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Since Bell’s theorem, it is known that quantum correlations cannot be described by local variables (LV) alone:
if one does not want to abandon classical mechanisms for correlations, a superluminal form of communication
among the particles must be postulated. A natural question is whether such a postulate would imply the possi-
bility of superluminal signaling. Here we show that the assumption of finite-speed superluminal communication
indeed leads to signaling when no LV are present, and more generally when only LV derivable from quantum
statistics are allowed. When the most general LV are allowed, we prove in a specific case that the model can be
made again consistent with relativity, but the question remains open in general.

I. INTRODUCTION

The quest for models underlying quantum mechanics
(QM), i.e. structures out of which QM could ”emerge”, is
an actual topic of research in the foundations of physics [1].
One of the features that these models are required to recover
is the non-locality of the correlations of entangled particles.
Since the work of Einstein, Podolski and Rosen in 1935 [2],
in fact, it is known that QM predicts correlations between
the outcomes of the measurements of entangled particles, at
any distance. In a classical world, correlations can be due ei-
ther to common information available in the preparation, or
from the exchange of a signal. In 1964, John Bell proved [3]
that common information at the preparation (the so-called lo-
cal variables, LV) cannot reproduce the quantum-mechanical
predictions: if one still wants to think classically, some ad-
ditional communication is needed. Such a communication
should propagate faster than light, because the choices of the
measurement settings can be space-like separated events. A
natural question arises then: can one not find a result ana-
log to Bell’s theorem, that would rule out the possibility of
superluminal communication (SC), thus fully vindicating the
non-classical origin of quantum correlations? In particular,
one may hope to show that a SC among the particles can-
not be ”hidden”, that is, that any SC-model would break the
no-signaling condition. But this is not true: if the speed of
the SC is allowed to be infinite in a suitable preferred frame
(or preferred foliation), and the amount of transferrable in-
formation is not restricted, one has the most general exam-
ple of non-local variables — actually this is Bohm’s view
of his own model [4]. Such a model can be made to match
any experimental prediction with no inconsistency: in partic-
ular, it can reproduce QM, in which the no-signaling condi-
tion holds. For other SC-models, however, consistency with
the no-signaling condition becomes an important issue. For
instance, the model proposed by Eberhard, that uses both SC
and LV, allows signaling as demonstrated by the author him-
self [5]; and so does the Bohm-Bub model [6]. A SC-model
without LV in which the preferred frame is replaced by sev-
eral meaningful frames associated with the experimental de-
vices [7] was also shown to lead to signaling, even in the case
of infinite speed [8]. In this paper, we consider a large class
of SC-models, namely all those in which the SC is assumed

to propagate in the preferred frame with finite speed [9]. Gen-
eralizing a previous result [8], we prove that the no-signaling
condition can be broken if LV are absent or are restricted to
come from a quantum state, and present a study of the con-
straints induced by the no-signaling condition in the presence
of the most general LV [10].

II. THE SC-MODEL AND THE NO-SIGNALING
CONSTRAINT

As mentioned in the introduction, let’s suppose that the ”re-
ality” underlying quantum correlations consists of local vari-
ables (LV) and superluminal communication (SC) with finite
speed in a preferred frame (PF). In such a model, when parti-
cle A is measured before particle B in the PF, so that SC can
go from A to B (that we write AÃB), one recovers the pre-
dictions of QM (quantum scenario); and the same is assumed
for the reverse time-ordering, BÃA. We suppose moreover
that all quantum scenarios are equivalent: as soon as the SC
can propagate from one particle to the other, a given source
produces always the same statistics, compatible with a quan-
tum state ρ. However, when two particles are measured al-
most simultaneously in the PF, the SC cannot arrive from one
particle to the other (A6!B). In particular, if in the quantum
scenario the probabilities are those computed from the singlet
state 1√

