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We study semiclassical communication in positivity-violating k-essence scalar field theories, with
superluminal modes propagating on a rolling background. The self-interactions due to the nonlinear nature
of these theories pose a constraint on the rate of superluminal information transfer. We derive a novel
bit rate bound on superluminal communication within a conceptual model, to which a general class of
k-essence theories reduces. Our result implies the possibility that, even if these positivity-violating
k-essence theories may not possess a maximal information propagation speed, there is nevertheless an
upper bound on the rate of information transfer.
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I. INTRODUCTION

Special relativity [1,2] is undoubtedly one of the most
precise and concise theories of physics. Arising from its
two underlying principles is a profound spacetime sym-
metry known as Lorentz invariance (LI). The causal
structure of spacetime compatible with LI thus prohibits
any superluminal motion that carries information [3–6],
and the speed of light in the vacuum c ¼ 1 becomes the
universal upper bound for information propagation. When
consistently quantized, LI also puts tight constraints on the
matter sector [7–12]. Experimentwise, decades of search
for signs of Lorentz violation has only succeeded in
improving its accuracy [13–17]. In the case with gravity,
even though LI is not a strict isometry of the universe, it is
still important in the sense of local inertial frames. At small
distances, the spacetime curvature is subdominant, and
physics that survives the decoupling limit Mp → ∞
approaches that of the Minkowski spacetime. Moreover,
the Lorentz-invariant causal structure of the local inertial
frame is inherited in general relativity. Yet despite the great
success of relativity, it remains a possibility, if not an
elegant one by today’s standards, that there exists a
Lorentz-violating dark sector so weakly coupled to the

Standard Model (SM) that all the present experiments have
not yet unveiled. Without the constraint of LI, the speed
limit may be alleviated, possibly even indefinitely.
It has been known for a long time that certain families

of scalar field theories admit superluminal modes when
expanded upon an IR background [18–22], which sponta-
neously breaks LI (for similar superluminality setups in
different contexts, see [23–26]). These k-essence scalars,
although equipped with a formally local and Lorentz-
invariant Lagrangian, are secretly nonlocal macroscopically
[27]. The wrong signs in front of the higher-derivative
operators in their Lagrangian forbid any UV completion
satisfying the usual axioms of S-matrix theory. However, an
open mind towards this is that, gravity aside [28], these
unusual IR superluminal k-essence theories may not
need to have a usual UV completion satisfying locality,
analyticity, unitarity, and LI. They stand on their own as
consistent IR theories respecting a weaker notion of
causality [29–31], with a novel UV description unlike
anything we have developed before. For instance, in
nonstandard UV completions such as the qubit models
[32,33], LI is not guaranteed in the UV and different fields
can propagate at different speeds [32]. It is then not hard to
imagine that on the lattice, a field belonging to the dark
sector has a sound speed different from that of the SM
fields, and is described at long distances by a positivity-
violating k-essence Lagrangian. Therefore, it is never-
theless useful to understand their novelty within the IR
region as a first step, namely, the exciting possibility of
superluminal communication.
The reason for such a study is twofold. On one hand,

superluminal modes, if exist, can be used to transmit
information, which can be technologically useful.
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For instance, the k-essence field may live in the dark sector
as a potential dark “Aether” for communication. The
protocol for this superluminal-communication channel is
thus necessary. On the other hand, if indeed a universal
speed bound for information transfer is relaxed and local-
ity/LI is forsaken, nature might still pose a universal bit rate
bound for information transfer. As we will show in this
paper, a bound on the bit rate of sending information can
be derived from inspecting the behavior of superluminal
k-essence theories in the IR.

