgate 

OpenQASM 
reference 

s q[0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i '"'2n-1 1 ·) h J2n" 0 i=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 

The Pauli Z gate acts as identity on the IO) state and multiplies the sign of 

the I 1) state by -1. It therefore flips the I+) and I-) states. In the+/- basis, 

it plays the same role as the NOT gate in the IO)/ll) basis. 

Composer 
reference 

z 

rt gate 

OpenQASM 
reference 

z q [0] ; 

Q-Sphere 

• 

Also known as the Tdg or T-dagger gate. 

The inverse of the T gate. 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 '"'2 -1 
1
.) J2n" L.,,i=O i , where n 

is the number of qubits 
needed to support the 
gate. 



Composer 
reference 

st gate 

OpenQASM 
reference 

tdg 
q [0]; 

Q-Sphere 

• 

Also known as the Sdg or S-dagger gate. 

The inverse of the S gate. 

Composer 
reference 

Phase gate 

OpenQASM 
reference 

sdg 
q [0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 2n-1 • 
5n Li=O Ii), where n 
is the number of qubits 
needed to support the 
gate. 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 2n-1 • 
5n Li=O Ii), where n 
is the number of qubits 
needed to support the 
gate. 

The Phase gate (previously called the U1 gate) applies a phase of eiO to the 

Jl) state. For certain values of 0, it is equivalent to other gates. For example, 

P(rr)=Z, P(rr/2)=S, and P(rr / 4)=T. Up to a global phase of ei0/ 2, it is 

equivalent to RZ(O). 

Composer 
reference 

p 

OpenQASM 
reference 

p(theta) 
q [0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i """'2n-1 1 ·) h v'2" Lii=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 



In IBM Quantum Composer, the default value for theta is 7r /2. 

RZ gate 

The RZ gate implements exp(-i~Z). On the Bloch sphere, this gate 

corresponds to rotating the qubit state around the z axis by the given angle. 

Composer 
reference 

OpenQASM 
reference 

Q-Sphere 
Note about q-sphere 
representations 

z rz(angle) 
q [8]; 

• 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i ~2n-1 1 ·) h ...fF L.,,i=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 

In IBM Quantum Composer, the default value for angle is 7r /2. Therefore, 

this is the angle used in the q-sphere visualization. 

Non-unitary operators and modifiers 

Reset operation 

The reset operation returns a qubit to state IO), irrespective of its state 

before the operation was applied. It is not a reversible operation. 

Composer reference OpenQASM reference 

IO) reset q[8]; 

Measurement 

Measurement in the standard basis, also known as the z basis or 

computational basis. Can be used to implement any kind of measurement 

when combined with gates. It is not a reversible operation. 



Composer reference OpenQASM reference 

z 
17\ measure q[8]; 

Control modifier 

A control modifier yields a gate whose original operation is now contingent 

on the state of the control qubit. When the control is in the I 1) state, the 

target qubit(s) undergo the specified unitary evolution. In contrast, no 

operation is performed if the control is in the JO) state. If the control is in a 

superposition state, then the resulting operation follows from linearity. 

Drag the control modifier to a gate in order to add a control to it. Dots will 

appear above and below the gate, on the qubit wires that can be targets that 

control; click one or more dots to assign the target to one or more qubits. 

You can also assign a control by right-clicking a gate. 

To remove a control, right-click the gate and select the option to remove 

control. 

Composer reference OpenQASM reference 

• c 

Barrier operation 

To make your quantum program more efficient, the compiler will try to 

combine gates. The barrier is an instruction to the compiler to prevent these 

combinations being made. Additionally, it is useful for visualizations. 

Composer reference 

I 
I 
I 
I 

OpenQASM reference 

barrier q; 



Hadamard gate 

Hgate 

The H, or Hadamard, gate rotates the states I 0) and I 1) to I+) and I-), 
respectively. It is useful for making superpositions. If you have a universal 

gate set on a classical computer and add the Hadamard gate, it becomes a 

universal gate set on a quantum computer. 

Composer 
reference 

Quantum gates 

VX gate 

OpenQASM 
reference 

h q [8] ; 

Q-Sphere 

"' • 
~ 

Also known as the square-root NOT gate. 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i ~2n-1 1 ·) h V¥ Lli=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 

This gate implements the square-root of X, ../X. Applying this gate twice in 

a row produces the standard Pauli-X gate (NOT gate). Like the Hadamard 

gate, VX creates an equal superposition state if the qubit is in the state IO), 
but with a different relative phase. On some hardwares, it is a native gate 

that can be implemented with a 7r /2 or X90 pulse. 

