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1 Abstract

A possible superluminal communication method is discussed. The method
is based on a modified version of the famous delayed choice quantum eraser
(DCQE) experiment by Kim et al.[1]. An alternative and step-by-step analysis
for the DCQE is discussed, which will be used later to analyze the modified
setup.

2 Revision of the delayed choice quantum eraser
experiment by Kim et al.

This famous experiment is taken by many people as evidence of retrocausality.
However, it can actually be explained without invoking retrocausality.

Figure 1: A copy of the schematic diagram of the experimental setup in the
paper [1]. The pump laser beam is divided by a double slit and forms two
regions A and B inside the BBO crystal. A pair of signal-idler photons is then
generated from either the A or the B region.
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Standard photon detection quantum mechanical calculation is presented in [1].
They will be briefly stated here.

The joint detection counting rate, R0j , of detector D0 and detector Dj , in
the time interval T is:
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A second order correlation function is used because two photon detectors are in-
volved in the joint detection. |Ψ〉 is the spontaneous parametric down converted
(SPDC) entangled state:

|Ψ〉 =
∑
s,i

C(ks,ki)a
†
s[ω(ks)]a

†
i [ω(ki)]|0〉 (2)

where:

C(ks,ki) = δ(ωs + ωi − ωp)δ(ks + ki − kp) (3)

which represents energy and momentum conservation, and also the correspond-
ing entanglement at the same time. The absolute square of the second order
correlation function can be rewritten as:

Ψ(t0, tj) ≡ |〈0|E(+)
j E

(+)
0 |Ψ〉|2 (4)

and is called the joint count probability amplitude. Four different scenarios can
happen, corresponding to the four detectors set-up to detect the idler photon.
They can be represented as the four different forms of Ψ(t0, tj):

Ψ(t0, t1) = A(t0, t
A
1 ) +A(t0, t

B
1 )

Ψ(t0, t2) = A(t0, t
A
2 )−A(t0, t

B
2 )

Ψ(t0, t3) = A(t0, t
A
3 )

Ψ(t0, t4) = A(t0, t
B
4 )

(5)

The different sign in Ψ(t0, t1) and Ψ(t0, t2) are due to the unitary transformation
from the beam splitter.
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3 Alternative mathematical description

I would like to present an alternative form of the mathematical description to
get more insight on the system.

3.1 After passing through the double slits

We assume that the probability for the photon to pass through is the same for
both slits (A and B). Therefore, we can write the photon state as:

|Ψ〉 =
1√
2

(|A〉+ |B〉) (6)

3.2 After down conversion by BBO

The entanglements in Eq.(2) and (3) are present due to the conservation laws.
We can represent the conservation laws in a different form:

|Ψ〉 =
1√
2

(|A〉+ |B〉) SPDC−−−−→ |Ψ〉 =
1√
2

(|A,ks〉|A,ki〉+ |B,ks〉|B,ki〉) (7)

where ks(ωs) + ki(ωi) = kp(ωp), and ωs + ωi = ωp.
1 The position space

wavefunction (i.e. the probability amplitude) of the signal photon along the
x-direction can be written as:

Ψs(x) = 〈xs|Ψ〉 =
1√
2

(〈xs|A,ks〉|A,ki〉+ 〈xs|B,ks〉|B,ki〉)

=
1√
2

(ΨA
s (x)|A,ki〉+ ΨB

s (x)|B,ki〉)
(8)

3.3 When the signal photon is detected by detector D0

The probability distribution of the signal photon on D0 is the absolute square
of the wavefunction:

p0(x) = |Ψs(x)|2 =
1

2
|(ΨA

s (x)|A,ki〉+ ΨB
s (x)|B,ki〉)|2

=
1

2
|ΨA
s (x)|2 + |ΨB

s (x)|2
(9)

There is no cross term (ΨA
s ΨB

s ) due to the orthogonality between |A,ki〉 and
|B,ki〉.

The physical meaning of this is: the “information of which slit the original

1The SPDC transformation by the BBO crystal is not discussed here.
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photon went through” (a.k.a the “which-slit-information”) is also carried by the
idler photon, and since the available paths to be travelled by the idler photon
are well separated and distinguishable, one can in principle find out the which-
slit-information by performing some measurement on the idler photon. This
availability of the information acts like a distinguishable label to the signal pho-
ton, making it unable to produce interference pattern.