II. k-ESSENCE AND SUPERLUMINALITY

We begin with a lighting review of superluminality in
k-essence theories [18–22]. Consider a scalar field (the
k-essence) protected by a shift symmetry ϕ → ϕþ const.
The Lagrangian LðXÞ is purely1 a function of X ¼
− 1

2
ð∂ϕÞ2. The equation of motion (EoM) of ϕ is

Gμν∇μ∇νϕ ¼ 0; ð1Þ

where ∇μ is the covariant derivative compatible with the
original spacetime metric gμν, while small fluctuations
around a fixed background [49] live effectively on an
emergent geometry [50] defined by Gμν ¼ csL−2

;X ðL;Xgμν−
L;XX∇μϕ∇νϕÞ, with sound speed

c−2s ¼ 1þ 2X
L;XX

L;X
: ð2Þ

This is most easily seen by expanding ϕ ¼ ϕ0 þ φ, where
ϕ0 is a solution to the EoM of on-shell evolution. The
perturbation evolves as

GμνDμDνφ ¼ 0: ð3Þ

Here D is the covariant derivative calculated from the
emergent metric G.
The sound speed cs can be either subluminal or super-

luminal, depending on the sign of L;XX. The subluminal
branch may enjoy a conventional UV completion. The
superluminal branch, however, is generally believed to have
no traditional UV completions in the absence of gravity
[28], because it violates the positivity bound, which is a
direct consequence of locality, analyticity, unitarity, and
LI in the UV [27,35,51,52]. In the presence of gravity, the
t-channel pole of graviton exchange diagrams poses a
threat to the positivity bounds in the standard form [53].
This can result in a mild violation of the positivity bound

suppressed byM−2
p , and therefore slight superluminality on

curved spacetime backgrounds [54]. Although it is argued
that this type of t-channel-pole superluminality is unre-
solvable in the validity range of effective field theory (EFT)
and vanishes in the decoupling limit Mp → ∞, we see that
it is not impossible to violate positivity constraints in
certain contexts (here, gravitation). Hence one still cannot
completely rule out the possibility of some more severe
violation of positivity and superluminality for other con-
texts. In fact, superluminality in the IR must stem from the
highly nontrivial UV physics. For instance, in qubit
models, both QED and gravity can emerge from the UV
picture of quantum rotors placed on a lattice [32,33]. Such a
nonstandard UV completion preserves locality, causality,
and unitarity, but LI is not guaranteed: different fields can
have different sound speeds [32]. Then it may be possible
that a positivity-violating k-essence EFT admits such an
UV embedding. Notice that although φ travels outside the
light cone, a restricted notion of causality is still respected
under mild conditions of the background. Namely, there is a
global time function associated with the rest frame of the
background and therefore the IR EFT can be made free of
paradoxical closed causal curves [31].
A complete theory of k-essence also includes nonlinear

terms. One useful way to introduce nonlinearity is by
defining the EFT as a theory only for perturbations in X.
Namely, the EFT tower is built around a specific classical
background:

LðXÞ ¼
X∞
n¼0

1

n!
∂n
XLðX0ÞðX − X0Þn; ð4Þ

where ∂n
XL≡ cn

Λ4n−4. The validity of such an expansion is
controlled by the energy of the perturbations only. In
general, the renormalization procedure may bring new
shift-symmetric operators that contain higher-order deriv-
atives on the scalar field such as □nφ. In cases where the
k-essence model can be entirely embedded to an UV theory
like the nonlinear sigma model or the Dirac-Born-Infeld
(DBI) Lagrangian [27,55], these terms will not appear.
Although we are considering positivity-violating k-essence
models without such UV completions, we still assume that
these terms are absent and the EoM remains second order,
so that the disastrous Ostrogradski ghosts are absent.
As a further simplification, we will study the rigid limit

of Minkowski spacetime and decouple gravity by sending

Mp → ∞. Taking ϕ0 ¼ _ϕ0t and X0 ¼
_ϕ2
0

2
, we then collect

the leading interactions for φ:

LðXÞ ¼ ðtotal derivativesÞ þ Lð2Þ þ Lint; ð5Þ

with

1Note that this is not the only healthy scalar theory with a shift
symmetry. Higher-order derivative theories such as the Horndeski
theory [34] (also known as generalized Galileons [35–38]) or
Beyond Horndeski theories [39–44] are also ghost-free and shift
symmetric. We choose k-essence both because it is technically
simple and because it is well motivated in cosmology [45–48].
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Lð2Þ ≡ 1