Composer 
reference 

• 
vx_t gate 

OpenQASM 
reference 

sx q[8]; 

Q-Sphere 

l 
Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i ~2n-1 1 ·) h . .J2n" Lli=O i , w ere n 1s 

the number of qubits 
needed to support the gate. 

Also known as the SXdg or square-root NOT-dagger gate. 



This is the inverse of the v'X gate. Applying it twice in a row produces the 

Pauli-X gate (NOT gate), since the NOT gate is its own inverse. Like the VX 
gate, this gate can be used to create an equal superposition state, and it too 

is natively implemented on some hardwares using an X90 pulse. 

Composer 
reference 

• 
Ygate 

OpenQASM 
reference 

sxdg 
q [0]; 

Q-Sphere 

l 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 """'2n-1 1 ·) h • v12n Lli=O i , w ere n is 

the number of qubits 
needed to support the gate. 

The Pauli Y gate is equivalent to Ry for the angle 1r. It is equivalent to 

applying X and Z, up to a global phase factor. 

Composer 
reference 

• 
RX gate 

OpenQASM 
reference 

y q[0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 """'2n-1 1 ·) h v'2" Lli=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 

The RX gate implements exp(-i~X). On the Bloch sphere, this gate 

corresponds to rotating the qubit state around the x axis by the given angle. 

Composer 
reference 

II 

OpenQASM 
reference 

rx(angle) 
q [0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 """'2n-1 1 ·) h v'2" Lli=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 



In IBM Quantum Composer, the default value for angle is 7r /2. Therefore, 

this is the angle used in the q-sphere visualization. 

RY gate 

The RY gate implements exp(-i~Y) . On the Bloch sphere, this gate 

corresponds to rotating the qubit state around they axis by the given angle 

and does not introduce complex amplitudes. 

Composer 
reference 

II 

OpenQASM 
reference 

ry(angle) 
q [8]; 

Q-Sphere 
Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

i '"'2n-1 1 ·) h 
5 L...ti=O i , w ere n 

is the number of qubits 
needed to support the 
gate. 

In IBM Quantum Composer, the default value for angle is 7r /2. Therefore, 

this is the angle used in the q-sphere visualization below. 

RXXgate 

The RXX gate implements exp(-iO /2X ® X). The M0lmer-S0rensen 

gate, the native gate on ion-trap systems, can be expressed as a sum of RXX 

gates. 

Composer 
reference 

II 

OpenQASM 
reference 

rxx(angle) 
q [8], 

q [1]; 

Q-Sphere 

• 

""~"" 
I 

Note about q-sphere 
representations 

The q-sphere 
representation shows 
the state after the gate 
operates on the initial 
equal superposition 

1 '"'2n-1 
1
.) 

state 5 L...ti=O i , 

where n is the number 
of qubits needed to 
support the gate. 

In IBM Quantum Composer, the default value for angle is 7r /2. 

RZZgate 

The RZZ gate requires a single parameter: an angle expressed in radians. 

This gate is symmetric; swapping the two qubits it acts on doesn't change 



anything. 

Composer 
reference 

• 

OpenQASM 
reference 

rzz(angle) 
q [0] I 

q [1]; 

Q-Sphere 

• 

""cb"" 

Note about q-sphere 
representations 

The q-sphere 
representation shows 
the state after the gate 
operates on the initial 
equal superposition 

1 ~2n-1 I.) 
state J21' Lii=O i , 

where n is the number 

of qubits needed to 
support the gate. 

In IBM Quantum Composer, the default value for angle is 7r /2. 

Ugate 

(Previously called the U3 gate) The three parameters allow the construction 

of any single-qubit gate. Has a duration of one unit of gate time. 

Composer 
reference 

• 

OpenQASM 
reference 

u(theta, 
phi, lam) 
q [0]; 

Q-Sphere 

• 

Note about q-sphere 
representations 

The q-sphere 
representation shows the 
state after the gate 
operates on the initial 
equal superposition state 

1 ~2n-1 J ' ) h ../¥ Lii=O i , w ere n 
is the number of qubits 
needed to support the 
gate. 

In IBM Quantum Composer, the default value for angle is 7r /2. 