The probability that the signal photon is detected at x0 with the uncertainty
∆ is:

P0

(
x0 ±

∆

2

)
=

∫ x0+
∆
2

x0−∆
2

p0(x)dx′ (10)

The experimental setup is designed such that ΨA
s (x) and ΨB

s (x) overlaps suf-
ficiently to allow interference to happen when it is possible. When the signal
photon is detected and absorbed (or destroyed), the photons pair is entangled
to the measuring device, and due to the macroscopic size of the measuring de-
vice and our inability to track how the phase change, decoherence happens, and
using the terminology of the Copenhagen interpretation, the state of the photon
pairs partially collapses into:

|Ψ〉 =
1√
2

(|A,ks〉|A,ki〉+ |B,ks〉|B,ki〉)

partial collapse−−−−−−−−−→ |Ψ〉 = ε(ΨA
s (x0)|A,ki〉+ ΨB

s (x0)|B,ki〉)
≡ α|A〉i + β|B〉i

(11)

where ε is a re-normalization factor:

ε =
1√

|ΨA
s0|2 + |ΨB

s0|2
(12)

Since ΨA
s (x) and ΨB

s (x) overlap, we are unable to determine from which slit the
original photon went through just by knowing where the signal photon landed
on D0. Therefore, the state of the idler photon2 is still a superposition state,
and I called this as a partial collapse.

We will see later that α and β must be complex numbers, which implies that
they are not just square root of the values of the probability distribution but
they are probability amplitudes, and this further supports that the collapse is
only partial.

If we use the ‘collapse’-picture of the Copenhagen interpretation, the collapse
process is not time reversible, and therefore not a unitary process, i.e. proba-
bility is not conserved. Therefore, a re-normalization factor is needed.

2Since the signal photon is destroyed, the new state is the updated state of just the idler
photon.
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3.4 If the idler photon is detected by detector D3

If the idler photon is detected by detector D3, the state of the idler photon |Ψ〉
collapses into3:

|Ψ〉 = α|A〉i + β|B〉i
collapse−−−−−→ |Ψ〉 = |D3〉 (13)

which tells us that the original photon “went through” slit B.4 The probability
that the idler photon will be detected by D3 is:

P03 =

∫ x0+
∆
2

x0−∆
2

|εΨB
s (x)|2dx′ (14)

where ∆ is the uncertainty of the landing position of the signal photon on
detector D0.

3.5 If the idler photon is detected by detector D4

If the idler photon is detected by detector D4, the state of the idler photon |Ψ〉
collapses into5:

|Ψ〉 = α|A〉i + β|B〉i
collapse−−−−−→ |Ψ〉 = |D4〉 (15)

which tells us that the original photon “went through” slit A. The probability
that the idler photon will be detected by D4 is:

P04 =

∫ x0+
∆
2

x0−∆
2

|εΨA
s (x)|2dx′ (16)

where ∆ is the uncertainty of the landing position of the signal photon on
detector D0.

3The state after the collapse is the state for the detector D3, and not the state of the idler
photon, because the idler photon is destroyed when it is detected.

4Actually, I think, when we use the words “from which slit the photon went through”, it
seems to imply that we are suggesting realism. But here I use these words just because I have
not found a better alternative and just out of convenience. I am not suggesting realism.

5The state after the collapse is the state for the detector D4, and not the state of the idler
photon, because the idler photon is destroyed when it is detected.
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3.6 If the idler photon is detected by detector D1

If the idler photon is not sent towards D3 and D4, the state of the idler photon
before it reaches the beam splitter can be written as:

|Ψ〉 = α|A〉+ β|B〉 ≡ α|I〉+ β|II〉 ≡
(
α
β

)
(17)

where I and II represent the two sides of the beam splitter. The effect of the
beam splitter can be written as6:

B =
1√
2

(
1 1
1 −1

)
(18)

which turns:

|I〉 =

(
1
0

)
B|I〉 =

1√
2

(
1
1

)
(19)

and7:

|II〉 =

(
0
1

)
B|II〉 =

1√
2

(
1
−1

)
(20)

So,

B|Ψ〉 =
1√
2

(
α+ β
α− β

)
= |Ψ′〉 (21)

The probability that the idler photon get detected by D1 is:

P01(x0) = |〈I|Ψ′〉|2 =
1

2
|(α+ β)|2

=
1

2
(|α|2 + |β|2 + α∗β + β∗α)

=
1

2
(|α|2 + |β|2 + |α||β|(eiϕB−iϕA + eiϕA−iϕB ))

=
1

2
(|α|2 + |β|2 − 2|α||β| cosϕ)

(22)

If α and β are just the square root of the values in the probability distribution,
i.e.