2

��
c1 þ

c2 _ϕ
2
0

2Λ4

�
_φ2 − c1ð∇φÞ2

�
ð6Þ

Lint ≡
�
c2 _ϕ0

2Λ4
þ c3 _ϕ

3
0

6Λ8

�
_φ3 −

c2 _ϕ0

2Λ4
_φð∇φÞ2 þ � � � : ð7Þ

The sound speed is in agreement with (2). Being an EFT,
the interacting Lagrangian (7) contains an infinite tower
of higher-derivative terms. We will mainly focus on two
leading interactions in the large-cs limit, namely η

_ϕ0

_φ3 and

η
_ϕ0

_φð∇φÞ2, where η≡ c2 _ϕ
2
0

2Λ4 . The reason why these two terms

are relevant is as follows. Assuming the naturalness of the
Wilson coefficients [i.e., cn ∼Oð1Þ], the c2 term should not
be canceled by the c3 term in the bracket before the
interaction _φ3 in (7). Its size sets the natural minimal
amount of interactions. On the other hand, the _φð∇φÞ2 term
is always present whenever there is superluminality, and it
is not contaminated by any (model-dependent) higher
Wilson coefficients cn with n ≥ 3. Thus its size sets the
intrinsic minimal amount of interactions.

III. BIT RATE BOUND

Such superluminality of perturbations is in conflict with
the notion that c ¼ 1 is the maximal speed of information
transfer. Furthermore, the information propagation speed
cs increases indefinitely with stronger background field
strength while maintaining causality. Naively, there appears
to be no upper limit to our ability to transfer information,
because neither the speed nor capacity of the flow of
information seems to receive any restriction.
This is the case if one only considers the quadratic

part Lð2Þ, since it gives rise to a linear wave equation
without dispersion and solutions describing a trivial shape-
preserving translation, φ ¼ φðx ∓ cstÞ. However, one
should be reminded that superluminality is a feature of
the k-essence model (4) as a whole. In the complete picture,
the seemingly unlimited ability of communication is
weakened. For even if we can consistently let cs → ∞,
we still run into the inevitable self-interaction of the
perturbations whose intensity grows with the information
content. This fact turns out to set an upper bound on the bit
rate of superluminal communication. As we will demon-
strate below, given the ability to perform superluminal
communication with unlimited speed, one still has a limited
bit rate of information transfer.
Let us consider the large-cs limit. Our goal is to find an

constraint on the bit rate by considering nonlinearities of
the EFT tower (7). In fact, the more interaction terms we
include, the faster the signal gets distorted; hence, we
acquire a smaller bit rate capacity. Therefore by considering
one or two major interaction terms in the infinite EFT
tower, we obtain an upper bound on the bit rate. The
leading interactions, as argued above, are given by η

_ϕ0

_φ3

and η
_ϕ0

_φð∇φÞ2. We require them to be smaller than the

quadratic Lagrangian2:

Lint∼
����� η_ϕ0

_φ3

����;
���� η_ϕ0

_φð∇φÞ2
����
�
≲Lð2Þ∼

1

2
ð1þηÞ _φ2; ð8Þ

where we have taken c1 ≈ 1. This translates into a con-
straint on the perturbation field gradient,

j _φj ≲ j _ϕ0j
2cps

; p ¼ 0; 2; ð9Þ

where p represents different interaction choices. η
_ϕ0

_φ3

giving rise to p ¼ 2 is based on assumption of naturalness.
p ¼ 0 results from η

_ϕ0

_φð∇φÞ2 and is intrinsic. This inequal-
ity then translates into a constraint on the canonical energy
(flux) density of free perturbations,

jðTð2ÞÞ00j ∼
_φ2

c2s
≲ _ϕ2

0

c2pþ2
s

; jðTð2ÞÞ0ij ∼
j _φ∂iφj
c2s

≲ _ϕ2
0

c2pþ3
s

;