2
(|01〉 − |10〉) and can thus violate Bell’s inequality,

then, when A 6!B, these probabilities must be modified in
order to become compatible with LV (no Bell inequality vi-
olation). Such a loss of non-locality may be testable in an
experiment, provided the PF is identified and the sufficient si-
multaneity is achieved [9]; however, as long as only two parti-
cles are concerned, the no-signaling condition does not imply
any constraint on the possible models [8]. Things are different
if we consider three particles A, B and C. Let P(a,b,c|A,B,C)
be the statistics of a measurement, where small x are the pos-
sible outcomes of the measurement X . Whenever the SC can
arrive on each link, e.g. AÃB, AÃC and BÃC, the particles
give statistics that can be derived from a quantum state ρABC
(quantum scenario). Whenever a link is broken, e.g. when
A6!C, departures from QM can be expected. In particular, a
non-quantum scenario can be constructed in which:

• Particles A and C are measured simultaneously in the
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FIG. 1: Space-time diagram in the coordinates of the preferred frame (PF) illustrating the non-quantum scenario that leads to conditions (1)
and (2). The dots D’s are the detection events, the full diagonal lines are standard light cones (cones of classical information), the dotted lines
are the ”superluminal communication cones”. See text for the explanation.

preferred frame, hence A 6!C, hence their correlation
can be due only to LV:

P(a,c|A,C) must come from LV . (1)

Note that this probability cannot depend on the choice
of the measurement on B, since this choice may be done
later in time.

• Particle B is measured later, with a time delay sufficient
to ensure AÃB and CÃB, but not sufficient to ensure
communication at the speed of light to arrive from A
or C. It can be shown, see below, that the no-signaling
condition requires

P(a,b|A,B,C) = PQM(a,b|A,B)
P(b,c|A,B,C) = PQM(b,c|B,C)

}
(2)

where PQM are computed using ρABC, the state of the
source in any quantum scenario.

It is not obvious that conditions (1) and (2) are consistent for
any choice of the quantum state, and indeed this will be the
main theme of the rest of the paper. Before that, for com-
pleteness let us repeat the construction of the scenario, al-
ready presented in Ref. [8]. The scenario is depicted in
Fig. 1. The particles are at locations xA = −`, xB = 0 and
xC = +`. The dots D’s in the space-time diagram are the de-
tection events. The unprimed events define the non-quantum
scenario: as we said, DA and DC are simultaneous and there-
fore lie outside the SC-cones (dotted lines) of each other,
whence condition (1). If A chooses to delay the measure-
ment by a time τ, so that the detection of particle A is now
D′

A, the quantum scenario is recovered since CÃA, CÃB
and AÃB (follow the SC-cones). Now, classical information

about DB can arrive at the location of C at the point labelled
by PBC: then, P(b,c|A,B,C) can be estimated. But at that
moment, classical information about A has not yet arrived,
because it will arrive only in PAC or P′AC. In particular, the
no-signaling condition imposes that P(b,c|A,B,C) cannot de-
pend either on the measurement done on A or on whether that
measurement was delayed or not. But if the measurement of
A was delayed, we have the quantum scenario, so in partic-
ular P(b,c|A,B,C) = PQM(b,c|B,C) as required in (1). The
other part of (1), P(a,b|A,B,C) = PQM(a,b|A,B) can be de-
rived by the symmetric argument, supposing that it is C that
can delay the measurement (situation not shown in the figure,
for clarity).