α ∝
√
|ΨA
s (x0)|2 and β ∝

√
|ΨB
s (x0)|2

and are not values in the probability amplitude, i.e.

α ∝ ΨA
s (x0) and β ∝ ΨB

s (x0)

6This is also the matrix representation of a Hadamard gate.
7The minus sign in the B matrix is to keep the unitarity of the transformation
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then α and β must be real numbers, and ϕ will always be zero, and there will
be no interference pattern after we group the landing positions of the signal
photons on D0 according to where the idler photons get detected. Therefore,
they must be complex numbers and ϕ = ϕ(x0), and this supports that the state
has only partially collapsed after the signal photon get detected.

3.7 If the idler photon is detected by detector D2

Similarly, if the idler photon is not sent towards D3 and D4, and later get
detected by D2, the probability that the idler photon get detected by D2 is:

P02(x0) = |〈II|Ψ′〉|2 =
1

2
|(α− β)|2

=
1

2
(|α|2 + |β|2 − α∗β − β∗α)

=
1

2
(|α|2 + |β|2 − |α||β|(eiϕB−iϕA + eiϕA−iϕB ))

=
1

2
(|α|2 + |β|2 − 2|α||β| cosϕ)

(23)

The difference in sign between the two probabilities is equivalent to a π-phase
shift between the two interference patterns that arise after the landing positions
of the signal photons on D0 are grouped accordingly.

3.8 Conclusion

It is possible to describe the experiment result without having to invoke retro-
causality. And one will never see interference pattern directly on D0. The
interference patterns are due to the grouping of the landing positions of the
signal photons according to the detectors where the idler photons are detected.

4 Modification to the DCQE experiment

Assuming that all the explanation above are correct, let us see if we can modify
the setup to allow superluminal communication.

Suppose that the signal photons are sent to someone called Alice, and the idler
photons are sent to someone called Bob. Alice and Bob both have a clock and
they are synchronized. Bob has a large detector D0 that can resolve the landing
position of the idler photons. The idler photons need a longer time to reach D0

than the time needed for the signal photons to reach Alice’s setup.

The state of the photon after passing through the slits and the state of the
SPDC photons pair are the same as in Eq.(6) and Eq.(7) respectively.
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4.1 If Alice chooses to find out the “which-slit-information”

Alice can choose to find out the “which-slit-information” by directing the signal
photon to a detection system like D3 and D4, before the idler photon has enough
time to reach Bob’s detector D0. Let’s say that the signal photon reaches Alice’s
detectors at time t = t1.

Figure 2: Schematic diagram of the modified setup when Alice chooses to find
out the “which-slit-information” by directing the signal photons to detectors D3

and D4.

and the state of the photons pair collapses into either8:

|Ψ〉 =
1√
2

(|A,ks〉|A,ki〉+ |B,ks〉|B,ki〉)

≡ 1√
2

(|D3〉|A,ki〉+ |D4〉|B,ki〉)

collapse−−−−−→ |Ψ′〉 = |A,ki〉 ≡ |A〉i

(24)

when the signal photon is detected by D3, with the probability:

8The state after the collapse is the state just for the idler photon because the signal photon
is absorbed and destroyed, and we also ignore the state of the environment.

8



P3 = |〈D3|Ψ〉|2 =
1

2
(25)

or into:

|Ψ〉 ≡ 1√
2

(|D3〉|A,ki〉+ |D4〉|B,ki〉)

collapse−−−−−→ |Ψ′〉 = |B,ki〉 ≡ |B〉i
(26)

when the signal photon is detected by D4, with the probability:

P4 = |〈D4|Ψ〉|2 =
1

2
(27)

Alice can continue doing this for many of her signal photons for a duration τ ,
such that there will be enough idler photons on Bob’s side to form some distri-
bution patterns.

Let’s say at time t = t2 = t1 + δt, the idler photon reaches Bob’s detector
D0, and he will start recording the landing positions of the idler photons. He
will check if any pattern forms on his detector D0 after a duration τ .

How will the distribution looks like on Bob’s detector if Alice choose to find
out the “which-slit-information”? The distribution along the x-axis can be cal-
culated from the absolute square of the wave function of Bob’s idler photon.