ð10Þ

where we have neglected allOð1Þ constants. In the classical
theory, a constraint on the energy flux is all there is to say
about the system. However, upon quantization, the con-
straint on the energy flux automatically becomes a con-
straint on the information flux, since the energy of the
signal is quantized in units of massless field quanta, which
carries the encoded information.
For concreteness, let us set up a toy model for super-

luminal communication using k-essence perturbations. As a
leading-order approximation, the nonlinearity will be turned
down except when we evoke the constraint (9). Before
discussing the details, we first point out that our commu-
nication model is essentially semiclassical in the sense that it
does not entail the entanglement of quantum states. The
information carried by the perturbations φ resembles a
classical analog signal carried, for example, by electromag-
netic waves transmitted between a pair of parabolic dish
antenna in point-to-point telecommunications.
Suppose there are two local observers (A and B)

separated in the x direction (see Fig. 1). The region between
A and B is permeated by the background field ϕ0 which
serves as a Aether-like medium for the superluminal φ
modes. A is equipped with an encoder capable of generat-
ing semiclassical signals according to the input informa-
tion. B receives the signal and extract its information via a
decoder. Since we are focusing on semiclassical

2Note that we are actually comparing the size of interactions on
the level of the classical EoM. For this simple system, however,
the constraint from EoM straightforwardly translates to the
constraint of the Lagrangian (8) (i.e., after multiplying φ and
performing an integration-by-part).
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superluminal communication, the natural choice for the
signal is a coherent state [56,57],

jzi ¼ exp

�
−
1

2

Z
k⃗
jzk⃗j2

�
exp

�Z
k⃗
zk⃗a

†
k⃗

�
j0i; ð11Þ

where zk⃗ is the eigenvalue of the annihilation operator,
ak⃗jzi ¼ zk⃗jzi. The information content of the signal is
encoded in the Fourier coefficients fzk⃗g. Generically for
point-to-point communications, the signal takes the form of
a wave packet with IR cutoff scales Lx, Ly, and Lz. In
addition, to maximize the efficiency of communication,
the wave packet should be traveling roughly in the þx
direction. Hence the Fourier components along the trans-
verse directions should be turned down, with an uncertainty
of Δky ∼ 1

Ly
;Δkz ∼ 1

Lz
. In other words, we impose

zk⃗ ¼ 0 for jkyj >
2π

Ly
or jkzj >

2π

Lz
: ð12Þ

By this choice, zk⃗ only has support for k⃗ lying on the þx
direction; then the evolution of the signal is simplified to a
shape-preserving translation, i.e., φ ¼ φðx − cstÞ. In this
way we have reduced the communication model to a one-
dimensional problem while maintaining its maximal ability
to transfer information. We define the expectation value of
the area density of energy by

E½ẑ�≡ hzjHð2Þjzi
LyLz

¼
Z

dk
2π

ωkjẑkj2; ð13Þ

where ẑk ≡ zk
LyLz

is the reduced Fourier moment. In order to

emit the signal, we turn on a weak coupling between the
k-essence perturbation φ and the visible SM sector via a
shift-symmetric coupling JμSM∂μφ. The source JμSM is
turned on for 0 < t < Lx

cs
. In the free-theory limit, this

can be mimicked by imposing a periodic boundary con-
dition between the sound cones originating from the source,
leading to momentum quantization kn ¼ 2πn

Lx
. Notice that

this is only possible in the free-theory limit. In the presence

of interactions, there is no automatic boundary condition
inherited from the source function and the wave packet will
in general spread out due to its self-interactions.
With all the preparations complete, now we can apply the

constraint (9) on the field gradient to obtain our bit rate
bound. In the semiclassical limit, the information content of
the communication channel where the messages are sent
according to a given probability distribution functional P½ẑ�
can be characterized by the Shannon entropy:

S½P�¼−
Z

D2ẑP½ẑ� lnP½ẑ�; with
Z

D2ẑP½ẑ�¼1: ð14Þ

The integration measureD2ẑ ∝
Q

k>0 dẑkdẑ
�
k must be taken

with a grain of salt. The fact that the coherent state basis is
overcomplete [56] leads to unphysical contributions to
the Shannon entropy. These contributions must be
gauged away by truncating the phase-space integral near
the origin. Equivalently, one can start with the von
Neumann entropy SV:N:½P� ¼ −Trρ ln ρ of a density matrix
ρ½P� ¼ R

D2ẑP½ẑ�jzihzj describing a statistical mixture of
coded signals.
We can impose three conceivable constraints. The most

straightforward one from (9) is a local constraint imposed
at every spacetime point throughout the interior of the
wave packet,

ðLCÞ∶ jhzj _φðt; xÞjzij ≲ j _ϕ0j
c2ps

for cst − Lx < x < cst:

ð15Þ

This is too restrictive since (LC) violations may not
endanger the global information content of the signal.
The second is a global constraint that smears (LC) over the
wave packet using (10) and (13):

ðGCÞ∶ E½ẑ� ≲ εmaxLx; ð16Þ

where εmax ≡ jðTð2ÞÞ00jmax ∼
_ϕ2
0

c2pþ2
s

is the maximal energy

volume density. The third is an average global constraint:

ðAGCÞ∶
Z

D2ẑP½ẑ�E½ẑ� ≲ εmaxLx: ð17Þ

Namely, we do not require (GC) to be satisfied by all
signals generated from P½ẑ�, but only by its average output.
This is also more suitable compared to (GC), in the sense
that the failure of selective signals does not affect the
efficiency of the whole coding method P½ẑ�. The violation
of (AGC) would imply nonlinearity so large that signals
cannot be prepared or even defined within the theory (7),
i.e., an IR breakdown of the EFT. It is useful to notice the
inclusion relation between the constraints,

FIG. 1. An illustration of our superluminal communication
model.
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Tightness∶ ðLCÞ > ðGCÞ ≥ ðAGCÞ: ð18Þ

Before we continue on applying (AGC), we stress that the
reason why we choose to constrain H ¼ ðTð2ÞÞ00 is not
because we wish to couple k-essence to gravity, but because
it is easy to calculate when compared to the (LC) constraint
on j _φj. In terms of signal encoding and preparation, it is
also more relevant.
Now it is straightforward to bound the Shannon entropy

by maximizing it under (AGC). Introducing two Lagrange
multipliers α, β, we seek the stationary point by

0 ¼ δ

�
S½P� − ðα − 1Þ

Z
D2ẑP − β

Z
D2ẑPE

�
: ð19Þ

The optimal probability distribution then takes a familiar
form, P� ¼ e−α−βE. The Lagrange multipliers, like in
thermodynamics, are solved from the constraints. The
maximal entropy is then

S� ¼
LxΛ
2πcs

ln

�
1þ 1

γ
e−γ

�
þ 2 _ϕ2

0LxLyLz

c2pþ2
s Λ

γ; ð20Þ

where γ is the solution to

1

γ2

Z
γ

0

dx
1þ x
1þ xex

¼ 2π _ϕ2
0LyLz

c2pþ1
s Λ2

: ð21Þ

Thus the (AGC) bound for bit rate is given by

R� ¼
csS�
Lx

≡ ΛR�ðcs; _ϕ2
0LyLz=Λ2Þ: ð22Þ

This bit rate bound simplifies considerably in two limits. In

the small cross-section limit where
_ϕ2
0LyLz

Λ2 ≪ c2pþ1
s
2π , the bit

rate bound is independent of Λ,

FIG. 2. Dimensionless bit rate bound R� (first row) and its area density (second row). The left column is the natural bound
corresponding to p ¼ 2while the right column is the intrinsic bound with p ¼ 0, which is looser but more general. The red dashed line is

given by
_ϕ2
0LyLz

Λ2 ¼ c2pþ1
s
2π . The region above this line is the logarithmic high-temperature case while that below the line is the power-law low-

temperature case. The lower regions are excluded due to EFT validity for given choices of jc2j.
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R� ≈
�
2.64
π