III. THE NEED FOR LOCAL VARIABLES

A first instructive step is taken by supposing that there are
no LV at all, that is, all the correlations are due to SC. In this
case, condition (1) is replaced by the stronger condition of
independence:

P(a,c|A,B,C) = PQM(a|A)PQM(c|C) (3)

where the marginals must be those of QM to avoid signaling.
Now, it is very easy to see that this condition and condition
(2) are incompatible. Consider a source that produces, in the
quantum scenarios, the Greenberger-Horne-Zeilinger state of
three qubits |GHZ〉 = 1√

2

(|000〉+ |111〉), and suppose that
all three measurements are A = B = C = σz = |0〉〈0|− |1〉〈1|.
Then condition (2) leads to P(a = b) = 1 and P(b = c) = 1;
but if a is always equal to b and b is always equal to c, then
P(a = c) = 1 should hold as well, in contradiction with (3) that
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predicts P(a = c) = P(a 6= c) = 1
2 . We have thus proved The-

orem 1. In any model of superluminal communication with
finite speed, the assumption that there are no local variables
leads to signaling. In some sense, the result of this paragraph
is the counterpart of Bell’s theorem for the SC-models that we
consider: SC with finite speed cannot be alone the cause of
quantum correlations, some LV must be present as well. This
was proved in [8]. In the next paragraph, we extend this re-
sult by showing that a well-defined class of LV model is not
enough to restore the no-signaling condition.

IV. THE NEED FOR NON-QUANTUM STATISTICS

We can go a step further and require that P(a,b,c|A,B,C)
can always be obtained from a quantum state. This would
mean that, when we arrange a situation in which particles A
and C do not communicate, the statistics are still described
by a density matrix ρ̃ABC such that the partial state ρ̃AC can
be described by LV in order to satisfy (1). This extension
is enough to remove signaling from the example of the GHZ
state described just above: the LV statistics may be those of
the quantum state ρ̃ABC = 1

2 P000 + 1
2 P111. However, moving to

other quantum states we can demonstrate the following: The-
orem 2. In any model of superluminal communication with
finite speed, the requirement that P(a,b,c|A,B,C) can always
be obtained from a quantum state leads to signaling. This
follows from a result by Linden and Wootters [11] applied to
our situation. At least two qubits and one qutrit are needed to
work out this argument. Consider the state in C 2⊗C 3⊗C 2

|Ψ〉 = cosα
|021〉+ |120〉√

2
+ sinα

|000〉+ |111〉√
2

(4)

with 0 < α < π
2 . The statistics of the sub-systems A-B and

B-C are computed from the density matrices

ρAB = ρCB =
1
2
|ψ1〉〈ψ1| + 1

2
|ψ2〉〈ψ2| (5)

where |ψ1〉 = sinα|00〉+ cosα|12〉 and |ψ2〉 = sinα|11〉+
cosα|02〉. The statistics of the two qubits A-C is computed
from

ρAC = cos2 α|Ψ+〉〈Ψ+| + sin2 α
2

(P00 +P11) (6)

with |Ψ+〉= 1√
2
(|01〉+ |10〉) and violates the Clauser-Horne-

Shimony-Holt (CHSH) inequality for cos2 α > 1√
2

[12]. We
want to show that |Ψ〉 is the only quantum state of A-B-C,
pure or mixed, compatible with the partial traces (5). Here is
the proof. One starts from ρAB given by (5): since |ψ1〉 and
|ψ2〉 are orthogonal, any purification of ρAB can be written

|Φ〉 =
1√
2

(|ψ1〉AB|E1〉CX + |ψ2〉AB|E2〉CX
)

(7)

with X an auxiliary mode and 〈E1|E2〉 = 0. Then, using the
Schmidt decomposition:

|E1〉CX = c0|0〉C|x10〉X + c1|1〉C|x11〉X (8)
|E2〉CX = d0|0〉C|x20〉X +d1|1〉C|x21〉X (9)

with 〈xk0|xk1〉= 0. The rest of the proof goes as follows: one
inserts these expressions into |Φ〉, and then requires that ρBC
is also given by (5). Specifically, ρBC should span a space that
is orthogonal to |01〉BC and |10〉BC. By direct inspection, for
0 < α < π