If the idler photon’s entangled signal photon is detected by D3, the probability
distribution of that idler photon is:

p30(x) = |〈x|A〉i|2 = |ΨA
i (x)|2 (28)

If the idler photon’s entangled signal photon is detected by D4, the probability
distribution of that idler photon is:

p40(x) = |〈x|B〉i|2 = |ΨB
i (x)|2 (29)

Since Alice did not tell Bob about the results of her measurements, and the
setup on Bob’s side is designed in such a way that ΨA

i (x) overlaps with ΨB
i (x),

Bob cannot separate the distributions. Therefore, the resultant distribution
that he sees on D0 is the combination of the two distributions:

p0(x) =
1

2
· p30(x) +

1

2
· p40(x) =

1

2
(|ΨA

i (x)|2 + |ΨB
i (x)|2) (30)

The factor 1
2 is due to the probabilities in Eq.(25) and (27). As expected,

there is no term that corresponds to interference pattern, and Bob will not see
an interference pattern, because the state of the idler photon is no longer a
superposition state after Alice has “found out the which-slit-information”.
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4.2 If Alice chooses not to find out the “which-slit-information”

If Alice choose to not find out the which-slit-information, and does nothing to
the signal photons, the superposition state of the photons pair remains. The
wavefunction of the idler photon is:

Ψi(x) = 〈xi|Ψ〉 =
1√
2

(|A,ks〉〈xi|A,ki〉+ |B,ks〉〈xi|B,ki〉)

=
1√
2

(ΨA
i (x)|A,ks〉+ ΨB

i (x)|B,ks〉)
(31)

In this case, will Bob be able to see an interference pattern on D0? The proba-
bility distribution of his idler photon on D0 is again the absolute square of the
idler photon’s wavefunction:

p0(x) = |Ψi(x)|2 =
1

2
(|ΨA

i (x)|2 + |ΨB
i (x)|2) (32)

Again, there is no term that corresponds to interference, and the distribution is
identical to Eq.(30). Therefore, Bob will not see any interference pattern. The
reason is the same reason why we cannot see an interference pattern on D0 in
the DCQE experiment by Kim et al, which is due to the orthogonality between
|A,ks〉 and |B,ks〉.

Is there anything Alice can do to fix this? Maybe Alice can “erase”9 the
which-slit-information contained in the signal photon before the idler photon
get detected at Bob’s detector. If Alice uses the “quantum eraser” in DCQE
experiment by Kim et al., will we be able to see interference pattern on Bob’s
detector?

9Maybe the better word is “obscure”, because the word “erase” sounds like we are going
to hit the law of conservation of quantum information head-on.
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Figure 3: Schematic diagram of the quantum eraser setup that is similar to the
one used in Kim et al.’s DCQE experiment.

The state of the photons pair before the signal photon reaches the 50-50 beam
splitter can be written as:

|Ψ〉 =
1√
2

(|A,ks〉|A,ki〉+ |B,ks〉|B,ki〉)

≡ 1√
2

(|I〉s|A〉i + |II〉s|B〉i) ≡
1√
2

(
|A〉i
|B〉i

) (33)

When the signal photon leaves the beam splitter, the state of the photon pairs
become:

|Ψ′〉 = B|Ψ〉 =
1√
2

(
1 1
1 −1

)
1√
2

(
|A〉i
|B〉i

)
=

1

2

(
|A〉i + |B〉i
|A〉i − |B〉i

)
=

1

2

[
(|A〉i + |B〉i)|I〉s + (|A〉i − |B〉i)|II〉s

] (34)

If the signal photon is detected byD1, then the state of the photons pair partially
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collapses into10:

|Ψ′〉 =
1

2

[
(|A〉i + |B〉i)|I〉s + (|A〉i − |B〉i)|II〉s

]
partial collapse−−−−−−−−−→ |Ψ′〉 = η

[
|A〉i + |B〉i

] (35)

with the normalization factor η = 1√
2
. The wavefunction of the idler photon is:

Ψi(x) = 〈x|Ψ′〉 =
1√
2

(〈x|A〉i + 〈x|B〉i) =
1√
2

(ΨA
i (x) + ΨB

i (x)) (36)

The probability distribution of the landing position of the idler photon on Bob’s
D0 is the absolute square of the idler photon’s wavefunction:

p10(x) = |Ψi(x)|2 =
1

2
(|ΨA

i (x)|2 + |ΨB
i (x)|2 + 2|ΨA

i (x)||ΨB
i (x)| cosϕ) (37)