_ϕ2
0LyLz

�
1=2

c−ð2pþ1Þ=2
s : ð23Þ

On the other hand, if the communication cross section is

large, i.e.,
_ϕ2
0LyLz

Λ2 ≫ c2pþ1
s
2π , the EFT cutoff Λ explicitly

appears in the bit rate bound,

R� ≈
Λ
2π

ln
2π _ϕ2

0LyLz

c2pþ1
s Λ2

: ð24Þ

The full dependence of the dimensionless bit rate R� as
well as its area density is shown in Fig. 2. Obviously it is
monotonically decreasing with cs. As a result, increasing
the propagation speed indefinitely cannot always lead to an
increasing bit rate, since its upper bound drops with cs.
Moreover, although mathematically R� is not bounded
from above due to its logarithmic growth with the cross-
section area LyLz, the bit rate area density is, however,
decreasing with LyLz. Therefore, the bit rate area density is
universally bounded by

R�
LyLz

≲
�
2.64
π

�
1=2

_ϕ0Λc
−2pþ3

2
s ≈1.30jc2j−1=2c−

2pþ3
2

s Λ3; ð25Þ

where we have set a minimal area LyLz ∼ c2sΛ−2 consistent
with the EFT in (23). Then (25) gives a maximal ability to
compress the signal in the transverse direction.3 Namely, bit
rate per unit area is still bounded.
We point out that our treatment resembles the description

of a one-dimensional photon gas confined in a box with a
modified dispersion relation. The small cross-section case
corresponds to its low-temperature behavior, where high-
frequency modes are automatically suppressed by the
Boltzmann factor and the cutoff frequency Λ is never
reached. The large cross-section limit corresponds to the
high-temperature case, where modes near the cutoff can
also be excited with abundance. But this time, the validity
of EFT puts a sharp cutoff to the available modes, and the
final result is dependent on Λ, reminiscent of the UV
catastrophe in classical physics.

There are, of course, two important distinctions. The first
one being conceptual, is that we are not actually sending a
thermal mixture of states confined in a one-dimensional
box. We have precise control over the signal, which is in a
pure state. The entropy resides in the coding method we
use. The maximal entropy under (AGC) is reached by
coding the messages following a Boltzmann distribution.
Of course, one does not have to code the messages this way.
Freedom is given to the sender A such that any probabilistic
distribution P½ẑ� is allowed, although none of them can
exceed the efficiency provided by P�½ẑ�.
The second one being technical, is that we are counting

coherent states of the k-essence field rather than their
energy eigenstates (when confined to a box). The coherent
states are almost classical, whereas the energy eigenstates
are nonclassical.When the nonlinear interaction of k-essence
is turned down, either choice is fine. In fact, a simple
calculation shows that they give the same Shannon entropy
S� up to an Oð1Þ numerical factor.

IV. CONCLUSION

In this paper we have investigated superluminal com-
munication in a family of positivity-violating k-essence
theories. After setting up a conceptual superluminal
communication protocol, by the requirement of subdomi-
nant nonlinearity, we have derived a bit rate bound and a
universal bit rate area density bound for all superluminal
k-essence models. Notice that in this work we focus
exclusively on the bit rate bound intrinsic to the k-essence
theory itself. If such superluminal dark k-essence does
exist, its leading-order influence on the visible sector
would manifest itself as Lorentz violations in the SM.
The phenomenological implications and a detailed analy-
sis of the signal evolution are left for future works.
Finally, we remark that k-essence is not the only super-
luminal communication candidate. It is interesting to
consider whether similar bit rate bounds exist for other
methods [58,59].
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3In free space, too much restriction in the transverse direction
generically leads to a fast-spreading wave packet. This can be
prevented, for example, by using a narrow waveguide, where
transverse excitations are energetically too expensive to be excited.
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