2 , this forces c1 = d0 = 0, that in turn implies c0 =
d1 = 1. Using this condition, one can further verify that ρBC
can be obtained only if 〈x10|x21〉 = 1. All in all, this implies
means that

|Φ〉ABCX = |Ψ〉ABC|x〉X : (10)

|Ψ〉ABC is the only quantum state, pure or mixed, compati-
ble with the quantum marginals (5). In particular then, fixing
ρAB and ρBC as required by the no-signaling condition (2) im-
plies that P(a,c|A,B,C) is the statistics derived from ρAB. For
cos2 α > 1√

2
, this is non-local, in contradiction with the spirit

of the model (1). In conclusion: if, in addition to conditions
(1) and (2), we impose that the possible probabilities must
still be describable within quantum physics, then we reach a
contradiction. Thus, if one wants to invoke finite-speed su-
perluminal communication to describe quantum correlations
and, at the same time, avoid superluminal signaling between
observers, the only hope left lies with local variables distrib-
uted according to non-quantum statistics.

V. MOST GENERAL MODEL

The additional constraints that we imposed in the previous
sections (no LV, then LV coming from a density matrix) are
good working hypotheses, but rather artificial. If one is ready
to allow a departure from quantum physics by assuming the
finiteness of the ”speed of quantum information”, then one
is also ready to accept the most general local variable mod-
els to describe the situations where the information is not ar-
rived. Can one still find a contradiction in this extended frame-
work? That is, are conditions (1) and (2) definitely contradic-
tory, without any further hypothesis? The answer is, we don’t
know. What we do know, is that non-quantum local variables
are enough to remove the contradiction pinpointed in the pre-
vious section, based on the specific state (4). To prove this
statement, the starting point is to have a convenient form for
the probabilities. Since A and C give binary outcomes, we can
label these outcomes a,c =±1. It is easy to be convinced that
any probability distribution of two bits and another variable
(here, the trit b) can be written as

P(a,b,c|M) =
1
4

[
FM(b) + aAM(b)

+cCM(b) + acHM(b)
]

(11)

where M = {A,B,C} labels the measurements and where the
functions introduced here are submitted to the constraint that
all probabilities must be positive and sum up to one. Note in
particular that ∑b FM(b) = 1. In this notation, the correlation
coefficient A-C is given by

E(ac|M) = ∑
b

HM(b) . (12)
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Condition (2) implies directly that FM , AM and CM must be
those that can be computed in QM, and that the only freedom
for an alternative model is left on HM . We have to estimate
the constraints that are imposed on E(ac|M). For this, we fix
once for all the measurements on the qubits. At first, we fix
also the measurement B and its result b. Any value of HM is
acceptable that satisfies the condition that all the probabilities
are non-negative:

P(+,b,+) = FM +AM +CM +HM ≥ 0
P(−,b,−) = FM−AM−CM +HM ≥ 0

}
(13)

P(+,b,−) = FM +AM−CM−HM ≥ 0
P(−,b,+) = FM−AM +CM−HM ≥ 0

}
(14)

From (13) we obtain the lower bound HM ≥ −FM(b) +
|AM(b)+CM(b)| ≡ LM(b), from (14) the upper bound HM ≤
FM(b)−|AM(b)−CM(b)| ≡UM(b). In conclusion, for B and
its outcome fixed, all the values of H are possible that satisfy

LM(b) ≤ HM(b) ≤ UM(b) . (15)

From this last equation, using (12), we can immediately derive
the consequent constraint on the A-C correlations:

∑
b

LM(b)≡ LM ≤ E(ac|M)≤ UM ≡∑
b

UM(b) . (16)

Remember that the source is such that E(ac|M) violates the
CHSH inequality for suitable settings in the quantum sce-
nario; our goal is to see whether the bounds we have just de-
rived are tight enough to preserve the violation. Let Mi j =
{Ai,B,C j} for i, j = 1,2: the CHSH inequality reads |B| ≤ 2
where

B = E(ac|M11)+E(ac|M12)
+E(ac|M21)−E(ac|M22) . (17)