If the signal photon is detected byD2, then the state of the photons pair partially
collapses into:

|Ψ′〉 =
1

2

[
(|A〉i + |B〉i)|I〉s + (|A〉i − |B〉i)|II〉s

]
partial collapse−−−−−−−−−→ |Ψ′〉 = η

[
|A〉i − |B〉i

] (38)

with the normalization factor η = 1√
2
. The wavefunction of the idler photon is:

Ψi(x) = 〈x|Ψ′〉 =
1√
2

(〈x|A〉i − 〈x|B〉i) =
1√
2

(ΨA
i (x)−ΨB

i (x)) (39)

The probability distribution of the landing position of the idler photon on Bob’s
D0 is the absolute square of the idler photon’s wavefunction:

p20(x) = |Ψi(x)|2 =
1

2
(|ΨA

i (x)|2 + |ΨB
i (x)|2 − 2|ΨA

i (x)||ΨB
i (x)| cosϕ) (40)

Interference terms are present in both Eq.(37) and (40), however, they have
different signs. Alice’s signal photons are equally likely to be detected by D1 or
D2 if the beam splitter is a 50-50 beam splitter.

Therefore, the distribution that Bob sees is the combination of both distri-
butions:

p0(x) =
1

2
· p10(x) +

1

2
· p20(x) =

1

2
(|ΨA

i (x)|2 + |ΨB
i (x)|2) (41)

10The state after the partial collapse is the state just for the idler photon, as the signal
photon is annihilated after detection.
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where the interference patterns of the two distributions cancel out, and we get
back the same distribution as in Eq.(30) and (32), which means Bob is still
unable to see any interference pattern and not able to tell what Alice has done
to her signal photons by just looking at his idler photons.

4.3 Other way to obscure the “which-slit-information”

What if Alice just “erases” the “which-slit-information” by combining the two
possible paths of the signal photon into a single path?

Figure 4: Schematic diagram of the setup to combine the paths of the signal
photons into a single path

After the combination, Alice seems to have no way to find out the which-slit-
information from the signal photons. Alice can move detector D5 and use optical
elements such as parabolic mirrors and lenses to make the focus point on D5

as small as possible. Assuming that the state of the photons pair remains its
form after the path combination, the wavefunction of the signal photon along
the u-axis can be written as:

Ψs(u) = 〈us|Ψ〉 =
1√
2

(〈us|A,ks〉|A,ki〉+ 〈us|B,ks〉|B,ki〉)

=
1√
2

(ΨA
s (u)|A,ki〉+ ΨB

s (u)|B,ki〉)
(42)
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The probability distribution of the signal photon on D5 is again the absolute
square of its wavefunction:

p5(u) = |Ψs(u)|2 =
1

2
(|ΨA

s (u)|2 + |ΨB
s (u)|2) (43)

Like in the DCQE experiment by Kim et al, Alice will not see interference
pattern on D5 due to the orthogonality between the states of the idler photon.
We assume Alice manages to make the focus point very small on D5, with peak
centered at position u = up. When the signal photon is detected by Alice’s
detector D5, the state of the photons pair partially collapses into11:

|Ψ〉 =
1√
2

(|A,ks〉|A,ki〉+ |B,ks〉|B,ki〉)

partially collapse−−−−−−−−−−−→ |Ψ〉 = ε(ΨA
s (u0)|A〉i + ΨB

s (u0)|B〉i)
= α|A〉i + β|B〉i

(44)

where ε is just a normalization factor.12 Similar to the situation in the Kim et
al.’s DCQE experiment, the state of the idler photon after the signal photon is
detected is still a superposition state, because even in principle we cannot find
out the “which-slit-information” just by knowing the distribution on D5.

Side note:

The detector D5 could also be just an atom inside a cavity. Regardless of the
state of the signal photon, when the signal photon is absorbed by the atom, the
energy state of the atom changes from a low energy state |D5, g〉 to an excited
state |D5, e〉, and later decays back to the lower energy state via spontaneous
emission, emitting the radiation in random direction krandom, effectively erases
the “which-path-information”.13

|Ψ〉 =
1√
2

(|A〉s|A〉i + |B〉s|B〉i)|D5, g〉

→ |Ψ′〉 =
1√
2

(|A〉i + |B〉i)|D5, e〉

→ |Ψ′′〉 =
1√
2

(|A〉i + |B〉i)|D5, g〉|krandom〉γ

= |Ψ〉i|D5, g〉|krandom〉γ

(45)

11The state after the partial collapse is the state of the idler photon because the signal
photon is absorbed and destroyed after detection.