The bounds (16) impose the following constraints:

B ≥ L ≡ L11 +L12 +L21−U22 (18)
B ≤ U ≡U11 +U12 +U21−L22 (19)

where Li j ≡ LMi j and Ui j ≡ UMi j . Thus, the constraints un-
der study force the violation of CHSH if and only if there
exist a family of four measurements {Mi j} such that either
L > 2 or U <−2 holds. To check this for the state (4), we re-
call that the functions FM(b), AM(b) and CM(b) must be those
predicted by QM. Specifically, let |b〉= b0|0〉+b1|1〉+b2|2〉
the eigenstate of measurement B for the eigenvalue b; and
the parametrization of the measurements on the two qubits
be given in terms of the vectors in the Bloch sphere n̂X =
(θX ,ϕX ) for X = A,C. Then we compute PQM(a,b,c|M) =

∣∣〈an̂A,b,cn̂C|Ψ〉
∣∣2, write it down in the form (11) and thus find

FM(b) = cos2 α |b2|2 +
1
2

sin2 α(1−|b2|2) ,

AM(b) =
1
2

sin2 αcosθA(|b0|2−|b1|2)

+
1
2

sin2αsinθA Re
[
eiϕA(b0b∗2 +b2b∗1)

]
,

CM(b) =
1
2

sin2 αcosθC(|b0|2−|b1|2)

+
1
2

sin2αsinθC Re
[
eiϕC(b0b∗2 +b2b∗1)

]

The last step is to maximize L (respectively minimize U) over
all possible families of four measurements {Mi j}. This is an
optimization over fourteen real parameters: four for qubit A
(θAi and ϕAi for i = 1,2), as much for qubit C (the analog
ones), and six for the qutrit B, the number of real parameters
needed to define a basis, i.e. an element of SU(3). We pro-
grammed the optimization in Matlab. The result is that L is
always clearly smaller than 2 for any value of α. Specifically,
L̄ = max{M}L starts at −4 for α = 0, then increases to ∼ 0.4
at the point cos2 α = 1√

2
where the quantum state ρAB ceases

to violate the CHSH inequality, and finally reaches exactly 2
for α = π

2 , that is |Ψ〉 = |GHZ〉. As intuitively expected, U
behaves exactly in the symmetric way: Ū = min{M}U starts
at 4 for α = 0 and decreases down to−2 for α = π

2 [13]. Let’s
summarize: we have studied a state that is entirely determined
by its ”quantum marginals” ρAB and ρBC if we want to stay
within quantum mechanics. However, if we relax this require-
ment, several non-quantum functions HM(b) become possi-
ble — that quantum probabilities have much built-in struc-
ture is evident e.g. from the fact that HM(b) must be bilin-
ear in the vectors n̂A and n̂C in the quantum case, while in the
non-quantum case HM(b) need not even be a continuous func-
tion of these vectors. All this freedom is enough to break the
uniqueness result that holds in the quantum case, so strongly,
that also the non-locality of the marginal distribution A-C is
destroyed. Thus, for the state (4) that we have considered and
for the CHSH inequality, superluminal communication with
finite speed does not lead to signaling when non-quantum lo-
cal variables are allowed. It remains an open problem to deter-
mine whether this conclusion holds in general, whatever the
state and for any possible Bell-type inequality.

VI. DISCUSSION

We have put constraints on the possibility of using super-
luminal communication with finite speed to describe quan-
tum correlations. Specifically, local variables that yield in-
trinsically non-quantum statistics must be provided together
with this communication mechanism, in order to avoid sig-
naling. Whether ultimately such non-quantum local variables
lead to signaling too — thus ruling out all models based on
finite-speed superluminal communication — is still an open
question; we sketched a possible approach to tackle it. The
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constraints discussed in this paper should contribute to inspire
deeper models for ”emergent quantum mechanics”.
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