12α and β are complex numbers. The argument is given previously in the discussion about
the DCQE experiment.

13This seems to violate the conservation of quantum information, and I personally think
that this is similar to the black-hole information paradox. However, I am not knowledgeable
enough to verify this.
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We can also rewrite this in occupation number representation:

|Ψ〉 =
1√
2

(|A〉s|A〉i + |B〉s|B〉i)|D5, g〉

Fock≡ 1√
2

(a†sa
†
i |0〉A + a†sa

†
i |0〉B)|D5, g〉

(46)

|Ψ′〉 = T1|Ψ〉 = b†as|Ψ〉 = b†as
1√
2

(a†sa
†
i |0〉A + a†sa

†
i |0〉B)|D5, g〉

= b†
1√
2

(asa
†
sa
†
i |0〉A + asa

†
sa
†
i |0〉B)|D5, g〉

= b†
1√
2

(a†i |0〉A + a†i |0〉B)|D5, g〉

=
1√
2

(a†i |0〉A + a†i |0〉B)b†|D5, g〉

=
1√
2

(a†i |0〉A + a†i |0〉B)|D5, e〉

≡ |Ψ〉i|D5, e〉

(47)

|Ψ′′〉 = T2|Ψ′〉|0〉 = a†b|Ψ′〉|0〉 = a†b|Ψ〉i|D5, e〉|0〉
= a†|Ψ〉ib|D5, e〉|0〉
= a†|Ψ〉i|D5, g〉|0〉
= |Ψ〉i|D5, g〉a†|0〉

(48)

|Ψ′′〉 = |Ψ〉i|D5, g〉|krandom〉γ
Fock≡ |Ψ〉i|D5, g〉a†|0〉 (49)

End of side note.

After the partial collapse, the wavefunction of the idler photon can be writ-
ten as:

Ψi(x) = 〈xi|Ψ〉i = α〈xi|A〉i + β〈xi|B〉i
= αΨA

i (x) + βΨB
i (x)

= ε(ΨA
s (u0)ΨA

i (x) + ΨB
s (u0)ΨB

i (x))

= ε(ΨA
s0ΨA

i (x) + ΨB
s0ΨB

i (x))

(50)

The probability distribution of the idler photon on Bob’s detector D0 is:

p0(x) = |Ψi(x)|2 = ε2
(
|ΨA
s0ΨA

i |2 + |ΨB
s0ΨB

i |2 + 2|ΨA
s0ΨA

i ||ΨB
s0ΨB

i | cosϕ
)

(51)
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where:

ϕ = ϕB − ϕA = (ϕB,s(u0) + ϕB,i(x))− (ϕA,s(u0) + ϕA,i(x))

= (ϕB,s(u0)− ϕA,s(u0)) + (ϕB,i(x)− ϕA,i(x))

= ϕs(u0) + ϕi(x)

(52)

I think that ΨA
s0(u0) and ΨB

s0(u0), and therefore also ϕs(u0), will be almost
constant for all the signal photons, if the focus spot is sufficiently small:

u0 = up + du and du� 1 (53)

With this, it seems like we can now see interference pattern on Bob’s detector
D0.

If this works, Alice can use this to send binary information to Bob, for ex-
ample: Alice and Bob have agreed before the experiment that if Bob does not
see an interference pattern on his detector, it means Alice sends him ‘0’; and if
he sees an interference pattern, then it means Alice sends him a ‘1’.

When the separation between Alice and Bob is large enough, such that light sent
by Alice will take a time longer than τ to reach Bob, this will become a super-
luminal communication, which can violate causality, as the order of cause and
effect might be inverted for observers in some reference frames. Further more,
this also violates the no-communication theorem or the no-signalling theorem.14

5 Summary and Personal request

A possible alternative explanation for the DCQE experiment without invoking
retrocausality is given. After that, I proposed some modification to the setup to
see if superluminal communication can be achieved. The mathematical frame-
work that is used to explain the DCQE experiment is later used to predict the
results after the modification.

With this setup, it seems like superluminal communication is possible and at
the same time many important rules are violated. I hope someone can help me
to find out the errors in this analysis and perhaps also carry out the experiment
to verify everything.
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